
sustainability

Article

Sustainable Recycling of Electric Arc Furnace Steel Slag as
Aggregate in Concrete: Effects on the Environmental and
Technical Performance

Alessandra Diotti 1,*, Luca Cominoli 1, Adela Perèz Galvin 2, Sabrina Sorlini 1 and Giovanni Plizzari 1

����������
�������

Citation: Diotti, A.; Cominoli, L.;

Galvin, A.P.; Sorlini, S.; Plizzari, G.

Sustainable Recycling of Electric Arc

Furnace Steel Slag as Aggregate in

Concrete: Effects on the

Environmental and Technical

Performance. Sustainability 2021, 13,

521. https://doi.org/10.3390/

su13020521

Received: 27 November 2020

Accepted: 3 January 2021

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Architecture, Land, Environment and Mathematics, University of Brescia,
Via Branze 43, 25123 Brescia, Italy; luca.cominoli@unibs.it (L.C.); sabrina.sorlini@unibs.it (S.S.);
giovanni.plizzari@unibs.it (G.P.)

2 Construction Engineering, UCO-Ed, Leonardo Da Vinci, Campus of Rabanales, University of Córdoba,
14071 Cordoba, Spain; apgalvin@uco.es

* Correspondence: a.diotti@unibs.it

Abstract: The aim of this research work was the evaluation of the feasibility to utilize industrial
by-products, such as electric arc furnace steel slags, for sustainable concrete production. The paper
evaluated the environmental and mechanical properties of steel slags and concrete, respectively.
Specifically, the release of contaminants from steel slags was investigated by leaching test and the
properties of fresh and hardened concrete were evaluated for a concrete mixture designed with a
partial substitution (30%) of natural coarse aggregates with electric arc furnace steel slags. The results
show that the concentrations of pollutants were lower than the legal limits imposed by the Ministerial
Decree 186/2006 and the addition of steel slag can enhance the mechanical performance of concrete.
The compressive strength of cubic specimens was also measured after different cycles of alternate
wetting–drying. The steel slag incorporation results in a stiffness comparable to that of a traditional
concrete. Overall, the mechanical and leaching characterization has shown that the reuse of electric
arc furnace steel slags for sustainable concrete production is feasible and reliable.

Keywords: recycling; EAF steel slag; leaching behavior; concrete; mechanical properties

1. Introduction

Sustainability can build value in construction and design of green buildings. A sus-
tainable approach to construction brings environmental, social, and economic benefits
to a construction project. From this perspective, several resources from industries and
construction waste are used to manufacture sustainable green concretes. Steel slags, fly
ash, granulated blast furnace slag, silica fumes, recycled aggregates from construction and
demolition waste, and many other are nonbiodegradable materials used in concrete by
replacing one of its components. Incorporating recycled materials in concrete prevents large
land areas from being landfilled, reduces the extraction of virgin raw materials and the
environmental pollution, and contributes to achieving a circular economy [1].

The steelmaking process contributes to a considerable production of industrial by-
products, including steel slags. The reuse of these residues allows manufacturers to reduce
the consumption of natural resources and minimize the production of wastes. According
to the Directive (EU) 2018/851 (amending Directive 2008/98/EC) for the use of recycled
materials in construction, the main purpose of this study was to favor the reuse of steel
industry residues rather than landfill disposal. The use of slag in construction dates back to
the Romans, who used crushed slags from the crude iron production to build their roads.
Nowadays, slags are still used to build roads due to their excellent mechanical strength
performance [2], but their use is not limited to roads anymore and slag aggregates are
widely used in all kinds of civil works [3,4].
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The steel is made in integrated steel plants using a basic oxygen furnace (BOF) or an
electric arc furnace (EAF) process. The technology of the electric furnace has established
itself due to the lower complexity of the production cycle, the increased availability of
steel scrap, and the lower CO2 emissions [5]. Steel slag is produced during the separation
of molten steel from impurities in steel furnaces. The slag appears as a heterogeneous
solution of silicon dioxide and calcium-iron oxides that solidify during cooling. These
characteristics make it suitable for the substitution of aggregates in the construction sector,
such as aggregate in road base or sub-base layers, asphalt mixtures, concrete production,
or for soft clay stabilization. In 2018, the total production of crude steel in Europe was
167.1 million tons, of which 69.5 million tons derived from EAF process (41.5%) [6]. In the
same period, the Italian crude steel production was 24.5 million tons, of which 20.0 million
tons (81.6%) derived from EAF processes [7]. Liu Chunlin et al. [8], Subathra Devi et al. [9],
and Rondi et al. [10] stated that steel slags, as the main by-products in the crude steel
production process, represent 15–20% of the entire crude steel production (weight/weight).
This resulted in an average EAF steel slag production of about 13.9 and 3.5 million tons in
Europe and Italy in 2018, respectively.

