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La presente tesis se enmarca dentro de una iniciativa de colaboración entre la 
Universidad de Córdoba, y el Gobierno Brasileño, mediante la financiación de la  
estancia y estudios de doctorando del Jean Correia. El plan de tesis se sustenta en las 
temáticas de un proyecto de excelencia del Plan Andaluz de Investigación (AGR2014-
1906), donde se abordan aspectos relacionados con la bioconservación y su 
aplicación en la extensión y mejora de la vida útil de productos de la acuicultura de la 
región andaluza. Por ello, el desarrollo de la tesis se ha basado en dos ámbitos, la 
microbiología predictiva, que pertenece al Know-how del grupo de investigación que 
respalda al doctorando, y su aplicación en el desarrollo de cultivos bioprotectores para 
productos pesqueros, que supone el comienzo de una nueva línea de trabajo.  
 
La tesis comienza con un estudio prospectivo, abordando la caracterización 
microbiológica de los productos pesqueros de la acuicultura andaluza. Como aspecto 
novedoso, estos se realizaron en zonas de estuario, pertenecientes a los ríos 
Guadiana y Guadalquivir; por tanto, no solo caracterizan un producto fresco, sino que 
también abordan aspectos relacionados con el ecosistema en el que se encuentran. 
Adicionalmente, se evaluó el impacto de la calidad microbiológica de estos productos 
utilizando modelos de microbiología predictiva. Este trabajo resultó en la siguiente 
publicación: 
 
-Publicación I: Study of the microbiological quality, prevalence of foodborne 
pathogens and product shelf-life of Gilthead sea bream (Sparus aurata) and Sea bass 
(Dicentrarchus labrax) from Aquaculture in Estuarine Ecosystems of Andalusia (Spain). 
Food Microbiology, 90, 103498, 2020. Índice de impacto: 4.155 (Q1). 

 
Una vez decidido el producto y los microorganismos de interés, en especial Listeria 
monocytogenes, se procedió a la selección de cultivos bioprotectores. Estos, 
inicialmente se intentaron aislar del mismo ecosistema de estuario, sin embargo, no se 
encontraron especies con una capacidad bioprotectora suficiente para una utilización 
comercial óptima. Por ello, se optó por utilizar otros existentes, ya validados, en 
estudios científicos o disponibles en colecciones de cultivos tipo. Se probaron cepas 
aisladas por investigadores españoles, y para ello se desarrolló un estudio en caldo de 
cultivo donde se enfrentó una cepa productora de bacteriocina, y potencialmente 
bioprotectora, al patógeno alimentario L. monocytogenes. Los resultados confirmaron 



este efecto, aunque en menor medida de la esperado. Además, los datos fueron 
utilizados para generar modelos matemáticos que demostraron una gran capacidad 
predictiva, captando, satisfactoriamente, los fenómenos de interacción entre ambas 
especies bacterianas. Esta investigación dio lugar a la siguiente publicación: 
 
-Publicación II: Evaluation of the effect of Lactobacillus sakei strain L115 on Listeria 
monocytogenes at different conditions of temperature by using predictive interaction 
models. Food Research International, 131, 108928, 2020. Índice de impacto: 4.972 
(Q1). 

En un siguiente paso, se estableció contacto con el Instituto de Investigación de 
Tecnología Alimentaria (IRTA), dependiente del gobierno autonómico catalán, que nos 
suministró la cepa de Lactobacillus sakei CTC494, productora de sakacina, una 
bacteriociona, con potencial bioprotector sobre L. monocytogenes, habiendo sido 
validada principalmente en productos cárnicos. Para su aplicación, se abordó un 
estudio de gran calado, donde se implicó a una empresa del sector de acuicultura, 
“Esteros de Calidad”, procedente de su participación en el proyecto de Excelencia. Así 
se ideó un diseño que permitió probar y desarrollar cultivos bioprotectores apoyados 
en estudios in vitro, alimento, y en simulaciones matemáticas con modelos interacción 
microbiana. Este trabajo es de una gran relevancia, no solo por el experimental 
desarrollado, tanto en el laboratorio como en los procesos tecnológicos en planta de 
fabricación, sino también por las contribuciones en el campo de la microbiología 
predictiva y utilización de cultivos bioprotectores en el sector pesquero. En el primer 
caso, como resultado de este trabajo se ha desarrollado una nueva estrategia 
sistematizada para la obtención de modelos de interacción, que describen, de manera 
adecuada, los fenómenos de interacción y de bioprotección observados frente a L. 
monocytogenes. En segundo lugar, la demostración de que un diseño adecuado, 
apoyado en modelos, puede resultar en una optimización en las formulaciones de 
cultivos bioprotectores contra el patógeno, permitiendo una mayor vida útil del 
producto y mejorando la calidad y seguridad microbiológica de este. En el estudio, se 
logró reducir o inhibir el crecimiento de L. monocytogenes, utilizando un cultivo 
bioprotector de la cepa CTC494 adicionándolo a niveles sin efecto en la calidad 
sensorial del alimento y bajo condiciones reales de proceso para un producto de 
dorada fileteada envasada en atmosfera modificada. Por tanto, podemos considerar 
este trabajo como uno de los primeros estudios científicos que realizan un proceso 
completo de diseño, desarrollo y aplicación de cultivos bioprotectores en productos 
mínimamente procesados procedentes de la agricultura, y ofrece a industriales y 
administración sanitaria con instrumentos de predicción para el control y mejora de 
esta tecnología de bioconservación. La publicación que recoge este trabajo 
corresponde se cita a continuación: 
 
-Publicación III: Modelling the interaction of the sakacin-producing Lactobacillus 
sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus 
aurata) under modified atmosphere packaging at isothermal and non-isothermal 
conditions. International Journal of Food Microbiology, 16, 72-84, 2019. Índice de 
impacto: 4.187 (Q1). 

En paralelo a estos estudios de investigación, se elaboró un capítulo de libro donde se 
abordan los conceptos y fundamentos que rigen los estudios de microbiología 
predictiva, incidiendo en aquellos modelos que han sido base para los estudios 
experimentales y de modelado en los ensayos de interacción microbiana y de diseño y 
aplicación de cultivos bioprotectores. Este capítulo forma parte de un libro de 
referencia en el área, citado más abajo, del que se espera tenga una gran repercusión 
en el campo de la microbiología predictiva y evaluación de riesgos microbiológicos en 
alimentos.  
 



-Publicación IV – Capítulo de libro: Predictive microbiology tools for exposure 
assessment. Chapter 11 of the book “Risk Assessment Methods for Biological and 
Chemical Hazards in Food”, edited by Fernando Pérez-Rodríguez, published by Taylor 
& Francis, in 2020. ISBN: 978-1-4987-6202-1. 

Es imprescindible y obligado señalar las aptitudes y buen quehacer del doctorando en 
todas las fases de los estudios de doctorado. Soy consciente, a nivel personal y 
profesional, de las dificultades que entrañan este tipo de estudios, que combinan una 
fase experimental y un tratamiento matemático avanzado de los datos, con el 
agravante de la lejanía patria, que, bajo mi opinión personal, se ha de considerar 
siempre en estos casos, aunque estemos en ámbitos donde lo conciso y objetivo 
prevalece sobre lo emocional. Debo destacar, además, su gran capacidad para 
abordar los grandes objetivos experimentales impuestos, que han requerido un 
sacrificio y esfuerzo extraordinario, demostrando una gran solvencia en todas las 
facetas presentes, y una capacidad de adaptación a los limitados recursos y 
condicionantes que se han presentado a lo largo de la historia de su tesis. También 
quiero poner en valor sus habilidades para trasladar lo observado a lo numérico, en 
contextos de cierta complejidad, donde se requiere unos claros fundamentos 
matemáticos, y una abstracción estadística de los fenómenos bajo estudio. Jean 
Correia ha demostrado durante este tiempo su “madera” y “corazón” de científico e 
investigador, con una perseverancia y tesón encomiable; por ello, le auguro una gran 
carrera, de éxitos y logros, en el campo de la microbiología predictiva. Esta tesis, en el 
final, es solo el comienzo. 
 
 
 
Por todo ello, se autoriza la presentación de la tesis doctoral. 
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Preface 

This Ph.D. thesis has been accomplished within the Doctoral programme in 

Biosciences and Agri-food Sciences, at the Department of Food Science and Technology, 

as fulfilment of requirements for the Ph.D. degree from the University of Córdoba, Spain. 

The Research Group “Higiene Bromatológica” (HIBRO, PAIDI AGR-170) belonging 

to the Department of Food Science and Technology at the University of Córdoba, is 

formed by a group of highly specialized professors and researchers in the area of 

predictive microbiology and quantitative microbial risk assessment in food. HIBRO has 

extensive experience (> 25 years) in the field of predictive microbiology, which currently 

has great relevance in the establishment of Hazard Analysis and Critical Control 

(HAPPC) systems and provides scientific support for estimation of shelf-life and 

microbial risk assessment. Currently, the Group has consolidated itself through extensive 

research activity in field of microbiological risk assessment in regional (> 15), national 

(> 20) and international (> 5) projects, as well as extensive training activities and 

knowledge transfer to agri-food-sector companies. 

The present work was conducted under the supervision of Professor Fernando Pérez-

Rodríguez (UCO, Spain) and carried from November 2015 to November 2020, mainly at 

the Department of Food Science and Technology, University of Córdoba (UCO, Spain), 

and partly at the Food Safety Programme, Institute of Agri-food Research and 

Technology (IRTA, Spain) and Research Group for Microbiology and Hygiene, National 

Food Institute, Technical University of Denmark (DTU-Food). 

This Ph.D. thesis was partly supported by the project entitled: “Desarrollo y 

aplicación de modelos predictivos para la mejora de la calidad y seguridad de productos 

de la acuicultura marina mínimamente procesados” (AGR201-1906) funded by the 

Andalusian Government (Spain), research  group AGR-170 HIBRO and the Brazilian 

National Council for Scientific and Technological Development (CNPq) (grant Ph.D. Full 

Abroad-Proc. GDE 229638/2013-9). 

The Ph.D. thesis focused on the application of bio-protective cultures as a suitable 

preservation technique for assuring food safety and quality and enhancing shelf-life of 

Ready to Eat (RTE) fish products from the Andalusian aquaculture. For that, a predictive 

microbiology approach was chosen, by developing and applying interaction models 

reflecting the inhibitory effect of selected bio-protective culture on the growth of Listeria 
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monocytogenes, a well-known foodborne pathogen, which is a prime concern for 

governments and the food industry. 

The thesis is presented as a Compendium of Publications, elaborated in accordance 

with the objectives outlined in this study. The work is introduced by a first chapter, 

addressing an extensive review of the main aspects and concepts covered by the present 

thesis, including, among others,  the aquaculture sector in Andalusia, pathogenic and 

spoilage microorganisms in fishery products, listeriosis incidence, the use of bio-

protective cultures or microbial risk assessment (Chapter 1– General Introduction). The 

introductory chapter is followed by four publications, from Chapter 2 to 5, corresponding 

to a book chapter on the fundamentals of predictive microbiology (Chapter 2 –Chapter 

Book), and three research publications that undertake jointly the different objectives 

proposed in the present thesis. The Chapter 3 is a prospective work, in which the 

microbiota of two relevant fish species produced in Andalusian estuaries is assessed and 

the pathogen incidence is tested using culture-based and molecular methods. In addition, 

in this work, a first approach to applying predictive microbiology models for shelf-life 

estimation is taken (Chapter 3 – Manuscript I). The fourth chapter makes an attempt to 

assess the bio-protective capacity of a selected lactic bacteria species on L. 

monocytogenes, using a laboratory culture medium. Results are interpreted and compared 

based on the application of predictive microbiology models. Interestingly, for the first 

time in the thesis, interaction models are developed and applied to simulate the interaction 

of both populations (Chapter 4 – Manuscript II). In the last chapter, the knowledge and 

expertise gained from previous works and research collaborations in the different research 

missions carried out are deployed to design an innovative predictive modelling approach 

able to simulate microbial interaction, based on a stepwise system, from data to 

predictions and from broth to food. In this work, models generated are applied to a 

commercial aquaculture fish product in order to assess and optimize the use of bio-

protective cultures to minimize the risk by L. monocytogenes during the product shelf-

life (Chapter 5 – Manuscript III). The thesis finally presents the most outstanding 

conclusions drawn from the different works and research included in the present work. 

The chapter titles and related publications are showed as follows: 

Chapter 2 – Chapter Book: Predictive microbiology tools for exposure assessment. 

Chapter 11 of the book “Risk Assessment Methods for Biological and Chemical Hazards 
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in Food”, edited by Fernando Pérez-Rodríguez, that will be published by Taylor & 

Francis, in 2020. ISBN: 978-1-4987-6202-1. 

Chapter 3 – Manuscript I: Study of the microbiological quality, prevalence of foodborne 

pathogens and product shelf-life of Gilthead sea bream (Sparus aurata) and Sea bass 

(Dicentrarchus labrax) from Aquaculture in Estuarine Ecosystems of Andalusia (Spain). 

Food Microbiology, 90, 103498, 2020. Impact Factor: 4.155 (Q1). 

Chapter 4 – Manuscript II: Evaluation of the effect of Lactobacillus sakei strain L115 on 

Listeria monocytogenes at different conditions of temperature by using predictive 

interaction models. Food Research International, 131, 108928, 2020. Impact Factor: 

4.972 (Q1). 

Chapter 5 – Manuscript III: Modelling the interaction of the sakacin-

producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead 

sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-

isothermal conditions. International Journal of Food Microbiology, 16, 72-84, 2019. 

Impact Factor: 4.187 (Q1). 

 

Córdoba, October 2020.  
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“La vida es aquello que te va sucediendo 

mientras tú te empeñas en hacer otros planes” 

(John Lennon).  

Y yo contento con todo lo que me ha 

sucedido hasta ahora. 

“O sonho é que leva a gente para frente. Se a gente for 

seguir a razão, fica aquietado, acomodado”  

(Ariano Suassuna).  
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Summary 

Minimally processed and ready-to-eat (RTE) fish products that have not undergone any 

lethal treatment prior to consumption represents for a potential risk of pathogenic 

microorganisms, such as Vibrio spp. and Listeria monocytogenes. These pathogens cause 

foodborne infections resulting from consumption of contaminated raw fish or partially 

cooked fish or products contaminated during food handling and preparation. The genus 

Vibrio are environmentally ubiquitous in estuarine or marine water, able to reach 

consumers when products are not properly cooked, while the ability of L. monocytogenes 

to re-contaminate RTE products, during food handling and processing, and multiply at 

refrigeration temperatures poses a significant risk to human health. The microbial 

behaviour in food can be described using predictive mathematical models, taking into 

account the processing, distribution and home conditions along the food chain. In the first 

section of this work, an extensive review was elaborated, including the main aspects and 

concepts covered by the present thesis, which comprise of, among others, information on 

the aquaculture sector in Andalusia, relevant pathogenic and spoilage microorganisms in 

fishery products, listeriosis incidence, the use of bioprotective cultures or microbial risk 

assessment (Chapter 1). In addition, predictive microbiology tools were reviewed, 

providing an overview of the predictive modelling process, in particular, focused on 

microbial interaction models, and its application to quantitative microbial risk assessment 

(QMRA) (Chapter 2). In the experimental and investigation part, the microbiota and 

foodborne pathogens of Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus 

labrax) in two estuarine ecosystems were characterized and the shelf-life of both products 

was estimated using predictive models. Noteworthy, Vibrio parahaemolyticus was 

isolated from estuarine water and the initial microbiological quality of fish species and 

estuarine water was demonstrated to impact on product shelf-life (Chapter 3). For the 

study of biopreservation technology, lactic acid bacteria (LAB) strains were used to 

inhibit the growth of L. monocytogenes. The data obtained from this study were used to 

develop predictive microbiology models, able to describe the microbial interaction of 

both microorganisms in culture media (Chapter 4) and filleted Gilthead sea bream under 

modified atmosphere packaging at isothermal and non-isothermal conditions (Chapter 5). 

As result of these studies, an innovative stepwise modelling process was designed to 

generate predictive models describing interaction of BAL and L. monocytogenes based 

on the combination of mono and co-culture growth data.  In the case of the assay with 
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Lactobacillus sakei CTC494, recognized as a bacteriocin-producing strain, it was 

evidenced that this bioprotective culture induced an early stationary phase of L. 

monocytogenes (Chapter 5), inhibiting the pathogen growth or reducing its concentration 

(Chapter 5). These experiments also confirmed that L. sakei CTC494 could be used, at a 

level of 4 log cfu/g, as bioprotective culture against L. monocytogenes in the above-

mentioned Gilthead sea bream product, without negatively affecting the sensory quality 

of the product. Furthermore, the interaction models generated for this bioprotective 

culture demonstrated an optimal prediction capacity of the inhibitory effect of L. sakei 

CTC494 on the pathogen in the fish product (Chapter 5). 

Overall, results of this work demonstrated the potential of using bioprotective cultures to 

control L. monocytogenes growth in Mediterranean fish products and enhance product 

shelf-life. In addition, the approach based on predictive microbiology was shown to be a 

suitable and effective method to simulate the simultaneous growth of bacteriocin-

producing LAB strains and L. monocytogenes in culture media and fish products, 

presenting itself as a tool for supporting the design and optimization of preservation 

strategies based on the use bioprotective cultures  in minimally processed and RTE fish 

products. 

 

Keywords: foodborne pathogen, fish farm, minimally processed fish, Gilthead sea bream, 

Sea bass, shelf-life, bioprotective culture, CTC494, Lactobacillus sakei, sakacin, 

biopreservation, bacteriocin, predictive microbiology, microbial risk assessment, 

microbial interaction, competition model Lotka-Volterra model. 
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Resumen (Summary in Spanish) 

Los productos pesqueros mínimamente procesados y listos para el consumo (RTE) sin 

tratamiento letal previo al consumo representan un riesgo potencial de presencia de 

microorganismos patógenos de transmisión alimentaria, como podrían ser Vibrio spp. y 

Listeria monocytogenes. Esos patógenos pueden estar presentes en el pescado crudo 

contaminado o pescado parcialmente cocido o bien recontaminarlo durante su 

manipulación y preparación. Los patógenos del género Vibrio tienen su origen en aguas 

de estuario o marinas, y pueden llegar hasta el consumidor, si el alimento no ha sido 

cocinado adecuadamente, mientras que L. monocytogenes puede contaminar los 

productos RTE, por contaminación cruzada, y multiplicarse a temperaturas de 

refrigeración, representando, por ello, un riesgo significativo para la salud humana. El 

comportamiento de los microorganismos en los alimentos puede describirse utilizando 

modelos matemáticos de microbiología predictiva, considerando las condiciones de 

procesado, de distribución y de la fase de consumo, cubriendo toda la cadena alimentaria.  

El propósito de la presente tesis doctoral fue estudiar y cuantificar el efecto bio-protector 

de cultivos bacterianos seleccionados sobre patógenos alimentarios y optimizar su diseño 

y uso en productos pesqueros RTE, mediante un enfoque de microbiología predictiva. 

Para ello, en primer lugar, se abordó una extensa revisión sobre los principales aspectos 

y conceptos objeto del presente trabajo, incluyendo información sobre el sector de la 

acuicultura en Andalucía, los tipos de microorganismos patógenos y alterantes de 

relevancia en productos pesqueros, la incidencia de listeriosis, el uso de cultivos 

bioprotectores y la evaluación del riesgo microbiano (Capítulo 1). A su vez, se realizó un 

análisis de las herramientas de microbiología predictiva, proporcionando una descripción 

general de los procesos de generación de modelos matemáticos, en particular, de modelos 

de interacción microbiana y de su aplicación en la evaluación cuantitativa del riesgo 

microbiano (ECRM) (Capítulo 2). En la parte experimental y de investigación del trabajo, 

se realizó un estudio de caracterización de la microbiota y patógenos alimentarios de la 

Dorada (Sparus aurata) y Lubina (Dicentrarchus labrax) en dos ecosistemas de estuario, 

estimándose la vida útil de los productos pesqueros mediante modelos predictivos. Es 

destacable la presencia de Vibrio parahaemolyticus, que se aisló de agua de estuario, 

además del impacto demostrado de la calidad microbiológica de las especies pesqueras y 

del agua en el que se encuentran sobre la vida útil del producto (Capítulo 3). En la parte 

que estudió y aplicó las tecnologías de bioconservación, se utilizaron cepas de bacterias 
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ácido-lácticas (BAL) para inhibir el crecimiento de L. monocytogenes. Los datos 

obtenidos sirvieron para generar modelos de microbiología predictiva que permitieron 

describir, adecuadamente, la interacción microbiana entre ambos microrganismos en 

medios de cultivo (Capítulo 4) y en productos de filetes de Dorada envasados en 

atmósfera modificada bajo condiciones isotérmicas y no isotérmicas (Capítulo 5). Como 

resultado de estos estudios, se diseñó un proceso sistematizado, basado en etapas, para la 

generación de modelos de interacción entre BAL y L. monocytogenes, combinando datos 

de crecimiento de mono y cocultivo en caldo y en alimento. En el caso de los 

experimentos con la cepa de Lactobacillus sakei CTC494, reconocida como productora 

de bacteriocina, se pudo observar que esta indujo una fase estacionaria temprana sobre el 

crecimiento de L. monocytogenes (Capítulo 5), reduciendo su crecimiento o, incluso, 

disminuyendo su concentración. Estos experimentos también confirmaron que L. sakei 

CTC494 podría aplicarse, a un nivel de 4 log ufc/g, como cultivo bioprotector contra L. 

monocytogenes en el producto de Dorada previamente mencionado, sin afectar 

negativamente la calidad sensorial del producto. Además, los modelos de interacción 

generados para este cultivo mostraron una buena capacidad de predicción del efecto 

bioprotector de L. sakei CTC494 sobre el patógeno en el producto de Dorada fileteada 

(Capítulo 5). 

En general, los resultados de la tesis doctoral demostraron el gran potencial de los cultivos 

bioprotectores para controlar el crecimiento de L. monocytogenes en productos pesqueros 

del mediterráneo y mejorar su vida útil. Se comprobó, además, que el enfoque, diseñado 

en el presente trabajo, basado en la utilización de modelos de interacción microbiana, fue 

un método valido y efectivo para simular el comportamiento simultáneo de diferentes 

cepas de BAL, productoras de bacteriocina, y L. monocytogenes en medios de cultivo y 

productos pesqueros, proponiéndose, por tanto, como una herramienta de gran valor para 

el diseño y optimización de estrategias de conservación basadas en el uso de cultivos 

bioprotectores en pescados mínimamente procesados y RTE productos. 

 

Palabras clave: patógeno alimentario, piscifactoría, pescado mínimamente procesado, 

dorada, lubina, vida útil, cultivo bioprotector, CTC494, Lactobacillus sakei, sakacina, 

biopreservación, bacteriocina, microbiología predictiva, evaluación del riesgo 

microbiano, interacción microbiana, modelo de competencia, modelo Lotka-Volterra..
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Hypothesis 

The rise in consumer demand for fish products has led to a considerable increase in 

aquaculture production in Spain, with Andalusia being one of the main producing regions 

of fishery products. For the aquaculture sector, food quality and safety are a prime 

concern, but also criteria to improve competitiveness and access to more profitable 

retailing channels. The application of traditional preservation methods offers the fishery 

industry an effective instrument, in line with the current consumer demands for more 

natural products, able to ensure food optimal conditions, meeting the strictest food safety 

standards. This work will underpin on the use of bio-protective microorganisms as a 

renovated traditional preservation technique suitable to control and improve the food 

safety and quality of aquaculture food products, considering their benefits for enhancing 

and extending product shelf-life. In this context, predictive microbiology models are 

proposed, as in-silico tools, able to provide a rapid and accurate response to microbial 

food safety issues. Mathematical models are introduced, in this field, to investigate the 

microbial interaction phenomena governing the bio-protective effect of certain microbial 

cultures (e.g. lactic acid bacteria). Models might be, in addition, validated and adapted 

for the practical application in the fishery industry, which would allow to design effective 

bio-protective strategies by considering the relevant technological factors and defining 

the most suitable food and process parameters. To introduce a predictive microbiology 

approach in the field of biopreservation, a relevant microbiological problem and context 

should be first identified and then, scientific data should be generated in vitro and 

subsequently, translated into real environments, for which valid mathematical models 

should be developed and deployed. The present thesis will develop this hypothesis 

focused on Listeria monocytogenes, as foodborne pathogen, in Ready to Eat fishery 

products from the Andalusian aquaculture, and investigate the use of bio-protective 

cultures to minimize its risk, leveraging the potential of the predictive microbiology. 

Results from the present thesis could be used as decision support tools to improve food 

safety and quality and enhance shelf-life of Andalusian aquaculture fishery products.  
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Objectives 

The overall goal of this thesis was to investigate and develop mathematical models 

for predicting microbial interaction and their application to the use of bio-protective 

cultures, based on lactic acid bacteria, against the foodborne pathogen, Listeria 

monocytogenes in fishery products. To achieve this general objective, several specific 

objectives were proposed, which were accomplished in the different works of the present 

thesis. 

First: To provide an overview of Predictive Microbiology, presenting the main concepts 

and types of models and describe the modelling process from data generation to food 

application.  

Second: To assess the microbiological quality and prevalence of foodborne pathogens in 

Gilthead sea bream (Spaus aurata) and Sea bass (Dicentrarchus labrax) raised in estuarine 

ecosystems in Andalusia (Spain).  

Third: To determine the antimicrobial capacity of specific lactic acid bacteria strains on 

the foodborne pathogen, L. monocytogenes, in laboratory culture media and fish juice 

from Mediterranean fish species.  

Fourth: To develop growth models, in monoculture, for specific lactic acid bacteria 

strains, with bio-protective potential and L. monocytogenes in simulated food systems 

and actual fish products.  

Fifth: To design a suitable mathematical modelling approach to simulate microbial 

interaction of lactic acid bacteria, as bio-protective cultures, and L. monocytogenes in 

foods.  

Sixth: To quantify the inhibitory effect of lactic acid bacteria on L. monocytogenes in fish 

product models and Mediterranean fishery products by using predictive microbiology 

models.  

Seven: To validate the developed microbial interaction models simulating the inhibitory 

effect of a lactic acid bacterium strain CTC494 on L. monocytogenes in a commercial 

product of filleted Gilthead sea bream under different refrigeration temperature profiles.  
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Eighth: To assess the shelf-life of Mediterranean fish products from the aquaculture 

taking in consideration sensory and microbial aspects, together with the impact of bio-

protective cultures, based on the use of predictive microbiology models. 
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General Introduction 

This section introduces the background on the main themes addressed in this present 

thesis. Relevant topics related to the proposed objectives and thesis contents will be 

described in specific subsections. 

1.1. Aquaculture production in the Mediterranean 

Worldwide production of fish from aquaculture have had a significant growth over 

the past 50 years, especially in the last two decades. In per capita terms, this production 

resulted in a record-high consumption grew from 9.9 kg in the 1960s to 20.3 kg in 2016 

(FAO, 2018a). Since 1961, the average annual increase in global fish consumptions 

(3.2%) outpaced population growth (1.6%) and exceeded the augment of consumption of 

meat products (e.g. bovine and pork) (2.8%), excepting for poultry (4.9%) (FAO, 2018a; 

FAO, 2018b). In 2019, out of  177.8 million tonnes of fish produced, 89% was used for 

human consumption, which, turned into global per capita consumption, corresponding to 

20.5 kg/year (FAO, 2019). The increased production and consumption of fish and fishery 

products have been driven by a combination of different factors, linked to population 

growth, new consumer demands of diversified diets and nutritional foods, improved 

distribution channels, wastage reduction, higher incomes and urbanization (Belton et al., 

2011; Vannuccini et al., 2018). Fish and fish products are an important component of 

human diet, with a significant nutritional value being a noticeable source high quality 

protein, omega-3 fatty acids, minerals, vitamins and antioxidants (Sarojnalini and Hei, 

2019). 

