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Abstract: Liquid biopsy may assist in the management of cancer patients, which can be particularly 

applicable in pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the utility 

of circulating cell-free DNA (cfDNA)-based markers as prognostic tools in metastatic PDAC. Plasma 

was obtained from 61 metastatic PDAC patients, and cfDNA levels and fragmentation were 

determined. BEAMing technique was used for quantitative determination of RAS mutation allele 

fraction (MAF) in cfDNA. We found that the prognosis was more accurately predicted by RAS 

mutation detection in plasma than in tissue. RAS mutation status in plasma was a strong 

independent prognostic factor for both overall survival (OS) and progression-free survival (PFS). 

Moreover, RAS MAF in cfDNA was also an independent risk factor for poor OS, and was strongly 

associated with primary tumours in the body/tail of the pancreas and liver metastases. Higher 

cfDNA levels and fragmentation were also associated with poorer OS and shorter PFS, body/tail 

tumors, and hepatic metastases, whereas cfDNA fragmentation positively correlated with RAS 

MAF. Remarkably, the combination of CA19-9 with MAF, cfDNA levels and fragmentation 

improved the prognostic stratification of patients. Furthermore, dynamics of RAS MAF better 

correlated with patients’ outcome than standard CA19-9 marker. In conclusion, our study supports 

the use of cfDNA-based liquid biopsy markers as clinical tools for the non-invasive prognosis and 

monitoring of metastatic PDAC patients. 
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1. Introduction 

Pancreatic cancer is the fourth leading cause of cancer death in Europe in both males and 

females, with the lowest survival rate of all cancers and responsible for over 95,000 deaths every year 

[1,2]. While, the death rates of the most common cancers have mostly declined over the past decades, 

the mortality rate of pancreatic cancer remains flat or slightly increases over time [3]. Poor prognosis 

is associated with diagnosis at advanced stage, due to a lack of detection methods, as well as 

resistance to therapy. Pancreatic ductal adenocarcinoma (PDAC) represents more than 90% of all 
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pancreatic cancer and the vast majority of deaths are associated with this tumor type. Approximately 

60–70% of patients have a primary tumor, located in the head of pancreas, while 20% and 25% are 

located in the body, and tail, respectively. Moreover, PDAC metastasizes mainly to liver, abdomen 

and lungs [4]. 

KRAS mutation is the initiating genetic event for PDAC, and this oncogene is mutationally 

activated in 94% of pancreatic ductal tumors [5]. KRAS mutational status has been usually analyzed 

in tumor tissue, but obtaining biopsy specimens from pancreatic lesions may be difficult and requires 

invasive procedures, such as endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). 

However, EUS-FNA provides a limited number of cells for molecular profiling and the high stromal 

content of pancreatic tumors impairs its efficacy for PDAC diagnosis [6]. Moreover, tumor tissue is 

only available at diagnosis, but not at different time points of the disease to monitor tumor burden 

during treatment. In this scenario, circulating cell-free DNA (cfDNA)-based liquid biopsy represents 

a promising non-invasive tool for the diagnosis, prognosis and management of PDAC patients [7]. 

Hence, the analysis of KRAS mutations in cfDNA has been proposed as non-invasive surrogate for 

tissue biopsies in patients with pancreatic cancer [8]. On the other hand, cfDNA levels have been 

shown to be prognostic for clinical outcome in metastatic cancer [9,10]. 

Therefore, the present study aimed to evaluate the different cfDNA-based liquid biopsy markers 

as prognostic tools for the management care of metastatic PDAC patients. 

2. Results 

2.1. Clinicopathological Characteristics and RAS Mutation Analysis from Plasma and Tissue 

Sixty-one patients were included in the study between May 2017 and December 2019. Thirty-

four patients were men and 27 were women, and they ranged in age from 40 to 84 years, with a 

median of 65 years of age (baseline characteristics are summarized in Table 1). All patients had 

pancreatic ductal adenocarcinoma (PDAC) with distant metastases at diagnosis, and the most 

frequent site of metastasis was the liver (78.7%). Primary tumor was localized in tail, body and head 

of pancreas in 27.9%, 41%, and 29.5% of patients, respectively. Most patients (78.7%) had a good 

baseline ECOG performance status (PS), and a majority (75.4%) received first line gemcitabine-based 

regimes. For the analysis of RAS mutational status, primary tumor tissue was available in 70.5% 

(43/61) of patients. Whereas, basal blood samples were obtained from all patients before any 

treatment. RAS mutation was detected in 76.7% (33/43) of tissue samples and in 77% (47/61) of basal 

plasma samples. The percentage of patients with RAS mutation was comparable to other cohort studies 

[11–13]. Mutation in codon 12 of the KRAS gene was found in 93.6% (44/47), and 93.9% (31/33) of 

plasma and tissue samples, respectively (Table S1). The overall concordance between plasma and 

tissue RAS analysis was 79.1%. 

