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Abstract: In the present work, ten data mining algorithms have been used to generate models 

capable of predicting the surface roughness of parts printed on polylactic acid (PLA) by using fused 

deposition modeling (FDM). The models have been trained using experimental data measured on 

27 horizontal (XY) and 27 vertical (XZ) specimens, printed using different values for the parameters 

studied (layer height, extrusion temperature, print speed, print acceleration and flow). The models 

generated by multilayer perceptron (MLP) and logistic model trees (LMT) have obtained the best 

results in a cross-validation. Although it does not obtain such optimal results, the J48 algorithm 

(C4.5) allows the generation of models in the form of a decision tree. These trees permit to determine 

which print parameters have an influence on the surface roughness. For XY specimens, the surface 

roughness measured in the direction parallel to the extrusion path (Ra,0,XY ) depends on the flow, the 

print temperature and the layer height; in the direction perpendicular to the extrusion path, the 

surface roughness (Ra,90,XY) depends only on the flow. For XZ specimens, the surface roughness 

measured in the direction parallel to the extrusion path (Ra,0,XZ) depends only on the print speed; in 

the direction perpendicular to the extrusion path (Ra,90,XZ), it depends on the layer height and the 

extrusion temperature. According to the study carried out, the most suitable set up provides values 

of Ra,0,XY, Ra,90,XY, Ra,0,XZ and Ra,90,XZ equal to 0.46, 1.18, 0.45 and 11.54, respectively. A practical 

application of this work is the manufacture of PLA frame glasses using FDM. 

Keywords: fused deposition modeling; FDM; FFF; data mining; machine learning; PLA; surface 

roughness; WEKA; decision trees; C4.5; neural networks; ANN; frame glasses 

 

1. Introduction 

Currently, the industry is suffering a profound revolution. Different technological tools are 

being used intensively in factories [1]: augmented reality, virtual twins, data mining, additive 

manufacturing, among others. This fact is known as industry 4.0.  

Additive manufacturing (AM) was initially used to manufacture prototypes in the product 

development stage. Today, it is also used to manufacture: customized objects (rapid prototyping), 

tools for other processes (rapid tooling), small batches of fully functional parts (rapid manufacturing) 

[2].  

There are different technologies of AM. However, fused deposition modeling (FDM) is the most 

extended technology [3–5]. The low cost of the equipment and the diversity of filaments in the market 
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contribute to this. Although there are many materials available, polylactic acid (PLA) is still one of 

the most widely used in FDM [6,7]. There are several reasons for this [8]: it is biodegradable, easily 

printed, does not give off any vapors during printing and there are PLA formulas with mechanical 

properties similar to acrylonitrile butadiene styrene (ABS) [9]. 

For some applications, 3D printed parts must achieve minimum mechanical properties [8,10–

13]. In other cases, apart from a high tensile strength value, the parts need to have a proper aesthetic 

quality [14–16]. Some authors have evaluated which factors allow achieving the best rankings in all 

hedonic, tactile and visual assessments of FDM 3D printed parts [17]; in the tactile and visual 

evaluations, the authors conclude that the pieces with the highest scores are those with the lowest 

values of surface roughness. On the other hand, the surface finish is crucial when printed parts are 

in contact with human skin, as is the case with frame glasses [18].  

One of the motivations for this work is to determine which printing factors are the most 

influential in the surface finish on PLA parts printed using FDM. In the literature, you can find 

previous works in which the influence of different printing parameters on the surface roughness of 

3D printed parts has been studied (Table 1). However, there are printing parameters that have not 

yet been analyzed, such as print acceleration or flow. This is one of the main contributions of this 

work. 

Traditionally, the experimental study of the quality of manufactured parts has been carried out 

with statistical tools, such as the Taguchi method and analysis of variance (ANOVA) [19]. However, 

the large amount of data currently generated by industry 4.0 sensors and the need to use algorithms 

capable of modeling non-linear problems has made it necessary to use data mining (also known as 

machine learning, ML) techniques [20–22]. The second motivation for the work is to use data mining 

(DM) techniques to predict the surface finish of 3D printed parts using FDM.  