In order to avoid landfilling and to reduce the depletion of natural resources due to
the fast pace of construction activities, a correct management of EAF steel slags is required
by evaluating the possible release of contaminants into the surrounding environment
and the technical feasibility for their use in the construction sector [11]. Several studies
have been performed on the properties and the use of EAF steel slags in concrete [12,13].
Many authors found that the release of pollutants from EAF slags is generally below
the regulatory limits [14,15]. On the contrary, authors such as Mombelli et al. [16] and
Rondi et al. [10] detected high concentrations of Ba, Cr, and V in EAF steel slags when
subjected to leaching tests. Other authors, such as Ledesma et al. [17], evaluated the
potential reuse of EAF dust in mortar. The results highlighted that Se, Mo, Cd, Pb, and Cl
anion were the most conflictive elements; this phenomenon was particularly evident in the
finest grain size fraction due to the higher specific surface [18,19]. Some studies have also
been developed on the potential ecotoxicity and genotoxicity of steel slags [20]. The authors,
by an integrated chemical–biological approach applied to plant, animal organisms, bacteria,
and human cells, demonstrated the low toxicity of steel slags, ensuring the feasibility of
their potential use as recycled material.

The possibility of using EAF positively in concrete has also been demonstrated by
many authors [8,9,11,18,21–29]. For instance, Manso et al. [18] demonstrated that the
definition of the optimal grading curve is a key parameter to improve the workability and
the mechanical properties of the concrete produced. In particular, the authors suggested
that the use of steel slags with a size of 0–20 mm and the addition of a suitable proportion
of natural aggregates to adjust the grading curve may improve the concrete workability.
This was also observed by other investigations [11]. On the other hand, the inclusion of
EAF steel slags in concrete mixtures can sometimes lead to a decrease in workability due
to the greater water absorption of the slag. In particular, EAF steel slags evidence higher
water absorption (2–5%) when compared to the corresponding values of natural coarse
aggregates [9,22,26,29]. This is due to their rough and porous surface, as demonstrated
by Abu-Eishah et al. [11]. In this context, Subathra et al. [9] investigated the use of fine
and coarse steel slag as aggregate in concrete. For a constant water/cement ratio (w/c),
the results showed a high water absorption by steel slag and a drastic reduction in the
workability of the concrete mixtures. In particular, the replacement of 30% of coarse natural
aggregates with steel slags (5% of water absorption) decreased the concrete workability by
about 20%. This can be easily overcome by adding proper amount of superplasticizer in
the mixture [26]. The studies also revealed improvement in mechanical properties of the
hardened concrete [29]. In particular, the authors [23,26] observed that the compressive
strength increased up to 45 MPa (50% more than a conventional concrete with the same
characteristics) when the concrete mixture was realized, with 40% of steel slag replacement
and 0.55 water/cement ratio. Other studies [10,24,27] generally showed good results
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regarding tensile strength, hygrometric shrinkage, and elastic modulus of the conglomerate
made with EAF steel slags. In particular, Santamaria et al. [21] highlighted that the addition
of fly ash in concrete mixture can slightly increase the shrinkage values, a phenomenon
that can be mitigated by the presence of steel slag (due to its volume expansion). Moreover,
the drying shrinkage of steel slag concrete after the same curing time (90 days) presented
values very close to reference concrete, indicating that steel slag has a small influence on the
concrete shrinkage, as demonstrated by Qiang et al. [28]. The main problem concerns the
durability of the EAF steel slag concrete [18,27]. Abu et al. [11] pointed out that water is one
of the most frequent causes of concrete deterioration. In fact, when subjected to different
wetting–drying cycles, an evident degradation of the samples was detected, as reported by
Santamaria et al. [21]. The resulting compressive strength, following the aforementioned
wetting–drying cycles, showed an evident loss of strength ranging from 2% to 40% of
the initial compression strength. The authors also highlighted that, in terms of durability,
a suitable fines content (amounting to 15–16% by aggregate volume) seems to be a key
variable in this durability tests.