Table 1. Baseline characteristics of patients. 

Patient Characteristics  Number of Cases (n = 61) 

Age (median, range)  65 (40–84) 

Sex 
Male 34 (55.7%) 

Female 27 (44.3%) 

ECOG 

0 17 (27.9%) 

1 31 (50.8%) 

2 10 (16.4%) 

3 3 (4.9%) 

1st line treatment 

Gemcitabine 3 (4.9%) 

Gemcitabine/nab-paclitaxel 39 (63.9%) 

Gemcitabine/nab-paclitaxel/FOLFOX 4 (6.6%) 

FOLFIRINOX 11 (18%) 

No treatment 4 (6.6%) 

Survival 
Alive 19 (31.1%) 

Dead 42 (68.9%) 
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Disease progression 

Yes 45 (73.8%) 

No 11 (18%) 

Not valuable (No treatment or surgery) 5 (8.2%) 

Tissue availability 
Yes 43 (70.5%) 

No (Cytology) 18 (29.5%) 

Primary tumor location 

Tail 17 (27.9%) 

Body 25 (41%) 

Head 18 (29.5%) 

Body-Tail 1 (1.6%) 

Number of metastatic lesions 
One location 26 (42.6%) 

More than one location 35 (57.4%) 

Metastatic lesions location 
Hepatic lesions 48 (78.7%) 

Non-hepatic lesions 13 (21.3%) 

Tissue Biopsy RAS status 1 
RAS mutated 33 (76.7%) 

RAS wild-type 10 (23.3%) 

Liquid Biopsy RAS status 
RAS mutated 47 (77%) 

RAS wild-type 14 (23%) 
1 For the analysis of RAS mutational status, primary tumor tissue was available in 70.5% (43/61) of patients. 

2.2. Detection of RAS Mutations in cfDNA Predicts Poor Prognosis in Metastatic PDAC Patients 

The presence of RAS mutations in plasma cfDNA was analysed in 61 metastatic PDAC patients. 

Detection of RAS mutation in plasma was associated with shorter patient overall survival (OS) (169 

versus 372.5 days; p = 0.0004; Table 2, Figure 1A). Besides, prognosis was more accurately predicted 

by RAS mutation analysis in cfDNA than by tissue analysis (43 patients, RAS mutation in tissue: log-

rank p = 0.0730; RAS mutation in cfDNA: p = 0.0068; Table 2, Figure 1B,C). RAS mutation detection 

in cfDNA was also a predictive factor of poor progression-free survival (PFS) in metastatic PDAC 

patients (93.5 versus 313.5 days; p < 0.0001; Table 3, Figure 2A). Likewise, tissue analysis was a worse 

predictive factor of PFS than cfDNA (RAS mutation in tissue: p = 0.0172; RAS mutation in cfDNA: p 

= 0.0019; Table 3, Figure 2B,C). Finally, multivariate analysis revealed that KRAS mutation status in 

plasma was a strong independent prognostic factor for both OS (HR 5.692, 95% CI 1.497–21.636; p = 

0.011) and PFS (HR 8.631, 95% CI 2.311–32.236; p = 0.001) (Table 4). 

Table 2. Overall survival analysis. 

Variables 
Death 

Occurrence 

Median OS 

(Days) 
HR (95%CI) p 

Primary Tumor Location     

Body/Tail 28/42 187 0.818 

(0.402–1.667) 
p = 0.5802 

Head 12/17 173.5 

Metastatic Location     

Hepatic 35/48 157 2.403 

(1.218–4.738) 
p = 0.0114 

Non-hepatic 6/13 339 

Number of Metastasis     

1 16/26 197.5 0.739 

(0.398–1.372) 
p = 0.3380 

≥2 25/35 176 

KRAS mutation status plasma     

MUT 37/47 169 3.455 

(1.736–6.876) 
p = 0.0004 

WT 4/14 372.5 

KRAS mutation status tissue     

MUT 24/33 197 2.102 

(0.933–4.734) 
p = 0.0730 

WT 5/10 440 

KRAS mutation status plasma  

(with tissue paired sample) 
    