Razvi et al. [23] have reviewed the existing literature on the use of DM in additive 

manufacturing; the papers reviewed have been grouped around four different topics: design, process 

optimization, monitoring and control, inspection and testing. Amand et al. [24] have used DM 

techniques to predict possible defects during the configuration step in FDM 3D printing. Wu et al. 

[25] have used the random forest algorithm to generate a model to predict the surface roughness of a 

3D printed part from data collected by different sensors placed in the FDM printer. Sohnius et al. [26] 

have employed DM techniques to predict the quality of printed parts using FDM from data obtained 

via the machine vision method. Mahapatra and Sood [27] proposed the use of artificial neural 

networks (ANN) to determine the relationship between five input FDM parameters such as layer 

thickness, orientation, raster angle, raster width, and air gap with surface roughness in the top, 

bottom, and side surface of the acrylic nitrile butadiene styrene (ABS) built part. Boschetto et al. [28] 

proposed a feed-forward neural network to fit experimental data and to determine surface roughness 

parameter models reliable over the entire part surface. Vahabli and Rahmati [29] have established a 

robust model using empirical data based on optimized ANN to estimate the surface roughness 

distribution in fused deposition modeling ABS parts; this work includes four medical case studies.  

The aim of this work is to generate and validate models via data mining techniques that allow 

predicting the surface finish of PLA printed parts according to the selected values for the following 

printing parameters: layer height, extrusion temperature, print speed, print acceleration and flow. 

For this purpose, 27 horizontal and 27 vertical specimens have been manufactured, according to a 

fractional experiment design. The surface roughness of these specimens was measured. The results 

were used to generate and test different models via data mining algorithms (Bayes Net, naïve-Bayes, 

multilayer perceptron, simple logistics, sequential minimal optimization, IBk, Kstar, J48, logistic 

model tree and random forest). In addition, using the J48 algorithm, decision trees were generated to 

determine which printing parameters significantly influence the surface roughness of the parts.  

As a practical application of the work, the manufacture of a frame glasses is proposed. There are 

standard frames on the market, which are adapted to the characteristics of an average person. 

However, there are people with such a facial morphology that they cannot find glasses in the optical 

shops. By means of 3D printing, it is possible to manufacture customized frames [30], in 
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biodegradable materials such as PLA [18]. One of the most important specifications of a frame glasses 

is the surface finish, for aesthetic reasons and to reduce friction with the skin of the user. 

Table 1. Previous works that have studied the surface roughness of polylactic acid (PLA) printed 

parts using fused deposition modeling (FDM). 

Author 
Layer 

Height 

Tempe-

Rature 

Print 

Orienta-

tion 

Print 

Speed 

Filling 

Density 

Nozzle 

Diame-

ter 

Wall 

Thick

-ness 

Print 

Path 

García-Plaza et al. [31]  √ - √ √ - - - - 

Ramli et al. [32] √ - - - √ - - - 

Alsoufi and Elsayed 

[33] 
√ 

- 
- 

- - √ - - 

Kovan et al. [34] √ √ - - - - - - 

Perez et al. [19] √ √ - √ - - √ √ 

2. Materials and Methods 

2.1. Design of Experiments and Printing of Specimens 

In this work, 54 test pieces with dimensions 25.0 mm × 25.0 mm × 2.4 mm were printed following 

a fractional experiment design, with five factors and three levels (Table 2). The factors studied were: 

layer height (LH), extrusion temperature (T), print speed (PS), print acceleration (PA) and flow (F). 

Table 3 shows the parameters set in each test. A total of 27 specimens were printed in the XY 

orientation, and others 27 in the XZ orientation (Figure 1).  

The specimens were designed using SolidWorks (Dassault Systemes, Vélizy-Villacoublay, 

France). The selection of print parameter values and the generation of the numerical code (CN) was 

performed using Ultimaker CURA software (version 4.0.0, Ultimaker, Utrecht, Netherlands). 

The specimens were produced on an Ender 3 printer (Creality 3D, Shenzhen, China), with a 220 

× 220 × 250 mm3 workspace and a hot bed (50 °C). An extrusion nozzle with a diameter of 0.4 mm 

was used in the tests. 