According to the studies available in the literature, the present study aimed to clarify
and support the data obtained over the years. In particular, in order to evaluate the
environmental performance of steel slag as a secondary raw material, the batch leaching
test (UNI EN 12457-2) was applied, as well as the evaluation of the potential toxic and
mutagenic effect on the ecosystem.

The aggregates, which represent about 70% of the volume of materials used for
concrete production [9], usually derive from natural resources (gravel, sand, stone, etc.);
they provide a rigid skeleton structure and reduce the space occupied by the cement paste
in the conglomerate. Therefore, the aim of the study was to investigate the mechanical
and durability properties of concrete mixtures, in which 30% of natural aggregates were
replaced with EAF steel slags (weight/weight). The mixtures were then characterized both
in the fresh (i.e., slump test) and hardened state (i.e., compression strength, indirect tensile
strength, hygrometric shrinkage, elastic modulus).

2. Materials and Methods
2.1. Materials
2.1.1. EAF Steel Slag

EAF is used for the steel production from metallic scraps. Scrap-based steel accounts
for about 25% of the global steel production [6]. The scrap is melted by an electric arc
constituted by three graphite electrodes that, through a violent thermal action, bring the
scrap from the solid state to the liquid one. As the slags are lighter than the liquid metal,
they float and can be easily removed. The EAF slag derive, therefore, from the rapid cooling
of the oxidized and superficial liquid from about 1600 ◦C to room temperature, followed
by a double crushing and sieving phase.

The slag from carbon steel production (EAF-C) used for the present research work was
supplied by a steel plant located in Lombardy (Province of Brescia) and catalogued with
EWC code 10 02 02 (i.e., solid waste of the untreated steel industry stored in open piles
on a waterproofed surface) (Figure 1). Different sizes of slag were used depending on the
type of mixture designed. Three different grain size fractions were adopted, respectively:
5–10 mm, 10–16 mm, and 16–20 mm. For the leaching test, the slag samples were further
crushed and sieved up to a diameter <4 mm.
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Figure 1. Electric arc furnace (EAF) steel slag used.

2.1.2. Concrete Mixtures Made with EAF Steel Slag

Conventional concrete is composed of aggregates (constituting 60–80% of the total
volume), cement, water, air, and other chemical additives. The concrete mixtures herein con-
sidered were designed with 30% by weight of EAF steel slag as coarse aggregate (d ≥ 5 mm)
in order to evaluate the concrete performance behavior with a partial substitution of natural
aggregates. In particular, the steel slag had a maximum diameter of 20 mm.

The grain size distribution was chosen in order to better reproduce the distribution
curve of Bolomey, which represents a compromise between minimization of voids and
improvement of workability. The water/cement ratio (w/c) was 0.48. Furthermore, an
additive superplasticizer was used in the concrete mixture in order to guarantee the target
workability by considering that part of the mixing water was absorbed by EAF steel slag.
The concrete density was about 2470 kg/m3, comparable to that of a traditional concrete.
The mix composition is shown in Table 1.

Table 1. Composition of concrete with EAF steel slag.

Component (kg/m3) (L/m3)

Portland cement CEM II/A-LL 42.5R 400 127
Water 190 190

Aggregates 1879 659
Fluidifying additive 4.0 3.7

Mass density 2470 [kg/m3]
Water/cement ratio (w/c) 0.48

Steel slag replacement 30%

2.2. Experimental Methods
2.2.1. EAF Steel Slag

In the environmental context, leaching tests simulate the process of transferring
chemical constituents from a solid particle to an aqueous solution (demineralized water) in
contact with the particle. The release of contaminants from the steel slag was evaluated
according to the batch leaching test (UNI EN 12457-2) [30] and compared with natural
aggregates. The eluate obtained was chemically characterized, detecting the parameters
required by the Ministerial Decree 186/2006 (M.D. 186/2006) [31] for the recovery and
reuse of special waste, in this case, steel slag.

Six liters of eluate were produced in 7 polyethylene bottles (PE) with a liquid/solid
ratio of 10 L/kg and demineralized water at pH = 6.2 and conductivity 3.8 µS. The bottles
have been placed in the Rotax, a device that keeps them rotating at a speed of 10 revolu-
tions/minute for 24 h, according to the test procedure. The eluate obtained was filtered at
0.45 µm using a vacuum filtration device and characterized from a chemical point of view,
detecting the parameters required by the M.D 186/2006.