MUT 25/32 216.5 3.09 p = 0.0068 
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WT 4/11 537 (1.364–6.997) 

CA19-9     

<45,500 U/mL 32/50 202.5 2.272 

(1.407–4.930) 
p = 0.0408 

>45,500 U/mL 8/10 125 

cfDNA concentration     

<26.46 ng/mL 8/21 285 2.468  

(1.302–4.681) 
p = 0.0057 

>26.46 ng/mL 31/38 149.5 

MAF     

<0.351% 6/10 310 2.212 

(1.099–4.452) 
p = 0.0261 

>0.351% 31/37 142 

cfDNA fragmentation     

<38.08% 28/45 197 2.637 

(1.1–6.321) 
p = 0.0297 

>38.08% 11/13 116 

 

Figure 1. Overall survival rates for patients with metastatic PDAC according to RAS mutation status. 

(A) OS according to RAS mutation status in cfDNA; (B) OS according to RAS mutation status in tissue; 

(C) OS according to RAS mutation status in cfDNA of those patients with RAS mutations analyzed in 

tissue. 

Table 3. Progression-free survival analysis. 

Variables 
Disease 

Progression 

Median PFS 

(Days) 
HR (95%CI) p 

Primary Tumor Location     

Body/Tail 33/40 152 0.783 

(0.364–1.685) 
p = 0.5318 

Head 10/14 81.5 

Metastatic Location     

Hepatic 35/43 86 2.565 

(1.333–4.937) 
p = 0.0048 

Non-hepatic 10/13 272 

Number of Metastasis     

1 19/23 127 0.86 

(0.465–1.591) 
p = 0.6304 

≥2 26/33 139 
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KRAS mutation status plasma     

MUT 38/42 93.5 3.84 

(1.974–7.469) 
p < 0.0001 

WT 7/14 313.5 

KRAS mutation status tissue     

MUT 27/32 122.5 2.495  

(1.176–5.294) 
p = 0.0172 

WT 7/9 382 

KRAS mutation status plasma  

(with tissue paired sample) 
    

MUT 27/30 142.5 3.41 

(1.572–7.395) 
p = 0.0019 

WT 7/11 472 

CA19-9     

<45,500 U/mL 35/45 143 3.013 

(1.12–8.103) 
p = 0.0289 

>45,500 U/mL 9/10 72 

cfDNA concentration     

<26.46 ng/mL 11/20 149.5 2.190 

(1.199–4.001) 
p = 0.0107 

>26.46 ng/mL 34/36 86.5 

MAF     

<0.351% 8/9 175 2.015 

(0.9834–4.129) 
p = 0.0556 

>0.351% 30/33 85 

cfDNA fragmentation     

<38.08% 33/42 145 3.137 

(1.313–7.494) 
p = 0.0101 

>38.08% 12/13 81 

 

Figure 2. Progression free survival rates for patients with metastatic PDAC according to RAS 

mutation status. (A) PFS according to RAS mutation status in cfDNA; (B) PFS according to RAS 

mutation status in tissue; (C) PFS according to RAS mutation status in cfDNA of those patients with 

RAS mutations analyzed in tissue. 
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Table 4. Multivariate Analysis. 

Variables 
OS PFS 

p Value HR (95%CI) p Value HR (95%CI) 

KRAS mutation status plasma 0.011 
5.692 

(1.497–21.636) 
0.001 

8.631 

(2.311–32.236) 

MAF 0.047 
1.070 

(1.001–1.143) 
0.280 

1.035 

(0.972–1.103) 

2.3. Higher RAS Mutational Load in cfDNA is Associated with Poor Prognosis in Metastatic PDAC 

For the 47 patients with detectable plasma RAS mutations, the median mutation allele fraction 

(MAF) was 2.92% (range 0.02–29.33%). As shown in Figure 3 a higher RAS mutational load in cfDNA 

was associated with poor OS (142 versus 310 days; p = 0.0261; cut-off value: 0.351%, with 82.5% 

sensitivity and 100% specificity; Table 2, Figure 3A) and poor PFS (85 versus 175 days; p = 0.0556; cut-

off-value: 0.351%, with 83% sensitivity and 48% specificity; Table 3, Figure 3B). Moreover, 

multivariate analysis identified MAF in cfDNA as an independent risk factor for poor OS (HR 1.070, 

95% CI 1.001–1.143; p = 0.047) (Table 4). Although, no differences were observed in the MAF values 

according to the number of metastatic lesions, higher MAF values were strongly associated with 

primary tumors located in the body/tail of the pancreas (p = 0.0281, Figure 4A) and liver metastases 

(p = 0.0072, Figure 4B). In this regard, the primary tumor location (OS p = 0.5802; PFS p = 0.5318) or 

the number of metastatic lesions (OS p = 0.3380; PFS p = 0.6304) were not related to OS or PFS. 