Table 2. Factors and levels used in the design of experiments (DOE). 

Factors Level 1 Level 2 Level 3 

Layer height, LH (mm) 0.16 0.20 0.24 

Temperature, T (°C) 200 210 220 

Print speed, PS (mm/s) 40 50 60 

Print acceleration, PA (mm/s2) 500 1000 1500 

Flow, F (%) 90 100 110 

Table 3. Design of experiment L27 used in the present work. 

Layer height, LH 

(mm) 

Temperature, T 

(°C) 

Print 

Speed,  

PS (mm/s) 

Print acceleration, PA 

(mm/s2) 

Flow,  

F (%) 

0.16 200 40 500 900 

0.16 200 40 500 100 

0.16 200 40 500 110 

0.16 210 50 1000 90 

0.16 210 50 1000 100 

0.16 210 50 1000 110 

0.16 220 60 1500 90 

0.16 220 60 1500 100 

0.16 220 60 1500 110 
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0.20 200 50 1500 90 

0.20 200 50 1500 100 

0.20 200 50 1500 110 

0.20 210 60 500 90 

0.20 210 60 500 100 

0.20 210 60 500 110 

0.20 220 40 1000 90 

0.20 220 40 1000 100 

0.20 220 40 1000 110 

0.24 200 60 1000 90 

0.24 200 60 1000 100 

0.24 200 60 1000 110 

0.24 210 40 1500 90 

0.24 210 40 1500 100 

0.24 210 40 1500 110 

0.24 220 50 500 90 

0.24 220 50 500 100 

0.24 220 50 500 110 

2.2. Surface Roughness Measurement 

Surface roughness (Ra) of the printed specimens was measured using a Mitutoyo SJ-201 

profilometer (Mitutoyo, Kawasaki, Japan). Ra was measured five times in the direction parallel to the 

extrusion path (Ra,0) and five times in the direction perpendicular to the extrusion path (Ra,90) (Figure 

2). The representative value in each direction for each specimen was calculated as the arithmetic mean 

of these five measurements.  

 

Figure 1. Print orientation: vertical (XZ) (left), and horizontal (XY) (right). 
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Figure 2. Directions of measurement taken in the roughness test. 

2.3. Data Mining Algorithms  

Data mining is a discipline that allows us to analyze data sets and extract knowledge from them. 

It is a key tool in the industry to process the data that is generated daily on machines and 

manufacturing lines [20]. 

There are many DM algorithms. These algorithms can be classified into two main groups [35]: 

supervised and unsupervised. Supervised algorithms are those that work with instances that a priori 

already belongs to a class. Unsupervised algorithms are used precisely to try to classify instances into 

groups that were not known a priori. Regression and classification models are the most well-known 

supervised models while clustering is the main technique of the unsupervised category [36]. 

The data obtained from the surface roughness measurements have been categorized into two 

classes, using the median value as the border: surface roughness values below the median value have 

been categorized as class 1; surface roughness values above the median value have been categorized 

as class 2.  

From these data, a total of 40 models have been generated, using ten of the most common 

classification algorithms in data mining. These algorithms are briefly described in Table 4. Two 

parameters have been used to evaluate each model: the percentage of correctly classified instances 

and the kappa statistic. These parameters are calculated using the cross-validation procedure (10-

folds). 

Table 4. Description of the data mining algorithms used in the present work (elaborated from [37]). 

Algorithm Description Ref. 

Bayes Net 

(BN) 

It is a Bayesian classification algorithm that provides joint conditional 

probability distributions. BN algorithm consists of a directed acyclic 

graph and a set of conditional probability tables. Each random variable is 

expressed by a node in the directed acyclic graph. The conditional 

probability table for the values of the variables indicate each possible 

combination of the values of its parent nodes. 

[38] 

Naïve-Bayes It is a statistical classification algorithm which is based on Bayes’ 

theorem. The suppositions of accepting that predictive attributes are 

conditionally independent given the class and no hidden or latent 

attributes influence the predictive process make the algorithm a suitable 

tool for classification and learning. 