The European Union (EU), including the United Kingdom, has a coastline of 

approximately 68,000 km and offers environmental physical and oceanographic 

conditions suitable for aquaculture (EC, 2006; Markus, 2019). In this sense, European 

aquaculture has demonstrated to have the know-how, experience and technical resource 

to be a sustainable activity from an environmental and economic point of view, offering 

employment opportunities and safe healthy and quality food (APROMAR, 2018). Thus, 

aquaculture has become an important economic activity in the EU, being the major 

supplier of fisheries products. In 2017, the EU produced 1,353,201 tons in aquaculture 

products is valued at 4,147 million EUR, an increase of 4.8%, related to the market in 

2016. Furthermore, aquaculture represents 19.2% the volume of total aquatic production 
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(i.e. aquaculture and fisheries) in the EU. The remaining 80.8% of production came from 

extractive fishing, that is, 5,680,902 tons (APROMAR, 2019). 

Contemporary Mediterranean aquaculture started in the 1980s, mainly with the 

introduction of species fish of Gilthead sea bream (Sparus aurata), European sea bass 

(Dicentrarchus labrax), together with shellfish species (Grigorakis and Rigos, 2011). 

Although the Mediterranean region has a long history of fish farming, aquaculture has 

experienced a dramatic expansion from 1990s, with the introduction of new aquaculture 

Mediterranean species, such as Bluefin tuna (Thunnus thynnus), Meagre (Argyrosomous 

regious) and Greater amberjack (Seriola dumerili), with the latter two species being 

considered the most promising ones concerning the improved production systems and 

market prospects (Barazi-Yeroulanos, 2010). Notwithstanding foregoing, the most 

important commercial species in the Mediterranean are still represented by Gilthead sea 

bream and European sea bass. This increasing trend has been boosted by an overall 

decline in catchable wild fish stocks and an increase in consumer demand for fish and 

shellfish resources. This situation also promoted the development of a more competitive 

aquaculture industry (Fernandes et al., 2000). 

Aquaculture production in Spain is one the most diverse in Europe due to, among 

other aspects, the longitude of its coastline, varied availability of water resources on 

which it is feasible to develop aquaculture, both in the marine and continental areas (i.e. 

fresh waters) and the diversity of ecosystems (APROMAR, 2014). For these reasons, 

Spain ranks first in EU aquaculture production, with 311,032 tons in 2017, accounting 

doe 23.0% the Union production, followed by the United Kingdom with 222,434 tons 

(16.4%) and France with 166,000 tons (12.3%). However, when considering the value of 

production, Spain occupies the fourth position, with 466.6 million EUR (12.2%), while 

United Kingdom is obtaining the highest economic value with 1,160.8 million EUR (28% 

of the total value). 

In Andalusia, aquaculture is an activity that can become a strategic economic sector 

for both fish and shellfish products, given the wealthy resources in coastal areas. The 

success of its development relies on suitable marketing strategies, culture diversification 

and improved productions methods, as well as the economic management. Moreover, the 

aquaculture must demonstrate knowledge and means to be an environmentally viable and 

sustainable activity, offering healthy, safe and quality products (Junta de Andalucía, 

2014). In Andalusia, a significant volume of fish production is linked to aquaculture in 

estuaries, located in the provinces of Cádiz, Huelva and Seville. These estuarine farms 



General Introduction 

7 

constitute a unique and specific ecosystem in natural enclaves composed of brackish 

and/or intertidal waters that can be exploited as marine environments for the commercial 

cultivation of fish, molluscans and crustaceans (Marti, 2018). At national level, Andalusia 

is the main producer of Gilthead sea bream and European sea bass. In 2018, the 

Andalusian aquaculture production for these two species, were 4,726 tons and 37,328 

million EUR. In the same period, Gilthead sea bream and European sea bass were sold 

mainly whole chilled, corresponding to 99.7% of production of fish, which is the main 

marketing channel for these products (AGAPA, 2019). 

1.1.1. Microbial ecology of Mediterranean fish products: Spoilage and pathogenic 

microorganisms 

The fish muscle is sterile at the time of catch, but the skin, mucus, gills and intestines 

contain significant amounts of bacteria. The number and diversity of the natural 

microbiota and the presence of pathogens in fish can be related to many factors such as 

temperature and salinity of the water, level of dissolved oxygen and degree of pollution, 

etc. (Françoise, 2010; Gram, 2009). In general, the natural fish microflora tends to reflect 

the microbiota of the production waters. Moreover, contamination with pathogenic 

bacteria can occur because the unhygienic conditions of the landing place in fish boats or 

when the fish is washed with contaminated water (Mokrani et al., 2018). 

Fish has a high amount of non-protein nitrogenous (NPN) compounds and a low 

acidity (pH > 6), which support the fast growth of microorganisms that are the main cause 

of spoilage. The microorganisms are found on outer surfaces (i.e. skin and gills) and in 

the intestines of fish. The total number of organisms is quite variable. On skin surface, 

fish can show concentrations between 102 and 107 CFU/cm2, while in gills and intestines 

the values can vary from 103 to 109 CFU/g (Boziaris, 2014; Huss, 1995; Sivertsvik et al., 

2002). The microbial ecology of Mediterranean fish can include diverse microbial groups 

and genera, which are dominated by Gram-negative, rodshaped bacteria such as 

Aeromonas, Moraxella, Pseudomonas, Photobacterium, Shewanella and Vibrio. In turn, 

lactic acid bacteria (LAB), Bacillus, Clostridium are the most common Gram-positive 

genera of the indigenous microbiota. Furthermore, Enterobacter, Escherichia coli, 

Listeria, Salmonella, Shigella, Staphylococcus aureus, yeasts and some molds can be 

found in the initial microbial population mainly as a result from contamination events 

(Carrascosa et al., 2015; Huss et al., 2000; Parlapani et al., 2015). 
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1.1.1.1. Spoilage microorganisms in fish products 

Microbiological spoilage is the main cause of the loss of quality in fresh fish. 

Although fish microbiota initially encompasses a wide range of bacterial genera, only a 

small number of these microorganisms are able to give rise spoilage, in which processing 

and storage conditions play an important role (e.g. temperature and atmosphere) (Boziaris 

and Parlapani, 2017). The spoilage microorganisms are so called specific spoilage 

organisms (SSOs), that are related to the production of metabolites in quantities that result 

in off-flavours leading to the sensorial rejection of the product (Gram and Dalgaard, 2002; 

Gram and Huss, 1996). In fish from Mediterranean Sea waters (e.g. Gilthead sea bream), 

Pseudomonas spp. and Shewanella spp. are the main SSOs involved in the spoilage of 

unpackaged fish at low temperature, while LAB and Photobacterium phosphoreum are 

more related to spoilage of packaged fish products under modified atmosphere, due to the 

tolerance of this microorganism to relatively high CO2 levels (Françoise, 2010; 

Koutsoumanis et al., 2000; Parlapani et al., 2014; Tryfinopoulou et al., 2002). The SSOs 

for Mediterranean fish species, including Gilthead sea bream and Sea bass are constituted 

by Pseudomonas spp., Brochothrix thermosphacta, H2S-producing Shewanella bacteria 

and lactic acid bacteria (Koutsoumanis et al., 1999; Odeyemi et al., 2018; Parlapani et al., 

2013, 2014; Tryfinopoulou et al., 2002; Zaragozá et al., 2013). 

1.1.1.2. Food hygiene indicator microorganisms and pathogens in fish products 

Food hygiene indicator organisms comprise is a group of microorganisms that are 

used to reflect the microbiological quality and safety of products. Aerobic mesophilic 

bacteria and aerobic plate count (APC) are widely used to monitor the quality of the entire 

production process while Enterobacteriaceae, coliforms and E. coli, are employed to 

assess poor hygiene practice and enteric contamination (Anihouvi et al., 2019; Armani et 

al., 2016; Popovic et al., 2010). 

Human pathogens can also be part of the microbiota (e.g. intestinal tracts and gills) of 

fish and can naturally be found in estuarine and coastal waters (Givens et al., 2014; 

Jammal et al., 2017). Pathogenic Vibrio species represents an increasing concern for 

public health systems due to the rise in prevalence and number of cases. The new 

consumption trends for fish products and ocean warming are probable contributing  

factors to the Vibrio incidence (Feldhusen, 2000). The genus Vibrio includes a large 

number of species naturally distributed in seawater and also in estuaries located in the 

Mediterranean Sea (Esteves et al., 2015). Factors like salinity and water temperature can 
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affect the prevalence of Vibrio species, being present in higher concentrations between 

May and October, when the water temperature is warmer (CDC, 2019). The bacterial 

species V. parahaemolyticus and V. vulnificus are pathogenic for humans and the most 

common non-cholera Vibrios associated with foodborne diseases worldwide (Feldhusen, 

2000; Su and Liu, 2007). The disease is linked to raw or undercooked fish or fish products 

and seafood, particularly shellfish, harvested in contaminated water or that have been 

improperly preserved after harvest (Baffone et al., 2000; Iwamoto et al., 2010; Tsironi et 

al., 2017). The consumption of these foods without adequate previous heat treatment can 

cause acute gastroenteritis, so-called Vibriosis, which is characterized by diarrhea, 

headache, vomiting, nausea, abdominal cramps, low fever. In more severe cases, 

complications such as septicemia can lead to death in infected patients (Callol et al., 2015; 

de Magny et al., 2009; Gauthier, 2015). 

Another important pathogen associated with the consumption of fish and fish products 

is Listeria monocytogenes, responsible for a foodborne disease so-called Listeriosis 

(Nørrung, 2000). Although this pathogen is not part the natural microbiota of fish, L. 

monocytogenes can be introduced at different stages of fish production chain (Miettinen 

and Wirtanen, 2005). Besides, L. monocytogenes can be present in aquatic environments, 

which correlates with the degree of human activity. Its wide distribution in the 

environment allows this microorganism to enter into the food chain through raw fish 

material, which can be considered an important source of contamination in the processing 

facilities, resulting in the subsequent contamination of the final product due to cross-

contamination during handling and preparation and then grow during distribution and 

storage due to its ability to grow at low refrigeration temperatures (Miettinen and 

Wirtanen, 2005; Soultos et al., 2007; Yücel and Balci, 2010). 

The microbiological quality and the presence of pathogenic microorganisms in fish 

products from fish produced in estuarine ecosystems located in Mediterranean Sea has 

been reported in few studies. Alexopoulos et al. (2011) evaluated the microbiological 

quality of water for aquaculture and the species Gilthead sea bream and European sea 

bass from different fish farms in Greece. In this study, total and faecal coliforms were 

detected in almost all water samples. For microbiological analysis of fish (n = 75), the 

results showed presence of Staphylococcus sp. (29.3%), E. coli (30.6%), Salmonella sp. 

(1.3%), Pseudomonas sp. (13.3%), Vibrio sp. (18.7%), Vibrio alginolyticus (2.5%) and 

Vibrio anguillarum (9%). Recently, Costa et al. (2020) evaluated the microbiological 
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quality and prevalence of foodborne pathogens of Gilthead sea bream and Sea bass from 

aquaculture in estuarine ecosystems of Andalusian (Spain). This is the first study on the 

estuaries in Andalusia, one of the first producers in the Mediterranean of Gilthead sea 

bream and Sea bass. The results of this study are unique, and novel and improve the 

knowledge basis on the fish species and type of production from a food safety and quality 

perspective. 

1.2. Ready-to-eat (RTE) fish products 

The increasing demand for convenience and easy to prepare products has led the food 

industry to gear its production to ready-to-eat (RTE) and minimally processed foods 

(Hierro et al., 2014). According to EC Regulation 2073/2005, RTE food corresponds to 

“food intended, by the producer or the manufacturer, for direct human consumption 

without need for cooking or other effective processing to eliminate or reduce to an 

acceptable level of microorganism of health concern” (EC, 2005). 

Fish products are attracting an increase interest by consumers given their high food 

quality and nutritional value (Ghanbari et al., 2013). In recent years, fresh Mediterranean 

fish (e.g. Gilthead sea bream and European sea bass) among others has been introduced 

as main ingredient in some culinary trends, like products eaten raw (sushi and carpaccio), 

lightly preserved (smoked and salted fish) or ready-to-eat (fish sausage, surimi and pâtés) 

and convenience foods (fish or seafood packed under vacuum or modified atmosphere) 

(Bilgin et al., 2008; Bolívar et al., 2018; Chuapoehuk et al., 2001; Parlapani et al., 2015). 

The combination of lipid oxidation, autolytic (biochemical) reactions, the presence of 

trimethylamine oxide (TMAO) and physico-chemical characteristics makes fish products 

highly perishable foods. Moreover, TMAO can stimulate the growth and activity of 

spoilage microorganisms and foodborne pathogens, naturally present in the marine 

environment or originated from recontamination processes (Dalgaard et al., 2006). In 

vacuum-packed or modified atmosphere fish products, microbial species such as 

Enterobacteriaceae, Shewanella and Vibrio are able to reduce TMAO to trimethylamine 

(TMA). This reduction is the cause of the typical ammonia like and fish off-odours in 

spoiled fish products, particularly in products with pH above ~6.5 (FAO, 2014). 

Nonetheless, several processing treatments or combination of treatments are successfully 

applied to retard food spoilage and enhance shelf-life of fresh fish and fish products while 

satisfying the increasing consumer demands for safe, fresh-tasting, ready-to-eat, 

minimally processed fish (Gálvez et al., 2007). 
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Lightly preserved fish products (LPFP) and semi-preserved fish products (SPFP) are 

products that have not undergone a lethal heat treatment or mild heat treatment (e.g. 

pasteurization),  which can be formulated with chemical preservatives (salt, organic acids 

or smoke) and combined with packaging under vacuum (VP) or under modified 

atmosphere (MAP) in order to extend the shelf-life of these products (Hoffman et al., 

2002). The LPFP group includes chilled fish products stored at < 5 °C packed under 

vacuum conditions, which are characterized by having pH > 5.0 and < 6% NaCl in the 

water phase of the product. For some products, the addition of preservatives (benzoate, 

sorbate or smoke) plays a paramount role for controlling microbial growth. This group is 

a category of high value products and delicatessen products and includes cold-smoked, 

salted, marinated, pickled (gravad) and brined seafood that are typically consumed as 

ready-to-eat products, without any additional heat treatment (Françoise, 2010; Ghanbari 

et al., 2013) The second group, SPFP, with a recommended storage temperature of < 10 

°C, are usually packed in aluminium cans, glass or plastic containers. They are 

characterized by having pH < 5 and > 6% NaCl in the water phase and to which 

preservatives are added (benzoate, sorbate and nitrite). Typically, the European products 

of this category comprises salted and/or marinated fish or caviar, anchovies, fermented 

fish (Mejlholm and Dalgaard, 2007; Mejlholm et al., 2008). The fermented fish are also 

considered to be RTE fish products, with pH changing from neutral to acid and NaCl 

percentages being < 8%. This products, typically, are stored at room temperature (Huss 

et al., 2004). 

The microbial risk associated with the consumption of LPFP is related to the handling 

and preparation tasks that these products usually involves (e.g. slicing), which can result 

in product recontamination and/or the product conditions might support the growth of 

pathogenic bacteria. L. monocytogenes is a foodborne pathogen can be present in raw 

material or contaminate the post-processing product through handling operations (e.g. 

slicing, peeling, packaging and reusing brine for several days) (EFSA, 2013). Any post-

processing process is susceptible to cause cross-contamination of the pathogen between 

the contaminated product and environmental surfaces such as equipment, utensils and 

personal and then these can contaminate new uncontaminated products (Huang and 

Hwang, 2012). Effective hygiene, cleaning and sanitization practices applied during the 

production of fish products followed by the use of control programs (e.g. GHP and 

HACCP), risk assessment, and mathematical models (e.g. predictive microbiology) 
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represent key factors in reducing the L. monocytogenes in fresh fish and RTE fish 

products (Rotariu et al., 2014). 

1.3. Listeria monocytogenes 

Listeria monocytogenes is a foodborne pathogen that is especially relevant in 

refrigerated RTE products. The genus Listeria is currently made up of 20 species, which 

are subdivided in two major groups. The first group, represented by the Listeria sensu 

stricto, defines a distinct group of 6 species that shares common phenotypic 

characteristics (e.g. ability to grow at low temperature and flagelar motility). This group 

is organised by the species Listeria monocytogenes, Listeria innocua, Listeria welshimeri, 

Listeria seeligeri, Listeria ivanovii and Listeria marthii. The second group, Listeria sensu 

lato, presents several phenotypic characteristics that differentiate them from the first 

group. This group consists of 14 species including Listeria grayi, Listeria rocourtiae, 

Listeria fleischmannii, Listeria weihenstephanensis, Listeria floridensis, Listeria 

aquatica, Listeria cornellensis, Listeria riparia, Listeria grandensis, Listeria booriae, 

Listeroa newyorkensis, Listeria costaricensis, Listeria goaensis and Listeria thailandensis. 

The last three species of this group being recently isolated and identified from Costa Rica, 

India and Thailand, respectively (Chiara et al., 2015; Doijad et al., 2018; Leclercq et al., 

2019; Núñez-Montero et al., 2018; Orsi and Wiedmann, 2016). 

Among these species, only two are pathogenic, L. monocytogenes, which infects 

humans and animals and represents a public health problem worldwide by causing a 

severe disease that, in some cases, can be lethal for specific groups of humans (e.g. 

immunocompromised, pregnant, elderly population), which makes it a major concern for 

the food industry (Allerberger and Wagner, 2010; Jordan et al., 2018; Vázquez-Boland et 

al., 2001). L. ivanovii which mainly infects warm-blooded ruminants, causing economic 

losses (Chen et al., 2017). Nevertheless, there are some reports showing that this species 

could also cause disease in humans (Guillet et al., 2010; Snapir et al., 2006). 

Listeria monocytogenes are short, rod-shaped bacteria cells, with a typical size 

ranging of 0.4-0.5 µm in diameter by 1-2 µm in length, have rounded ends and are not 

encapsulated. The cells can be found as individual units or in short chains and often 

arranged in V and Y forms or in palisades (Meloni, 2014; McLauchlin and Rees, 2015). 

This bacterium is Gram-positive, has aerobic and facultative anaerobic metabolism 

(ability to grow in the presence and absence of oxygen), non-spore-former, catalase-

positive and oxidase negative. L(+)- lactic acid, acetic acid and some other end products 
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are formed by homofermentative anaerobic catabolism of glucose, but gas is not produced 

(Wagner and McLauchlin, 2008). L. monocytogenes possesses peritrichous flagella 

which give the bacterium a motility at 20-25 °C, while they become non-motile at 37 °C 

due to a lack of flagellin expression at this temperature (Farber et al., 1991; Wang and 

Orsi, 2013; Way et al., 2004). It is also able to grow or survive in different types of 

environments, even in stressing conditions, such as dry environments and mild 

preservation treatments (e.g. pasteurization, vacuum and CO2 packed food), at a wide pH 

range (4.4 to 9.2), at high salt concentrations (10 to 16% w/v), water activity above 0.92 

and, most importantly, at refrigeration temperature (-0.4 to 9.3 °C) (Chan and Wiedmann, 

2009; Farber and Peterkin, 1999; Ferreira et al., 2014; Liu et al., 2005; ICMSF, 1996). 

The ability of L. monocytogenes to multiply at refrigeration temperature conditions is 

strongly pH dependent (Martinez-Rios et al., 2019; Tienungoon et al., 2000). 

Owning to these capabilities, L. monocytogenes is ubiquitously distributed in a 

variety of environments, which can easily result in contamination of a wide variety of 

food processing environments and, ultimately, in processed food products (Cartwright et 

al., 2013; Norton et al., 2001). In fact, L. monocytogenes has been isolated from natural 

environment (soil, water, and vegetation), livestock manure, animal feed (silage) and 

effluents (Gram, 2001; Ivanek et al., 2006; Jordan et al., 2018). 

Different areas and facilities within the food processing environment can serve as 

reservoir or source of L. monocytogenes contamination, which makes it extremely 

difficult to determine the specific origin of contamination of the pathogen (Jami et al., 

2014). In the fish processing environment, different niches for the pathogen have been 

reported directly and indirectly, which include mainly conveyors, spiral/blast freezers, 

equipment and smoking area, injection brines and other solution, drains and 

floors/gangways (Chen et al., 2010; Gudbjörnsdóttir et al., 2004; Hansen et al., 2006; 

Nakamura et al., 2006; Pagadala et al., 2012; Skowron et al., 2019). Another concern of 

the fishery industry is the high persistence of L. monocytogenes strains in processing 

environments, where the pathogen can remain in specific sites despite regular cleaning 

and disinfection regimes (Wulff et al., 2006). This emphasizes the risk of colonization of 

strains capable of adhering to many materials found in fish processing environment, 

especially on sites difficult to access. Thus, the long-term persistence of these strains in 

different locations can result in biofilms formation on abiotic surfaces, leading to 

continuous contamination of fish products, which poses a risk to public health (Beresford 
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et al., 2001; Carpentier and Cerf, 2011; Doijad et al., 2015; Ferreira et al., 2014). The 

potential contamination routes of fish products by L. monocytogenes are schematically 

depicted in Figure 1.1. 

 

Figure 1.1. Flow-chart of contamination of fish products with L. monocytogenes (Source: 

adapted from Larsen et al., 2014). 

The resistance of L. monocytogenes strains to different environmental, 

microbiological and processing factors has been studied including different types of stress 

such as disinfectant and desiccation (Møretrø et al., 2017; Ratani et al., 2012; Vogel et 

al., 2010), the capacity of biofilm formation (Colagiorgi et al., 2017; Kadam et al., 2013) 

and salt concentration Ribeiro and Destro, 2014). Several studies have tried to relate L. 

monocytogenes serotypes with their abilities to persist in food processing environment, 

however, certain results remain contradictory or inconclusive (Doijad et al., 2015; Lee et 

al., 2019; Norwood and Agilmour, 2001). Notwithstanding aforementioned, studies have 

suggested that the persistence of L. monocytogenes strains, in food processing 

environment (e.g. desiccation resistance and biofilm formation) is associated with 

serotype, number of cells and gene expression (Djordjevic et al., 2002; Kadam et al., 

2013; Kragh and Truelstrup Hansen, 2020; Takahashi et al., 2009; Zoz et al., 2017). In 

this respect, persistent L. monocytogenes have been reported in listeriosis infections and 

recalls of RTE fish products (EFSA, 2019a; FDA, 2019; Schjørring et al., 2017; 

Vongkamjan et al., 2013; Wulff et al., 2006). 
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1.4. Listeriosis 

Listeriosis is a foodborne disease caused by the consumption of foods contaminated 

by L. monocytogenes exhibiting several clinical symptoms, depending on the dose 

ingested, the host and the pathogen strain. The incubation period of listeriosis ranges from 

1 to 90 days, up to the onset of disease. This long incubation period hinders determining 

the source infection, resulting in unnotified listeriosis cases (Rees et al., 2017; Vázquez-

Boland et al., 2001). 

Although relatively few frequent, listeriosis can produce severe symptoms with high 

rate hospitalization (> 90%) and high mortality (20 - 30%), especially in vulnerable 

groups such as pregnant women and their newborns, elderly people and individuals with 

weakened immune systems, including people with liver or kidney disease, diabetes, 

cancer, AIDS, transplant recipients and alcoholism (CDC, 2017; Choi et al., 2018; de 

Noordhout et al., 2014; Pontello et al., 2012). The clinical symptoms of listeriosis are 

vomiting, diarrhoea, fever, muscle aches, gastroenteritis and convulsions. In cases of 

invasive listeriosis, in which L. monocytogenes has the ability to cross the intestinal 

barrier, the blood–brain barrier, and the fetoplacental barrier, infecting organs such as the 

brain or uterus, meningitis, encephalitis, septicemia are the most common forms of 

disease that might lead to death or cause abortion and stillbirth in pregnant women 

(Aygun and Pehlivanlar, 2006; Buchanan et al., 2017). Non-invasive listeriosis usually 

occurs in non-immunocompromised people and generally causes a mild form of disease 

hence, in these cases, L. monocytogenes is not considered a pathogen of concern 

(Allerberger and Wagner, 2010; Angelidis and Koutsoumanis, 2006). 

The EU has undergone an increase in notifications of listeriosis outbreaks over the 

last years. European Food Safety Authority (EFSA) reported that in 2018, a total of 2,549 

confirmed cases of invasive listeriosis were reported in 28 member states, corresponding 

to an EU notification rate of 0.47 cases per 100,000 individuals (an 2.7% higher compared 

with 2017). Most listeriosis cases were reported to be domestically acquired. The highest 

notification rates in reported cases of listeriosis were observed for Estonia, Finland, 

Sweden and Denmark with 2.05, 1.45, 0.88 and 0.85 cases per 100,000 individuals, 

respectively. Overall, in 2018, the reported cases of hospitalisations and deaths were high, 

of 1,049 (97%) and 229 (15.6%), respectively, which makes listeriosis one of the most 

serious foodborne diseases under EU surveillance (EFSA, 2019b). In 2019, two cases of 

listeriosis were reported in EU. The first in Denmark, with 9 cases and 2 deaths linked to 
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the consumption of cold-smoked fish products and the second in Spain, with 217 reported 

cases, 3 deaths and 6 women that had miscarriages associated with the consumption of a 

chilled roasted pork meat product (known as “carne mechada”) (EFSA, 2019a; CCAES, 

2019). 

Outbreaks of listeriosis infection is also related to the serotype of the L. 

monocytogenes strains and can be determined by unique combinations of their somatic 

(O) and flagellar (H) antigens (Liu, 2006). Differentiation between serotype is necessary 

for epidemiological studies, which also contributes to the monitoring of sources of 

contamination in food processing environment (Alonso-Calleja et al., 2019). Fifteen 

serotypes have been identified and are classified into Division I (1/2b, 3b, 4b, 4d and 4e), 

Division II (1/2a, 1/2c, 3a and 3c), Division III (4a and 4c) and Division IV (4a, 4c and 

atypical 4b) (Chen et al., 2017; Orsi et al., 2011; Ward et al., 2008). Out of these 15 

serotypes described, only 1/2a, 1/2b and 1/2c are frequently isolated from food products. 

However, serotypes 1/2a, 1/2b and 4b are responsible for approximately 95% human 

listeriosis cases (Montero et al., 2015; Swaminathan and Gerner-Smidt, 2007). In 

particular, serotype 4b is linked to most cases and outbreaks of human listeriosis 

(Kathariou et al., 2006; McLauchlin et al., 2004). 

1.4.1. Outbreaks caused by L. monocytogenes in raw fish and RTE fish products 

The first reported case of listeriosis linked to consumption of fish was reported in Italy 

in 1989, when a 54-year-old woman contracted meningitis 4 days after consuming 

steamed fish. Two L. monocytogenes isolates were obtained, on from the patient’s 

cerebrospinal fluid and the other from a leftover portion of the fish. Both strains were 

serotype 4 (specific serotype not determined), identical in terms of phage type and 

restriction analysis of chromosomal DNA, indicating that the fish was most likely vehicle 

of infection (Facinelli et al., 1989; Jinneman et al., 2007). Although in 1980, a previous 

outbreak of listeriosis occurred in New Zealand with 22 perinatal infections and 7 foetal 

deaths, the cause has not been confirmed, an epidemiological survey suggested that the 

outbreak could be associated with the consumption of shellfish and raw fish (Lennon et 

al., 1984). During 2014-2019, 22 multi-country outbreak cases, including 5 deaths, were 

reported in five countries EU: Denmark, Estonia, Finland, France and Sweden linked to 

consumption of cold-smoked fish products (i.e. salmon and trout). The first case had 

symptom onset in July 2014 in Estonia, and the most recent case occurred in Denmark in 

February 2019 (EFSA, 2019a). 
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Although L. monocytogenes has been observed in a wide variety of foods, its 

psychrotolerant nature represents a risk factor for refrigerated RTE foods products that 

are generally eaten with little or no prior heating and exhibit a relative long shelf-life 

(Bremer et al., 2003). Raw fish and fishery products are on the top among these high risk 

RTE products (EFSA, 2018a; Jelena et al., 2011). An overview of the listeriosis outbreaks 

occurred worldwide between 1989 and 2019 associated with fish and fish-based products 

is shown in Table 1.1. According to this data review, the total number of cases 

corresponded to 1,795 cases, from which 36 were deaths. 
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Table 1.1. Overview of the listeriosis outbreaks between 1989 and 2019 associated with the consumption of fish and fishery products. 