Whereas, significant poorer OS and PFS were observed in patients with hepatic lesions compared to 

patients with metastasis affecting other organs (OS 157 versus 339 days; p = 0.0114; PFS 86 versus 272; 

p = 0.0048) ( Table 2;  Table 3). 

 

Figure 3. Overall and progression free survival rates according to circulating RAS mutation allele 

fraction (MAF). (A) OS according to circulating MAF (cut-off: 0.351%); (B) PFS according to circulating 

MAF (cut-off: 0.351%). 

 

Figure 4. Association of circulating RAS mutation allele fraction (MAF) with primary tumor and 

metastases location. (A) circulating MAF levels in patients with tumor located in the body-tail or the 
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head of the pancreas; (B) circulating MAF levels in patients with metastatic lesions in the liver or 

elsewhere (* p < 0.05, ** p < 0.01). 

2.4. Higher cfDNA Concentration and Fragmentation Levels are Associated with Poorer Survival in 

Metastatic PDAC Patients 

The median cfDNA concentration in plasma of PDAC patients was 33 ng/mL (range 10–700), 

while the fragment size of plasma cfDNA ranged between 100–1100 bp, with a prominent mode at 

135 pb for the shortest fragments detected. In this study cfDNA fragmentation was defined as the 

percentage of shortest fragments to total cfDNA. As shown in Figure 5, cfDNA concentration was 

significantly higher in those patients in whom plasma RAS mutations were detected (42.65 versus 

24.71 ng/mL, p = 0.0057; Figure 5A). Although not significant, higher cfDNA fragmentation was 

observed in RAS mutated patients (Figure 5B), and a significant positive correlation between cfDNA 

fragmentation and KRAS MAF was found (r = 0.31, p = 0.0189). 

 

Figure 5. cfDNA concentration and fragmentation in metastatic PDAC patients. (A) cfDNA levels and 

(B) fragmentation according to RAS mutational status; (C) OS according to cfDNA levels (cut-off: 

26.46ng/mL); (D) PFS according to cfDNA levels (cut-off: 26.46ng/mL); (E) OS according to cfDNA 

fragmentation (cut-off: 38.08%); (F) PFS according to cfDNA fragmentation (cut-off: 38.08%). (** p < 

0.01). 

When metastatic PDAC patients were stratified according to plasma cfDNA concentration, those 

with higher values (>26.46ng/mL) had a poorer OS rate (149.5 versus 285 days, p = 0.0057; cut-off 

value: 26.46 ng/mL, with 70.6% sensitivity and 64.1% specificity; Figure 5C, Table 2). Also, higher 
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plasma cfDNA concentration was associated with shorter PFS (86.5 versus 149.5 days, p = 0.0107, cut-

off value: 26.46 ng/mL, with 67.7% sensitivity and 100% specificity; Figure 5D, Table 3). Similarly, a 

higher percentage of plasma cfDNA fragmentation in metastatic PDAC patients was significantly 

associated with a poorer OS (116 versus 197 days, p = 0.0297; cut-off value: 38.08%, with 27.2% 

sensitivity and 100% specificity; Figure 5E, Table 2) and PFS rates (145 versus 81 days, p = 0.0101; cut-

off value: 38.08%, with 27.2% sensitivity and 100% specificity; Figure 5F, Table 3). 

Plasma cfDNA concentration or fragmentation were not associated with number of metastatic 

lesions (p = 0.4928; p = 0.7735). However, there was an association between cfDNA fragmentation and 

primary tumor located in body/tail compared to head of the pancreas (15.27 versus 9.27%, p = 0.0401) 

(Figure 6A) and a trend towards higher cfDNA concentration in the plasma of metastatic PDAC 

patients with body/tail tumors (36.17ng/mL) compared with those with tumors in the head of the 

pancreas (26.23ng/mL, p = 0.0691) (Figure 6B). Also, patients with hepatic metastasis displayed higher 

cfDNA levels in plasma (38.10ng/mL), when compared with those patients with other metastatic 

locations (28.93ng/mL, p = 0.0547) (Figure 6D). Similarly, a trend towards higher cfDNA 

fragmentation was observed in patients with metastatic lesions in the liver (12.165%), compared with 

those with metastases elsewhere (10.655%, p = 0.3257) (Figure 6C). 