[39] 

Multilayer 

Perceptron 

(MLP) 

MLP is a feed-forward neural network with one or more hidden layers 

that uses back-propagation to classify instances. The structure of an MLP 

typically consists of an input layer, hidden layers and output layer, where 

the input signals are propagated in the forward direction. 

[40] 

Simple 

Logistics 

Logistic regression is a statistical model that predicts the probability of 

some event occurring as a linear function of a set of predictor variables. 

Linear regression presents two problems: the membership values are not 

[35] 
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proper probability values and the least-squares regression takes errors as 

both statistically independent and normally distributed with the same 

standard deviation. In order to get rid of these problems, logistic 

regression generates a linear model based on a transformed target 

variable. 

Sequential 

Minimal 

Optimization 

(SMO) 

It is a support vector machine (SVM) classifier that employs sequential 

minimal optimization for training. SVM is a method for classification of 

linear and nonlinear data that uses a nonlinear mapping for transforming 

the original data into a higher dimension.  

[38] 

IBk It is an instance-based learning algorithm which is a slightly modified 

version of the K-nearest neighbor (KNN) algorithm. The algorithm can 

determine the appropriate value for K based on cross-validation. It 

normalizes the ranges of attributes, processes instances incrementally 

and has a policy for tolerating missing values. 

[41] 

KStar It is an instance-based learning algorithm which uses an entropy-based 

distance function. It handles with symbolic attributes, real-valued 

attributes and missing values properly owing to the use of entropy as a 

distance function. The technique of summing probabilities over all 

possible paths overcomes the problem of smoothness. 

[42] 

J48 J48 is a slightly modified version of C4.5 in WEKA. C4.5 is a successor of 

ID3 algorithm. The test attribute selection criteria of the algorithm is 

information gain to overcome the attribute bias problem of ID3. For a 

given set, each time the algorithm selects an attribute with the highest 

information gain. 

[43] 

Logistic 

Model Trees 

(LMT) 

LMT is a classification algorithm that integrates decision tree induction 

with logistic regression. The tree structure of the algorithm is grown in a 

similar manner to the C4.5 algorithm. Here, an iterative training of 

additive logistic regression models is performed. By splitting, the logistic 

regressions of the parent node are passed to the child nodes. This 

provides to have all parent models and probability estimates for each 

class at the leaf nodes of the final model. 

[44] 

Random 

Forest 

It is an ensemble of classification or regression trees, induced from 

bootstrap samples of the training data. In this model, the generalization 

error of the classifier depends on the power of the individual trees and 

the association between the trees. Random feature selection is used in the 

tree induction process. This enables the algorithm to perform comparable 

to the Adaboost algorithm and to be tolerable with noisy data. 

[45] 

2.4. Decision Trees 

Decision trees are one of the most widely used supervised algorithms. In this category are [35]: 

C4.5, CART, random forest, random tree, among others. The C4.5 algorithm was developed by 

Quinlan [43]. This algorithm generates tree-shaped models that allow the classification of instances 

in a simple, visual and easy to understand way. 

The C4.5 algorithm is based on the concept of entropy, understanding entropy as a measure of 

data disorder [43]. The entropy of a vector and �⃗ can be calculated as shown in Equation (1) iterating 

over all possible values of �⃗. Conditional entropy is calculated as shown in Equation (2).  

�������(�⃗) = −�
����

|�⃗|

�

���

���
����

|�⃗|
 (1) 
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�������(�|�⃗) =
����

|�⃗|
���

����

|�⃗|
. (2) 

Finally, the gain is defined as shown in Equation (3). 

����(�⃗, �) = �������(�⃗ − �������(�|�⃗) (3) 

For each node in the tree, the algorithm chooses the attribute that most effectively divides the 

original set into different smaller subsets. The attribute with the highest information gain is chosen 

as a decision parameter. The WEKA data mining software, developed by the University of Waikato 

(Hamilton, New Zealand), includes the J48 algorithm, based on the C4.5 [35].  

2.5. Case Study: Printing a Frame Glasses 

As a practical application of the work, the manufacture of a frame glasses is proposed. A frame 

is made up of two main elements: front and temples. Each of these elements has been personalized 

for the face/head of one of the authors, who cannot find glasses on the market that fit his morphology. 