An ionic chromatography system (Dionex, model ICS 1000) was used to detect the
concentrations of nitrates, fluorides, sulphates, and chlorides. The metal concentrations
were instead measured using an optical plasma ICP spectrometer (PerkinElmer, Optima
2000 DV model). Finally, the analysis of cyanides was carried out using a colorimetric
method (Nanocolor 400 D).
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2.2.2. Concrete Mixtures Made with EAF Steel Slag

The experimental research deals with the mechanical characterization of fresh and
hardened concrete. The experimental tests were carried out at the Materials Testing
Laboratory of the University of Brescia. The fresh concrete was cast into the mold after
mixing and was compacted by immersion vibrator up to the maximum level. After that,
the samples were stored in a fog room at a temperature of 20 ◦C and 95% relative humidity.
Workability was measured by slump test according to EN 12350-2 [32].

The uniaxial compression strength was evaluated on 18 cubic samples with a side of
150 mm at different curing times, according to the EN 12390-3 [33]. The tests were carried
out with the Controls Autocomp machine (3000 kN). Four of the 18 cubic specimens were
subjected to drying cycles in an oven at 110 ◦C for 8 h and hydration in water at room
temperature for the remaining 16 h. Indirect tensile strength was studied on 3 cylindrical
samples with diameter of 100 mm after 28 curing days, according to EN 12390-6 [34].

Accelerated ageing tests and hygrometric shrinkage tests were performed on 2 pris-
matic beams with a square base of 80 × 80 mm and a length of 285 mm, then stored in a
moist room at 20 ◦C with 50% relative humidity, according to American ASTM C157/C
157M-08 standards [35]. The monitoring of the hygrometric shrinkage was performed day
by day up to 50 days of samples curing.

Finally, the elastic modulus was measured on 3 cylindrical specimens, according to EN
12390-13 [36]. The machine used for the test was the Metrocom press model MI10-100 kN,
equipped with manual load control. Table 2 summarizes the tests developed on concrete
samples.

Table 2. Tests performed on fresh and hardened concrete samples.

Test Number and Size of Samples

Workability Cone of Abrams
Uniaxial compression 18 cubic samples (150 × 150 × 150 mm)

Indirect tensile strength 3 cylindrical samples (∅100 mm; h = 200 mm)
Hygrometric shrinkage 2 prismatic beams (80 × 80 × 285 mm)

Elastic modulus 3 cylindrical samples (∅100 mm; h = 200 mm)

3. Results and Discussion
3.1. EAF Steel Slag Characterisation
Leaching Behavior

The environmental behavior according to the leaching tests performed on the EAF
steel slags showed release levels of pollutant elements below the limits imposed by the
M.D. 186/2006, as shown in Table 3. Although the decree only concerns nonhazardous
waste, and therefore does not affect quarry aggregates, it is necessary to include data from
a natural material in order to establish the comparison between leaching levels recorded
in the material in study (EAF steel slag) and the natural one (natural aggregate), since the
type of unbound use could be the same for both tested aggregates.
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Table 3. Leachate concentrations from EAF steel slag and natural aggregate.

Parameter Unit EAF Steel Slag Natural Aggregate Limits of M.D. 186/2006

pH - 10.4 8.4 5.5–12
Nitrates mg/L <1 1.1 50

Fluorides mg/L 0.15 <0.1 1.5
Sulphates mg/L 5.7 0.86 250
Chloride mg/L 1.6 1.6 100
Cyanide µg/L <5 <10 50
Barium mg/L 0.29 0.021 1
Copper mg/L <0.01 <0.01 0.05

Zinc mg/L <0.01 <0.01 3
Berillium µg/L <0.01 <10 10

Cobalt µg/L <10 <10 250
Nickel µg/L <5 <10 10

Vanadium µg/L 220 23 250
Arsenic µg/L <10 18 50

Cadmium µg/L <1 <4 5
Total chromium µg/L 5 <10 50

Lead µg/L 12 <10 50
Selenium µg/L <5 <10 10
Mercury µg/L <1 <1 1
Asbestos mg/L n.d (1) n.d (1) 30

COD mg/L <15 <15 30
(1) n.d: not detected.