 

Figure 6. Association between cfDNA concentration and fragmentation and primary tumor and 

metastasis location. (A) cfDNA fragmentation; and (B) cfDNA levels according to primary tumor 

location; (C) cfDNA fragmentation; and (D) cfDNA levels according to metastatic location (* p < 0.05). 

2.5. Multiparameter Liquid Biopsy Refines Prognostic Stratification of Metastatic PDAC Patients 

In our cohort, CA19-9 demonstrated some prognostic value, with higher baseline levels 

associated with poorer OS and PFS rates (OS 125 versus 202.5 days, p = 0.0408; cut-off value: 45,500 

U/mL, with 16.2% sensitivity and 80.9% specificity; PFS 72 versus 143 days, p = 0.0289; cut-off value: 

45,500 U/mL, with 23% sensitivity and 93.7% specificity;  Table 2;  Table 3). No association was 

found between CA19-9 levels and RAS mutation status (p = 0.2909), primary tumor location (p = 

0.5053), number of metastasis (p = 0.4723), location of metastatic lesions (p = 0.4908), MAF (p = 0.1642), 

cfDNA levels (p = 0.7692) or cfDNA fragmentation (p = 0.2769). 
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Remarkably, the combination of CA19-9 with liquid biopsy improved the prognostic 

stratification of metastatic PDAC patients. A scoring system was applied by combining CA19-9 with 

MAF, cfDNA concentration and cfDNA fragmentation. Positive or negative values were assigned 

depending on whether the corresponding marker was above (positive) or below (negative) the cut-

off with prognostic value in OS. Thus, score 0 was defined as negative for all markers; score 1 was 

defined as positive for 1 marker; and score 2 was defined as positive for 2, 3 or 4 markers. As shown 

in Figure 7, those patients with score 2 displayed poorer survival outcomes in comparison with those 

patients with score 0 and score 1 in Kaplan-Meier analysis (p = 0.0002, and p = 0.0072, respectively). 

 

Figure 7. Multi-parametric analysis combining CA19-9 and cfDNA based liquid biopsy markers 

(MAF, cfDNA concentration and cfDNA fragmentation). Score 0: no positive markers; Score 1: One 

positive marker; Score 2: More than one positive markers. 

2.6. RAS Mutational Load in cfDNA Enables Monitoring of Disease Progression and Response to Therapy in 

Metastatic PDAC Patients 

Due to the limitations in CA19-9 as a reliable marker of pancreatic cancer, the utility of 

circulating MAF was compared to CA19-9 in monitoring disease progression and response to therapy 

in metastatic PDAC patients. No RAS mutation was detected in blood at baseline in two of the seven 

monitored patients, but it was detected in disease progression. In patient 1, KRAS codon 12 mutation 

was found in tissue but not in blood at baseline. Eventually, a novel NRAS mutation was detected 

during stable disease and a circulating KRAS codon 12 mutation was detected later in blood, along 

with both elevation of CA19-9 levels and disease progression revealed by radiological criteria and 

followed by rapid deterioration and death (Figure 8A). In patient 2, no RAS mutation was detected 

at baseline in either tissue or blood, but a KRAS codon 12 mutation was detected later in blood at 

progression of the disease (Figure 8B). 

In the three patients (3, 4 and 5) in whom RAS mutation was detected at baseline in blood, 

circulating MAF dropped following treatment and concurring with lower CA19-9 levels and partial 

response (PR) to therapy (Figure 8C–E). In patient 3, circulating KRAS mutation level markedly 

declined at PR and rose again at disease progression, along with the detection of a novel circulating 

NRAS mutation (Figure 8C). In patient 4, KRAS mutation remained undetectable in blood, while 

CA9-19 levels were low and the disease was stable (SD), but unlike CA19-9, MAF was augmented 

again at the progression of disease (Figure 8D). In patient 5, circulating KRAS mutation dropped to 

undetectable levels in the stable disease. Despite standard criteria and CA19-9 levels in the following 

monitoring suggested stable disease, KRAS mutation was detected again in plasma anticipating 

disease progression (Figure 8E). 