In this case, the front has been printed in a horizontal orientation (XY) and the temples in a vertical 

orientation (XZ). The printing parameters chosen in each case have been selected after this study. 

3. Results 

3.1. Data from the Tests 

The mean values and standard deviation of surface roughness in the direction parallel to 

extrusion path (Ra,0) and in the direction perpendicular to extrusion path (Ra,90) for both print 

orientation (XY and XZ) are shown in Tables 5 and 6. As expected, due to the deposition of the fused 

filament layer after layer, the surface roughness in the direction parallel to the extrusion path is lower 

than the surface roughness in the perpendicular direction.  

Table 5. Mean and standard deviation of surface roughness for XY specimens. 

Test Ra,0,XY (µm)  Ra,90,XY (µm) 

 Mean Std. Dev. Mean Std. Dev. 

1 0.80 0.34 0.71 0.34 

2 1.68 0.56 1.41 0.75 

3 0.46 0.08 1.18 1.59 

4 1.55 0.33 1.96 1.87 

5 1.02 0.41 2.14 2.49 

6 0.39 0.09 2.16 3.33 

7 1.11 0.38 2.83 3.63 

8 2.09 0.25 3.45 4.05 

9 1.16 0.23 3.46 4.82 

10 0.59 0.17 3.59 5.56 

11 1.29 0.64 4.31 5.80 

12 0.96 0.18 4.38 6.61 

13 0.74 0.24 4.66 7.23 

14 6.58 1.47 7.35 6.30 

15 0.69 0.26 5.32 8.39 

16 0.89 0.50 5.80 8.84 

17 7.93 0.86 8.60 8.09 

18 0.48 0.15 6.21 10.21 

19 0.92 0.20 6.70 10.65 

20 10.36 1.35 10.57 9.33 

21 0.64 0.20 7.28 11.88 

22 6.96 1.79 10.25 10.50 
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23 9.46 4.06 12.17 9.76 

24 0.67 0.25 8.31 13.59 

25 4.91 0.83 10.25 12.94 

26 1.48 0.44 9.31 14.47 

27 0.80 0.36 9.39 15.26 

Table 6. Mean and standard deviation of surface roughness for XZ specimens. 

Test Ra,0,XZ (µm)  Ra,90,XZ (µm) 

 Mean Std. Dev. Mean Std. Dev. 

1 0.58 0.25 13.29 1.15 

2 0.57 0.21 12.63 0.66 

3 0.45 0.03 11.54 0.13 

4 0.39 0.13 13.04 0.25 

5 0.40 0.10 12.25 0.42 

6 0.60 0.23 11.55 0.05 

7 0.48 0.15 12.92 0.49 

8 0.66 0.11 12.87 0.51 

9 1.12 1.11 12.44 0.35 

10 0.76 0.24 15.31 0.20 

11 0.37 0.08 15.34 0.32 

12 0.34 0.10 14.89 0.16 

13 0.69 0.55 16.35 0.68 

14 0.71 0.16 15.81 0.61 

15 0.65 0.16 14.44 0.14 

16 0.63 0.18 16.91 1.00 

17 0.34 0.12 16.23 0.62 

18 0.42 0.06 15.58 0.77 

19 0.67 0.20 19.25 0.59 

20 0.56 0.25 18.93 0.33 

21 0.72 0.30 17.86 0.10 

22 0.58 0.27 19.19 0.55 

23 0.63 0.18 19.16 0.28 

24 0.46 0.16 18.94 0.88 

25 0.67 0.19 20.06 1.25 

26 0.74 0.25 18.80 0.33 

27 0.64 0.21 18.36 0.50 

3.2. Comparison of Models Generated via Data Mining Algorithms 

To analyze the data, they have been classified into two groups (Table 7): class 1 (low surface 

roughness values) and class 2 (high surface roughness values). This data has been processed by the 

WEKA software. By means of this software, different classification algorithms have been used to 

predict whether an instance belongs to class 1 or class 2. Each algorithm has been used to generate 4 

models: Ra,0XY, Ra,90XY, Ra,0XZ, Ra,90XZ. Each model has been evaluated using two criteria: on the one 

hand, the number of correctly classified instances; on the other, the value of the kappa statistic (Table 

8). 