Overall, compared to natural aggregate, the steel slag eluate had higher concentrations
of constituents, except for nitrates and arsenic. For both materials the pH was alkaline,
with a lower value in the eluate from natural aggregate.

According to leaching data obtained from eluates from granular samples of EAF
steel slag and the natural sample used as control, concentrations of pollutants were lower
than the legal limits indicated by the M.D. 186/2006. The measured levels (expressed in
mg/L and µg/L) were close to the limit only for vanadium and barium (data consistent
with previous works about leaching behavior on EAF steel slag [10]). Results prove
that the tested material complies with current legislation and can be used for concrete
manufacturing as a partial substitution of natural coarse aggregates contributing to a
sustainable concrete production.

3.2. EAF Slag Concrete Characterisation

In order to evaluate the mechanical behavior of concrete mixtures made with EAF
steel slag, several tests on fresh and hardened concrete were developed.

3.2.1. Workability

At the end of the mixing process, the fresh concrete must have a homogeneous mass
that is able to guarantee workability as well as mechanical resistance in its hardened state.

Fresh concrete had a slump of 140 mm, which identified it as a S3 consistency class
(defined as “semi-fluid”) according to EN 206 [37]. It was found that the use of steel slag
with a maximum diameter higher than 20 mm caused an undesired impact on workability.
In particular, during the production of preliminary concrete mixtures, the use of steel slag
with a maximum diameter of 31.5 mm caused a slag segregation in the concrete mixture.
For this reason, the maximum particle size was reduced to 20 mm.

However, concrete with steel slag is suitable for usual reinforced concrete structures
and requires an accurate vibration time.

3.2.2. Compression Strength

Compression strength was measured on eighteen cubic specimens with a side of
150 mm (Figure 2). The samples were tested after 3, 7, 14, 21, 28, 70, and 90 days of curing in
order to evaluate the compression strength variation over time. After 28 days a significant
fraction of the final resistance was obtained.
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Figure 2. Compression strength test on cubic samples.

All the failure modes of the cubic samples under uniaxial compression were satis-
factory. The average compression strength values of both the 16 cubic samples and the
four samples subjected to wetting and drying cycles (the strength for these samples was
determined only at 28 and 90 curing days) are shown in Table 4. It is worth observing
that compression strength continuously increases in the EAF slag concrete samples. This
behavior is attributable to the strong bond between the cement paste and the steel slag
used, characterized by rough surface and angular shape. A significant loss of strength was
evident in all samples subjected to wetting and drying cycles, with a loss of about 25% after
the treatment. The damage was produced by two combined effects: thermal dilation and
contraction and shrinkage due to moisture variation, as demonstrated in [19]. In particular,
after the process, all the samples showed a white powder outcrops on the surface, clearly
identifiable as calcium and magnesium hydroxides. This efflorescence, composed by dis-
solved salts transported to the surface of the sample by water evaporation [38], showed no
detrimental effects and did not affect the loss in compressive strength.

Table 4. Compression strength of cubic samples at different curing time.

Curing Days Average Value (MPa)

Monotonic Loads Wet-Dry Cyclic Loads

3 40.5 -
7 45.3 -
14 48.0 -
21 46.3 -
28 50.6 37.8
70 52.8 -
90 52.3 34.5

As stated by Pellegrino et al. [38], the influence of wetting and drying cycles on the
compressive strength is generally similar for natural and steel slag concrete. In particular, a
loss of strength of 15% was recorded for the traditional concrete, while a loss of strength of
22% was recorded for the steel slag concrete. These results are in line with those obtained
from this study.

Figure 3 shows the development of the cubic compression strength vs. time and the
comparison between experimental data and the reference curve proposed by Eurocode
2 [39] for normal concrete in standard conditions (temperature of 20 ◦C, relative humidity
(RH) larger than 95%).



Sustainability 2021, 13, 521 8 of 13

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 13 
 

where fck is the characteristic cylindrical compressive strength and fcm is the mean cylin-
drical compressive strength of concrete. According to the experimental results obtained 
from the compression tests, concrete with EAF slags can be classified as C32/40. 

 
Figure 3. Results from compression tests at different curing time. 