Product Country Year 
Number of cases 

(n° deaths) 
Serotype Reference 

Shellfish and raw fish New Zealand 1980 22 (7) 1/2a Lennon et al. (1984) 

Gravad salmon Sweden 1987-1989 3 (ND)a 1/2a Loncarevic et al. (1998) 

Fish  Italy 1989 1 (0) 4 Facinelli et al. (1989) 

Cooked shrimp USA 1989 10 (1)b 4b Riedo et al. (1994) 

Smoked cod roe Denmark 1989 1 (0) NRc Jensen et al. (1994) 

Smoked mussels Tasmania 1991 4 (0) 1/2a Mitchell et al. (1991) 

Smoked mussels New Zealand 1992 3d (0) 1/2a Brett et al. (1998) 

Smoked trout /gravad salmon Sweden 1993-1994 2 (ND) 1/2a Loncarevic et al. (1998) 

Cold‐smoked rainbow trout Sweden 1994-1995 9 (2) 4b Ericsson et al. (1997) 

Surimi-based crabmeat Canada 1996 2 (0) 1/2b Farber et al. (2000) 

Tuna-corn salad Italy 1997 1566 (0) 4b Aureli et al. (2000) 

Cold-smoked rainbow trout Finland 1998 5 (0) 1/2a Miettinen et al. (1999) 

Vacuum-packed fish Finland 1999-2000 10 (4) 1/2 Hatakka et al. (2000) 

Sandwichese United Kingdom 2003 2 (0) 1/2a Little et al. (2012) 

Tuna salad USA 2008 5 (3) 1/2a Cokes et al. (2011) 

Sandwichese United Kingdom 2008 3 (2) 4b Little et al. (2012) 

Sandwichese United Kingdom 2010 5 (1) 4 Little et al. (2012) 
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Table 1.1 continued 

Product Country Year 
Number of cases 

(n° deaths) 
Serotype Reference 

Sushi USA 2010 2 (0) NR MMWR (2013) 

Gravad or cold-smoked fish Finland 2010 54 (?)f 1/2a and 4b Nakari et al. (2014) 

Herring cutlet marinated oil Germany 2010 8 (1) NR Aichinger (2010) 

Sandwiches and salads United Kingdom  2011 3 (0) 4g Coetzee et al. (2011) 

Cold-smoked salmon Denmark 2013-2015 10 (4) 2a Lassen et al. (2016) 

Gravad salmon/frozen halibut Denmark 2013-2015 10 (3) 4b Lassen et al. (2016) 

Gravad/smoked fish Sweden 2013-2015 27 (ND) 1/2a Lopez-Valladares G., pers. 
comm. 

Chilled and frozen products from 
salmon and trout 

Estonia 2014-2019 6 (2) NR EFSA (2019a) 

Cold gravad salmon/cold-smoked 
salmon 

Sweden 2015-2016 4 (?)f NR EFSA (2019a) 

Chilled and frozen products from 
salmon and trout 

Finland 2016-2017 2 (?)f NR EFSA (2019a) 

Cold-smoked salmonh France 2016 1 (1) NR Schjørring et al. (2017) 

Cold-smoked trout and/or cured 
salmon 

Denmark 2017 6 (1) NR Schjørring et al. (2017); EFSA 
(2019a) 

Salmon products Germany 2017-2018 5 (3) NR EFSA (2018b) 
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Table 1.1 continued 

Product Country Year 
Number of cases 

(n° deaths) 
Serotype Reference 

Chilled cold-smoked trout  France 2018 1 (?)f NR EFSA (2019a) 

Cold-smoked salmon or cold-smoked 
trout 

Denmark 2018-2019 3 (1) NR EFSA (2019a) 

Total of listeriosis outbreaks and 
(number of deaths)  

- - 1795 (36) - - 

a ND, not determined. 
b Foetal demise. 
c NR, serotype not reported. 
d Perinatal case. 
e Sandwiches prepared with salmon, tuna or tuna salad. 
f Fatalities uncertain. 
g Isolated from the blood cultures of the three patients. 
h Inconclusive (history of food consumption not available at the time of diagnosis, as the person had died).  
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The Listeriosis cases linked to RTE fish products are often result of the combination 

of different elements, which comprise the presence of L. monocytogenes at low level, 

physicochemical characteristics of the product supporting listeria growth (i.e. aw, pH, etc.) 

and inadequate storage conditions (Cornu et al., 2006; Jørgensen and Huss, 1998). 

Related to the latter factor, it is reported that inadequate consumer knowledge on the 

storage temperature of RTE food at home can enable Listeria growth until infective doses 

(Gambarin et al., 2012; Markinder et al., 2004). Moreover, the epidemiological patterns 

of human listeriosis suggest that cross-contamination in homes and in food-service 

establishments could be the major contributing factor to sporadic cases and occasional 

outbreaks (Beumer and Kusumaningrum, 2003; Chen et al., 2001; Pérez-Rodríguez et al., 

2008). 

Compared to listeriosis outbreaks associated with other foods, a low number of cases 

have been linked to RTE fish products (Table 1.1). Different reasons can be put forward 

to explained the low occurrence of listeriosis outbreaks transmitted by fish products: i) 

the low number of L. monocytogenes generally present in raw fish; ii) deficient 

epidemiological tracking due to the long incubation period of listeriosis, which makes it 

difficult to determine the food source; iii) the relatively low volumes of production and 

reduced distribution chains; iv) increased consumer awareness that RTE fish products 

should be refrigerated compared to other products; and v) lower consumption of high-

risk products, such as RTE fish products, by immunocompromised individuals and 

susceptible population (i.e. pregnant women are recommended to avoid smoked fish). A 

thorough study of these factors together with the analysis the L. monocytogenes 

epidemiological patterns linked to RTE fish products and fish processing environments 

is needed for understanding and managing this microbial risk (Jami et al., 2014; Rocourt 

et al., 2000; Tompkin, 2002). 

1.5. Legislation: Microbiological criteria for L. monocytogenes in RTE foods 

The potential of L. monocytogenes to grow in a particular food during storage and 

distribution period has been a determining factor in the level of consumer exposure and 

the basis for the risk categorization by food regulatory agencies and associated 

microbiological criteria (Farber et al., 2011). In EU, the Regulation (EC) 2073/2005 

(amended by Regulation (EC) 1441/2007) on microbiological criteria lays down the food 

safety criteria for L. monocytogenes in RTE foods. The food business operator (FBO) 

must ensure that food complies with these microbiological criteria and, when necessary, 
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conduct studies to investigate compliance with the criteria over the shelf-life of these 

products (EC, 2005). 

The food safety criteria differentiate RTE foods in three categories based on their 

properties to support L. monocytogenes growth. These criteria are laid down in EC 

2073/2005 as follows: 

i) Category 1.1: RTE foods intended for infants and for special medical purposes, which 

are able to support the growth of L. monocytogenes; the criterion is the absence in 25 g 

in 10 sample units during the declared shelf-life on the market. The EU regulation does 

not differentiate between RTE foods intended for infants and special medicinal use, as L. 

monocytogenes should not be detected in these products, whether growth is prevented or 

not; 

ii) Category 1.2: RTE food that supports growth, the FBO must demonstrate, to the 

satisfaction of the Competent Authority (CA), that if contaminated, L. monocytogenes 

must not be present in levels exceeding 100 (CFU/g) during the shelf-life in 5 sample 

units; 

iii) Category 1.3: RTE foods with a pH of ≤ 4.4 or aw ≤ 0.92, or with a pH of ≤ 5.0 and aw 

≤ 0.94 or with a shelf life < 5 days are considered to be unable to support a significant 

growth of L. monocytogenes. Furthermore, other products may also belong to this group 

subject to scientific justification that no-growth of L. monocytogenes is possible 

throughout the declared shelf-life. Most RTE fish products exhibit physico-chemical 

characteristics (pH > 5.0 and < 6% WPS and aw > 0.96) which are not compatible with 

Category 1.3. For this type of products, additional studies should be conducted to provide 

scientific data demonstrating that the pathogen is not able to grow in the specific fish 

product, otherwise, the product should be included in Category 1.2. 

In contrast to the EU Regulation 2073/2005, some countries like Australia, Japan, 

United States and New Zealand, the microbiological criterion is tighter and set a policy 

of regulatory action at the limit of detection (zero tolerance) which means that L. 

monocytogenes should not be detected in RTE foods (i.e. 0 CFU/25 g). Although there is 

a difference in the criterion, several countries also use different sampling plans and 

methodologies, which make the issues more complex (Archer, 2018; FAO, 1999; 

Shimojima et al., 2016). Predictive microbiology (i.e. MicroHibro and FSSP), among 

other supporting tools (i.e. challenge testing and shelf-life or durability studies) has been 
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used following the regulations of these countries as a scientific justification to 

demonstrate that L. monocytogenes does not grow in a specific RTE food (EC, 2005).  

Microbiological risk assessment studies estimated that most cases of listeriosis are 

linked to consumption of foods with higher level of L. monocytogenes, that would exceed 

the zero tolerance limit (0 CFU/25 g) and even the EU legal limit of 100 CFU/g. The risk 

assessment also suggests that effective control measures should be put in place to reduce 

the frequency of contamination and the occurrence of high levels of contamination at 

consumption, thus preventing the listeriosis cases. For RTE foods supporting L. 

monocytogenes growth (categories 1.1 and 1.2), better temperature control or limiting 

prolonged storage would reduce risk, while in RTE foods not supporting Listeria growth 

(category 1.3), reducing the occurrences at manufacture/retail would improve public 

health (Buchanan et al., 2017; FAO/WHO, 2004). 

In the last EFSA report, the food category of “fish and fishery products” showed non-

satisfactory which was consistently higher at the processing stage compared to retail. 

Considering the occurrence data of L. monocytogenes originating from all sampling 

stages (e.g. single units and batches), for the category of “fish and fish products”, the 

occurrence of the pathogen showed the highest levels (6.0%) of non-compliance with the 

food safety microbiological criteria for L. monocytogenes laid down by EC Regulation 

2073/2005, when compared with other categories of RTE food (EFSA, 2018). 

1.6. Prevalence of L. monocytogenes in raw fish and RTE fish products 

Contamination of raw fish and RTE fish products with L. monocytogenes can occur 

at all stages of the production consumption chain. Although L. monocytogenes is not 

considered a marine microorganism, their presence in fish can occur by water runoff from 

contaminated agricultural areas that can increase the abundance of the pathogen in aquatic 

systems (Gram, 2001; Lyautey et al., 2007). The contamination level of L. 

monocytogenes in raw fresh fish varies between 0% and 30% depending on the type of 

product and production context (Jami et al., 2014). Once the pathogen enters in the 

processing plant, there is a high probability of cross contamination for those that are 

submitted to post-process operations (e.g. slicing and packaging) and are not heat-treated 

before consumption such as hot-smoked fish and surimi (Gombas et al., 2003; Miettinen 

and Wirtanen, 2005).The prevalence of L. monocytogenes is higher in cold-smoked fish 

ranging from 34-60%, while for heat-treatment and cured fish the prevalence is lower, 

varying in the range 4-12% (Jørgensen and Huss, 1998). 
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The prevalence and the positive number of L. monocytogenes in raw fish and RTE 

fish products has been reported in different studies (Cabedo et al., 2008; Hamidiyan et 

al., 2018; Kramarenko et al., 2013; Lambertz et al., 2012). Fallah et al. (2013) reported a 

total prevalence of L. monocytogenes of 11.4% (n = 105 samples) and 14.5% (n = 131 

samples) in raw fish and RTE fish products, respectively obtained from markets. In fish 

processing plants, these authors reported a high prevalence of 29.3% (n = 12/41 samples) 

for fish fillets, which indicates that contamination by L. monocytogenes might be 

associated with the processing operations and 9.75% (n = 4/41 samples) for the final RTE 

fish products. Chen et al. (2010) reported a prevalence of 43.3% (n = 13/30 samples) of 

L. monocytogenes in fresh unchilled catfish fillets, while a high prevalence of 76.7% (n 

= 23/30 samples) was observed in fillet after chilling in chiller water (chilled). The high 

prevalence of L. monocytogenes found in this study suggests that an important source of 

contamination on chilled catfish fillets may originate from processing plants and chiller 

water. In Spain, Garrido et al. (2009) reported the prevalence of L. monocytogenes in 

RTE smoked fish (e.g. salmon and trout) collected from different supermarkets and retail 

establishments. The prevalence observed in smoked salmon and trout was of 10.8% (n = 

11/102 samples) and 25.0% (n = 10/40 samples), respectively. These authors attribute the 

presence and high levels of L. monocytogenes in these products to the manufacturing and 

slicing processes in the smoked fish industry.   

In 2010-2011, an EU-wide baseline survey (BLS) found that the prevalence and 

concentration of L. monocytogenes in RTE fish products was 10.3% with a confidence 

interval (CI): 9.1-11%, in which 1.7% (CI: 1.3-2.3%) could exceed the limit of 100 CFU/g 

at the end of shelf-life (EFSA, 2013). The extensive literature search performed by Jofré 

et al. (2016) reported the prevalence of L. monocytogenes in RTE fish products was of 

13% for cold-smoked fish and 12% for smoked fish and cured/salted fish. In 2017, L. 

monocytogenes isolations were reported in 365 RTE fish (i.e. marinated, gravad/slightly 

salted, hot and cold-smoked) and 30 unspecified RTE fishery products sample units (i.e. 

cooked-chilled, RTE-chilled and frozen), obtained from a total of 5,255 and 1,423 

analyzed sample units, respectively. The positive units for L. monocytogenes were 

sampled mainly at the retail and processing environments and corresponded to 11% (n = 

203) and 4% (n = 175) of the total samples, respectively while only a few isolations were 

obtained at catering facilities, which corresponded to 1% samples (n = 1). Most of the 

reported isolations were smoked fish, with 8% (n = 363), including hot and cold-smoked 

fish (EFSA, 2019a). 
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1.7. Biopreservation 

Over the last years, consumers are becoming increasingly aware of the risk to human 

health caused, not only by foodborne diseases, but also by the excessive use of chemical 

preservatives in foods, which has led the agri-food sector to look for alternative 

technologies able to reduce additive formulations while ensuring food safety and quality. 

In this sense, the chemical preservatives can be replaced by the application of more 

natural alternatives, such as those based on biopreservation (Silva et al., 2018; 

Skariyachan and Govindarajan, 2019). 

Biopreservation is a method of preserving food using microorganisms, called bio-

protective cultures, and/or their metabolites (Leroi et al., 2015). This method is able to 

meet the necessary safety standards using traditional methods of preservation and modern 

demand of food safety and quality (Singh, 2018). Biopreservation can be described as an 

“ecological control”, in which the food microbiota is enhanced by bacteria that are 

generally recognized as safe (GRAS), with the aim of inhibiting growth of undesirable 

microorganisms, namely pathogenic and spoilage microorganisms (Khassehkhan and 

Eberl, 2016). With biopreservation, product shelf-life is improved through the use of 

microbiota naturally present in food or by intentionally inoculating non-pathogenic 

antagonistic microorganisms and/or their metabolic products (Paul Ross et al., 2002; 

Stiles, 1996). 

In fresh fish and RTE fish products, biopreservation is an alternative to comply with 

safety standards, hygienic quality and to control microbial spoilage, minimizing the 

negative impact on the sensory and nutritional quality of the product (Ghanbari et al., 

2013). Lactic acid bacteria (LAB) is the bacterial group, mostly used in biopreservation. 

LAB are safe for consumption and, during storage, they naturally dominate the microbiota 

of different products, for instance, vacuum-packed fish (Castellano et al., 2008; Emborg 

et al., 2002; Gancel et al., 1997). Although LAB has been demonstrated to be efficient 

biopreservation tools, they should be combined with other measures such as good 

manufacturing, processing, storage and distribution practices in order to ensure food  

safety standards and hygienic quality (Holzapfel et al., 1995).  
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1.7.1. Lactic acid bacteria (LAB) as bio-protective cultures 

Lactic acid bacteria (LAB) encompass a heterogeneous group of bacteria, in which 

many species are used as microbial food cultures (MFC) in food production (Bourdichon 

et al., 2012; Herody et al., 2010). In the EU, there is no specific regulation regarding 

MFC; but with a long history of safe use,  they are considered food additives, which 

means that they are legally permitted without premarket approval (Costa et al., 2019). 

The LAB group comprises Gram-positive, non-sporulating, anaerobic or facultative 

aerobic bacilli and cocci. This group is composed of genera Lactobacillus, 

Carnobacterium, Enterococcus, Lactococcus, Leuconostoc, Pediococcus and 

Streptococcus, which having as a common metabolic property the production of lactic 

acid as the majority end-product from the fermentation of carbohydrates (Khalid, 2011; 

Mayo et al., 2010). 

LAB play a significant role in the food industry in terms of fermentation and 

biopreservation processes, acting as starter and bio-protective cultures, respectively 

(Ramírez-Chavarín et al., 2010). Their importance is associated mainly with their safe 

metabolic activity, while growing in the foods, they use available sugar to produce 

organic acids and other metabolites. The biopreservation depends mainly on the level of 

activity of the biological systems of LAB, which can contribute to enhance microbial food 

safety or offer one or more sensorial, technological, nutritional or health benefits (Bintsis, 

2018; Leroy and De Vuyst, 2004; Singh, 2018). LAB as bio-protective cultures has been 

generally regarded as safe, and recognized as non-hazardous to human health, which 

contributes to their natural acceptance as GRAS by the FDA (2018) and have the criteria 

of QPS (Qualified Presumption of Safety) established by EFSA (EFSA, 2018). In 

addition, the EFSA’s “Panel on Biological Hazards (BIOHAZ)” has concluded that the 

fermenting and bio-protective cultures associated with food, regardless of resistance to 

antibiotics, except for enterococci, do not pose a clinical problem (EFSA, 2008). 

In terms of food safety, technological effectiveness and economics, the desirable 

properties of bio-protective cultures include: i) non-pathogenic and legally approved as 

safe (GRAS and QPS); ii) known metabolic products under a given set of parameters (e.g. 

organic acids or bacteriocins production/no gas); iii) ability to survive and remain active 

during the manufacture and distribution of the product; iv) being easily available and 

feasible from the economic point view; v) possibility of being preserved by freezing or 

lyophilisation with few practical loss of activity; vi) ability to grow on food during storage 
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at refrigerator temperature; vii) not affecting the sensory characteristics of the product 

(flavor and texture) and other intrinsic characteristics; and viii) not being applied for 

medicinal purposes to prevent or treat diseases in humans and animals (Ben Said et al., 

2019; Buckenhüskes, 1993). 

Although LAB are not considered as naturally microbiota of the aquatic environment, 

certain genera, including Lactobacillus, Carnobacterium, Lactococcus and Enterococcus, 

have been isolated from fresh and sea water fresh fish (Ghanbari et al., 2009; González 

et al., 2000; Ringø, 2004; Ringø et al., 2018) and has also been isolated from LPFP (e.g. 

cold-smoked, gravad and marinated fish) and SPFP (e.g. salted and/or marinated fish or 

caviar and fermented fish)(Gelman et al., 2000; Ida Muryany et al., 2017; Mejlholm and 

Dalgaard, 2007; Tomé et al., 2006). In fact, the use of bio-protective LAB isolated from 

fish products entails advantages due to its reported ability to grow even at refrigerated 

temperature and ease of adaptation to the RTE fish products environments (i.e. vacuum-

packed, modified atmosphere packaging, smoked, high salt concentration, low pH and 

presence of additives like lactic acid or acetic acid) (Ghanbari et al., 2013). In RTE fish 

products, LAB was considered the dominant group of bacteria. 

The application of selected LAB strains in fresh fish and RTE fish products as bio-

protective cultures has demonstrated a high potential to control undesirable spoilage and 

pathogenic microorganisms, including L. monocytogenes (Anacarso et al., 2014; Aras 

Hisar et al., 2005; Axelsson et al., 2020; Aymerich et al., 2019; Brillet et al., 2005; Duffes 

et al., 1999a, 1999b; Richard et al., 2004; Tahiri et al., 2009). Therefore,  LAB are 

generally recognized as efficient bio-protective cultures to improve food quality and 

enhance shelf-life of fresh fish and RTE fish products (Calo-Mata et al., 2008; Katikou et 

al., 2007).  

1.7.2. Antimicrobial mechanisms of LAB 

Despite the paramount importance of knowing how LAB can interact with pathogens 

and spoilage microorganisms, the mechanism still it is not well understood. Probably, the 

antibacterial activity of LAB is due to a combination of several factors that could act 

synergistically (Gao et al., 2019). In the case of LAB and L. monocytogenes, it is put 

forward that bactericidal or bacteriostatic activity could be caused by i) 

displacement/exclusion, which is summed in the ability of planktonic cells of some strains 

of LAB to adhere strongly to surfaces and survive on them for long periods of time 

impeding or reducing biofilm formation by L. monocytogenes (Ben Said et al., 2019; 
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Woo and Ahn, 2013) ii) competition for nutrients and space (Nilsson et al., 2005; 

Vermeiren et al., 2006); and iii) production of one or more antimicrobial metabolites such 

as bacteriocins (Tomé et al., 2006; Weiss and Hammes, 2006), organic acids (Amézquita 

and Brashears, 2002), hydrogen peroxide (Ito et al., 2003) and reuterin (Montiel et al., 

2014).  

1.8. Microbial interaction 

Food matrices are considered complex microbial ecosystems, where various sets of 

heterogeneous microbial population can coexist and interact with each other and with 

their environment. Microorganisms in these communities often engage in complex 

interactions of multicellular and intercellular behaviours that can affect the presence and 

persistence of pathogens in foods (Orihuel et al., 2018). These interactions occur through 

environmental recognition followed by transfer of molecular and genetic information that 

includes many mechanisms, classes of molecules and categories of interaction, which can 

result in different types of interaction,  positive, negative or neutral (Braga et al., 2016). 

The mutual effects of these outcomes allow to classify the interaction between two 

microbial populations in five different categories as shown in Table 1.2 (Faust and Raes, 

2012; Sieuwerts et al., 2008). However, determining the exact nature of these interactions 

can be challenging due to different factors such as the types of microbial species present 

in the food, manifold of interactions they can engage in, the factors inherent in food and 

its preservation conditions (Zuñiga et al., 2017). 

In foods, microbial interactions, can either be non-specific (direct) or specific 

(indirect), may have a great influence on the fate of pathogenic species that contaminate 

foods (Haruta et al., 2009; Zilelidou and Skandamis, 2018). Non-specific interaction 

requires physical contact or quorum-sensing in order to induce microbial interactions. 

This type of interaction is also caused by competition for space (i.e. niches) and nutrient 

limitation due to growth of the numerically dominant species (Mellefont et al., 2008). On 

the other hand, the specific interactions are when physical contact is not required, that is, 

derived from changes in the growth environment with the production of antimicrobial 

metabolites, as it is the case of bacteriocins and production of other metabolites, such as 

organic acids with a concurrent decrease in pH (Fredrickson, 1977; Martens et al., 1999). 

However, for some authors, competition for nutrients is also considered a specific 

interaction, and that most of the studies on microbial interactions were qualitative in 

nature (Alves et al., 2005; Malakar et al., 1999).  
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Studying microbial interaction in foods products is extremely difficult because this 

usually requires to know a priori the potential interaction factors between microbial 

population. Traditionally, microbiological and analytical approaches are used to monitor, 

from a macroscopic point of view, for instance, changes in populations size over time and 

concentrations of growth-limiting nutrients. However, sometimes this monitoring is not 

sufficient to capture the interaction phenomenon, due to the interactions do not only occur 

between microbial species, but also between microorganisms and food environments 

(Leroy and De Vuyst, 2007).  

Nowadays, omics technologies have opened a new era enabling to obtain huge 

amounts of multidimensional information of bacterial populations in actual environments 

(transcriptomic, genomic, proteomic, etc.) (O´Donnell et al., 2020; Papadimitriou et al., 

2016; Zhang et al., 2010). Omics are, therefore, a very powerful tool to elucidate the 

mechanism of interaction in food ecosystems, aiding to identify dominant population(s) 

and determine those traits and processes conferring dominance to these populations (den 

Besten et al., 2018). Several studies have already applied omics technologies to determine 

the interaction of LAB in foods (Lahtvee et al., 2011; McLeod et al., 2010; Nyquist et al., 

2011). Benson et al. (2014) used metagenetics to understand the ecology of complex 

microbial communities in real food matrices. An interesting study evaluated the 

interaction between Lactobacillus plantarum and L. monocytogenes in “Alheira de 

Vitela” (traditional fermented smoked meat sausage from North of Portugal) during 

storage at 4 °C using 16S rRNA metagenomics analysis. The main result of this study 

demonstrated the anti-listerial activity of L. plantarum until the end of the storage of the 

product, in which counts of L. monocytogenes decreased, while counts of LAB remained 

stable (Macieira et al., 2019). 
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Table 1.2. The five categories of microbial specific interaction and the mutual effect, 

positive (+), negative (-) and neutral (0) on the interaction of two populations. 

Interaction 
categoriesa 

Effect on 
population A 

Effect on 
population B 

Example Reference 

Amensalism 0 - 
Bacteriocin produced by 
population A. 

Aymerich et al. 
(2019) 

Competition - - 
Competition for 
nutrients. 

Nilsson et 
al.(2005) 

Commensalism + 0 

Production of 
metabolites by 
population B which can 
be used by population A, 
while the population B is 
not affected. 

Jørgensen et al. 
(2000) 

Mutualism or 
synergism 

+ + 
Exchange of growth 
factors. 

Sieuwerts et al. 
(2010) 

Parasitism + - 
Bacteriophages 
(population A) attach 
bacteria (population B). 

Sturino and 
Klaenhammer, 
(2004) 

a For each interaction, there are three possible outcomes: positive (+), negative (-) and neutral (0). For instance, in 
competition, the population A is affected (-), whereas the population B is also affect (-), that is, both populations are 
negatively affected by competition for the resource (nutrients, space and etc.); then, this interaction is thus represented 
by the symbol pair (- -). 

1.8.1. Amensalism 

Amensalism is an interaction between microorganisms of two different populations, 

in which one negatively affects the growth of other population without being affected 

itself (Sieuwerts et al., 2008). This can occur though the production of antimicrobial 

metabolites as part of their metabolism. For instance, the production of organic acids by 

LAB, from glucose consumption, decreases pH of the environment. Both lower pH and 

increasing organic acid concentrations affect generally pathogens and spoilage 

microorganisms, while LAB itself is much more tolerant to these environmental changes 

(Khassehkhan and Eberl, 2016). Another example of antimicrobial metabolites are 

bacteriocins produced by LAB, which play an important role in food biopreservation. 

1.8.1.1. Antimicrobial metabolites: organic acids and bacteriocins 

LAB species are able to reduce and prevent growth of L. monocytogenes in different 

products, including RTE fish products, due to the production of antimicrobial metabolites, 

as previously mentioned. The fermentation of carbohydrates (e.g. glucose) by LAB 
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species belonging to homo-and heterofermentative lactobacilli, through the glycolysis 

and phosphoketolase pathways, results in the production of different organic acids where 

lactic acid is the major end product, followed by acetic acid and other acids such as 

formic, succinic, citric, propionic and butyric (Lauret et al., 1996; McLeod et al., 2010; 

Özcelik et al., 2016). L. sakei, as a bacteria well adapted to fermented meat and fish 

processing environments, exhibits alternative pathways for the production of organic 

acids (McLeod et al., 2011). The amounts and types of organic acids produced depend on 

LAB species and strains, culture composition and growth conditions (Lindgren and 

Dobrogosz, 1990). The antimicrobial activities of organic acids are primarily associated 

with the undissociated forms of the acids that permeates inside microbial cells, producing 

cytoplasm acidification causing a decrease in intracellular pH, which has significant 

impacts on cell metabolism, resulting in reduced growth (Kashket, 1987; Stasiewicz et 

al., 2011). For this reason, the inhibitory activities of organic acids are affected by pH 

values of foods and their effects increase with decreasing pH (Yost, 2014). The ratio 

between the dissociated and the undissociated form can be calculated from the pKa-value 

of organic acid and the pH value of the specific foods by the Henderson–Hasselbalch 

equation (Ross and Dalgaard, 2004). This equation was initially developed for aqueous 

solutions and later modified by Mejlholm and Dalgaard (2009) for lightly preserved 

seafood products. 