Finally, in patients 6 and 7, circulating RAS mutation levels increased during treatment, 

compared to baseline levels (Figure 8F,G). Notably, the increase in circulating MAF was associated 

with a very short survival period (5 months since diagnosis) in these patients. 
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Figure 8. Circulating RAS mutation allele fraction (MAF) enables monitoring of disease progression 

and response to therapy in metastatic PDAC patients. Circulating MAF (%) was compared to CA19-

9 (U/mL), in monitoring response to therapy and disease progression in 8 (A–G) metastatic PDAC 

patients. 

As a whole, the above results suggest that the dynamics of circulating RAS mutation may better 

correlate with patients’ outcome and survival compared with standard CA19-9 marker. Accordingly, 

a significant correlation was found between the increase in MAF (r = −0.65, p = 0.02), but not in CA19-

9 (r = 0.09, p = 0.78) and survival time (Figure 9). Hence, higher increases in circulating RAS mutation 

during patient monitoring predicted a shorter survival time. 
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Figure 9. Correlation of dynamics of circulating RAS MAF and CA19-9 with patient’s outcome and 

survival. (A) A significant correlation was found between the increase in MAF (B), but not in CA19-9 

and survival time. 

3. Discussion 

Non-invasive, reliable, and reproducible cfDNA-based liquid biopsy markers may help in the 

management of cancer patients. This is particularly relevant in the case of PDAC, where the high 

stromal content makes it difficult to obtain molecular information through cytopathological analysis. 

However, there is no consensus about the techniques, mutations or type of material in liquid biopsy-

based approaches for the prognosis of PDAC patients [11,14–16]. In this study we report the utility 

of cfDNA RAS mutations analysis using the highly sensitive BEAMing technique as prognostic tool 

for the management care of metastatic PDAC patients. 

In agreement with other reports [17], our study supports the value of cfDNA RAS mutations 

analysis as a prognostic tool in pancreatic cancer. Therefore, our results show that the presence of 

RAS mutated cfDNA in plasma predicts poor prognosis in metastatic PDAC patients. Moreover, 

circulating KRAS mutational status was an independent negative prognostic factor of both OS and 

PFS. In fact, the prognosis was more accurately predicted by RAS mutation analysis in cfDNA than 

in tissue. The allelic ratio and dosage of mutated KRAS may impact on PDAC biology [18], and KRAS 

MAF in cfDNA has been found to correlate with clinical stage and outcome in PDAC [13,19]. In this 

regard, our results reveal that circulating KRAS MAF in cfDNA predicted survival in metastatic 

PDAC patients. Importantly, in our study, KRAS MAF in cfDNA was an independent negative 

prognostic factor of OS by multivariate analysis. Recently, KRAS MAF in DNA from circulating 

exosomes, but not in cfDNA, was found to be an independent prognostic factor of OS in metastatic 

PDAC patients [19]. However, our study demonstrates that highly sensitive approaches, such as 

BEAMing, may also reveal the independent prognostic value of KRAS MAF in cfDNA of metastatic 

PDAC patients. Exhaustive analyses on tissue, including laser capture microdissection, could 

establish the pure ratio of RAS mutated allele in tumor. However, these types of analyses rely on the 

availability of biopsy material to be adequately performed, which is not the case for a significant 

number of PDAC patients, and is identifiably the issue by which a liquid biopsy may effectively 

address. 

Although, KRAS mutations are critical for the initiation of pancreatic ductal carcinogenesis, 

continued mutant KRAS function and oncogenic dosage are still required to maintain the growth of 

metastatic PDAC [5,20]. On the other hand, gene expression studies revealed that, compared to head 

localization, body-tail PDAC are more highly proliferative and aggressive [21,22]. Body/tail location 

is also associated with poor prognosis in advanced disease [23–25]. This may explain the reason why, 

in our cohort, higher values of KRAS MAF in cfDNA of metastatic PDAC patients were significantly 

associated with primary tumors located in the body/tail of the pancreas and liver metastases. 

Moreover, the higher MAF observed in patients with liver metastases may be explained by the larger 

volume of hepatic lesions than the isolated lung and peritoneal metastases [19]. 
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Previous studies have reported the potential prognostic value of cfDNA levels and 

fragmentation in metastatic cancer [9,10,26], including metastatic PDAC [27]. In our study, higher 

plasma cfDNA concentrations were significantly associated with poorer OS and shorter PFS. Patients 

with hepatic metastasis displayed higher cfDNA levels, compared with those patients with other 

metastatic locations. 