3.2.3. Indirect Tensile Strength 
Concrete structures are highly exposed to tensile cracking due to the applied loads. 

A cylindrical sample was loaded diametrically and uniformly across the circular cross 
section. To allow the uniform distribution of the applied load, plywood strips were placed 
between the sample and the load plates of the testing machine. The load caused a tensile 
deformation perpendicular to the loading direction, which produced a tensile failure. So, 
the concrete samples split into two halves due to the indirect tensile stress, as shown in 
Figure 4. The tensile load can be calculated from the formula as: 

σc = 2P/(πhd), 

where P = compressive load at failure, h = length of the cylinder, and d = diameter of the 
cylinder. 

 
Figure 4. Sample failure mode. 

Sample 1 showed lower resistance values, so it was considered as an anomalous sam-
ple. Table 5 shows the experimental results obtained; it can be noticed that the average 
tensile strength (i.e., 3.62 MPa) represented 7% of the compressive strength calculated at 
the same curing period. 

  

Figure 3. Results from compression tests at different curing time.

Since the number of tests after 28 days of curing was not sufficient to determine a
statistical data, the characteristic strength (fck) was evaluated as [40]:

fck = fcm−8 [MPa]

where fck is the characteristic cylindrical compressive strength and fcm is the mean cylin-
drical compressive strength of concrete. According to the experimental results obtained
from the compression tests, concrete with EAF slags can be classified as C32/40.
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Concrete structures are highly exposed to tensile cracking due to the applied loads.
A cylindrical sample was loaded diametrically and uniformly across the circular cross
section. To allow the uniform distribution of the applied load, plywood strips were placed
between the sample and the load plates of the testing machine. The load caused a tensile
deformation perpendicular to the loading direction, which produced a tensile failure. So,
the concrete samples split into two halves due to the indirect tensile stress, as shown in
Figure 4. The tensile load can be calculated from the formula as:

σc = 2P/(πhd),

where P = compressive load at failure, h = length of the cylinder, and d = diameter of the cylinder.
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Sample 1 showed lower resistance values, so it was considered as an anomalous
sample. Table 5 shows the experimental results obtained; it can be noticed that the average
tensile strength (i.e., 3.62 MPa) represented 7% of the compressive strength calculated at
the same curing period.

Table 5. Indirect tensile strength values of the analysed samples.

Sample Failure Load (kN) Indirect Tensile Strength at 28 Days (MPa)

1 76.5 2.43
2 121.6 3.87
3 105.9 3.37

3.2.4. Hygrometric Shrinkage

The test was performed to measure the axial dimensional shrinkage of concrete
samples during the hardening process in a curing room. According to ASTM C157 stan-
dard [35], steel pins were glued on the head surfaces of the sample in order to measure the
dimensional changes of samples properly stored in specified temperature and humidity
conditions (20 ◦C and 50% relative humidity). The measurement of the variation of the
specimen length allowed us to assess the volumetric expansion/contraction of concrete.
The test device requires a reference bar made with nonabrasive and anti-absorbing material
that does not vary its size over time.

Figure 5 shows the trend over time of the sample’s deformation induced by the hygro-
metric shrinkage and the reference curves proposed by Ministerial Decree 17/01/2018 [41]
and Eurocode 2 [40].
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Analyzing the data obtained during 90 days of curing, the two samples reached
asymptotic values of about 400 µm/m and 550 µm/m, respectively, which are typical
values for a normal concrete.

3.2.5. Elastic Modulus

The concrete elastic modulus is directly related to the elastic modulus of the aggregates
and the cement matrix. In this study, the elastic modulus was determined according to
EN 12390-13 [36]. Before the test, the samples were stabilized at room temperature and
humidity; conditions that were maintained throughout the duration of the test. Each
sample was subjected to three increasing loading/unloading cycles, the values of the
stresses applied by the press varied from F/10 to a maximum value equal to F/3, until
instrumentation stabilization.
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The different loading and unloading cycles performed for each sample as well as the
stress-strain curves with the corresponding trend line for steel slag concrete are shown in
Figure 6.
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The experimental values show a mean elastic modulus value of about 34 GPa; this
result shows that the stiffness contribution provided by the slag is compatible with that of
a traditional concrete (about 35 GPa for a C35/45, according to Eurocode 2 [40]).