The pH of fresh Mediterranean fish (e.g. Gilthead sea bream and European sea bass) 

and LPFP (e.g. cold-smoked salmon) during storage is relatively stable around 6.0-6.4 

and is slightly affected by the presence of LAB (Abbas et al., 2008; Tomé et al., 2006). 

This is due to the low amount of carbohydrates in the fresh fish and LPFP, which is often 

less than 1%, and the buffering capacity of fish matrices, result from their high protein 

content (Paludan-Müller et al., 2002). Tomé et al. (2006) isolated two strains of L. 

plantarum from vacuum packed cold-smoked salmon and suggested that their inhibitory 

activity against L. monocytogenes was due to the production of organic acids. However, 

these authors did not measure the amount of produced organic acids. 

Another important metabolite produced by LAB, which has been gained increased 

attention in food biopreservation, are bacteriocins. Bacteriocins are ribosomal-

synthesized, extracellularly released low-molecular-mass peptides or proteins (usually 

30–60 amino acids), heat stable with bactericidal or bacteriostatic activity that inhibits a 

spectrum of bacteria, including L. monocytogenes (Cotter et al., 2005; Zacharof and 
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Lovitt, 2012). Bacteriocin-producing LAB must protect themselves from the toxic effect 

of their own bacteriocins. For that, LAB express cognitive immunity genes that make 

them immune to their own bacteriocin and possibly also to other bacteriocins (Deegan et 

al., 2006). One LAB strain may produce one or several different bacteriocins. For 

instance, L. sakei subsp. sakei 2A isolated from a Brazilian meat product was able to 

produce three different bacteriocins (de Carvalho et al., 2010). 

Different bacteriocins produced by LAB have been isolated from fish (carnocin), fish 

viscera (divercin and carnobacteriocin), RTE fish products (divergicin, piscicocin and 

sakacin), fermented fish product (weissellicin) and seafood (enterocin and pediocin). 

Some of these bacteriocins have been purified, characterized and tested against L. 

monocytogenes and other microorganisms with potential application to enhance the 

safety and quality of RTE fish products (Bhugaloo-Vial et al., 1996; Leisner et al., 2007; 

Métivier et al., 1998; Pinto et al., 2009; Srionnual et al., 2007; Stoffels et al., 1992; Tahiri 

et al., 2009; Todorov et al., 2011; Yamazaki et al., 2003). Bacteriocinogenic LAB and 

their bacteriocins, such as pediocin, nisin and sakacin isolated from meat and fermented 

meat products, have been used to inhibit the growth of L. monocytogenes and extend the 

shelf-life of fish and RTE fish products (Aymerich et al., 2019; Behnam et al., 2015; 

Papagianni and Anastasiadou, 2009). 

LAB bacteriocins constitute a large and heterogeneous group. They are classified 

according to features such as size, homology, structure, post-translational, target 

microorganisms and mode of action (Nes et al., 2016). Alvarez-Sieiro et al. (2016) 

proposed a classification scheme based on the biosynthesis mechanism and biological 

activity. These authors propose three main classes, although other researches include a 

fourth class for bacteriocins (Cotter et al., 2005; Klaenhammer, 1993). The division of 

bacteriocins classes is as follows: 

i) Class I: includes post-translationally modified bacteriocins, known as lantibiotics, 

which constitute the antimicrobials of the lanthipeptides groups (lanthionine and 

methyllathionine). Lantibiotics are thermostable peptides of very low molecular weight 

(< 5 kDa) that can either bind to Lipid II (a precursor peptidoglycan in the synthesis of 

the cell wall of bacteria) and prevent proper cell wall synthesis or can make pores in the 

membrane by using Lipid II as a docking molecule (Cotter et al., 2005). Nisin, lactocin 

and mersacidin are the main bacteriocins representing this group; and Lactobacillus lactis 

subsp. lactis is the typical producer bacteria (Parada et al., 2007; Zacharof and Lovitt, 

2012). 
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ii) Class II: corresponds to bacteriocins that do not contain unusual modifications. This 

class involve a large and heterogeneous group of small thermostable (< 10 kDa) and non-

lantibiotic peptides. Based on structural and function characteristics, the bacteriocins are 

divided into three subclass: IIa (anti-listerial peptides, such as pediocin, sakacin and 

enterocin), IIb (bacteriocins that require synergy of two peptides for activity where 

Lactacin F and lactococcin G are examples of this group) and IIc (cyclic bacteriocins that 

require reduced cysteine residues for activity, e.g. reuterin 6). This bacteriocins’ class 

affect the membrane permeability and cell wall formation of target bacteria. The class IIa 

bacteriocins produced by LAB are most studied due to their potent anti-listerial activity 

and antimicrobial properties against spoilage microorganisms and other foodborne 

pathogens. Among the typical producing bacteria in this group are Enterococcus faecium, 

L. sakei  and Lactobacillus acidophilus (Ringø et al., 2018; Sahoo et al., 2016). Piscicocin 

and divergicin, produced by Carnobacterium piscicola and Carnobacterium divergens, 

respectively, isolated from RTE fish and seafood products were classified as class IIa 

bacteriocins showing a noteworthy antimicrobial activity against L. monocytogenes 

(Tahiri et al., 2004; Yamazaki et al., 2005). 

iii) Class III: this group consists of unmodified bacteriocins of large molecular weight (< 

30 kDa), heat labile with a bacteriolytic and non-lytic mechanisms of action, capable of 

directly break down the cell wall of Gram positive bacteria (Alvarez-Sieiro et al., 2016; 

Cotter et al., 2005). This group has not been extensively investigated and has limited 

prospects for use in food biopreservation. Bacteriocins included in this group are 

helveticin I and enterolysin produced by Lactobacillus helveticus and E. faecium, 

respectively (Zacharof and Lovitt, 2012). 

iv) Class IV: comprises a large complex group of bacteriocins, which require 

carbohydrates or lipids in their structure to show antimicrobial activity. They are circular 

and heat stable peptides. Gassericin A produced by Lactobacillus gasseri is an example 

of class IV bacteriocin and has been considered an important bacteriocin in the food 

biopreservation, owing to its activity at  high pH and temperature tolerance (Fraqueza et 

al., 2017; Pandey et al., 2013). 

Bacteriocins have many mechanisms of action that differ from those of antibiotics. 

The bacteriocin mechanisms can be divided into those that act mainly on the bacterial 

envelope and those exert their action inside cells, affecting gene expression and protein 

production. Furthermore, the bacteriocins produced by LAB produces their antimicrobial 
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action by targeting cell envelope and its synthesis, which is higher at the end of the 

exponential growth phase (Cotter et al., 2013; Yamazaki et al., 2003). A decrease in the 

bacteriocin concentration may happen during the stationary phase which cause an 

increase in the number of pathogen (e.g. L. monocytogenes). Environmental conditions 

are a major determinant of the antimicrobial activity of bacteriocins since the amount of 

produced bacteriocins is affected mainly by the temperature, pH, specific nutrients for 

each strain or species and NaCl (Himelbloom et al., 2001). 

The application of bacteriocins has been shown to be less effective in food compared 

to laboratory culture media. This could be due to organic compounds present in food (e.g. 

fat, NaCl and microbial enzymes)(Leroy and De Vuyst, 1999). In cold-smoked salmon, 

the strain of C. piscicola was able to suppress growth of L. monocytogenes, while in cold-

smoked salmon juice the pathogen did not only stop growing but also decreased (Nilsson 

et al., 1999). Thus, the application of bacteriocins in food should be tested to confirm its 

effectiveness in each type of food matrix (Silva et al., 2018). The application of 

bacteriocins can be introduced in the food biopreservation in three different ways: i) 

inoculation of food with the bacteriocin-producing strains; ii) addition of semi or totally 

purified bacteriocins as food additive (if authorized); and iii) use of a product previously 

fermented with a bacteriocin-producing strains as an ingredient of the target food 

(Schillinger et al., 1996). These three methods have been evaluated by Tahiri et al. (2009). 

The antimicrobial action of bacteriocins can be improved when combining with other 

preservation methods (e.g. MAP, vacuum packed, smoke, organic acids, high hydrostatic 

pressure and, etc.). This combined effect, known as hurdle technology, has been widely 

studied to improve food safety and quality, including fish products (Blázquez et al., 2018; 

Leistner and Gorris, 1995; Tsironi et al., 2020). Recently, Bolívar et al. (2020) evaluated 

the synergistic effect of sakacin-producing L. sakei CTC494 and smoke in the reduction 

of L. monocytogenes in vacuum-packed hot-smoked Gilthead sea bream fillets. The 

optimum combination of hurdles will depend greatly on the type of food and its initial 

microbial concentration. This must be carefully assessed, since different hurdles often 

have different effects on members of a microbial population (Gálvez et al., 2007). 

The production of one or more antimicrobials active metabolites is part of the complex 

mechanism by which LAB strains becomes dominant in the presence of other competing 

bacteria. These antimicrobial metabolites, such as bacteriocins, are often regulated by a 

quorum-sensing mechanisms (Hibbing et al., 2010). Table 1.3 includes, among others, a 
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summary of studies applying bacteriocin-producing LAB against L. monocytogenes in 

laboratory culture media, fish and RTE fish products. 

1.8.2. Competition  

Competition is the second category of antagonistic interaction, which also represents 

a negative interaction between two microbial populations, since both population are 

affected with respect to their survival and growth (Sieuwerts et al., 2008). In this category, 

competition occurs when both populations use the same resources (e.g. nutrients and 

niches) for the growth, and some of the populations will be compromised, in terms of 

reduction the maximum population density and or/growth rate (Barton and Northup, 

2011; Mellefont et al., 2008). Also, microbial populations may release, into the 

environment, metabolites that are toxic or inhibitory to their competitors (Fredrickson 

and Stephanopoulos, 1981).  Ultimately, one of the populations will be excluded from the 

environment and this effect is an example of competitive exclusion. 

1.8.2.1. Competition for nutrients 

Nutritional resources play a significant role in understanding microbial interaction by 

competition. Microbial population present in a given common environment compete for 

nutrients, space and other resources. Despite foods are unlimited sources of nutrients, 

microbial growth in them may be halted by limited amounts of specific molecules 

including different types of carbohydrates, vitamins, amino acids and mineral (Gram et 

al., 2002; Hibbing et al., 2010). In this type of interaction, competition between two 

microbial populations, when grown together, tends to eliminate one of the populations, 

from their common environment. For instance, LAB or background microbiota and 

pathogens bacteria (e.g. L. monocytogenes). 

In Table 1.3, the studies of Buchanan and Bagi (1997) and Nilsson et al. (1999) 

suggested that the inhibition of L. monocytogenes in brain heart infusion (BHI broth) and 

cold-smoked salmon juice by Carnobacterium piscicola, respectively, was due to 

competition for nutrients and not for production of anti-listerial compounds. These studies 

concluded that the anti-listerial capacity of C. piscicola was not caused by any known 

antimicrobial compounds, which were below the limit of detection. In this sense, authors 

hypothesized that given that C. piscicola is a fast-growing bacteria, its growth could 

produce a depletion of some necessary nutrients for the growth of the pathogen. Little 

been investigated on which nutrients are responsible for the inhibitory effect. However, 
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Nilsson et al. (2005) found that exhaustion glucose was a limiting nutrient for 

competition, inhibiting the growth of L. monocytogenes by non-bacteriocinogenic LAB 

in BHI broth.  

Competition of LAB and L. monocytogenes has been also reported, where the growth 

ability and initially numerical dominance of LAB populations are the main factors in the 

reduction of the pathogen growth by nutrient competition. In this respect, different studies 

have reported a significant effect of inoculum size on the inhibition of L. monocytogenes 

in RTE fish products and liquid laboratory media (Mellefont et al., 2008; Nilsson et al., 

2004; Quinto et al., 2016; Saraoui et al., 2018; Szigeti, 2001). From an application 

standpoint, selecting LAB species with better growth ability, at low temperatures, and 

inoculating them at higher concentration can result in a better competition capacity 

improving the inhibitory activity on the pathogen (Mellefont et al., 2008).  

In 1962, Jameson demonstrated for the first time the phenomenon of co-culture 

inhibition of two intestinal organisms, Salmonella Litchfield and E. coli, grown in 

laboratory culture media (Jameson, 1962). In brief, the study showed that S. Litchfield 

and E. coli, inoculated simultaneously, grew without affecting each other´s latency time 

and growth rate until S. Litchfield reached its stationary phase, decreasing the maximum 

population density (Nmax) of E. coli. This led to a simultaneous stop in the growth of both 

populations. In another study, Buchanan and Bagi (1999) demonstrated that L. 

monocytogenes grown in co-culture with Pseudomonas fluorescens can reach a low, high, 

or equal Nmax compared to the levels of the pathogen in mono-culture. In this study, growth 

was dependent on the temperature, acidity and aw of the environment in which both 

bacteria were grown. In fact, these studies provide a phenomenological description of the 

behaviour of one bacterial population, in the presence of other population (i.e. 

competitors), in which, due to microbial interaction, a lower Nmax is observed for one of 

the populations or both, without providing an explanation for why such lower values are 

found (Giuffrida et al., 2009). Afterwards, this phenomenon of microbial interaction was 

introduced to the field of predictive microbiology by Ross et al. (2000) termed the 

“Jameson-effect”. To quote the fine comparison of Mellefont et al. (2008), Jameson effect 

“can be described as a race between species to use the resources of the environment (e.g. 

nutrients) to maximise their growth and population numbers. When these resources are 

depleted, the race is over, and the species that reached Nmax first deplete the available 

growth nutrients required by other species, inhibiting their Nmax, then the growth of each 

species in the population stops.” 



General Introduction 

37 

This phenomenon has also been reported in several studies of microbial growth in co-

culture, such as LAB and L. monocytogenes or natural microbiota and other pathogenic 

bacteria (Al-Zeyara et al., 2011; Beaufort et al., 2007; Cauchie et al., 2017; Mejlholm and 

Dalgaard, 2015; Mellefont et al., 2008; Møller et al., 2013; Quinto et al., 2016; Speranza 

et al., 2010). 

RTE fish products (e.g. LPFP) generally contain considerable concentrations of LAB 

that may be present as a natural microbiota due to their ability to adapt to the conditions 

prevailing in those products (e.g. VP and MAP packaging) or added intentionally as bio-

protective cultures. In this sense, the “Jameson-effect” is a phenomenon that can be 

exploited for biopreservation based on certain LAB groups naturally occurring in fish 

products able to compete and minimize the pathogen growth (Giménez and Dalgaard, 

2004; Ross et al., 2000). 

  



Chapter 1 

38 

Table 1.3. Studies reporting the mechanisms of interaction of Lactic Acid Bacteria (LAB) species and Listeria monocytogenes in laboratory 

culture media, fish and RTE fish products. 

Competing microorganisms Growth environment Effect on L. monocytogenes Suggested mechanism Reference 

Lactobacillus plantarum 
TSB-agarose solid 
surface and laboratory 
culture media  

Dissipation of the proton 
gradient across the cell 
membrane 

Bacteriocin and organic 
acids productiona,b Nielsen et al. (2010) 

Carnobacterium divergens 
and Carnobacterium piscicola 

Vacuum-packed cold-
smoked salmon 

Growth inhibition Bacteriocin productionc,d Duffes et al. (1999a) 

Carnobacterium piscicola Laboratory culture media Growth inhibition 
Competition for nutrients 
and organic acid 
productione,f  

Nilsson et al. (2005) 

Lactobacillus spp. Cold-smoke fish system Growth inhibition Acid productionb Duffes et al. (1999b) 

Leuconostoc spp. and 
Lactobacillus plantarum 

Model fish product 
Reduction of maximum 
population density 

Hydrogen peroxide and 
proteinaceous substance 

Jeppesen and Huss, 
(1993) 

Carnobacterium spp. Cold-smoked salmon Growth inhibition Bacteriocin productionc Brillet et al. (2004) 

Lactobacillus spp. 
Vacuum-packed cold-
smoked salmon 

Growth inhibition 
Organic acids production or 
competition for nutrientsb,g Tomé et al. (2006) 

Carnobacterium 
maltaromaticum, 
Leuconostoc gelidum and 
Lactococcus piscium  

Salmon Gravlax Growth inhibition 
Cell-to-cell and bacteriocin 
productionh Wiernasz et al. (2020) 
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Table 1.3 continued 

Competing microorganisms Growth environment Effect on L. monocytogenes Suggested mechanism Reference 

Lactobacillus sakei Cold-smoked salmon Growth inhibition Bacteriocin productioni Katla et al. (2001) 

Lactobacillus sakei, 
Lactobacillus curvatus and 
Carnobacterium 
maltaromaticum  

Vacuum-packed cold-
smoked salmon 

Growth inhibition  Bacteriocin productionj Aymerich et al. (2019) 

Carnobacterium piscicola Model fish systems 
Growth inhibition and reduction 
of maximum population density 

Bacteriocin production and 
competition for nutrientsg,h Alves et al. (2005) 

Carnobacterium 
maltaromaticum 

Alginate film on smoked 
salmon 

Growth inhibition and reduction 
of maximum population density 

Bacteriocin productionh Concha-Meyer et al. 
(2011) 

Carnobacterium piscicola 
Cold-smoked salmon 
juice and cold-smoked 
salmon 

Growth restriction and 
influence of growth kinetic 
parameters 

Bacteriocin production, 
potential ecological nichesh Nilsson et al. (1999) 

Carnobacterium piscicola Smoked salmon juice 
Growth inhibition, reduction of 
maximum population density 

Bacteriocin production and 
competition for nutrientsk,g  

Nilsson et al. (2004) 

Lactobacillus platarum Laboratory culture media Growth inhibition 
Competition for nutrients, 
pH reduction, organic acids 
and inoculum sizeb,g,l 

Mellefont et al. (2008) 
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Table 1.3 continued 

Competing microorganisms Growth environment Effect on L. monocytogenes Suggested mechanism Reference 

Lactococcus piscium 
Chemically defined 
medium based on shrimp 
composition 

Reduction of maximum 
population density 

Mechanism unknown Saraoui et al. (2017) 

Enterococcus durans, 
Lactococcus lactis subsp. 
lactis and Lactobacillus 
plantarum 

Laboratory culture media Inhibition of planktonic growth 
Production of inhibitory 
metabolitesm Zhao et al. (2004) 

Carnobacterium piscicola 
Laboratory culture media 
and cold-smoked salmon 

Population decline and growth 
inhibition 

Bacteriocin production and 
inoculum sizen,o Yamazaki et al. (2003) 

Enterococcus faecium Laboratory culture media 
Population decline and growth 
inhibition 

Bacteriocin production, 
competition for nutrients, 
cell-to-cell contactp,g 

Huang et al. (2016) 

Carnobacterium divergens Laboratory culture media Growth inhibition Bacteriocin productionc Richard et al. (2003) 

Lactococcus piscium Peeled tropical shrimp 
Reduction of maximum 
population density 

Unidentified mechanism of 
action 

Matamoros et 
al.(2009a)  

Carnobacterium piscicola Laboratory culture media 
Reduction of maximum 
population density 

Competition for nutrientsg Buchanan and Bagi, 
(1997) 

Lactobacillus fuchuensis and 
Lactococcus piscium 

Laboratory culture media Growth inhibition Competition for nutrientsg 
Matamoros et 
al.(2009b) 
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Table 1.3 continued 

Competing microorganisms Growth environment Effect on L. monocytogenes Suggested mechanism Reference 

Lactococcus piscium 
Chemically defined 
medium based on shrimp 
composition 

Growth inhibition 
Cell-to-cell contact and 
competition for nutrientsq 

Saraoui et al. (2016) 

Lactobacillus lactis Semi-synthetic media 
Growth inhibition and 
Reduction of maximum 
population density 

Bacteriocin production and 
inoculum sizer,s Szigeti, (2001) 

Lactobacillus sakei 
Cold-smoked salmon 
juice 

Reduction growth Bacteriocin productionh Weiss and Hammes, 
(2006) 

Lactococcus piscium 
Tropical cooked peeled 
shrimp 

Growth inhibition Competition for nutrientsg Fall et al. (2010) 

Lactobacullus plantarum Laboratory culture media Growth inhibition Acid productiont Wilson et al. (2005) 

Lactic acid bacteria Lightly preserved seafood 
Reduction of maximum 
population density 

Unidentified mechanism of 
actionu 

Mejlholm and 
Dalgaard, (2007) 

Lactobacillus sakei Laboratory culture media 
Growth inhibition and 
inactivation 

Bactercion productionv Pleasants et al. (2001) 

Psychrotolerant lactic acid 
bacteria 

Processed 
seafood and mayonnaise-
based seafood salads 

Reduction of maximum 
population density 

Unidentified mechanism of 
actionu 

Mejlholm and 
Dalgaard, (2015) 

Lactic acid bacteria 
Italian marinated seafood 
salad 

Growth inhibition Competition for nutrientsg 
Andrighetto et al., 
(2009) 
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Table 1.3 continued 

Competing microorganisms Growth environment Effect on L. monocytogenes Suggested mechanism Reference 

Lactobacillus sakei Laboratory culture media 
Reduction of maximum 
population density 

Competition for nutrientsg 
Blanco-Lizarazo et al. 
(2016) 

Weissela viridecens Laboratory culture media Growth inhibition 
Hydrogen peroxide, 
proteinaceous substance and 
inoculum sizex 

Ye et al., (2018) 

a Plantaricin production. 
b Unspecified organic acids. 
c Divercin production. 
d Piscicocin production. 
e Glucose competition. 
f Acetate production. 
g Unspecified nutrient competition. 
h Unspecified bacteriocin production. 
i Sakacin P production. 
j In this study, only sakacin K, produced by L. sakei CTC494 was reported. 
k Carnobacteriocin B2 production. 
l The inoculum size of the L. plantarum used to evaluate growth in co-culture with L. monocytogenes was 103, 104 and 106 CFU/mL. 
m Production of inhibitory metabolites reported only for L. lactis subsp. lactis. The isolate had nisin A and B genes. For E. durans the authors suggested enterocins as an inhibitory metabolite. 
n The inoculum size of C. piscicola used to inhibit the growth of L. monocytogenes was 104 and 106 CFU/g. 
o Bacteriocin characterized as Pisciconcin (Yamazaki et al., 2005). 
p Presence of the enterocin A, B and P genes (entA, entB and entP) in the E. faecium strain. 
q Adenina, guanine and uracil competition. 
r Nisin production. 
s The inoculum size of L. lactis used to inhibit the growth of L. monocytogenes was 105 and 106 CFU/mL. 
t Lactic acid production. 
u Mechanism suggested as Jameson effect.  
v Sakacin A production. 
x The inoculum size of the W. viridecens used to evaluate growth in co-culture with L. monocytogenes was 103 and 106 CFU/mL..
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1.8.3. Mutualism  

Mutualism, also so-called symbiosis, is the category in which both participating 

populations are totally dependent on one another, which can be developed in different 

ways (Table 1.2) (Ivey et al., 2013). One of these ways is the production and release in 

the food matrix of a metabolite or set of metabolites, called coupling substance(s), 

produced by each population and necessary for another, but cannot produced by itself. 

The interaction does not have to be specific; all that is needed is that metabolism of both 

populations are complementary (Fredrickson, 1977).  

Interestingly, Yang et al. (2017) observed a mutual growth between Bifidobacterium 

bifidum and L. monocytogenes in laboratory culture media (PBS, MRS or BHI) at 37 °C 

for 24 h. These authors found that for these conditions, the results showed that culturing 

the two bacteria together could promote the growth of each other, resulting in earlier entry 

into the logarithmic phase. However, to best of our knowledge, there is no specific data 

on mutualism observed between foodborne pathogens (e.g. L. monocytogenes) and other 

microbial population in foods and specifically fish products. 

1.9. Theoretical approach for interaction modelling: Jameson-effect phenomenon and 

predator-prey approaches 

In most studies of microbial interaction in food products, the results indicate that fully 

considering the complexity of microbial community dynamics would require detailed 

knowledge of food systems, its microbial composition and inoculum levels, control over 

the production and release of bacteriocins or other inhibitory compounds by benign 

microorganisms that compete with pathogens, the factors that affect the interactions and 

how the food is handled during transportation, storage, distribution, and use (Buchanan 

and Bagi, 1997; Powell et al., 2004). However, all this knowledge has the cost of an 

intensive and exhaustive work, which requires a large amount material and makes them 

weakly eligible for more realistic applications for microbial interactions (Cornu, 2001; 

Cornu et al., 2011). Moreover, some of this information is not considered in mathematical 

models and, of the existing classic models for microbial interaction, only include intra-

species interaction and not inter-species interaction, due to the extensive data sets for 

mixed culture growth are not available (Imran et al., 2012; Vereecken et al., 2000). 
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1.10. Predictive Microbiology  

Predictive microbiology, or the quantitative microbial ecology of foods, is an area of 

research in food microbiology that integrates, in addition to traditional knowledge of 

microbiology, different disciplines including mathematics, engineering, computer 

science and statistics (Whiting, 1995). It is a promising field that applies mathematical 

models to describe the behavior of microbial populations in food environments allowing 

to predict growth, microbial interaction, inactivation and transfer in response to certain 

specific environmental conditions. Models usually take into account intrinsic factors to 

food (e.g. pH, aw, competing microbiota etc.), extrinsic ones (temperature, atmosphere, 

moisture, etc.) and/or processing conditions in food matrix or food model systems (UV-

radiation, high pressure processing) (Pérez-Rodríguez and Valero, 2013; Valdramidis, 

2016). Thus, predictive microbiology has become a powerful tool for microbial food 

safety quality, shelf-life assessment, HACCP programs and QMRA (Huang, 2014). 

In predictive microbiology, models can be classified according to different criteria: i) 

modelling approach: empirical and mechanistic models; ii) and their purpose: 

probabilistic and kinetic models. Empirical (phenomenological) models are equations that 

describe the data in a convenient mathematical relationship through a fitting procedure. 

Polynomial equations are a type of empirical models, which are generally represented as 

quadratic response surfaces describing the environment dependence of a kinetic 

parameter of the microbial population (McMeekin et al., 1993). Mechanistic 

(deterministic) models are more flexible and built on a theoretical basis allowing the 

interpretation of the response in terms of known phenomena and processes that govern 

microbial kinetics. These models are preferable over empirical ones although they are 

scarce in literature due to the limited information and data concerning the biological 

processes. For their development, an extensive knowledge of the underlying biological 

mechanisms is required (Ferrer et al., 2009). However, mechanistic models are preferable 

to empirical ones, as they usually contain fewer parameters, fit the data better and 

extrapolated more sensibly (Draper, 1988). Baranyi and Roberts model (Baranyi and 

Roberts, 1994) is an example of a semi-mechanistic models, which focuses on the lag 

phase described on the basis of certain parameters defining of physiological state of cells  

(Ferrer et al., 2009; Jagannath and Tsuchido, 2003). 