The models generated from Ra,0,XY, Ra,90,XY, Ra0,XZ and Ra90,XZ data are shown in Figure 3, Figure 4, 

Figure 5 and Figure 6, respectively. The algorithms that achieve better results for Ra0,XY are MLP, J48, 

LMT and random forest. The algorithms that achieve better for Ra90,XY results are Bayes Net and LMT. 

The algorithm that achieves better results for Ra0,XZ are MLP and LMT. The algorithms that achieve 

better results for Ra90,XZ are MLP, SMO, Kstar and random forest. 
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Table 7. Values used to establish the classes needed to perform data processing at WEKA. 

Orientation Direction Class 1 Class 2 

XY 0° 0.39–1.02 µm 1.03–10.36 µm 

XY 90° 5.79–13.43 µm 13.44–18.69 µm 

XZ 0° 0.34–0.60 µm 0.61–1.12 µm 

XZ 90° 11.54–15.58 µm 15.59–20.06 µm 

Table 8. Strenght of concordance for kappa statistic. 

Kappa Statistic Strength of Concordance 

0.00 Poor 

0.01–0.20 Slight 

0.21–0.40 Fair 

0.41–0.60 Moderate 

0.61–0.80  Substancial 

0.81–1.00 Almost perfect 

 

Figure 3. Evaluation of the models generated by WEKA for Ra,0,XY data (cross-validation, 10 folds). 
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Figure 4. Evaluation of the models generated by WEKA for Ra,90,XY data (cross-validation, 10 folds). 

 

Figure 5. Evaluation of the models generated by WEKA for Ra,0,XZ data (cross-validation, 10 folds). 
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Figure 6. Evaluation of the models generated by WEKA for Ra,9,0XZ data (cross-validation, 10 folds). 

3.3. Generation of Decision Trees (J48) 

As seen in the previous section, except in the case of Ra0,XZ, the models generated by the J48 

algorithm present adequate results. On the other hand, this algorithm is not a black box: it allows the 

generation of decision trees that are easy to interpret and that provide additional information. 

Figure 7 shows the decision tree generated for the surface roughness in the direction parallel to 

the extrusion path for the data obtained from specimens printed in the XY orientation (Ra,0,XY). As it 

can be seen in the figure, the most important parameters are flow (F), extrusion temperature (T) and 

layer height (LH). According to this tree, a lower surface roughness (class 1) can be obtained in the 

following cases: 

 By selecting a flow value (F) higher than 100 % (directly). 

 By selecting a flow value (F) equal to 90 % and a print temperature (T) equal to 200 °C. 

 By selecting a flow (F) value equal to 90 %, a print temperature (T) higher than 200 °C 

and a layer height (LH) equal to 0.2 mm. 

Figure 8 shows the decision tree generated for the surface roughness in the direction 

perpendicular to the extrusion path, for the data obtained from specimens printed in XY orientation 

(Ra,90,XY). In this case, the most important parameter is the flow (F). According to this tree, a lower 

surface roughness (class 1) can be obtained simply by selecting a flow value (F) higher than 100%. 

Figure 9 shows the decision tree generated for surface roughness in the direction parallel to the 

extrusion path from the data obtained from specimens printed in XZ position (Ra,0,XZ). As can be seen 

in this figure, the most important parameter, in this case, is the print speed (PS). According to this 

tree, a lower surface roughness (class 1) can be obtained simply by selecting a value for the printing 

speed (PS) equal to 40 mm/s. 
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Figure 7. Decision tree for surface roughness measured in the direction parallel to the extrusion path 

on printed specimens in the XY orientation (Ra,0,XY). 

 

Figure 8. Decision tree for surface roughness measured in the direction perpendicular to the extrusion 

path on printed specimens in the XY orientation (Ra,90,XY). 

Figure 10 shows the decision tree generated for roughness in the direction perpendicular to the 

extrusion path, for the data obtained from specimens printed in XZ position (Ra,90,XZ). In this case, the 

most important parameters are the layer height (LH) and the extrusion temperature (T). According 

to this tree, a lower surface roughness (class 1) can be obtained in the following cases: 

 By selecting a layer height (LH) equal to 0.16 mm (directly). 

