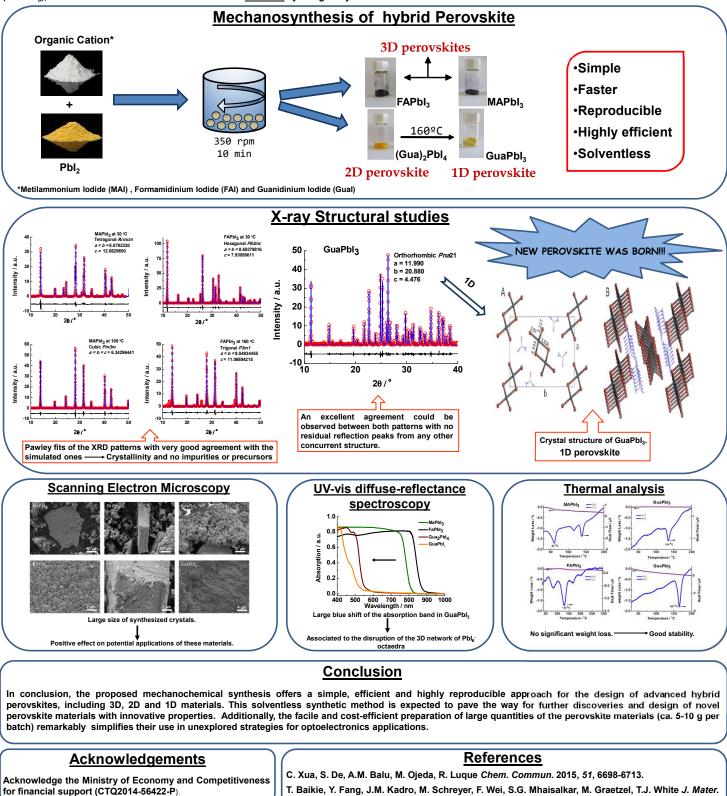
Benign-by-design solventless mechanochemical synthesis of 3-, 2- and 1-dimensional hybrid perovskites


Alexander Davis Jodlowski¹, Alfonso Yépez², María Teresa Martín Romero¹, Marta Pérez Morales¹, Rafael Luque², Luis Camacho¹ and Gustavo de Miguel1

¹Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, 14014 (Spain).

2Department of Organic Chemistry, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, 14014 (Spain). e-mail:g82daioa@uco.es

Introduction

Organic-inorganic hybrid perovskites have recently attracted significant attention in the scientific community due to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors and lasing. The rational design of these hybrid materials is a key factor to optimize their performance in perovskite-based devices. In this work, a mechanochemical approach is proposed as highly efficient, simple and reproducible methodology for the preparation of four types of hybrid perovskites obtaining large amounts of polycrystalline powders with high purity. The synthesis of two archetypal threedimensional (3D) perovskites (MAPbl₃ and FAIPbl₃) was accomplished, together with a bidimensional (2D) perovskite (Gua)₂Pbl₄) and a "double-chain" perovskite (GuaPbl₃), whose structure has been elucidated for the first time by using X-ray diffraction.

T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White J. Mater. Chem. A 2013.

B. Sarapov, D. Mitzi Chem. Rev. 2016, 116, 4558-4596; b) K. Meng, S. Gao, L. Wu, G. Wang, X. Liu, G. Chen, Z. Liu, G. Chen Nano Lett. 2016, 16, 4166-4173.

UNIVERSIDAD D CORDOBA