Probabilistic models, known as growth/no growth models, predict the likelihood of 

the microbial response (e.g. toxin production, metabolic activity, etc.) under specific food 
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environmental conditions within a certain period of time. However, they cannot explain 

the rates (Baker and Genigeorgis, 1990; McMeekin et al., 2002). Kinetic models are used 

to describe the microbial response (growth or death) over time, in which extrinsic 

variables affecting growth (e.g. temperature and pH) can be considered dynamic, i.e. 

time-dependent variables. When the dynamic variable is temperature, the models are 

called non-isothermal models (Corradini and Peleg, 2005; Van Impe et al., 1992). The 

use of non-isothermal models to predict microbial population behavior under varying 

conditions, can be an alternative to understand the changes that occurred during the 

production chain of chilled food, such as fresh fish and RTE fish products minimally 

processed (Costa et al., 2019; Koutsoumanis, 2001). Among the various non-isothermal 

that used to predict microbial growth in varying conditions, there are the Baranyi and 

Roberts (Baranyi and Roberts, 1994), Gompertz (Van Impe et al., 1992) and Corradini 

and Peleg (Corradini and Peleg, 2005) non-isothermal models. This type of models 

constitutes a fundamental model category in predictive microbiology, since they can be 

used to assess the level exposure of consumers to foodborne pathogenic bacteria at any 

time along the food chain (Skandamis and Jeanson, 2015). 

Whiting and Buchanan (1993) proposed another classification for models in 

predictive microbiology splitting them into three levels: primary, secondary and tertiary. 

The primary models describe the change of microbial concentration as a function of time, 

using a limited number of kinetics parameters (initial concentration, lag time, growth rate 

and maximum population density) (McKellar and Lu, 2004; Dalgaard and Mejlholm, 

2019). The secondary models represent for the effect of environmental conditions (e.g. 

temperature, pH, NaCl, ect.) on the kinetic parameters of the microbial curve estimated 

by primary models (Ross and Dalgaard, 2004). Finally, the tertiary models are computer 

applications integrating primary and secondary models to enable predictions on microbial 

behaviour (e.g. growth and inactivation) in foods under different environmental 

conditions using an user-friendly interface (Baranyi and Tamplin, 2004; Whiting and 

Buchanan, 1994). There are several tertiary models, however, the software  Combase 

(Baranyi and Tamplin, 2004), MicroHibro (González et al., 2019) and FSSP(Dalgaard, 

2014) deserve to be mentioned given their relevance and type of application. 

The complexity of microbial interactions and the implications of competitive growth 

in foods are often overlooked in predictive microbiology, which can lead to a significant 

discrepancy between predictions and reality (Leroy and De Vuyst, 2007; Pérez-Rodríguez 
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and Valero, 2013). The two most employed modelling approaches for microbial 

interaction are based on the Jameson-effect and Lotka-Volterra, which are intended to 

provide a general representation for the interaction dynamics observed in a specific 

microbial community (Cornu et al., 2011; Powell et al., 2004). The Jameson-effect-based 

models is a set of mathematical derivations, from the logistic and Baranyi´s models that 

are built on the observational phenomenon of the Jameson-effect, described above. The 

Predator-prey theory is another alternative approach to the study of microbial interactions. 

This theory was proposed independently by Alfred James Lotka in 1925 and Vito Volterra 

in 1928 (Lotka, 1925; Volterra, 1928), also known as Lotka-Volterra predator-prey 

system (Becker and Leopold-Wildburger, 2020). The generalized Lotka-Volterra 

approach is able to describe the time-dependent population dynamics and predict 

ecological relationships (i.e. amensalism, competition and mutualism) between members 

of different microbial species (Gao et al., 2018). Lotka-Volterra approach, historically 

proposed in ecology, was introduced in predictive microbiology by Dens et al. (1999) and 

Vereecken et al. (2000). Different studies have investigated microbial interaction using 

different Lotka-Volterra approaches for LAB and L. monocytogenes and interactions 

involving other bacteria in fresh fish and RTE fish products (Bolívar et al., 2020; Costa 

et al., 2019; Giuffrida et al., 2007; Valenti et al., 2013), laboratory culture media 

(Fujikawa and Sakha, 2014) and other foods (Liu et al., 2006; Mounier et al., 2008; Ye et 

al., 2014). 

In general, these two modelling approaches assume that the interaction between two 

microbial populations (intra-and inter-specific interactions) are linear, describing 

different situations, either the reduction in maximum population density (Nmax) or the 

decline of one or both populations (Ayala et al., 1973; Berryman, 1992). These effects 

are related to the bacterial concentration, which, however, depends only on the 

environmental conditions in which they are being grown, since the interaction does not 

affect the maximum growth rate (Giuffrida et al., 2009). Determining the kinetic 

parameters under mono-culture conditions can help to better assess the interaction level 

between populations. The quantitative analysis of these values, obtained in co and mono-

culture, can be also used to construct more comprehensive and representative interactions 

models to be applied or validated in different situations or food matrices (Giuffrida et al., 

2009; Powell et al., 2004). 



General Introduction 

47 

1.11. Microbial Risk Assessment 

The Risk Analysis process for food safety represents a structured decision-making 

and have been used to address the challenges of globalized trade in food, in terms of 

setting international standards and guidelines, and for national regulations, which include 

the transmission of pathogenic bacteria with increase resistance along the food chain and 

between different countries (Codex Alimentarius, 2007; Possas et al., 2020). The process 

of Risk Analysis, as defined Codex Alimentarius, integrates three components as 

independent concepts: Risk Assessment, Risk Management and Risk Communication 

(Figure 1.2). 

 

Figure 1.2. Interaction between the three components of risk assessment (FAO/WHO, 

2006). 

Risk Assessment, the central specific component of the Risk Analysis, consists of a 

systematic process which aims at better understanding and managing the nature of food 

safety risks (i.e. biological, chemical and physical), which can be qualitative (descriptive 

or categorical treatments of information) or quantitative (mathematical analyses of 

numerical data, typically regarding with the probability of disease or death) (Kavlock et 

al., 2018; Lammerding and Fazil, 2000). 

A Microbial Risk Assessment (MRA) is a systematic approach and one of the most 

relevant topics that has received attention over the last decades to address the risk of 
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pathogens in foods and/or and processes and to aid in the quest for a better means of 

ensuring the production of food safe (Bassett, et al., 2012). The process of conducting a 

MRA is a scientifically based framework for understand the level of risk in a given 

food/pathogen scenario, consisting in four successive key steps: 

i) Hazard Identification: “The identification of biological agents capable of causing 

adverse health effects and which may be present in a particular food or group of food.” 

ii) Hazard Characterization: “The qualitative and/or quantitative evaluation of the nature 

of the adverse health associated with hazard.” 

iii) Exposure Assessment: “The qualitative and/or quantitative evaluation of the likely 

intake of a biological agent via food, as well as exposure form other sources if relevant.” 

iv) Risk Characterization: “The process of determining the qualitative and/or quantitative 

estimation, including attended uncertainties, of the probability of occurrence and severity 

of known or potential adverse health effects in a given population based on Hazard 

Identification, Hazard Characterization and Exposure Assessment.” 

These steps involve estimating the magnitude of public health risks in terms of 

likelihood of exposure to foodborne pathogens and the likelihood and impact of any 

adverse health effects after exposure, which may cover the complete “farm-to-fork” 

pathway or focus only on one part (i.e. specific step) considered relevant regarding to 

food safety (Lammerding, 1997; Miranda and Schaffner, 2018). 

Risk Assessments for L. monocytogenes in the consumption of RTE fish products has 

been carried out by different authors (Garrido et al., 2010; Pouillot et al., 2007, 2009). 

Pasonen et al. (2019) evaluated the exposure to L. monocytogenes in cold smoked and 

salt-cured fishery salmon products in Finland for consumers in two age groups, the elderly 

populations as a risk group and the working-age population as baseline. Incidence was 

assessed by estimating the growth of L. monocytogenes in the products at three 

temperatures. Furthermore, the risk estimated was based on pathogen occurrence and 

product consumption data and epidemiological data. On this basis, the number of cases 

in Finland could be estimated. The results showed that elderly population greater risk of 

acquiring listeriosis, around 55%, whereas healthy adults 27%, even if products have been 

stored at recommend temperature (between 0 and 3 °C). In other study, Grønlund (2010) 

carried out a risk assessment in Denmark for the consumption of vacuum-packed cold-

salmon. The groups included pregnant women, elderly over 60 years old and 

immunocompromised people. The results showed that immunocompromised group 
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accounted 66.6% of the case of listeriosis. It has also been shown that the concentration 

of L. monocytogenes could be reduced, if an initial concentration of LAB of 102 CFU/g 

was present in the product, therefore, the number of cases of listeriosis would also be 

reduced. 

More specific Risk assessment studies should be carried out to elucidate the public 

health impact of the use of bio-protective cultures (Popovic et al., 2011; WHO/FAO, 

2004). To this end,  suitable predictive microbiology models are to be developed and 

incorporated into the risk assessment process (Pérez-Rodríguez and Valero, 2013). For 

instance, the interaction between LAB and L. monocytogenes that can described using 

different mathematical models. Mejlholm and Dalgaard (2007) estimated changes in the 

concentration of L. monocytogenes in presence of LAB from predictions using predictive 

tools (FSSP) that can be used as parameters in the risk assessment and, thus, estimate the 

risk of eating of a certain fish product (e.g. fresh fish under MAP or vacuum-packed cold-

smoked fish) stored at isothermal and non-isothermal conditions throughout the shelf-

life. 
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2.1. Predictive Microbiology for Quantitative Microbiological Risk Assessment 

In the food chain from farm-to-fork, microorganisms can encounter a series of food 

processing and preservation steps. The area of predictive microbiology makes use of a 

number of mathematical models to describe the behaviour of bacterial population in these 

steps. Predictive microbiology models are of great importance for quantitative 

microbiological risk assessments (QMRA), as QMRA should explicitly consider the 

dynamics of microbiological growth, survival, and death in foods (Codex 1999). 

In recent years, predictive microbiology has proved to be a promising tool to estimate 

the changes in microbial concentration in foods over the farm-to-fork chain (Messens et 

al. 2018). This occurred mainly due to successfully validated models and active software 

development in the area (Koutsoumanis et al. 2016, Mejlholm et al. 2015, Mejlholm et 

al. 2010). Predictive microbial models can help to understand the microbial behaviour in 

food systems depending on environmental conditions, being a powerful tool to evaluate 

the microbial exposure in the exposure assessments step within a QMRA (Koutsoumanis 

et al. 2016). 

The application of predictive models in exposure assessments is not always 

straightforward, especially for QMRA aiming to evaluate the status of public health 

concerning a specific hazard and/or food product. While QMRA studies assess 

probabilities and therefore need to use stochastic models, preferably second order Monte 

Carlo models, predictive growth are generally deterministic models, i.e. they are 

developed and validated to produce point estimates outputs (Nauta 2002). This deficiency 

highlighted the need for the development of models expressing populations of 

microorganisms in terms of probability and drove the start of the so-called “stochastic 

predictive microbiology” (Koutsoumanis et al. 2016; Nicolai and Van Impe 1996). In the 

last 20 years, a number of stochastic predictive modelling approaches, aimed at 

quantifying and integrating different types of variability, have been reported (Augustin et 

al 2011; Couvert et al. 2010; Delignette-Muller et al. 2006; Koutsoumanis et al. 2007; 

Koutsoumanis et al 2010; Mejlholm et al. 2015; Membré et al. 2005; Pouillot et al. 2003). 

Besides, transfer, mixing, partitioning and some growth/no growth boundary models 

apply a probabilistic modelling approach. 

The farm-to-fork food chain has large variety of processes that require different 

models. The variety of models that can be used is large, and a description of the food 

chain may be difficult (Nauta 2008). Nauta (2001) introduced the use of modular process 
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risk models (MPRMs) as a tool for QMRA. This approach splits the food pathway into 

processing steps that describe one of six basic processes: growth, inactivation, 

partitioning, mixing, removal and cross-contamination. In theory, once the modelling of 

these basic processes is established, any food pathway can be modelled when it is 

described as a sequence of consecutive basic processes. Traditionally, models developed 

in the area of predictive microbiology describe microbial growth and inactivation. These 

models together with cross-contamination (transfer), mixing, partitioning and removal are 

discussed in this chapter. 

2.2. Predictive Microbiology Model Types 

The literature on predictive microbiology presents several classifications of 

mathematical models. Predictive models can be classified as (i) primary, secondary and 

tertiary, (ii) kinetic or probabilistic, and (iii) empirical or mechanistic (McDonald and 

Sun 1999). These proposed classifications are based on modelling levels, the way of 

obtaining the experimental data and construction form of the mathematical model, 

respectively. 

The classification of models by modelling level was proposed by Whiting and 

Buchanan (1993). Primary models measure the response of the microorganism with time 

to a single set of conditions, in which each population versus time curve can be described 

by a set of specific values for each of the parameters in the model (e.g. lag phase, growth 

rate and D-value). Secondary models describe the response of one or more parameters of 

a primary model to changes in one or more of the environmental conditions. The 

environmental conditions can be intrinsic to the food product, such as pH, water activity 

(aw), organic acids concentration, and/or extrinsic, such as temperature, pressure, air 

composition of the packaging, among others. Tertiary models are applications of one or 

more secondary models to generate systems for providing predictions to non-modellers 

(e.g. user-friendly or applications software and expert systems) (Whiting and Buchanan 

1993). 

Primary and secondary models are based on experimental data at constant conditions. 

However, environmental conditions (e.g. temperature) can change during distribution and 

storage. Thus, dynamic models have been developed to predict the behaviour of 

microorganisms under conditions that vary with time, especially under non-isothermal 

conditions (Haberbeck et al. 2012; Longhi et al. 2013, Silva et al. 2017). Dynamic models 

can be categorized as tertiary models, which are widely used to describe microbial growth 
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from information obtained with the primary and secondary models for varying 

environmental conditions. Some of these tertiary models are available in user-friendly 

software, such as ComBase, MicroHibro, PMP, FSSP, among others. These software may 

include algorithms for calculating changes in environmental conditions, comparing 

microbial behaviour under different conditions or constructing growth curves of more 

than one microorganism simultaneously. 

Baty and Delignette-Muller (2004) presented the classification of the microbial 

growth models by their mathematical form of construction. The models can be 

characterized as sigmoid models, models with an adjustment function or compartmental 

models. Sigmoid models (e.g. logistic and Gompertz models) were historically used to 

describe the increase in the logarithm of the bacterial cell density with time. Models with 

an adjustment function (e.g. Baranyi and Roberts model) are less empirical and based on 

differential equations. Compartmental models (e.g. logistic model with delay and 

Buchanan three-phase linear model) were developed in order to model the lag phase (Baty 

and Delignette-Muller 2004). These models will be discussed later. 

McMeekin and Ross (2002) reported the classification of the models by the 

construction form. Predictive models can be classified as mechanistic, which are models 

that present physical, chemical and/or biological explanations for their parameters, or as 

empirical, which are models without explanations for their parameters and are usually 

proposed based only on the observation of the format of common mathematical functions 

(McMeekin and Ross 2002). Most of the models used in predictive microbiology are not 

purely mechanistic, and some of them are simply empirical models with simple 

mathematical function adjustments. For Zwietering and Den Besten (2011), the use of 

models for the description of microbial growth kinetics does not assume that the 

mechanism has been fully understood, and the acceptable performance of model fit is not 

a guarantee that its mechanism is right. The development of fully mechanistic microbial 

growth models has been limited by the inability to provide quantitative values for all 

model parameters (McMeekin 1993). The investigation of correlations between results of 

different experiments is important because biological principles can be found and 

mechanisms can be inferred. On the other hand, Corradini and Peleg (2005) stated that a 

completely different approach consists in abandoning the attempt to find a universal 

growth model and the environmental conditions. The format of the model can be chosen 

through convenient mathematical considerations using the principle of parsimony. 
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2.3. Primary Models: Growth, Interaction and Inactivation Models 

2.3.1. Growth Models 

Growth models have been a major area of development in predictive microbiology 

over the past 25 years. Traditionally, these models rely on the generation of kinetic data, 

under defined environmental conditions, allowing the description of microbial curves in 

food. These microbial curves present four phases: lag, exponential growth, stationary and 

decline (see Figure 2.1). In practice, microbial growth models in foods assume a 

sigmoidal growth function, i.e. the decline phase is ignored (Amézquita, et al. 2011; 

Buchanan, et al. 1997). 

 

Figure 2.1. Typical microbial growth curve as a function of time representing four 

phases: lag, exponential growth, stationary and decline. 

2.3.1.1. Gompertz and Logistic Models 

Gompertz and logistic models were introduced by Gibson et al. (1987) and have been 

successfully used to describe nonlinear microbial responses, making possible to express 

the growth in log colony forming units (cfu)/(g or mL) as a function of time. These models 

are the most common sigmoidal functions used to fit to microbial growth data, because 

they consist of three phases, similar to the microbial growth curve (Pérez-Rodríguez and 

Valero 2013). 

The Gompertz equation (Equation 2.1) is a function based on the limitation of space 

and/or nutrients as well as the production of toxic metabolites, where the growth rate is 

not constant. Typically, growth rate would increase to a maximum, and then it would 
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decrease. In this way, the maximum growth rate is determined at the point of inflection 

in the microbial curve (Devlieghere et al. 2009; McKellar and Lu 2003). 

( ) log N( t ) A C exp exp B t M= + − − −                                                                    (2.1) 

where N(t) is the microbial concentration (cfu/[g or mL]) at time t (h), A (log cfu/[g or 

mL]) is the lower asymptotic value as t decrease to zero, C (log cfu/[g or mL]) is the 

difference between the upper and lower asymptotic value, M (h) is the time when the 

absolute growth rate is maximum, and B (h-1) is the relative growth rate at M. 

The regression empirical parameters of the Gompertz model can be replaced by 

parameters with biological meaning (e.g. lag time, maximum growth rate, initial and 

maximum microbial population) through adequate mathematical expressions, as 

proposed by Zwietering et al. (1990). Thus, the lag time duration (λ) (h) (Equation 2.2) 

and the maximum growth rate (µ) (log [cfu/g or mL/h]) (Equation 2.3) can be calculated: 

1
λ M

B
= −

                                                                                                                      (2.2) 

B C
μ

e


=

                                                                                                                      (2.3) 

where e is equal to 2.7182. 

In order to simplify the fitting process, the reparametrized of Gompertz model 

(Equation 2.4) proposed by Zwietering et al. (1990) can be written: 
 

( ) 1
μ e

y D exp exp λ t
A

  
= − − +  

  
                                                                                (2.4) 

where y is the logarithm of the relative population size (y = ln[N/N0]), N0 is the microbial 

concentration (cfu/[g or mL]), D is the maximum increase of population attained in the 

stationary phase.  
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Table 2.1 summarizes all variables presented in the different equations of this chapter. 

Table 2.1. Summary of all variables presented in the different equations. 
Symbol Description Unit 

A  Lower asymptotic value as time decrease to zero 
log cfu/(g or 
mL) 

A(t) 
An adjustment function for the modified Baranyi and Roberts 
model 

h 

af and Af Accuracy factor  unitless 
B Relative growth rate at M h-1 
b Regression coefficient  (h-0.5 °C-1) 
bf and Bf Bias factor  unitless 

C Difference between the upper and lower asymptotic value 
log cfu/(g or 
mL) 

c Proportionality constant °C-1 

D Maximum increase of population attained in the stationary phase 
log cfu/(g or 
mL) 

Dref The decimal reduction time at a reference temperature Tref (°C)  s or min 
D-value The decimal reduction time  s or min 
Ea  Activation energy of the system  J/mol 

H Removal function 
log cfu/(g or 
mL) 

h0  Physiological state of the cells at t = t0 unitless 

K First-order rate constant s-1 or min-1 

kmax Maximum specific decay rate min-1 or h-1 

M Time when the absolute growth rate is maximum h 

m  Curvature factor unitless 

n  Number of observations unitless 
N(t), Nt or 
N 

Microbial concentration at time t  
log cfu/(g or 
mL) 

N0 Microbial concentration at time zero 
log cfu/(g or 
mL) 

Nmax  Maximum microbial concentration  
log cfu/(g or 
mL) 

Nres Residual microbial concentration  
log cfu/(g or 
mL) 

Ncri Maximum critical concentration 
log cfu/(g or 
mL) 

Nout Microbial concentration at the end of the process step  
log cfu/(g or 
mL) 

Nin Microbial concentration at the beginning of the process step 
log cfu/(g or 
mL) 

Q Measure of the physiological state of cells at time t unitless 
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Table 2.1 continued 

Symbol Description Unit 
R Universal gas constant J/mol.K 
R2 Coefficient of determination  unitless 
r0 Fraction of the growing initial subpopulation unitless 

RMSE Root-mean-square error  unitless 
S(t)  Momentary (“instantaneous”) survival ratio at time t unitless 
t Time  h, min or s 
T Temperature  °C  
tL Time before inactivation  h, min or s 

tlag Time when the lag phase ends h 

ʋ 
Rate of increase of the limiting substrate, generally assumed to be 
equal to µmax 

unitless 

tmax  Time when Nmax is reached h 

Tmax  
Temperature in the upper part of the range over which growth is 
not possible 

°C 

Tmin  Minimum theoretical temperature at which growth is detected  °C 
Tref Reference temperature at which the shelf-life is known °C 
y  Logarithm of the relative population size (y = ln[N/N0]) unitless 
Y Natural logarithm of cell concentration at time t (Y = ln[N])  ln cfu (g or mL) 

y0 Natural logarithm of the cell concentration at t = t0 
log cfu (g or 
mL) 

ymax Natural logarithm of the maximum cell concentration 
log cfu (g or 
mL) 

yobserved Data observed experimentally 
according to the 
data 

ypredicted Data predicted by the model 
according to the 
data 

z-value 
The temperature increase required to reduce the D-value by a 
factor of 10 

°C 

α Scale parameter  s or min 

αAB  
The competition factor parameter of population A on population 
B  

unitless 

αBA  
The competition factor parameter of population B on population 
A 

unitless 

β Shape parameter unitless 

λ Lag time duration  h 

μmax  Maximum specific growth rate  h-1 

µ Specific growth rate  
log cfu/(g or 
mL)/h 

µG Maximum specific growth h-1 
µD Maximum specific death h-1 

ӯobserved Arithmetic mean of the observed data 
according to the 
data 
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Several studies have been using the deterministic Gompertz models to describe the 

counting microbial growth in foods (Dabadé et al. 2015; Kim et al. 2018; Slongo et al. 

2009; Tarlak et al. 2018) and growth curves based on turbidity data (Chatterjee et al. 

2015; Mytilinaios et al. 2012; Perni et al. 2005). However, some authors (Dalgaard et al. 

1994; Membré et al. 1999) reported some limitations associated with the use of the 

Gompertz model, for instance, overestimated growth rate compared with the usual 

definition of the maximum growth rate (Pérez-Rodríguez and Valero 2013). An additional 

limitation is that experimental data are required over the whole growth range in order to 

get a good model fit (McMeekin et al. 2013; Peleg 1997). 

Another widely applied primary growth model to describe the microbial growth is the 

logistic model (Equation 2.5), also proposed by Gibson et al. (1987). The difference 

between logistic and Gompertz models is that the former is described with a symmetric 

growth pattern. 

( )1

C
log N( t ) A

exp B t M
= +

+ − −  
                                                                             (2.5) 

The parameters λ and µ can be defined by Equations 2.6 and 2.7, respectively. 

2
λ M

B
= −                                                                                                                        (2.6) 

4

B C
μ


=                                                                                                                        (2.7) 

To correct a failure in the logistic equation, several modifications were proposed 

accounting for asymmetric growth curves and improving its accuracy (Augustin and 

Carlier 2000a; Fujikawa et al. 2003; Zwietering et al. 1990). Rosso et al. (1996) proposed 

a modification to the logistic model (Equation 2.8) with delay (λ >0) and without delay 

(λ=0). 

( ) ( )

( )
( )( )( )

0

0

1 1

t

max
t

max
max

If t λ Log N Log N

N
If t λ Log N Log

N
exp μ t λ

N

 =


 
  
   =    + −  −  −      

           (2.8) 
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where Nmax is the maximum microbial concentration (cfu/[g or mL]), and μmax is the 

maximum specific growth rate (h-1). 

The application of logistic model with and without delay has provide good accuracy 

to describe  deterministic microbial growth curves (Bover-Cid et al. 2019; Hereu et al. 

2014; Wang et al. 2012). Ancelet et al. (2012) applied the logistic model with delay in a 

farm‐to‐fork QMRA model to determine the growth of Bacillus cereus in courgette purée. 

2.3.1.2. Baranyi and Roberts Model 

Baranyi and Roberts (1994) developed a mechanistic model for bacterial growth 

(Equation 2.9), including an exponential linear growth phase and a lag phase calculated 

by an adjustment function A(t) (Equation 2.10). In this model, the lag phase extension 

depends on the cell’s physiologic state and its adaptation to the new environment. For 

instance, lag phase is longer if the cells are not adapted to the new environment. Once the 

cells have adjusted to the new environment, they grow exponentially until reach the 

stationary phase, limited by restrictions dictated by the growth medium (Baranyi and 

Roberts 1994; Pérez-Rodríguez 2013; McKellar and Lu 2003). 

( ) ( )0
0

1 1
1

max

max

m μ A( t )

max m y y

e
Y y μ A t ln

m e

 

−

 −
= +  −  + 

 

                                                               (2.9) 

( )0 0maxμ t h νt h

max

ln e e e
A( t ) t

μ

− − −
+ −

= +                                                                                (2.10) 

where m is a curvature factor and A(t) represents an adjustment function for the model. 

The Baranyi and Roberts model has been used extensively to describe the growth of 

pathogenic and spoilage bacteria (Carrasco et al. 2006; Silva et al. 2018; Tarlak et al. 

2018), including the increasing colony diameter of  heat-resistant fungi (Tremarin et al. 

2015). The model has shown advantages when compared with other growth models: (i) it 

is availability on two user-friendly software programs: DMFit and MicroFit; (ii) it has 

good fitting capacity; and (iii) most of the model parameters are biologically interpretable. 

Another advantage of the Baranyi and Roberts model is that it is available as differential 

equations that allow microbial growth to be modelled in a dynamic environment, 

generally resulting from non-isothermal conditions (Costa et al. 2016; Gospavic et al. 

2008; McKellar and Lu 2003; Xanthiakos et al. 2006).  
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2.3.1.3. Buchanan Three-Phase Linear Model 

The three-phase linear model (Equation 2.11) proposed by Buchanan et al. (1997) was 

developed to describe the three bacterial growth phases (lag, exponential and stationary) 

by applying straight lines. The authors elaborated a biological basis for justifying the 

suitability of the linear model. During the lag phase, it is assumed that the cells do not 

divide due to adaptation in the new environment. For this reason, the growth rate is zero. 

During the exponential phase, it is assumed that the growth rate is a constant, in which 

the logarithm of the cellular concentration increases linearly with time. Once the 

stationary phase is reached, there is no increase in the cells, and the growth rate returns 

to zero. 

( ) ( )
0

0

lag t

lag max t max lag

max t max

For t t , log N log N lag phase

N t For t t t , log N log N μ t t exponential growth phase

For t t , log N log N stationary phase

 = −


  = + − −


 = −

  (2.11) 

where tlag is the time when the lag phase ends (h) and tmax is the time when the Nmax is 

reached (h). 

Buchanan et al. (1997) compared this model with the Gompertz and Baranyi and 

Robert models. The curves predicted by the three models presented good-fit to the data, 

and the growth kinetic parameters were similar. The three-phase linear model was more 

robust than the other models, especially when there were few experimental data. The 

QMRA developed by Koutsoumanis et al. (2010) to evaluate the growth of Listeria 

monocytogenes in pasteurized milk from production to the time of consumption used the 

three-phase linear model to calculate the pathogen’s growth. 

2.3.2. Interaction Models 

The growth of microorganisms in foods is a complex system where different 

microbial populations can coexist and interact. The interaction between two different 

microorganisms can be direct or indirect and the effect of the interaction may be positive, 

neutral or negative. Direct interactions occur when two populations use quorum sensing 

or physical contact, while indirect interactions occur through a change of the 

environment. Indirect interactions can be specific, due for example to the production of 

bacteriocin and organic acids and competition for nutrients (Casla et al. 1996; Greer and 

Dilts 1995; Fredrickson, 1977). Table 2.2 describes the five types of indirect interaction 

between two populations (Fredrickson, 1977; Sieuwerts et al. 2008). 
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Table 2.2. The five types of microbial indirect interactions. The effect of coexistence of 

two populations is shown with an example of the interaction. 