 By selecting a layer height (LH) equal to 0.20 mm and a print temperature (T) equal to 

200 °C. 

Table 9 shows the percentages of correctly and incorrectly classified instances, as well as the 

kappa statistic for each model. According to Table 8, the models generated for Ra,0,XY and Ra,90,XY is 

rated as ‘moderate’; on the other hand, the model generated for Ra,90,XZ is rated as ‘almost perfect’. 

Finally, the model obtained for Ra,0,XZ obtains very poor results. The results obtained from the first 

three models are supported. This is not the case with the last model. 

In order to check that the information extracted from the decision trees is correct, the mean value 

and the standard deviation obtained for surface roughness in each of the 27 tests carried out have 

been represented. As an example, Figure 11 and Figure 12 show the results for Ra0XY and Ra90XZ, 

respectively. Figure 11 clearly shows the instances belonging to class 1 (F > 100; F ≤ 90 and T ≤ 200; F 

≤ 90 and T > 200 and LH = 0.2) and the instances belonging to class 2 (the rest). Likewise, Figure 12 

shows that the instances that meet certain criteria (LH ≤ 0.16; 0.16 < LH ≤ 0.20 and T < 200) have a 

lower surface roughness than the rest. 
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Figure 9. Decision tree for surface roughness measured in the direction parallel to the extrusion path 

on printed specimens in the XZ orientation (Ra,0,XZ). 

 

Figure 10. Decision tree for surface roughness measured in the direction perpendicular to the 

extrusion path on printed specimens in the XZ orientation (Ra,90,XZ). 

Table 9. Information regarding decision tree models generated in this work. 

Tree 
Correctly Classified Instances 

(%) 

Incorrectly Classified Instances 

(%) 

Kappa 

Statistics 

Ra,0,XY 70.37 29.63 0.41 

Ra,90,XY 70.37 29.63 0.41 

Ra,0,XZ 44.44 55.56 -0.11 

Ra,90,XZ 92.59 7.41 0.85 

 

Figure 11. Mean values and standard deviation for Ra0XY; each color represents a leaf of the decision 

tree: pink, yellow and green instances belong to class 2; the rest of color belong to class 1 (F: Flow; T: 

Temperature; LH: layer height). 
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Figure 12. Mean values and standard deviation for Ra90XZ; each color represents a leaf of the decision 

tree: orange and blue instances belong to class 1; grey and yellow ones belong to class 2 (LH: layer 

height; T: temperature). 

3.4. Practical Application: Reduction of Surface Roughness in FDM 3D Printed Frame Glasses 

A practical application of the results obtained in this work is the production of frame glasses 

printed in PLA using FDM (Figure 7). Frames glasses are a perfect example of a product that should 

be custom-made: each user has a face width, a nose width and a face-to-ear distance (Figure 13, left). 

The most important dimensions of a frame glasses can be parameterized in a CAD design and 

adjusted according to the needs of each customer. Once the model was customized, it was printed 

using an F equal to 110% and an LH equal to 0.16 mm (Figure 13, right).  

  

Figure 13. Customized frame glasses: parameterized distances (left); real frame glasses produced in 

PLA via FDM (F = 110%; LH = 0.16 mm) (right). 
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4. Discussion 

In the present work, data mining techniques have been used to generate models that allow 

predicting the surface roughness of parts printed in PLA using 3D FDM printing. The classifier 

algorithms used to generate the models have been: Bayes net, naïve-Bayes, multilayer perceptron 

(ANN), simple logistic, SMO (SVM), IBk (KNN), KStar, J48 (C4.5), LMT y random forest. The models 

have been tested by means of a cross-validation (10-folds). The percentage of correctly classified 

instances and the kappa statistic were used to compare these models with each other. The input 

variables of the study have been: print orientation, layer height (LH), extrusion temperature (T), print 

speed (PS), print acceleration (PA) and flow (F). The output variables have been the surface roughness 

measured in the direction parallel to the extrusion path (Ra,0) and in the direction perpendicular to 

the extrusion path (Ra,90). A total of 54 specimens have been printed for this purpose: 27 specimens 

were printed with horizontal orientation (XY) and the other 27 with vertical orientation (XZ).  