Despite the lack of knowledge about the precise mechanisms of cfDNA release into circulation, 

the role of apoptosis is becoming clearer [28]. A recent study reported that tumor-derived KRAS 

mutations in pancreatic cancer are predominantly carried by short and ultra-short cfDNA fragments 

[29]. This may be the biological explanation for our observation that, in parallel with our KRAS MAF 

results, a higher cfDNA fragmentation was found in patients with tumors located in the body/tail of 

the pancreas or with hepatic metastases than other metastatic lesions, likely due to more aggressive 

tumors. Thus, recent reports showed that body/tail PDAC may have more aggressive tumor biology 

and higher metastasis rate compared to PDAC in the head which may explain worse clinical 

outcomes [21–23]. 

CA19-9, also known as sialyl Lewis A antigen, is the currently used biomarker for pancreatic 

cancer, and several studies have reported the link between CA19-9 levels and survival in metastatic 

PDAC patients [30,31]. However, CA19-9 have some important limitations, such as false negative 

results in subjects with Lewis negative genotype and CA19-9 increases in patients with benign 

pancreatic-biliary diseases [32]. In our cohort, CA19-9 exhibited some prognostic value with higher 

baseline levels associated with poorer OS and PFS rates. However, our study demonstrates that the 

combination of CA19-9 with liquid biopsy markers greatly helped in the prognostic stratification of 

metastatic PDAC patients. 

CA19-9 is also used for monitoring treatment response as the reduction of CA19-9 serum levels 

during treatment are usually associated with longer survival rates. However, in clinical practice, 

there is no consensus on the interpretation of the change in CA19-9 levels and its role in the 

management of PDAC patients [33]. Therefore, novel reliable biomarkers are required for monitoring 

the response of PDAC patients to chemotherapy [34]. In our analysis, the change in circulating KRAS 

MAF levels was a suitable surrogate marker for monitoring each patient’s response to therapy. 

Moreover, the rise in MAF levels in some patients was better than CA19-9 in anticipating disease 

progression, and dynamics of circulating MAF better correlated with patients’ outcome compared 

with CA19-9. Therefore, our results support MAF as a valuable complementary tool for monitoring 

the response to chemotherapy treatment in metastatic PDAC patients. 

In summary, our study supports cfDNA-based liquid biopsy markers as promising clinical tools 

for the non-invasive prognosis and monitoring of metastatic PDAC patients. 

4. Materials and Methods 

4.1. Patients 

Sixty-one patients diagnosed with metastatic PDAC in the Reina Sofía Hospital (Córdoba, Spain) 

were enrolled in this study from 2017 to 2019. Eligible patients were 18 years or older with 

histologically confirmed metastatic PDAC and were not treated by chemotherapy or radiotherapy 

before the enrollment. Metastatic PDAC pathology was confirmed in all patients included in our 

study by pathological analysis of tumor tissue (n = 43) or by cytological analysis (n = 18), and by 

computed tomography. All subjects gave their informed consent for their inclusion in the study. The 

study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved 

by the Ethics Committee of Córdoba (Comité de Ética de la Investigación de Córdoba, CEI Córdoba, 

PANCREAS-BIOPSIA-LIQ protocol, approved on April 26, 2017, Act nº263, ref, 3490). The baseline 

characteristics of the patients included in the study are listed in Table 1. 

4.2. Procedures for Sample Analyses 

Plasma was obtained from 10 mL of blood collected in Streck cell- free DNA BCTTM tubes before 

any therapeutic intervention. In seven patients, the plasma was also obtained at specified intervals 
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after the onset of treatment. Blood samples were centrifuged at 1600× g during 10 min at room 

temperature (RT) to separate plasma, followed by centrifugation at 6000× g during 10 min at RT to 

remove any possible remaining cells. Plasma samples were then aliquoted, transferred to cryotubes 

and stored at −80 °C. QIAamp Circulating Nucleic Acid Kit and the vacuum system QIAvac 24 Plus 

(Qiagen) were used for cfDNA extraction from 3 mL of plasma and extracted cfDNA was quantified 

using the Quantus fluorometer (Promega). The High Sensitivity D1000 ScreenTape Assay was used 

in an Agilent 2200 TapeStation System (Agilent) to analyse cfDNA fragmentation. 