Interaction 
types 

Effect on 
population A 

Effect on 
population B 

Example 

Amensalism Neutral Negative 
Bacteriocin produced by population 
A. 

Competition Negative Negative Nutrient competition. 

Commensalism Neutral Positive 

Production of lactic acid by lactic 
acid bacteria (population A) is 
metabolized by yeast and fungi 
species (population B) (Mounier et 
al. 2005). 

Mutualism Positive Positive Exchange of growth factors. 

Parasitism Negative Positive 
Bacteriophages (population B) 
attach bacteria (population A). 

 

Many studies have observed that natural food microbiota can inhibit or reduce growth 

of pathogenic bacteria (Buchanan and Bagi 1999; Brillet et al. 2004; Hwang and Sheen 

2011; Lardeux et al. 2015). Nevertheless, microbial interaction is often not considered in 

predictive microbiology and QMRA, due to its complexity (Malakar et al. 2003). 

Interaction models are usually intended to quantify how much the growth of one 

population is reduced by the growth of other populations (Cornu et al. 2011; Pérez-

Rodríguez and Valero 2013). Two model approaches can be used to describe the 

interaction between microorganisms. One approach considers the Jameson effect, which 

describes the simultaneous stopping of growth of all bacterial species at the time when 

the dominant bacteria population reaches its stationary phase (Giménez and Dalgaard 

2004; Jameson 1962; Mellefont et al. 2008). The other approach considers the  Lotka-

Volterra competition model, which describes the dynamics of two competing bacterial 

populations in food products by incorporating an additional reduction term in the 

population growth rate that is proportional to the population density of another competing 

population (Powell et al. 2004; Valenti et al. 2013; Vereecken et al. 2000).  

2.3.2.1. Jameson Effect Model 

Jameson effect model is based on Equations 2.12 through 2.15, which assumes that 

the growth of the pathogen halts when the dominant microbial population reaches its Nmax 

(Cornu et al. 2011; Jameson 1962). 

1 1
1

A A B A
A max A

max A max B A

dN N N Q
N μ

dt N N Q

     
=   −  −      

+    

                                                (2.12) 
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1 1
1

B B A B
B max B

max B max A B

dN N N Q
N μ

dt N N Q

     
=   −  −      

+    

                                                (2.13) 

1
A

A t maxA

dQ
Q μ

dt
                                                                                                      (2.14) 

1
B

B t maxB

dQ
Q μ

dt
                                                                                                      (2.15) 

where subscript A or B represents the different microbial populations and Q is a measure 

of the physiological state of cells at time t. 

The value of Q at t = 0 (Q0) can be calculated for both microorganisms (Equation 

2.16). 

( )0

1

1maxμ λ
Q

e


=
−

                                                                                                            (2.16) 

where e is the Euler´s number and λ is the lag time estimated from co-culture experiments. 

Different variants of the Jameson model have been proposed to evaluate the 

interaction between two microbial populations (Cornu et al. 2011; Giménez and Dalgaard 

2004; Møller et al. 2013). Costa et al. (2019) proposed a modification of the Jameson 

effect model that includes two parameters (NcriA and NcriB) describing the maximum critical 

concentration that one population should reach to inhibit the growth of the other 

population. Mejlholm et al. (2015) developed a stochastic model for Listeria 

monocytogenes growth in naturally contaminated lightly preserved seafood applying the 

Jameson effect. The quantitative assessment of the exposure to L. monocytogenes from 

cold-smoked salmon consumption developed by Pouillot et al. (2007) considered the 

competitive bacterial growth between the pathogen and the background flora using the 

Jameson effect model principle. 

2.3.2.2. Lotka-Volterra Model 

The classic Lotka-Volterra (Equations 2.17 through 2.20), also called predator-prey 

model, describes the interaction of two competing bacteria in a co-culture. This model is 

based on the logistic growth model and includes two empirical parameters reflecting the 

degree of interaction between microbial species (αAB and αBA) (Giuffrida et al. 2007; 

Fujikawa et al. 2014; Lotka, 1956). Depending on the empirical parameter value for 

population A (αA), the growth of population B (αB) can be affected in three different ways: 

i) if 0 < αAB < 1, population B grows with reduced µmax after population A reaches Nmax; ii) 
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if αAB = 1, population B stops growing when the population A reaches its Nmax and; iii) if 

αAB > 1, population B declines when population A reaches its Nmax. 

1
1

A A AB B A
A max A

max A A

dN N α N Q
N μ

dt N Q

   + 
=   −    

+  

                                                        (2.17) 

1
1

B B AB A B
B max B

max B B

dN N α N Q
N μ

dt N Q

   + 
=   −    

+  

                                                        (2.18) 

1
A

A t maxA

dQ
Q μ

dt
                                                                                                       (2.19) 

1
B

B t maxB

dQ
Q μ

dt
                                                                                                      (2.20) 

where αAB and αBA are, respectively, the competition factor parameters of population A on 

population B and vice-versa.  

A number of mathematical models have been developed to predict microbial 

interaction, mainly between lactic acid bacteria and L. monocytogenes in various food 

matrices (Blanco-Lizarazo et al. 2016; Mejlholm and Dalgaard 2007, Mejlholm and 

Dalgaard 2015; Quinto et al. 2016; Ye et al. 2014; Østergaard et al. 2014) and between 

natural microbiota and pathogenic bacteria (Buchanan and Bagi 1999; Guillier et al. 2008; 

Koseki et al. 2011; Le Marc et al. 2009). 

2.3.3. Phoenix Phenomenon Model 

The experimental observation that some bacteria, after exposition to stress conditions 

(osmotic or thermal, for example) at constant temperature, present a kinetic growth 

characterized by a decrease in the initial cell counts followed by an exponential increase 

in the level of the count is known as Phoenix phenomenon (Amézquita et al, 2005). This 

term was probably applied because Phoenix, in ancient times, symbolized immortality 

through "death and resurrection" (Shoemaker and Pierson, 1977).  Colle et al. (1961) and 

Shoemaker and Pierson (1977) described this microbiological phenomenon in 

Clostridium perfringens, Kelly et al. (2003) in Campylobacter jejuni, and several authors 

in Salmonella (Airoldi and Zottola 1988; Aspridou et al. 2018; Zhou et al. 2011; Paganini 

et al. submitted). 

The Phoenix phenomenon was observed by Shoemaker and Pierson (1977) in log 

count curves for C. perfringens after thermal stress. The authors explain this behaviour 

considering three phases: injury, recovery and growth. Mellefont et al. (2005), working 
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with Salmonella Typhimurium M48 under osmotic stress, thought that the phenomenon 

was due to an initial inactivation of a portion of the population followed by growth. 

However, they considered that the Phoenix phenomenon represented the responses of 

different sub-populations, in which some cells are dying but both recovery of culturability 

and exponential growth were occurring simultaneously. By studying single cell of 

Salmonella enterica serotype Agona, Aspridou et al (2018) concluded that the Phoenix 

phenomenon occurred under severe osmotic stress (5.7% and 6.75% NaCl) as result of 

simultaneous growth, survival and death of cells. 

The modified Baranyi and Roberts (1994) model was suggested by Zhou et al (2011) 

to model the Phoenix phenomenon (Equations 2.21 and 2.22) based on the assumption 

that the log count curve of the total population was the sum of a dying and a surviving-

then-growing subpopulation.  

( ) ( ) ( )
( ) ( )

( )

( ) ( )0 0

0 0

0 01
1

1
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max
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D μ A t

ln N r ln N

exp r ln N μ A t
ln N ln exp r ln N μ t

e

e
−

 
 

+   = − − +     − +  
  

                          (2.21) 

where µG and µD are the maximum specific growth and death rates (h-1), respectively, r0 is 

the fraction of the growing initial subpopulation (0 ≤ r0 < 1). 

( )
( )

1 GG μ t λμ t

G

ln e e
A t t λ

μ

− −− − +
 = − +                                                                            (2.22) 

with λ being the lag time of the growing subpopulation (therefore, as per definition, of 

the whole population). 

Paganini et al. (submitted) applied the modified Baranyi and Roberts model similar 

to Zhou et al. (2011) to describe curves of four serotypes of Salmonella enterica 

Typhimurium under osmotic stress (aw 0.95) for different inoculum conditions. The 

predictive ability of the model was assessed through statistical indexes, with good results 

(R2 > 0.973 and RMSE < 0.288). 

The modified Baranyi and Roberts model can be applied to studies about the Phoenix 

phenomenon, which show the different cellular responses and the complexity in the 

behaviour of microbial populations in conditions close to the boundary of growth.  
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2.3.4. Inactivation Models 

The kinetics of microbial inactivation has been receiving attention since the 1920s 

and constitute one of the earliest forms of predictive microbiology. Inactivation models 

describe the decrease in a microbial population over time when it is exposed to a lethal 

process or agent, such as thermal treatments, non-thermal technologies and 

drying/dehydration processes. The distinction between inactivation and survival models 

is not always clear, but survival processes are usually associated with slowly declining 

patterns, while inactivation refers to lethal process showing a rapid decrease of microbial 

population (Pérez-Rodríguez 2013; Peleg 2006). 

Traditionally, microbial inactivation has been assumed to show first-order kinetics 

(McKellar and Lu 2003; Peleg 2003). However, non-log-linear microbial inactivation 

models have been frequently presented in the literature and are used to describe the kinetic 

of inactivation of a wide variety of microorganisms with the most varied behaviour 

(Bevilacqua et al. 2015; Peleg and Cole 1998). The most commonly models used to 

describe the microbial inactivation in foods are presented in Figure 2.2, and a brief 

description of the various models is provided next. 

 

Figure 2.2. Representation of eight different shapes of inactivation curves. (a) Linear (▽, 

shape I), linear with tailing (×, shape II), sigmoidal-like (□, shape III), linear with a 

preceding shoulder (○, shape IV). (b) Biphasic (▽, shape V), concave (×, shape VI), 

biphasic with a shoulder (□, shape VII), and convex (○, shape VIII) (From Geeraerd et 

al. 2005 with permission of the authors).  

(a) (b) 
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2.3.4.1. Bigelow Model 

The Bigelow or linear model (Equation 2.23) was first proposed to describe the 

inactivation of microorganisms and enzymes in the canning industry, in particular to 

establish the D-value (decimal reduction time) as a function of temperature (Bigelow and 

Esty 1920; Bigelow 1921). This model assumes that the inactivation kinetics is first-order 

and that all cells or spores of a microbial population have identical resistance to lethal 

treatments (Whiting and Buchanan 1997).  

( ) 0ln N ln N kt= −                                                                                                       (2.23) 

where k is the first-order rate constant (s-1 or min-1).  

By rearranging Equation 2.23, Equation 2.24 can be obtained. 

( )
0 value

N t
log log S t

N D
= = −                                                                                           (2.24) 

where D-value is the decimal reduction time (D-value = 2.303/k, units in minutes or 

seconds) and S(t) is the momentary (“instantaneous”) survival ratio at time t (Peleg 2006). 

The D-value is a measure of the thermal resistance of a microorganism at a given 

temperature required to destroy one log cycle (90%) of the target microorganism. When 

the log D-values are plotted versus the treatment exposure temperature, the reciprocal of 

the slope is equal to the z-value, which is the temperature increase required to reduce the 

D-value by a factor of 10 in order to increase the rate of destruction by a factor of 10 

(Bigelow and Esty 1920). 

2.3.4.2. Weibull Model 

The Weibull model (Equation 2.25) has been used to describe the inactivation of 

microorganism due to its mathematical simplicity and great flexibility (Peleg and Cole 

1998). This model is based on the different distribution of resistance or sensitivity 

between the individuals in a microbial population (Van Boekel 2002; Van Derlinden et 

al. 2012).    

( )
1

2 303

β
t

log S t
. α

 
= −  

 
                                                                                         (2.25) 

where α and β are parameters related to the scale and shape of the inactivation curve, 

respectively. 
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The shape parameter accounts for upward concavity of a survival curve (β < 1), a 

linear survival curve (β = 1), and downward concavity (β > 1). Therefore, when β = 1, no 

biological variation is assumed (each cell is equally susceptible to be destroyed), and the 

survivor curve is linear with first-order kinetics. Although the Weibull model is of an 

empirical nature, a link can be made with physiological effects. Curves with upward 

concavity (β < 1) forming a tail indicate that the population of microorganisms contains 

members that die rapidly. However, as the destruction process occurs, the survivors are 

most resistant, leading to a longer inactivation time, while curves with downward 

concavity (β > 1) indicate that the population progressively decreases, and the time 

required to destroy the same fraction of microorganisms decreases over time (Aragao et 

al. 2007; Peleg 2006). This model has successfully described survival and inactivation 

curves of B. pumilus, B. coagulans, L. monocytogenes, C. jejuni, S. enterica, Yersinia 

enterocolitica (Chun et al. 2009; Couvert et al. 2005; Haberbeck et al. 2012; Patil et al. 

2009; Virto et al. 2005). 

2.3.4.3. Shoulder/Tail Model (Geeraerd Model) 

The shoulder/tail model (Equation 2.26) developed by Geeraerd et al. (2000) is based 

on the physiological state of cells and the residual population density on the basis of the 

existence of shoulder (or lag time) and tail region. The shoulder describes the initial 

segment of the inactivation curve, in which microbial population remains in similar 

levels, and the tail region corresponds to the final segment of the inactivation curve, 

representing the residual population more resistant to the lethal treatment. 

( ) ( ) ( )
( )

( )( ) ( )
0

1 1

max L

res max res

max L max

exp k t
N t N N exp k t N

exp k t exp k t

 −
= − − + 

+ − − −  
              (2.26) 

where kmax is the maximum specific decay rate (min-1 or h-1), tL is the time before 

inactivation (min-1 or h-1) and Nres is the residual microbial population concentration (cfu/g 

or ml).  

Geeraerd et al. (2005) created GInaFiT, a freeware add-in for Microsoft Excel. This 

tool includes nine different types of primary inactivation models, including shoulder/tail 

models.  
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2.4. Secondary Models 

2.4.1. Ratkowsky or Square Root model 

The Ratkowsky model (Ratkowsky et al. 1982), known as square root model 

(Equation 2.27), is one of the most popular models to describe the effect of temperature 

on maximum specific growth rate. This model has the advantage of homogenizing the 

data variance and providing a linear response in the region of temperatures below the 

optimum growth temperature (McMeekin et al. 2013). 

( )max minμ b T T=  −                                                                                                     (2.27) 

where, b represents the regression coefficient (h-0.5 °C-1), T is the temperature (°C) and Tmin 

is the minimum theoretical temperature at which growth is detected (°C). 

Ratkowsky et al. (1983) extended the square root model to describe effect on the 

growth rate in the whole region ranging from the minimum to the maximum temperature 

for growth (Equation 2.28). 

( ) ( )( )( )1min maxμ b T T exp c T T=  −  − −                                                                  (2.28) 

where in the expanded model, the parameters c and Tmax are the proportionality constant 

(°C-1) and the temperature (°C) in the upper part of the range over which growth is not 

possible, respectively. 

Other adaptations include the effect of alternative environmental factors, such as pH 

(Adams et al. 1991; Wijtzes et al. 2001), aw (McMeekin et al. 1987; Miles et al. 1997), 

carbon dioxide and phenol (Dalgaard et al. 1997; Giménez and Dalgaard 2004) and lactic 

acid (Ross et al. 2003). In some cases, the square root model has been applied also to 

describe lag time (Mataragas et al. 2006; Sant’Ana et al. 2012). For the quantitative 

assessment of the exposure to L. monocytogenes from cold-smoked salmon consumption, 

Pouillot et al. (2007) applied the square root model to described the effect of temperature 

on the specific growth rate.  

Square root models are widely applied in predictive microbiology due to their 

simplicity and easy interpretability of the model parameters (e.g. Tmin, pHmax and awmin) 

(Ross and Dalgaard 2004). Another advantage is that these models can be easily adapted 

to encompass the whole biokinetic range of environmental factors, making them more 

attractive to predictive microbiology practitioners (Pérez-Rodríguez and Valero, 2013).  
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2.4.2. Arrhenius-Type Model 

Arrhenius-type model is considered fundamental in different scientific fields. This 

model is derived empirically based on thermodynamics, to describe chemical reaction 

kinetics and/or biological processes (Labuza and Riboh, 1982). In predictive 

microbiology, this model is used to describe the relationship between the maximum 

specific growth rate (µmax) of a microorganism and the growth temperature (Equation 2.29) 

(Gonzales-Barron 2012; McMeekin et al. 2013).  

( ) 0
aE

ln μ μ
R T

 
=  

 
                                                                                                       (2.29) 

where µ0 is a constant, T is the absolute temperature (K), R is the universal gas constant 

(8.314 J/mol.K), and Ea is the so-called activation energy of the system (J/mol). 

An Arrhenius-type model was used to predict moulds growth (Longhi et al. 2014; Silva 

et al. 2010), bacteria growth (Silva et al. 2018; Huang et al. 2011; Koutsoumanis et al. 

2000) and inactivation (Amos et al. 2001; Cerf et al. 1996). This model was extended by 

Davey (1989) to represent the relationship between the maximum growth rate or death 

rate of microorganisms under additional processing conditions, such as pH and/or aw.  The 

model has also been used to calculate relative rate of spoilage (RRS), which is defined as 

the shelf-life (determined by sensory evaluation) at a reference temperature (Tref) divided 

by the shelf-life observed at the actual storage temperature (Equation 2.30) (Dalgaard 

2002). 

1 1ref a

ref

Shelf life at T E
RRS exp

Shelf life at T R T T

  −
= =  −   −    

                                                      (2.30) 

where Tref is a reference temperature (°C) at which the shelf-life is known. 

RRS models are interesting because they enable shelf-life to be predicted at different 

temperatures and for products where the specific spoilage organisms or the type of 

reaction responsible for spoilage are not known (McKellar and Lu 2003). 

2.4.3. Polynomial or Response Surface Models 

Polynomial or response surface are the most commonly used models to describe the 

relationship between environmental conditions and microbial growth parameters, as well 

as to determine optimal process conditions (Dalcanton et al. 2018; Devlieghere et al. 

2000). Generally, second-order polynomial equations (Equation 2.31) are used, including 
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three terms: first-order, second-order (quadratic) and interaction terms (Pérez-Rodríguez 

and Valero 2013).  

2

0

1 1

k k k

i j j jj j jl j l

j j j l

y β β X β X β X X ε
= = 

= + + + +                                                                (2.31) 

where yi is the dependent variable (e.g. growth rate or lag phase), β0, βj, βjj and βjl are the 

estimated regression coefficients, Xj and Xl are the independent variables (environmental 

factors), and ε is the error term. 

Polynomial models are characterized by a high number of parameters, which 

increases exponentially when the number of factor included in the model is increased. 

Response surface models were evaluated to predicted the growth parameters of 

Leuconostoc mesenteroides, cultivated under different combinations of temperature, pH, 

NaCl and NaNO2, and the optimal composition of culture media for production of 

biosurfactants by probiotic bacteria Lactococcus lactis and Streptococcus thermophiles 

(Rodrigues et al. 2006; Zurera-Cosano et al. 2006). 

2.4.4. Bigelow Model 

A secondary model equivalent to Bigelow (1921) was developed to describe the effect 

of temperature on the microbial inactivation rate (Equation 2.32). 

( )
10 10

max ref

ref

ln ln
k exp T T

D z

 
= =  − 

 
                                                                            (2.32) 

where kmax (min-1 or h-1) is the maximum inactivation rate, Dref (min or h) the decimal 

reduction time (D-value) at a reference temperature Tref (°C). Different Bigelow-type 

model approaches have been developed, including additional physicochemical factors as 

well as temperature (e.g. pH, aw, high pressure and etc.) (Adekunte et al. 2010; Gaillard 

et al. 1998; Mafart and Leguerinal 1998). 

2.5. Transfer Models 

Cross-contamination is one of the most important factors linked to foodborne 

outbreaks and food spoilage. According to Pérez-Rodríguez et al. (2008), the cross-

contamination phenomenon is defined as a general term that refers to the transfer, direct 

or indirect, of microorganisms from a contaminated product to a non-contaminated 

product or due to the  environmental conditions where the foods are processed, air, poor 

hygiene of handlers and contaminated equipment. 
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In general, the microbial transfer can be classified into three specific types: i) air-to-

food transfer (AF); ii) surface-to-food in fluids (SFF); and iii) surface-to-food contact 

(SFC). The last is the most frequent type, given its high incidence in domestic 

consumption phase (Pérez-Rodríguez et al. 2008). Although microbial transference 

phenomena have always been understood as an important cause of food contamination, 

together with the pronounced need to incorporate them into risk assessment studies, 

transfer models have only in recent years been implemented in predictive microbiology. 

Møller et al. (2012) developed a model to describe the transfer and survival of S. 

Typhimurium during the grinding of pork. The model satisfactorily predicted the 

observed concentrations of S. Typhimurium during grinding of meat pork. In other study, 

Møller et al. (2016) evaluated the robustness of the model obtained before to predict the 

transfer and survival of Salmonella spp. and L. monocytogenes during the grinding of 

meat pork and beef, using two different grinders different sizes and different numbers of 

pieces of meats to be ground. The parameters obtained under different conditions may 

not be applied to describe cross-contamination. However, the risk estimates showed that 

the risk of foodborne disease can be reduced when meat is ground in a grinder made of 

stainless steel using a well-sharpened knife in cooling room with temperature below 4 °C. 

Through the application of transfer models, it is possible to identify routes and risk factors 

associated with microbial transfer using quantitative approach and to predict the number 

microorganisms transferred from one surface to another (Den Aantrekker et al. 2003; Reij 

and Den Aantrekker 2004). Cross-contamination models are discussed further on Chapter 

12 of the book “Risk Assessment Methods for Biological and Chemical Hazards in Food.” 

2.6. Mixing, Partitioning and Others 

Mixing, partitioning and removal are among the main types of unit operations in the 

food industry. These processes will influence the microbial status of the product in terms 

of both likelihood of contamination and numbers. Thus, descriptive data of these 

processes should be collected. 

2.6.1. Mixing 

Mixing is one the commonest unit operations in the food processing industries with a 

primary objective of achieving a homogenous mixture. Generally, this means attaining a 

nearly uniform distribution of the ingredients for improving food quality, such as texture 

and colour development. Food mixtures involve many ingredients, including liquids, 
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powders and gases. Some important ingredients are contained only in minor quantities, 

which should be dispersed evenly and efficiently in the final mixture (Levine and 

Boehmer 1997). Nowadays, a large majority of processed ready-to-eat products are 

indeed multiphase dispersions such as: solid dispersed in liquids (e.g. canned foods), 

emulsions (e.g. soups, margarines and spreads) or bubbly dispersions (e.g. merengue, ice 

cream and sponge cake, among others) (Niranjan 2009). 

In mixing process, food units are combined into new large unit, as show in Figure 2.3.  

 

Figure 2.3. Mixing: n small units, containing Nin,i cells (particles and spores) in the units 

i (i = 1… n) are put together to form a new larger unit with Nout cells. The objective is to 

describe the probability distribution of Nout, given a distribution of the Nin,i (From Nauta 

2005 with permission of the authors). 

This process affects the food matrix and causes physical or chemical change in the 

materials being processed. As a consequence the microorganisms can be redistributed, 

resulting in an increase in prevalence and a decrease in the mean concentration in 

contaminated food units (Bassett et al., 2012; Nauta 2005). The consequence of mixing 

process on public health risk is uncertain, because it depends on the mean individual risk, 

which will be affected in various ways according to the total number of microbial cells 

reallocated and the pathogenicity of the foodborne pathogen of concern (Augustin et al. 

2017). This basic mixing process is commonly encountered in many food production 

scenarios, such as ground beef manufacturing (Smith et al. 2013), milk collection from 

multiple farm tanks (Albert et al. 2005), shredded lettuce processing (Danyluk and 

Schaffner 2011), or processed food manufacturing (Daelman et al. 2013). 

There is little published information on the effect of mixing operations on 

microorganisms. It is unlikely that the shearing conditions or temperature in a mixer 

would reduce the number of containing microorganisms, and hence mixing does not have 

 

n units with 

Nin,i cfu 

new unit with 

Nout cfu 
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a preservative effect. In some instances, especially where the temperature of the food is 

allowed to rise during mixing, there may be an increase in number of microbial 

contaminants, caused in part by the greater availability of nutrients as a result of the 

mixing action (Fellows 2009). Although these processes do not result in an increase or 

decrease in the number of microorganisms in the total amount of food produced, they 

change the distribution of microorganisms among food items. This has an impact on the 

variability of doses between servings and therefore may have an impact on the risk 

assessment (Bassett et al. 2012). 

The modelling approach for mixing suggested by Nauta (2005; 2008) assumes that if 

the numbers of cells on or in all small units are known, summation can be used to model 

the effect of mixing on the number of cells per unit: if n units are combined, with unit i 

containing Nin,i cells (i = 1… n), the larger unit (Nout) will contain the sum of all, as in 

Equation 2.33: 

in,i out in,in
N cells N N= =                                                                                           (2.33) 

Hence, the total number of cells in the system remains the same. The fraction of 

contaminated units (prevalence) will increase unit size. Assuming random homogeneous 

mixing and equally size small units, the increased prevalence after mixing of n small units 

can be estimated as show in Equation 2.34: 

( )1 1
n

out inP P= − −                                                                                                         (2.34) 

Nauta (2005) discussess complications related to the efficient and correct modelling 

of mixing process and some practical solutions for food chain risk assessment modelling. 

In model simulations, mixing can be modelled by application of the Dirichlet distribution, 

a counterpart of the multinomial distribution as applied for partitioning (Nauta 2008). 

Mathematical methodologies relevant to modelling mixing and partitioning are presented 

in Nauta (2001; 2008) and Nauta et al. (2001). 

2.6.2. Partitioning 

Partitioning (fractionation) is a process used in the food industry when a large volume 

(e.g. an industrial batch) is split up into several small units (e.g. consumer packages), as 

shown in Figure 2.4; for example, when milk from different cows is placed in the same 

milk tank and distributed in bottles, or cuts of different carcasses are joined for grinding 
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and then distributed in packages. Here, the redistribution of microorganisms could result 

in a lower prevalence and a higher concentration in contaminated food units (Bassett et 

al. 2012). 

 

Figure 2.4. Partitioning: a major unit containing Nin cells (particles and spores) is split up 

in n smaller units i (i = 1…n) that contain Nout,i cells. The objective is to describe the 

distribution of the Nout,i over the small units given the values of Nin and n (From Nauta 

2005 with permission of the authors). 

For the partitioning model, it is possible to describe the reallocation of the N cells (or 

spores, particles, colony forming units [cfu]) present in a large unit over n small units. 

Basically, the Nin cells are distributed into n portions Nout,i (i = 1… n). The challenge is to 

find the appropriate model to describe this distribution, which ultimately results in a 

distribution of Nout resulting from a distribution of Nin. As the number of units in the food 

chain increases with portioning, and the total number of cells in the system remains equal, 

the prevalence is likely to decrease. In the literature, several partitioning models have 

been proposed and discussed by Nauta (2005). 

2.6.3. Removal 

Removal process during food processing can be classified into two categories (Nauta 

2008). First, removal can be considered as a process whereby some units (or parts of 

units) are selectively removed from the production. Examples are the rejection of 

carcasses by veterinary inspectors in the slaughterhouse or the visual discarding of 

vegetables or fruits due to, for instance, injuries. Thus, in this category, the removal of 

units is not a random process as removal is performed because there is a presumed relation 

with microbial contamination and visual appearance. Second, removal can occur during 

the process of washing, peeling, cutting and filtering, for instance. In this category, the 
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removal process in principle aims at all units, yielding a similar model as an inactivation 

model, with a decrease in the number of cells that can be described by Equation 2.35. 

( ) ( ) ( )out inlog N log N h .= −                                                                                         (2.35) 

where Nout and Nin are the microbial concentration (cfu/[g or mL]) at the end and beginning 

of the process step, respectively, and h(.) is a positive “removal” function. For instance, 

if the removal process is a washing process, h(.) can be assumed constant or variable for 

a process step. More complex models can be developed if the removal mechanistic are 

incorporated in the model (Nauta 2008). 