From the results shown in Figures 3–6, it can be stated that one of the models that best classify 

the instances according to their surface roughness (both for horizontal and vertical specimens) is the 

one generated by the multilayer perceptron (artificial neural network, ANN) algorithm. In the 

literature there are works that also use different types of ANN to predict the surface roughness of 

printed parts using FDM: Boschetto et al. [28] propose the use of a feed-forward neural network to 

predict surface roughness on surfaces that form different angles to the vertical, obtaining errors of 

less than 5%; Vahabli and Rahmati [29] propose a similar model, using another type of ANN, capable 

of predicting surface roughness as a function of build angle. However, both works do not take into 

account the influence of printing parameters on the surface roughness obtained. 

Another algorithm that has generated in the present work models with positive results has been 

the LMT. This fact is consistent with other works of literature: Landwehr et al. [46] concluded that 

LMT produces more accurate classifiers than J48 (C4.5), CART, logistic regression, models tree, 

functional trees, naïve Bayes trees and LOTUS. The problem with this algorithm, like ANN, is that it 

does not generate a model that can be visualized or easily understood. 

One algorithm that generates a model that can be represented graphically is J48. Figures 7–10 

show the decision trees generated by this algorithm for the different measured surface roughness. 

From the models obtained, Table 10 has been drawn up. This table summarises the printing variables 

that must be taken into account in order to obtain a lower surface roughness (class 1). From these 

decision trees, a basic configuration can be established to obtain a good surface finish simultaneously 

on XY and XZ orientation, for perpendicular and parallel direction to extrusion path: F equal to 110 

% and LH equal to 0.16 mm. 

Table 10. Parameters involved in each data tree models. 

 XY XZ 

Ra,0 F, T, LH PS 

Ra,90 F LH, T 

NOTE: The most important parameters have been highlighted in bold. 

In addition to the above, the following statements can be made: 

 The decision tree models can be easily interpreted by any 3D printer operator (they are 

not black-box models) [47]. For this reason, they are used for modeling other 

manufacturing processes in literature [48]. This is important in the current industry that 

is very concerned with visual management.  

 Two parameters that had not been previously studied in the literature on PLA 

specimens were included in this work: print acceleration and flow. While print 

acceleration seems not to have an influence in any of the cases studied, the flow is 

revealed as an important parameter in the surface roughness obtained in XY orientation. 

This result is consistent with those obtained by the authors in similar tests performed 

on PETG [47].  
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 In Ra,90,XZ, the most influential parameters are layer height. These results coincide with 

those obtained by other authors: García-Plaza et al. [31] state that the layer height 

parameter is the most influential in upright and on-edge positions (similar to the XZ 

orientation in the present paper).  

 Three of the four models generated have achieved a ’moderate’ or ’almost perfect’ 

rating, according to their kappa statistic values. This fact supports the validity of the 

results obtained in the present work, as shown in Figures 11 and 12. The model 

generated for Ra0,XZ did not pass the evaluation. 

 The results obtained in the present work have been used to print a frame glasses in PLA 

via FDM. A-frame glasses is the perfect example of a customized part/assembly. There 

are previous works in the literature focused on this topic [18], although they have not 

studied the printing parameters that allow to achieve a better surface finish. 

5. Conclusions 

In the present work, data mining algorithms have been used to generate from experimental tests 

models capable of predicting the surface roughness of horizontal and vertical parts printed in PLA 

using FDM. MLP and LMT are the algorithms that obtain the best results in cross validation tests. 

The J48 algorithm obtains almost perfect results in one of the models and moderate results in 

two others. However, unlike MLP and LMT, this algorithm generates decision trees in which it is 

possible to see which print parameters influence surface roughness.  

Of the five parameters studied, two have proved to be the most important for obtaining a better 

surface finish in XY and XZ specimens: flow and layer height. A flow equal to 110% and a layer height 

equal to 0.16 mm provides the lowest values of surface roughness (Ra) in PLA printed specimens in 

XY and XZ orientation. Using these values, a frame of glasses has been printed, as a practical and 

direct application of this work. 
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