4. Recycled Concrete as a Sustainable Building Material

The present research work focused on the evaluation of the environmental and techni-
cal feasibility of using an industrial by-product (EAF steel slag) as aggregate in concrete.
Life-cycling is a concept that involves the environmental impacts during the entire life
cycle of a product (as a construction material), from the extraction of resources for its man-
ufacturing to their disposal phase. The green philosophy of the present research work was
to contribute and promote waste prevention through the reuse and recovery of industrial
by-products, with waste disposal as a last resort.

In addition to promoting material recovery, environmentally sustainable concrete from
secondary materials also has the potential to save energy and CO2 emissions compared
to more traditional concrete [39]. Generally, Portland cement was found to be the main
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source of CO2 emissions produced by traditional concrete mixtures, being responsible for
74% to 81% of total CO2 emissions. At the same time, coarse aggregates represented the
second main source of CO2 emissions and were responsible for 13% to 20% of the total CO2
emissions produced by concrete production [42]. Otherwise, fine aggregates generated less
equivalent CO2 since they were not crushed.

In this context, the use of industrial by-products such as slags from steelworks as
coarse aggregates in concrete production can, therefore, significantly contribute to increas-
ing the environmental sustainability of the entire economic sector. At the same time, as also
demonstrated by the experimental results obtained in this study, the use of EAF steel slags,
in comparison with other recycled materials such as construction and demolition waste,
is desirable in concrete structures to get better mechanical performance than traditional
concrete.

However, regardless the analysis of the physical and mechanical properties of the
recycled materials used in the concrete, it is essential to evaluate their pollutant potential
due to the presence of hazardous compounds that may be released into the environment.
The release level of these hazardous chemical elements must be evaluated according to the
leaching test, which is a useful analytical tool [43]. In the present study, no element listed in
the M.D. 186/2006 regulation exceeded the legal limit, so the environmental feasibility of
EAF steel slag for being used for concrete was demonstrated. In that sense, in the research
field on recycled building materials, combining the study of mechanical properties, which
ensures the correct behavior of materials in structures, with the environmental assessment,
which guarantees the environment safety and health, ensures to achieve the green policies
that European Union promotes in key areas, as is the case of construction sector.

5. Conclusions

The present work investigated the influence of EAF steel slag as a partial substitute of
natural coarse aggregate in concrete production. Based on the experimental results, the
following conclusions can be drawn.

• The release of pollutants from steel slag was acceptable. The eluates produced widely
respected all the standard limits established by M.D. 186/2006 [31]. Only vanadium
showed a concentration value close to the limit (220 µg/L).

• The use of steel slag with a maximum diameter higher than 20 mm had an undesired
impact on concrete workability (steel slag segregation). In light of this, it is recom-
mended to use this maximum grain size to prevent any difficulties in the subsequent
concrete mixing.

• The average compressive strength of concrete mixtures made with EAF steel slags
increased up to 53 MPa at 90 days of curing. This can be ascribed to the strong bond
between cement/mortar particles and EAF steel slags, as well as to the porous and
rough surface of the steel slag. However, tests up to 1 year of curing are foreseen
to prevent any unexpected decrease in load bearing capacity. Based on the results
obtained, the concrete could be classified as C32/40.

• The concrete density was about 2470 kg/m3, which is comparable to the traditional
concrete density.

• Samples subjected to wetting–drying cycles showed a significant compressive strength
reduction due to the consecutive thermal variations. In particular, after 28 days of
curing, the tested samples exhibit a loss of strength of about 25% (range from 51 MPa
to 38 MPa).

• The concrete mixtures showed an average indirect tensile strength of 3.62 MPa, which
represented about 7% of the relative compressive strength.

• Hygrometric shrinkage of steel slag concrete developed quickly during the first days
due to the effect of the high water absorption of EAF steel slag, and slowly in the
following days, until reaching a horizontal asymptote of about 500 µm/m.

• The elastic modulus of concrete mixtures was about 34 GPa. Although steel slag has
internal pores, the elastic modulus of the concrete made with EAF steel slag was closer to
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that of traditional concrete. Therefore, the effect of the aggregate type on these coefficients
was negligible and these results agree with those obtained by most authors.

This experimentation showed good technical and environmental results for the use of
EAF steel slag as coarse aggregate in concrete production. In particular, EAF steel slag can
be successfully used to replace gravel in concrete without affecting the concrete properties.
In fact, despite the increase in density, the use of steel slags as partial replacement of natural
aggregates allows users to obtain concrete with good workability and mechanical properties.
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