The basic process of removal of Y. enterocolitica was considered during derinding of 

pork belly cuts to produce minced meat (Van Damme et al. 2017). The number of Y. 

enterocolitica after derinding was described through a binomial distribution with the 

number of Y. enterocolitica per belly cut after cutting (process occurring before 

derinding) and the proportion of the pathogen remaining on the bely cut after derinding 

as parameters.  

2.7. Growth Probability Models (Growth/No Growth) 

Growth probability models, also known as growth/no growth, are employed to predict 

the probability that growth of a microorganism of concern could occur in a food product 

as a function of intrinsic and extrinsic factors. Growth is not always the only feature of 

interest for food producers and scientists; in many occasions, the possibility of growth is 

the most import issue of concern (Carrasco et al. 2012). This approach is often used to 

predict suitable combinations of hurdles making microbial growth highly unlikely in a 

specific food product during, for instance, the storage time (Masana and Baranyi 2000). 

Those models were first applied concerning the prediction of the probability of formation 

of staphylococcal enterotoxin or botulinum toxin within a specific period of time under 

conditions of storage and product composition (Genigeorgis 1981; Gibson et al. 1987). 

Knowledge of these growth/no growth limits under different environmental conditions is 

important since it enable for a better quality and safety management of foods (McMeekin 

et al. 2000).  

Studies on growth probability test combinations of hurdles used for food preservation 

under different levels. Typically, a number of repetitions are tested for each combination. 

After a certain time of incubation, each repetition is examined whether growth occurred 

or not; 100% growth is considered when growth is confirmed for all repetitions and 0% 
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when no growth is observed for all repetitions. The classical graphical representation of 

growth probabilities is illustrated in Figure 2.5. The hypothetical data in Figure 2.5 show 

the combined effect of pH and temperature on the probability of growth of a 

microorganism over a certain time period. In this example, from a food safety point of 

view, a food product with a pH equal to 4.5 should be held at temperatures lower than 20 

°C to prevent microbial growth. 

 

Figure 2.5. Example of a classical graphical representation for growth probabilities 

according to two environmental factors: in this example, temperature and pH. 

The transition from the growth zone, where the probability of growth is 100%, to the 

no growth zone, where the probability of growth is 0%, can occur gradually, as depicted 

in Figure 2.5 and as in Haberbeck et al. (2015), Belessi et al. (2011), Mertens et al. (2011) 

and Vermeulen et al. (2009). Consequently, a growth boundary zone where the 

probability of growth can be between 0% and 100% exists. For instance, if 5 out of 10 

biological repetitions grew, the estimated growth probability equals 50%. This behaviour 

reflects the heterogeneity in phenotypic response within a population (Sumner and Avery 

2002). The observation that some cells of a microbial population are sensitive to an 

environmental stress, such as low pH and temperature, whereas others are resistant is a 

readily observed manifestation of heterogeneity (Avery 2006). On other cases, this 

transition can occur abruptly, and in this case, the zone with different growth probabilities 

would not be present in the graphical representation, as in López et al. (2007), McKellar 

and Lu (2001), Presser et al. (1998) and Skandamis et al. (2007). Importantly, the 

growth/no growth zone is time dependent. Thus, the longer the incubation period prior 

the verification of growth, the wider the growth zone may become, since the cells would 

have more chances to initiate growth. Consequently, there is a greater chance that the 

transition zone will occur abruptly.  
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Various approaches have been suggested to model the growth/no growth boundary: 

empirical deterministic approaches (Augustin and Carlier 2000b; Le Marc et al. 2002; 

Membré et al. 2001), logistic regression (Haberbeck et al. 2015; Kakagianni et al. 2018) 

and artificial neural networks (Hajmeer and Basheer 2002, 2003). Koutsoumanis and 

Angelidis (2007), Koutsoumanis et al. (2010) and Sanaa et al. (2004) are examples of 

studies applying growth/no growth models and concepts into QMRA. 

2.8. Model Generation Process 

2.8.1. Data Generation: Experimental Design, Data Acquisition and Data Process 

The generation of experimental data to describe and to predict microbial behaviour in 

foods should be structured in some basic steps, starting with the experimental design, 

followed by the data collection and finally, the data processing. 

2.8.1.1. Experimental Design 

A premise that must be considered in the experimental design is about the factors, 

which influence the microbial behaviour. All intrinsic (e.g. pH, water activity and salt 

concentration) and extrinsic (e.g. temperature and gas concentration) factors related to 

the food that may vary during the process under study must be carefully checked to 

incorporate such variations in the predictive model. For refrigerated perishable foods, for 

instance, the impact of temperature variation on microbial behaviour is commonly 

analysed, since temperature is a factor that has a great influence on microbial growth, and 

it can vary greatly throughout the food production chain from manufacturing to 

consumption. Factors with very small or no variations during the production chain are 

generally considered constant and are not incorporated into the experimental design. The 

incorporation of many factors in the experimental design increases the complexity of 

experiments execution and the proposition of a predictive mathematical model. 

The definition of the main factors to be investigated allows one to proceed to the 

definition of the levels to be considered in the study. The levels depend directly on the 

range of expected values in each factor to be reached by the product throughout the 

processes. In the case of storage of perishable products, for instance, the Brazilian 

legislation allows refrigeration up to 10 °C (Brasil 1984), while in the United Kingdom it 

is recommended that temperatures should be ≤5 °C (FSA 2015) and in the United State, 

≤4.4 °C (USA FDA 2014). However, in practice, if some problem occurs in the cold chain 

(during transportation of the product or exposure for sale in supermarkets), the product 



Chapter 2 

102 

temperature can exceed the recommended maximum. If experiments are designed and 

performed to describe the microbial behaviour only in the range from 4 °C to 10 °C (e.g. 

4 °C, 6 °C, 8 °C and 10 °C), the predictions by the mathematical model will be valid only 

within that range of values. Thus, the extent of the model predictions at temperatures 

above or below the tested range are treated as extrapolation and should be avoided (as 

depicted in Figure 2.6). 

 

Figure 2.6. Graphical representation of the range of validity of a mathematical model 

(temperature between 4 °C and 10 °C) and extrapolation. 

In this context, many studies involving the prediction of microbial behaviour in 

perishable foods consider higher than actual temperature ranges to avoid extrapolation, 

e.g. the growth of Pseudomonas spp. in poultry from 2 °C to 20 °C (Gospavic et al. 2008), 

L. monocytogenes in pasteurized milk from 1.5 °C to 16 °C (Xanthiakos et al. 2006), S. 

enteritidis SE86 on homemade mayonnaise from 7 °C to 37 °C (Elias et al. 2016) and 

Lactobacillus viridescens in vacuum-packed sliced ham from 4 °C to 30 °C (Silva et al. 

2017). 

The appropriate levels for the study can be defined by different strategies of 

experimental design. Traditional statistical designs, e.g. full and factional factorial 

designs, in many cases are not suitable in predictive microbiology, since the responses 

(dependent variables) usually do not present linear and/or parabolic dependence in 

relation to the factors (as described by the quadratic equation of the response surface). 

The responses usually present other nonlinear behaviours (secondary models to describe 

different nonlinear responses were covered Section 2.4). In this context, the optimal 

experimental design is an interesting alternative, for which some applications in 

predictive microbiology has been proposed since the late 1990s (Balsa-Canto et al. 2008; 

Cunha et al. 1997; Longhi et al. 2018; Stamati et al. 2016; Van Derlinden et al. 2008; 



Predictive microbiology tools for exposure assessment 

103 

Versyck et al. 1999). If appropriate criteria and parameters are used in the design and the 

experiments are correctly performed, the optimization results in time and resource 

savings, ensuring parameter estimation with great accuracy. One advantage of the optimal 

experimental design is the execution of some experiments with optimal variation in the 

levels within the desired range, instead of performing several experiments under fixed 

levels within the desired range. A graphical representation of four kinetic growth curves 

under fixed levels and one optimally designed experiment, both in the range from 4 °C to 

10 °C, is shown in Figure 2.7. 

 

Figure 2.7. Graphical representation of kinetic growth curves under fixed levels 

(isothermal experiments at 4 °C, 6 °C, 8 °C and 10 °C) and under optimal variation of the 

levels (non-isothermal experiment between 4 °C and 10 °C) with the respective 

temperature profiles. 

2.8.1.2. Data Collection 

A widely used technique for obtaining experimental data in food microbiology is plate 

counting, which is used to determine the number of viable cells in a sample. The method 

is usually associated with high cost of analysis and a long time to obtain the responses 

and often presents moderate uncertainty in the responses. Modern methods, many of them 

with sophisticated equipment, have been proposed in recent years to obtain 

microbiological experimental data. These methods are based on molecular biology 

techniques (e.g. polymerase chain reaction [PCR], restriction fragment length 

polymorphism [RFLP] and DNA microarray assay), immunological techniques (e.g. 

enzyme-linked immunosorbent [ELISA]), biophysical and biochemical principles with 

the application of biosensors (e.g. bioluminescence sensor, bio-analytical sensors 

utilizing enzymes, electrical impedometry and flow cytometry) (Mandal et al., 2011). 
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They often depend on high initial investment for equipment acquisition and laboratory 

intensive work to validate the responses obtained. 

The U.S. Food and Drug Administration Bacterial Analytical Manual recommends 

counting in the range from 25 to 250 cfu (based on 1 mL of sample) on one plate (Maturin 

and Peeler 2001). As microbiological concentration in a food can be higher than this 

range, dilutions of the sample are necessary, which may propagate experimental errors 

and generate uncertainty in the experimental measurements. The number of samples 

analysed at each time in the experiment is a decisive aspect to minimize this problem; in 

which is recommended that, at least, two samples should be collected and analysed to 

generate a duplicate of the experimental data. Then, the result is expressed by the average 

of the measurements at that time, also allowing the measurement error to be calculated. 

Depending on the characteristics of the experiment and the available resources, three data 

points can be obtained, providing triplicate results, which increasing confidence in the 

experimental data. Another important recommendation in the data collection is the 

repetition of the experiments aiming to verify its reproducibility. The results of the initial 

experiment and their repetitions under the same experimental conditions should be as 

close as possible to prove the reproducibility. The treatment of experimental data for 

replicates and repetitions will be presented in a next section. 

When performing experiments, monitoring and recording data of intrinsic and 

extrinsic factors is extremely important. Preferably, this should be done by appropriate 

and calibrated equipment connected to information storage equipment (usually 

computers). This monitoring ensures that the experiment occurred at the designed levels 

and that the mathematical model incorporates the correct information. 

In the case of kinetic experiments, time is the independent variable and deserves 

special attention. The establishment of the times required to obtain experimental kinetic 

data is essential, and for this, the different phases of the microbial behaviour should be 

remembered. For microbial growth, the lag, exponential and stationary phases (in most 

cases) can be observed (Figure 2.1), while for microbial death, the inactivation (at 

constant or variable rate), shoulder and/or tail phases can be observed (Figure 2.2). The 

total experiment time should be long enough to ensure that all phases of microbial 

behaviour were detected, but it should be short enough to optimize the response and avoid 

wasting time. In practice, the experimental time is difficult to determine and usually 

depends on the researcher’s experience and ability to predict the responses to be obtained. 
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The number of experimental data point and the time for collecting each experimental 

data point should be delineated in order to optimize the cost of the experiments and later, 

to ensure that the parameters of the microbial behaviour can be estimated with accuracy. 

For the parameter estimation of the mathematical models, the minimum number of 

experimental data points required is equal to the number of parameters of the model plus 

one. Since most mathematical models have four parameters, the minimum number of 

experimental data to be collected is five, but for an accurate estimation of the parameters, 

these five data must be strategically collected to represent all phases of microbial 

behaviour and phase transitions (e.g. experiment A of Figure 2.8), which is a very difficult 

task even for experienced researchers. In turn, less experienced researchers tend to 

perform experiments with some additional data that could be avoided (e.g. experiment C 

of Figure 2.8). Therefore, a general recommendation is the collection of at least eight 

experimental data points for a sufficient representation of the complete kinetic curve (e.g. 

experiment B of Figure 2.8), allowing the three phases of the microbial behaviour, in 

addition to the phase transitions, to be clearly identified, guaranteeing an accurate 

estimation of the parameters of the mathematical model. 

 

Figure 2.8. Representation of complete growth kinetics model (lag, exponential and 

stationary phases) with minimal (experiment A), sufficient (experiment B) and additional 

(experiment C) data collection and experimental time. 
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2.8.1.3. Data Processing 

The initial recommendation for data processing is the organization of information in 

spreadsheets, especially in some software that will be used later to fit the mathematical 

models. Among the software available for this task, there are some free software options 

(no need to pay for a license), such as R, Scilab and Open Office. The feeding of the 

experimental data in the spreadsheet should be performed in an organized way to carry 

out the first data processing. 

In the case of kinetic studies, it is recommended to dedicate one column to the 

experimental time and successive columns for the responses obtained from the microbial 

behaviour. As mentioned in the data collection section, the mean values of each point of 

the experiment (replicates) should be calculated, as well as the mean errors of each point. 

Software tools can be used to generate the spread of the experimental data, which 

contributes to a better presentation and interpretation of the microbial behaviour in 

relation to the data presentation in tables. In each set of experimental data, it is 

recommended to check whether there is any very discrepant kinetic data, a so-called 

outlier. In general, this discrepant data is the result of some experimental error and can be 

discarded. Figure 2.9 shows a schematic representation of kinetic growth curves with 

experimental data collected in duplicate (data 1 and 2) and with repeated experiments 

(experiments A and B). 

 

 

(a)  

(b)  
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Figure 2.9. (a) Representation of microbial growth kinetics with duplicates of 

experimental data (data 1 and 2) and repetitions of experiments (experiments A and B). 

(b) treatment of experimental data with average experimental data and error bars. 

2.8.2. Model Fitting and Goodness-of-Fit Indexes 

2.8.2.1. Model Fitting 

The logarithmic transformation of the experimental data is a statistical strategy for the 

linearization of the exponential phase of the microbial curve. Similarly, the square root 

or logarithm transformation of the maximum specific growth rate values in the Square 

Root and Arrhenius models, respectively, have the same purpose of linearization of the 

curves. The transformation usually also helps to reduce the variation among the data, 

which is very important when analysing the impact of the residuals in the step of fitting 

the models to the data and in the estimation of more precise parameters. 

Let us analyse a hypothetical example of fitting a model to the growth data of a 

microorganism in a food with initial and final concentrations of 103 cfu/g and 109 cfu/g, 

respectively. If the mean relative residuals of the fit are equal to 1% in both sets of data, 

the absolute residuals are of very different order of magnitude, of 101 cfu/g and 107 cfu/g 

in the measurements of the initial and final concentrations, respectively. As the procedure 

of fitting the model to the experimental data is based on the minimization of the residuals 

between observed data and predicted by the model, the residual of the final concentration 

data is much more impacting than the residue of the initial concentration data. With the 

logarithmic transformation of the data, the initial and final concentrations become 3 log 

cfu/g and 9 log cfu/g, respectively, and the absolute residuals of the measurements 

become equal (0.00436 log cfu/g). 

The fitting of a mathematical model to the experimental data is carried out using 

software, for which there are several options available today. One can choose to use 

specific predictive microbiology software available in the internet (e.g. ComBase, 

GInaFiT, among others, as presented by Plaza-Rodríguez et al. 2017 and Tenenhaus-

Aziza and Ellouze 2015) or program the fitting procedure manually using commercial or 

free software (e.g. Matlab or R). The chosen software should not be considered as a 

decisive aspect, since it is only auxiliary in the procedure of fitting the model to the data. 

The mathematical method of fitting the model to the data is also not usually decisive, and 

different methods of fitting should lead to solutions equivalent to the estimated 
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parameters. The most decisive criterion is to select the model that best describes the 

experimental data, and this can be done by analysing statistical indexes of goodness-of-

fit of the model to the data. 

2.8.2.2. Goodness-of-Fit Indexes 

The main statistical indices used to verify the goodness-of-fit in predictive 

microbiology are the coefficient of determination (R2), root-mean-square error (RMSE), 

bias and accuracy factors, bias and accuracy discrepancy. The R2 is the proportion of the 

variance in the dependent variable that is predictable from the independent variables, and 

its calculation is defined by Equation 2.36. The RMSE measures the differences between 

data predicted by a model and the experimental data observed, and its calculation is 

defined by Equation 2.37. 
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where ypredicted is the data predicted by the model, yobserved is the observed data, ӯobserved is the 

arithmetic mean of the observed data and 𝑛 is the number of observations. 

The accuracy factor (af) and bias factor (bf) were proposed by Ross (1996) to evaluate 

the performance of models in predictive microbiology. According to the author, the 

indices assess the level of confidence one can have in the predictions of the model and 

whether the model displays any bias that could lead to fail-dangerous predictions. The 

accuracy factor is defined by Equation 2.38 and the bias factor is defined by Equation 

2.39. In addition to being quantitative, the bias factor is also qualitative, since a bias factor 

greater than one indicates that the model is “fail-dangerous” because it predicts greater 

data than the observed, and a bias factor lower than one indicates that a model is “fail-

safe” because it predicts lower data than the observed. 
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Baranyi et al. (1999) proposed a different formulation for new accuracy factor (Af) 

and bias factor (Bf), as defined by Equations 2.40 and 2.41, respectively. According to 

the authors, the advantage of the modified definition is that it is consistent with the least 

squares algorithm of fitting models to observed values. The new factors allow the 

calculation of “per cent discrepancy” (%Df) and “per cent bias” (%Bf) between model and 

observations, as defined by Equations 2.42 and 2.43, respectively. Equation 2.44 indicates 

whether the overall bias is negative or positive, in which if %Bf > 0, on average, model 

predicts higher data than the observations and if %Bf < 0, on average, model predicts 

lower data than the observations. 
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Confidence on the estimated parameters is another important criterion of analysis. 

Many models have great goodness-of-fit but parameters with greater uncertainty. This 

characteristic can be verified by analysing the confidence intervals of the parameters. 

2.8.3. Model Validation 

Model validation is a procedure that aims to assess the performance of fitted models 

and to determine whether they can be used to aid decision-making (Haberbeck et al. 

2018). It consists of comparing model predictions with independent 
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experimental/observational data though indices of model performance such as bias factor, 

accuracy factor and the acceptable simulation zone approach in combination with 

graphical methods (Mejlholm et al. 2010; Oscar 2005; Østergaard et al. 2014). 

Although some predictive models were constructed in real foods, the vast majority 

was constructed from experiments performed in laboratory culture media. Ideally, for 

both cases the validation process should include comparisons with the behaviour of 

microorganisms in real foods or during real food processes. However, due often to cost 

but also other factors, validation can be done in model systems or using previously 

published data (Brocklehurst, 2004).  

2.9. Conclusions 

Modelling the microbial behaviour on a QMRA through the entire farm-to-fork chain 

is a complex process, but the increasing number of validated predictive models in the 

literature facilitates this task. The aim of this chapter was to give an overview of 

predictive models and of the process to generate these models. Deterministic predictive 

models have been developed and successfully validated for more than 20 years. However, 

more research the so-called ‘stochastic predictive microbiology’ should improve the use 

of predictive models into QMRA. Finally, a generation process and validation of robust 

predictive models are of great importance, since the final value of the model is 

significantly influenced by the experimenter’s choices. In addition, these predictive 

models can be used in food processing industries as powerful tools to support and develop 

food safety standards. 
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HIGHLIGHTS 

• Microbial counts were statistically similar in Gilthead sea bream and Sea bass. 

• Vibrio parahaemolyticus was isolated from estuarine water. 

• Neither Listeria monocytogenes nor Salmonella spp. were detected in fish and water 

• High microbial levels were found in fish viscera in comparison with skin. 

• The initial microbiological quality could have impact on the product shelf-life.  
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Abstract 

This study was aimed at characterizing microbiologically Gilthead sea bream (Sparus 

aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine ecosystems in 

Andalusia (Spain): the estuary of the river Guadalquivir (La Puebla del Río, Sevilla) (A), 

and the estuary of the river Guadiana (Ayamonte, Huelva) (B). The collected fish 

individuals and water were analysed for hygiene indicator microorganisms and 

pathogens. The statistical analysis of results revealed that microbial counts for the 

different microbiological parameters were not statistically different for fish type. On the 

contrary, considering anatomic part, viscera showed significantly higher concentrations 

for Enterobacteriaceae, total coliforms and for Staphylococcus spp. coagulase +. 

Furthermore, location A showed in water and fish higher levels for lactic acid bacteria, 

aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. 

coagulase +. Neither Listeria monocytogenes, nor Salmonella spp. were detected, 

though Vibrio parahaemolyticus was identified, molecularly, in estuarine water in 

location B. The predictive analysis demonstrated that the initial microbiological quality 

could have an impact on product shelf-life, being longer for location B, with better 

microbiological quality. Results stress the relevance of preventing the microbiological 

contamination of water in estuary production systems in order to assure the quality and 

safety of Gilthead sea bream and Sea bass. 

 

Keywords: Vibrio parahaemolyticus; Shelf-life; 16S ribosomal RNA sequence; 

Molecular identification; Predictive microbiology; Fish farm.  
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3.1. Introduction 

Aquaculture is an important economic activity in the European Union (EU), being the 

major source of aquatics products of the market. In 2016, the EU produced 1.3 million 

tons in aquaculture products valued in 3,729 million EUR, an increase of 3.9%, related to 

the market in 2015. Spain is the first EU aquaculture producer according to the volume 

of aquaculture production, 283,831 tons in 2016 (22.1% of the total Union production), 

valued in 449.4 million EUR (10.2% of the total UE value) (APROMAR, 2018). 

Aquaculture production in Spain is the most diverse in Europe due to, among other 

aspects, the longitude of its coastline and the diversity of environments (APROMAR, 

2014). At national level, Andalusia is the main producer of Gilthead sea bream (Sparus 

aurata) and Sea bass (Dicentrarchus labrax). 

The consumption of fishery products has increased recently because of the rising 

consumer awareness on the health benefits of fish as well as the variety of species 

available in the market (Domingo, 2007). 

Muscle tissue of fish is usually free of microorganisms at the moment of capture while 

bacteria are normally present in skin, mucus, digestive tract and gills (ICMSF, 2005). 

Composition of the natural microbiota and the presence of pathogens in fish can be related 

to different factors such as production methods, cultivation techniques, capture system, 

water environmental conditions or the intestinal tract of living species (Gram, 2009; 

ICMSF, 2005; Painter et al., 2013; Svanevik et al., 2015). Natural microbiota in fish can 

also change due to the different levels of tolerance of microorganisms to preservation 

conditions (Gram and Dalgaard, 2002). Moreover, contamination with pathogenic 

bacteria can occur because the unhygienic conditions of the landing place in fish boats or 

when the fish is washed with contaminated water (Bolívar et al., 2017; Mokrani et al., 

2018). 

In general, the microbiota that represents the microbial ecology of Mediterranean fish 

can include diverse microbial groups and genera such as sulphite-reducing clostridia 

(SRC), Aeromonas, Enterobacter, Escherichia coli, Lactobacillus, Listeria, Salmonella, 

Pseudomonas, Photobacterium, Shewanella, Vibrio, yeasts and some molds (Bolívar et 

al., 2017; Carrascosa et al., 2015; Esteve et al., 2012; Koutsoumanis and Nychas, 2000). 

These include microbial species that can cause product deterioration (i.e. spoilage 

microorganisms) such as Lactic Acid Bacteria (LAB) and Pseudomonas spp. (Françoise, 

2010; Parlapani et al., 2014; Ringø, 2008). The latter microorganism is considered the 
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specific spoilage organism (SSO) of unpackaged fresh Mediterranean fish (e.g. Gilthead 

sea bream) while LAB are more related to spoilage of reduced oxygen packaged fish 

products (Ghaly et al., 2010; Koutsoumanis, 2001; Tryfinopoulou et al., 2002). Some of 

the genera present in fish and water microbiota can include pathogenic microorganisms. 

The presence of enteric pathogens such as Salmonella spp. in marine environments may 

arise from the contamination by animal faeces or discharge of untreated sewage (Lee et 

al., 2008). Another important pathogen associated with foodborne infections via seafood 

is Listeria monocytogenes, which can contaminate fish due to cross-contamination during 

handling and preparation and then grow during distribution and storage due to its 

psychrotrophic properties (Huss et al., 2000; Jami et al., 2014). Furthermore, some 

species of Vibrio, adapted to marine and estuarine water conditions, are pathogenic, and 

can cause foodborne diseases, being a relevant pathogen of this type of marine ecosystems 

(Chakraborty et al., 1997). 

Vibrio spp. are Gram-negative, rod-shaped bacteria and mostly halophilic (Thompson 

et al., 2004) naturally found in estuarine or marine environments throughout the world. 

Vibrio vulnificus and Vibrio parahaemolyticus are the most common Vibrio species 

associated with human foodborne diseases resulting from consumption of raw or partially 

cooked fish (Tsironi et al., 2017). Infection caused by Vibrio spp. (foodborne disease) is 

characterised by haemorrhagic septicaemia and produces symptoms such as diarrhoea, 

nausea, vomiting, fever, chills or other extra intestinal infections (Austin, 2010; Dong et 

al., 2016). Infection outbreaks specifically caused by V. vulnificus and V. 

parahaemolyticus, have been reported in Spain, mainly due to the consumption of oysters 

(Lozano-León et al., 2003; Martinez-Urtaza et al., 2004, 2005, 2016), and other countries 

that are part of the Mediterranean Sea (Bisharat et al., 1999; Hervio-Heath et al., 

2005; Ottaviani et al., 2010). 

Natural microbiota and pathogenic bacteria of wild Gilthead sea bream and Sea bass 

have been characterised by several research groups (Floris et al., 2013; Haldar et al., 

2010; Kahla-Nakbi et al., 2006; Parlapani and Boziaris, 2016). However, only few works 

have jointly included the study of food hygiene indicator microorganisms and pathogenic 

bacteria in Gilthead sea bream and Sea bass from aquaculture (Balebona et al., 1998). 

Food hygiene indicator microorganisms are usually employed to assess overall hygienic 

or environmental conditions that can be associated with an increased risk of exposure to 

a pathogen (Ghafir et al., 2008; Tortorello, 2003) and/or a reduced product shelf-life due 
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to microbial spoilage (Koutsoumanis and Nychas, 2000). The most representative and 

widely used food hygiene indicator microorganisms in fish products comprise aerobic 

mesophilic bacteria or aerobic plate count (APC), which is used as general indicators of 

microbiological quality, and Enterobacteriaceae, coliforms and E. coli, which are mostly 

used to assess poor hygienic practice and enteric contamination (Anihouvi et al., 

2019; Eizenberga et al., 2015; Papadopoulou et al., 2007; Pierson et al., 2007; Popovic et 

al., 2010). 

The objectives of this work were i) to investigate and quantify the presence of 

pathogenic bacteria and hygiene indicator microorganisms in Gilthead sea bream (Sparus 

aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine fish farms, 

corresponding with two different estuarine ecosystems in Andalusia (Spain) and ii) to 

assess the potential impact of the microbial load found in the captured fish species on the 

product shelf-life. 