OncoBEAM™ RAS assay (Sysmex Inostics GmbH, Baltimore, MD, USA), which detects 34 

mutations in KRAS/NRAS codons 12, 13, 59, 61, 117, and 146 was used to analyze RAS mutations in 

cfDNA and determine MAF in plasma. In brief, OncoBEAM™ RAS Assay started with a conventional 

PCR to amplify a locus of interest, which included 7 amplicons covering 12 codons and 34 mutations 

in KRAS/NRAS genes. For each codon a digital PCR was then performed and cfDNA was hybridized 

with fluorescent probes to quantify by flow cytometry KRAS/NRAS mutant and wild type molecules. 

This approach allows reliable detection of MAF < 0.1% in cfDNA [35]. 

In 43 patients, FFPE primary tumor tissue was available for RAS mutation analysis by standard-

of-care procedures validated in our hospital. Specifically, the IdyllaTM plattform (Biocartis), that 

utilizes microfluidics processing with specific cartridges and all reagents on board, was employed 

for RAS mutation analysis in tissue. The process is fully automated, including nucleic acid extraction 

and, if the results indicate WT KRAS, testing for NRAS mutations is mandatory using another specific 

cartridge. Serum CA19-9 levels were measured using a standard radioimmunoassay test in the 

Clinical Laboratory Department of our hospital. 

4.3. Statistical Analyses 

Statistical analyses were performed using SPSS Statistic 20.0.0, GraphPad Prism 7.0 Software and 

R Software 4.0.0. Overall survival (OS) was calculated from the date of diagnosis to the date of death. 

Progression-free survival (PFS) was calculated from the start date of therapy until disease 

progression. The survival rates were estimated using the Kaplan–Meier method and the Log-Rank 

test was used to identify the prognostic variables. SurvivalROC package in the R software was used 

to find optimal cut-off values in OS analyzing time-dependent ROC curve. The optimal cut-off value 

was chosen by minimizing the sum of false negative rate and false positive rate. In each case, the cut-

off with prognostic value for OS was also tested for prognosis of PFS. When the optimal cut-off 

chosen with ROC curves was not able to separate statistically the groups according to the Kaplan-

Meier analysis, the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl) was used to 

find a cut-off value, using the Kaplan Scan (KaplanScan) feature, based on statistical testing. The 

Kaplan scanner separates the samples of a dataset into two groups based on values of variable of 

interest. In the order of values, it uses every increasing value as a cutoff to create 2 groups and test 

the p-value in a Log-Rank test. Mann-Whitney test was used to compare two groups and ANOVA 

test for analysis with more than two groups. Multivariate analysis was performed to establish 

independent prognostic factors using Cox proportional hazards modeling. Graph data are 

represented as mean ± standard deviation. Correlation analyses were performed using Pearson’s 

correlation coefficient. All statistical tests were considered significant when p < 0.05. 

5. Conclusions 

We evaluated different cfDNA-based liquid biopsy markers as prognostic tools for the 

management care of metastatic PDAC patients. Our study shows that prognosis was more accurately 

predicted by RAS mutation analysis in cfDNA than by tissue analysis. Hence, both RAS mutation 

status and mutational load in cfDNA were independent risk factors for OS. Whereas, a higher cfDNA 

concentration and fragmentation levels were also associated with poorer survival. Notably, our data 

support the theory that multi-parameter liquid biopsy may significantly assist in the prognostic 

stratification of metastatic PDAC patients, while RAS MAF in cfDNA may facilitate with the 

monitoring of disease progression and response to therapy. Future larger studies with independent 
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cohorts are warranted to validate cfDNA-based liquid biopsy markers for the non-invasive prognosis 

and monitoring of metastatic PDAC patients. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/12/7/1754/s1, Table 

S1. Results of baseline RAS mutation analysis in tissue and plasma  

Author Contributions: Conceptualization, A.R.-A. and E.A.; formal analysis, M.T.-F.; funding acquisition, E.A.; 

Investigation, M.T.-F., S.G.-L. and R.M.-O.; methodology, M.T.-F.; resources, M.T.C., E.I., R.R.-A., M.A.G.-E. and 

J.R.H-R.; supervision, A.R.-A. and E.A.; writing—original draft, M.T.-F. and A.R.-A.; writing—review and 

editing, M.T.-F., A.R.-A. and E.A. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Centro de Investigación Biomédica en Red de Cáncer (CB16/12/00349) 

and by the Alianza Mixta en Red Andalucía-Roche en Oncología Médica de Precisión. A.R-A. was funded with 

a researcher contract through the program “Nicolás Monardes” from Junta de Andalucía. 

Acknowledgments: We would like to thank the patients for their participation in this study. We would also like 
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