3.2. Material and Methods 

3.2.1 Samples and transport 

The Gilthead sea bream and Sea bass specimens were collected over a 6-month period 

(November–April) from two estuarine fish farms, located in different estuarine 

ecosystems. For the first location (A), fish was bred and reared in tanks containing water 

from the estuary of the river Guadalquivir (La Puebla del Río, Sevilla, Spain) while in the 

second location (B), fish was breed in natural ponds located in the estuary of the 

river Guadiana (Ayamonte, Huelva, Spain). A total of 95 individuals were collected for 

both production locations and fish species, corresponding to 20 and 25 individuals for 

Gilthead sea bream and Sea bass, respectively, for location A and 25 individuals for each 

species for location B. For sampling, fish specimens showing a suitable commercial size 

were harvested and slaughtered in liquid ice. Samples of water from both production 

locations were taken at the time of capture of both fish species. Sterile bottles with a 

volume of 100 mL were submerged to the bottom of the tank, collecting the samples 

homogeneously. Then, samples were transported under refrigeration temperatures in 

thermal boxes with ice (<4 °C) up to laboratory (Department of Science and Food 

Technology, University of Córdoba, Spain) and immediately analysed.  
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3.2.2. Sample preparation 

The fish samples were prepared without previous manipulation. Firstly, the skin was 

removed with scalpel and the ventral belly surfaces of the fish were opened to expose the 

peritoneal cavity to extract all viscera. The process was carried out under aseptic 

conditions. Tools and instruments used to collect skin and viscera samples were 

previously sterilized in autoclave (121 °C; 15 min) and between samples and specimens, 

tools were flamed in ethanol to avoid cross contamination. Skin and viscera were 

weighted and introduced in stomacher bags containing the corresponding diluent 

according to the type of microorganism(s) to be analysed (section 3.2.3), to obtain a 1:10 

dilution. The same for water samples. Diluents used were peptone water (PW, Oxoid, 

UK), Listeria fraser broth (Oxoid) or alkaline saline peptone water (ASPW, Oxoid). 

Then, all samples were homogenized during 60 s at 1500 rpm using a stomacher 

(Masticator, IUL Instruments, Spain). 

3.2.3. Microbial analysis 

Samples (skin, viscera and water) were microbiologically analysed for lactic acid 

bacteria (LAB), aerobic mesophilic bacteria (AMB) (ISO 4833–

2:2003), Enterobacteriaceae (ENT) (ISO 7402:1993), total coliforms (TC) (ISO 9308-

2:2013), Staphylococcus spp. coagulase + (STAP) (ISO 6888-2:1999), Clostridium 

perfringens (ISO 7937:2005), Escherichia coli (ISO 16649-1:2003), Listeria 

monocytogenes (ISO 11290-1:1997/A1:2005), Salmonella spp. (ISO 6579:2003), Vibrio 

spp. (ISO 21872-1:2007) and Bacillus cereus (ISO 7932:2005). 

3.2.4. Water quality parameters 

The water quality parameters of salinity, temperature, pH and total nitrogen for 

location A and B were taken from the monitoring system developed by the Department 

of Environmental Health of the Regional Government of Andalusia (i.e. Consejería de 

Medio Ambiente, Junta de Andalucía, Spain) available at the 

website http://laboratoriorediam.cica.es/Visor_DMA/. This on-line application shows 

information on the water quality in the intra-community hydrological demarcations of 

Andalusia. Sampling stations can be localized for a specific geographical area based on a 

Web Map Service (WMS), i.e. georeferenced map images, allowing for downloading 

water quality parameters measured for a specific location within a defined period. Data 

http://laboratoriorediam.cica.es/Visor_DMA/
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for location A and B were taken from the closest sampling stations located in the 

surrounding area for the periods of time when samples were obtained. 

3.2.5. 16S RNA amplification and sequencing for molecular identification for bacterial 

isolates 

For molecular identification of bacterial isolates, gene coding for 16S ribosomal RNA 

was amplified by PCR combining oligonucleotide rrn-f27 with rrn-519, 1406 R or pH 

depending on the length of the expected fragment. These oligonucleotides plus those used 

for DNA sequencing are listed in Table 3.1. For PCR, one colony was resuspended in 

100 μL of sterile deionized water, boiled for 10 min and centrifuged prior use. When 

necessary, total DNA was extracted following the procedure described by Ruiz-Barba et 

al. (2005). Briefly, a single colony was resuspended in 100 μL of sterile deionized water 

and 100 μL of chloroform/isoamyl alcohol (24:1) was added. After vortexing, the mix 

was centrifuged at 16.000 g for 5 min at 4 °C and 10 μL of the upper aqueous phase was 

used as template for PCR reactions. To standardise, Illustra PuReTaq Ready-To-Go PCR 

Beads (GE Healthcare) were used for PCR reactions. Bands were purified from gel using 

GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare). Sequencing was 

carried out by Secugen (Madrid). Candidates were identified by comparing the 16S gene 

DNA sequences to sequences from type material at the databases using Blastn (Altschul 

et al., 1990) and selecting the best score with default parameters. 

Table 3.1. Oligonucleotides used to amplify and sequence the 16S ribosomal RNA gene. 

Oligonucleotide Sequence 5'-3'a Positionb Reference 

rrn-f27 AGAGTTTGATCMTGGCTCAG 8-23 Hugenholtz et al. (1998) 

rrn-r519 GTATTACCGCGGCTGCTG 536-519 Hugenholtz et al. (1998) 

1406R ACGGGCGGTGTGTMC 1406-1392 Olsen et al. (1986) 

pH AAGAGGTGATCCAGCCGCA 1542-1522 Edwards et al. (1989) 

green_JP CCTAGGTGGGATTAGCTA  This work 

purple_JP AACATTTCACAACACGAG  This work 

yellow_JP ATCTCTACGCATTTCACC  This work 

red_JP TTTCAGTCGTGAGGAAGG  This work 
a M= A or C. 
b Numbering is based upon the E. coli sequence. 

3.2.6. Statistical analysis  

Microbial counts obtained in the collected samples were transformed logarithmically 

(log cfu/g). Data were then analysed statistically using the non-parametric test of Kruskal-

Wallis for multiple comparisons as the assumptions of the Analysis of Variance 
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(ANOVA) were not met. The statistical test assessed whether factors like production 

location (A and B), species (Gilthead sea bream and Sea bass) and anatomical part (skin 

and viscera) exerted a significant effect (p < 0.05) on the microbiological parameters. The 

data analysis was performed in IMB SPSS Statistics 22.0 (IMB Corp. Released 2013. 

Version 22.0. Armonk, NY). 

3.2.7. Fish shelf-life assessment 

With the aim of illustrating the importance of the initial microbial concentration at the 

harvest point on the shelf-life of fresh fish (i.e. Gilthead sea bream and Sea bass), an 

example was developed based on the use of Predictive Microbiology models. Shelf-life 

was determined considering aerobic mesophilic bacteria, enumerated in the present study, 

as spoilage microorganisms, and simulating their growth under aerobic conditions at 4 

and 8 °C, which represent for the maximum refrigeration temperature recommended by 

manufacturers and a mild abuse temperature, respectively. For that, the initial 

concentrations found in location A and B were used. To estimate microbial growth, a 

predictive microbiology model for Pseudomonas spp. developed in Gilthead sea bream 

was used (Koutsoumanis and Nychas, 2000). 

The application of the models was performed on the predictive software, MicroHibro 

(www.microhibro.com) (González et al., 2019), which is a scientifically validated online 

tool able to estimate microbial kinetics in foods and food processing environments under 

specific conditions defined by users. 

3.3. Results and Discussion 

3.3.1. Hygiene indicator microorganisms 

Table 3.2 shows the microbiological results obtained for skin and viscera of Gilthead 

sea bream (S. aurata) and Sea bass (D. labrax), treated jointly (i.e. mean of both fish 

species) as well as for water of two different production locations. Since data showed a 

heteroscedastic character (i.e. non-homogeneous variance) that could not be removed by 

variable transformation, the application of parametric tests based on the General Linear 

Model (GLM) were not appropriate. Therefore, a non-parametric test, Kruskal Wallis test 

for independent samples, was employed to determine the statistical effect of the different 

factors considered in the study (location, species and anatomic parts). 

http://www.microhibro.com/
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Table 3.2. The mean microbial counts from Gilthead sea bream (S. aurata) and Sea bass (D. labrax) (treated jointly) and water considering 

as factors the two different production locations and anatomical parts. 

  
 Lactic acid 

bacteria 
Aerobic mesophilic 

bacteria 
Enterobacteriaceae Total coliforms 

Staphylococcus 
coagulase + 

Anatomic part 
Skin 2.44 ± 0.84a 2.95 ± 0.94 1.73 ± 0.67 1.97 ± 0.73 2.79 ± 0.63 

Viscera 2.31 ± 0.44 3.08 ± 0.61 2.32 ± 0.83 2.41 ± 0.91 2.40 ± 0.38 

       

Locationb 

Location A 2.99 ± 0.36 3.74 ± 0.33 2.75 ± 0.35 2.99 ± 0.32 3.08 ± 0.35 

Location B 1.77 ± 0.18 2.28 ± 0.29 1.30 ± 0.37 1.39 ± 0.31 2.11 ± 0.18 

      

 Total 2.38 ± 0.43* 3.01 ± 0.52* 2.03 ± 0.55** 2.19 ± 0.59** 2.60 ± 0.37** 

       

Water 

Location A 2.48 ± 0.59 3.48 ± 0.42 3.48 ± 0.62 3.38 ± 0.32 2.98 ± 0.46 

Location B 1.75 ± 0.41 2.25 ± 0.85 0.97 ± 0.23 2.18 ± 1.24 2.13 ± 0.36 

      

Total 2.12 ± 0.36 2.87 ± 0.61* 2.23 ± 1.26* 2.78 ± 0.60 2.56 ± 0.43 
One and two asterisks in columns indicate the existence of statistical effect of location and anatomic part, respectively (p < 0.05) on the different microbiological parameters.  
a mean± standard deviation. 

b Location: A (estuary of the river Guadalquivir, Sevilla, Spain) and B (estuary of the river Guadiana, Huelva, Spain). 
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According to the statistical analysis, no significant differences were found for the type of 

fish species (p > 0.05). On the contrary, concentration levels for Enterobacteriaceae, total 

coliforms and Staphylococcus spp. coagulase + were statistically different for the factor 

anatomic part (p < 0.05), with higher levels in viscera for the two first microbiological groups, 

and lower for Staphylococcus spp. coagulase +. Similarly, the statistical test reported 

significantly higher concentrations, by more than 1 log cfu/g, in LAB, 

AMB, Enterobacteriaceae, TC and Staphylococcus spp. coagulase + in location A (p < 0.05). 

The mixture of fresh water and sea water and a possible failure in water treatment systems are 

the main causes that might explain the higher microbial levels in location A (Grigoryan et al., 

2014). Temperature and salinity of water may also play a relevant role in the microbiota profile 

in fish (Alexopoulos et al., 2011; Lesel, 1990). In our case, salinity values did not show 

noticeable difference between both locations (Table 3.3). On the contrary, temperature values 

measured in location A were, on average, 3 °C higher than those obtained in location B. These 

higher temperature values could increase, in general, the growth potential of mesophilic 

bacteria, and in particular, for those that are more sensitive to low temperatures (i.e. high 

minimum growth temperature), in which slight temperature increases, close to the growth 

limits, could lead to a significant growth. The latter case could result in higher counts of 

microorganisms like E. coli and Staphylococcus aureus, that present a minimum growth 

temperature >7 °C (Schmitt et al., 1990; Shaw et al., 1971). 

Table 3.3. Water quality parameters recorded in location A (river Guadalquivir) and location B 

(river Guadiana). 

Parameters Location A Location B 
Salinity (g/kg) 2.9 ± 0.9a 3.3 ± 2.9 
Temperature (°C) 15.4 ± 2.5 11.9 ± 0.9 
pH 8.3 ± 0.1 8.1 ± 0.1 
Total nitrogen (mg/L) 0.3 ± 0.1 6.7 ± 1.6 

a Mean± standard deviation. 

Interestingly, total nitrogen concentration was much lower in location A (<1 mg/L) in 

comparison with values in location B, which were 6.7 mg/L. The presence 

of Staphylococcus spp. coagulase + (2.6 log cfu/g), which is not part of the natural microbiota 

of fresh fish (Al Shabeeb et al., 2016; Huss, 1988), can also support the hypothesis that the high 

content of organic matter in water as well as poor hygiene or sanitation during capture could 

favour higher counts for this microorganism in location A (Abrahim et al., 2010; Herrera et al., 

2006; Simon and Sanjeev, 2007). The relevance of the microbiological quality of water in the 



Chapter 3 

132 

microbiological load and profile found in fresh fish was also confirmed in our study (Table 3.2). 

The highest contamination levels were found in water from location A, in concordance with the 

high counts obtained in fish samples from this location. Furthermore, greater concentration 

values were detected for Enterobacteriaceae and total coliforms in water (> 3 log cfu/mL) than 

in fish samples (Table 3.2). 

For C. perfringens and E. coli, no counts were obtained in some conditions, producing an 

unbalanced data matrix and thus impeding the statistical analysis of data. Table 3.4 shows 

counts (log ufc/g), percentages (%) of positive anatomical part samples of each species and 

percentage (%) of positive specimen (individual) samples (considering jointly both species) 

for C. perfringens, E. coli and B. cereus, expressed per location. Although results were not 

statistically validated due to the unbalanced data matrix, they suggest a higher prevalence of C. 

perfringens in location A (i.e. 71% individuals). Sabry et al. (2016) also found a high 

occurrence of C. perfringens in fresh fish derived from aquaculture (55%), which contrasts with 

the values obtained from canned fish collected from supermarkets (18%), where a thermal 

treatment is applied. Our results highlight the importance of the external surface of fish as a 

potential source of contamination of C. perfringens. 
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Table 3.4. Microbial counts and percentages of prevalence of presumptive Clostridium perfringens, Escherichia coli and Bacillus cereus 

isolated from skin and viscera of Gilthead sea bream (S. aurata) and Sea bass (D. labrax) and water collected from two production locations. 

Production 
location 

Type of 
sample 

 Anatomical Part 
C. perfringens (log 

cfu/g) 
(%)d  

E. coli 
(log cfu/g) 

(%) 
(%)  

B. cereus 

Aa 

Gilthead sea 
bream 

(n = 20) 

 Skin NDc -  ND - 100.0 

 Viscera 1.70 35  2.23 5.0 100.0 

         

Sea bass  
(n = 25) 

 Skin 2.15 100  ND - 100.0 

 Viscera 2.10 100  2.92 4.0 100.0 

         
Totalb   1.98±0.20 71.1  2.58±0.34 4.4 100 

         

B 

Gilthead sea 
bream 

(n = 25) 

 Skin 1.76 30  ND - 44.0 

 Viscera 1.70 35  2.06 4.0 20.0 

         

Sea bass  
(n = 25) 

 Skin 2.0 8  ND - 68.0 

 Viscera ND -  ND - 60.0 

         
Total   1.82±0.13 18.3  2.06±0.01 2.0 66.0 

          
A Water 

(n = 10) 
 

- 
ND -  ND - 100.0 

B  ND -  ND  60.0 
 Total   - -  - - 80.0 

a Location:  A (estuary of the river Guadalquivir, Sevilla, Spain) and B (estuary of the river Guadiana, Huelva, Spain). 
b The percentages given in the rows of Total are referred to the of positive individuals of both species per location. 
c ND, below limit of detection (<10 cfu/g). 
d The percentage values provided in the rows for anatomical part are referred to the positive anatomical part samples per fish species and location.
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E. coli was detected, with a low prevalence (< 5% individuals), in viscera of both 

species from location A and only of Sea bream from location B (Table 3.4). This result 

confirmed that E. coli could be present in fish viscera, probably, as part of the normal 

intestinal microbiota. Alexopoulos et al. (2011) evaluated the microbial ecology of Sea 

bream and Sea bass and found 30.7% positive samples for E. coli (n = 75). Their presence 

could result in cross contamination of fillets during fish preparation or handling during 

processing (Noor Uddin et al., 2013; Pao et al., 2008). 

Overall, presumptive B. cereus was detected (>10,000 cfu/g) in 80% total analysed 

individuals (Table 3.4). The total of individuals in location A was contaminated with this 

microorganism including skin and viscera of both fish species, yielding 100% of 

prevalence (n = 45); while for location B, the total prevalence was 66% for both body 

parts. In water, the trend was similar with 100% samples contaminated in location A, and 

60.0% in location B. No molecular characterisation was performed for this 

microorganism; therefore, no pathogenicity could be assessed in this study. Nonetheless, 

the fact that the microorganism was found in fish and water could suggest that the main 

source of contamination was the water. 

3.3.2. Foodborne pathogens 

Neither Salmonella spp. nor L. monocytogenes were detected in any fish or water 

sample in this study. Although Listeria is not considered a marine microorganism, there 

are three possibilities for its presence in fish: (1) water runoff from contaminated 

agricultural areas or other sources of contamination, such as animal feces that can increase 

the abundance of the pathogen in aquatic systems (Lyautey et al., 2007); (2) the spread 

of Listeria from the intestinal contents to other fish tissues, especially if the period 

between death and removal of viscera exceeds 2 h (Jami et al., 2014) and; (3) cross-

contamination due to fish manipulation using contaminated equipment and inappropriate 

transport (De Souza et al., 2008; Gudmundsdóttir et al., 2008). The contamination level 

by L. monocytogenes in raw fish tends to be low and varies between 0% and 30% (Jami 

et al., 2014; Miettinen et al., 2003; Thomas et al., 2012). Since microbiological 

determinations were performed on fish just harvested, the absence of positive samples for 

L. monocytogenes and Salmonella spp. shows that natural contamination by both 

pathogens was an unlikely event in the production locations sampled. Nonetheless, it 

cannot be discarded that the pathogens could be present in water or fish at levels below 

the detection limit of the used techniques, or that products could be later contaminated in 
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other relevant points along their production chain (i.e. evisceration, slicing, preparation 

and handling). 

3.3.3. Characterization and molecular identification of Vibrio spp. 

All samples were positive for presumptive Vibrio spp. (specimens and water from 

location A and B). To confirm positive results obtained on selective agars, a non-

exhaustive molecular identification of Vibrio spp. isolates was carried out by PCR 

amplification and sequencing of the 16S RNA gene (Supplementary Table 3.1). Most of 

the identifications were carried out using the almost complete 16S gene sequence but in 

some cases, only a ca. 500 bp fragment obtained with oligos rrn-f27 and rrn-r519 that 

includes the variable regions V1, V2 and V3 could be amplified and sequenced. 

According to the molecular characterisation, 82 isolates out of the total number of 

presumptive Vibrio ssp. analysed (n = 92) were confirmed as Vibrio spp. which 

represented for 89.1% isolates, whereas the rest (10.9%) corresponded to Shewanella spp. 

The latter results corresponded to isolates obtained from the Thiosulfate-citrate-bile salts-

sucrose (TCBS) agar used for the isolation of Vibrio spp. These isolates belonged to 

samples of Sea bass from location B in both skin (n = 8/10) and viscera (n = 2/10). 

Although TCBS agar is an effective and differential medium for the isolation 

of Vibrio spp. from estuarine and marine waters (Bolinches et al., 1988; Oliver, 2011), a 

number of non-vibrios (i.e. Acinobacter, Enterobacter, Flavobacterium, Shewanella and 

Pseudomonas spp.) are known to grow on TCBS (Lotz et al., 1983; Thompson et al., 

2004). Despite Shewanella species usually produce black colonies in TCBS due to the 

ability of FeS precipitation as a result of H2S production from thiols (Oliver, 2011), in our 

study, the isolates identified as Shewanella spp. exhibited green colonies, similar to the 

characteristic colonies of Vibrio spp. These findings underline the importance of 

performing a molecular identification in order to reduce false positive of Vibrio spp. 

From the confirmed Vibrio spp., 89.0% was isolated from skin and viscera from both 

fish species corresponding to a total of 29 and 17 individuals from location A and B, 

respectively; whereas 11.0% isolates were obtained from water samples collected in both 

production locations. Scarano et al. (2014) detected Vibrio spp. in Gilthead sea bream 

obtained from mariculture farms located in three different Italian regions. The prevalence 

was of 58.7% in skin samples and 41.7% in viscera. 

Table 3.5 shows the identified Vibrio species for Gilthead sea bream and Sea bass, 

including water for both production locations. Vibrio anguillarum (previously referred 
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as Listonella anguillarum) was the species most identified in our study, comprising 69.5% 

isolates (n = 57/82). Canak and Akayli (2018) also isolated, as predominant species, V. 

anguillarum in addition to V. scophthalmi from the visceral organs of Gilthead sea bream 

samples. In general, V. anguillarum is considered as a pathogen of fish, including 

seafood, causing considerable economic losses in the fishing and aquaculture industries 

due to its high morbidity and mortality rates (Frans et al., 2011; Hickey and Lee, 

2017). Vibrio spp. tends to be more common in warmer water when temperature above 

15 °C (Osunla and Okoh, 2017). Recently, the first case of V. anguillarum associated with 

a human case resulting in death was reported. Based on the epidemiological investigation, 

the exposure of a small wound or the fly bite to contaminated water and/or the 

consumption of seafood contaminated with Vibrio could be considered as the source and 

route of infection (Sinatra and Colby, 2018). 
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Table 3.5. Molecular identification of Vibrio spp. isolated from skin and viscera of Gilthead sea bream (S. aurata) and Sea bass (D. labrax) 

and water collected from two production locations (n = 82). 

Species 
Anatomical 

part 

V. 
aestuarianus 

subsp. 
francensis 

02/041 

V. 
alfacsensis 

CAIM 1831 

V. 
alginolyticus 

V. anguillarum 
V. pacinii 

LMG 
19999 

V. 
neocaledonicus 

NC 470 

V. 
parahaemolyticus 

ATCC 17802 

V. 
ponticus 

69 

Gilthead 
sea bream  

Skin 
(n = 13a) 

0 0 0 13d 0 0 0 0 

         
Viscera  
(n = 13) 

1 0 1b 11d 0 0 0 0 

         

Sea bass   

Skin  
(n = 26) 

3 0 1b 14d/1e 7 0 0 0 

         
Víscera  
(n = 21) 

3 1 0 17d 0 0 0 0 

          
Water (n = 9) 1 0 2b/2c 1d 0 1 1 1 

a number of confirmed Vibrio spp isolates. 
bVibrio alginolyticus NBRC 15630. 
cVibrio alginolyticus ATCC 17749. 
dVibrio anguillarum NBRC 13266. 
eVibrio anguillarum DSM 21597. 
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Vibrio aestuarianus subsp. francensis was identified, corresponding to 9.8% isolates 

(n = 8/82). V. aestuarianus was first isolated and reported by Tison and Seidler (1983) as 

a new species from estuary waters and shellfish and was described as showing close 

similarity with Vibrio anguillarum, Vibrio ordalii and Vibrio pelagius (Goudenège et al., 

2015; Pillidge et al., 1987) and therefore included in the Anguillarum clade on the basis 

of multilocus sequence analysis (MLSA) (Sawabe et al., 2007). This subspecies is 

associated with the syndrome known as “summer mortality” of the oyster (Crassostrea 

gigas) in the French coast (Garnier et al., 2008). There are few studies that characterise V. 

aestuarianus species in fish, in particular in Sea bass and Sea bream (Scarano et al., 2014), 

since this species shows major prevalence and high rate of mortality in mollusks and 

oysters (Romero et al., 2014; Travers et al., 2017). 

Vibrio alginolyticus and Vibrio pacinii had a percentage of isolation of 7.3% 

(n = 6/82) and 8.5% (n = 7/82), respectively (Table 3.5). In our study, V. 

alginolyticus species were found in water (i.e. 4 isolates), viscera and skin (i.e. one isolate 

for each anatomic part) of Gilthead sea bream and Sea bass, respectively, from location 

B. Saad et al. (2015) found similar results, 2 isolates for V. alginolyticus from farm water 

cultivated with Tilapia nilotica. Abdel-Aziz et al. (2013) also detected one isolated of V. 

alginolyticus on skin of Sea bream while for Sea bass, it was not detected. 

This Vibrio species is a natural host of estuarine and marine water (Baffone et al., 2000) 

and is considered one of the most dangerous pathogens causing severe economic losses 

in aquaculture throughout the Mediterranean area and worldwide (Kahla-Nakbi et al., 

2006). In humans, V. alginolyticus has been considered an emerging pathogen of 

foodborne disease (Mustapha et al., 2013). Studies have reported human infection with V. 

alginolyticus causing serious symptoms especially among vulnerable groups such as 

elderly people and mortality in immunocompromised patients (Campanelli et al., 

2008; Horii et al., 2005; Reilly et al., 2011). In addition, Sabir et al. (2011) related the 

load of V. alginolyticus and sea surface temperature with a clear distinction between the 

seasons of the year (i.e. cold and warm seasons) and suggested that the number of 

infections in humans may increase with the coastal warming attributed to climate change. 

Other less frequent isolated species were V. alfacsensis (sea bass viscera), V. 

neocaledonicus, V. ponticus and V. parahaemolyticus (strains isolated from water). 

These four species were only found in location B. The two first species are rather related 

to fish pathogens and the third species is a common environmental organism found in 

seawater. Whereas V. parahaemolyticus is a widely recognised food-borne pathogen. 
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The isolates identified as V. alfacsesis corresponds to a new strain, named Vibrio 

alfacsensis sp. nov., which was proposed previously based on the phenotypic and 

genotypic analyses of five strains isolated from marine organisms, being two of them 

isolated from two regions of Spain (Chimetto et al., 2009; Gomez-Gil et al., 2007, 2012). 

The 16S rRNA gene sequences of the V. alfacsensis isolates showed similarity to V. 

ponticus, Vibrio furnissii and Vibrio fluvialis. 

V. ponticus was also isolated from water, yielding 1.2% (n = 1/82) of isolates (Table 

3.5). Macián et al. (2004) isolated V. ponticus from cultured mussel in Spain. Xie et al. 

(2007) characterised the pathogenic potential of the strain RP30V in cultured Japanese 

sea bass (Lateolabrax japonicas) which was identified as V. ponticus based on the 

similarity values of 16S rRNA gene sequences shown by the strain (99.3%). The strain 

identified in our study as V. neocaledonicus was also isolated by other authors from 

aquacultured Chanos chanos and Oreochromis niloticus in Philippine (Langaoen et al., 

2018). However, to the best of our knowledge, there are no studies identifying 

this Vibrio strain in Mediterranean fish species. 

V. parahaemolyticus is recognised as a relevant foodborne human pathogen 

associated with seafood products. V. parahaemolyticus is part of the natural and estuarine 

microbiota and costal marine waters (DePaola et al., 2003) and is one of the species 

of Vibrio that causes human infections. The foodborne disease is characterised by 

diarrhoea, severe abdominal pain and fever after the consumption of contaminated fish 

and shellfish (Daniels et al., 2000; Slayton et al., 2014) and has been also linked to 

Mediterranean fish species such as Sea Bass and Gilthead sea bream (Korun and Timur, 

2008). Data obtained from clinical journals and unreported cases of V. 

parahaemolyticus infections identified in hospitals have shown that infections by this 

species of Vibrio in Spain are more frequent than usual due to the characteristics of the 

water where they proliferate (i.e. pH, salinity and temperature) and the season (i.e. 

summer) (Martinez-Urtaza et al., 2004, 2005). 

In our study, the pathogen was only isolated from a sample of water, accounting for 

1.2% (n = 1/82) isolates (Table 3.5). This isolate was identified as the strain ATCC 17802 

(99%), which is considered as a pathogenic strain 

(https://www.ncbi.nlm.nih.gov/nuccore/CP014046.2). Scarano et al. (2014) also found 

low prevalence of V. parahaemolyticus but in that case, it was isolated from Gilthead sea 

bream reared in Italian mariculture. Khouadja et al. (2013) isolated six strains of V. 

https://www.ncbi.nlm.nih.gov/nuccore/CP014046.2
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parahaemolyticus from the internal organs of diseased Sea bass (Dicentrarchus labrax) on 

two fish farms located in Tunisia. Davies et al. (2001) studied the incidence of V. 

parahaemolyticus in fresh fish purchased from commercial outlets from several European 

locations. Although these authors did not observe presence of V. parahaemolyticus in 

Gilthead sea bream, this species was detected in 35.0% (n = 7/20) and 14.0% (n = 14/101) 

of fresh fish samples from Portugal and Greece, respectively. In addition, several studies 

have reported outbreaks caused by V. parahaemolyticus in Europe countries (Huehn et 

al., 2014; Martinez-Urtaza et al., 2004; Ottaviani et al., 2009; Quilici et al., 2005) and 

foodborne vibriosis cases (Lozano-León et al., 2003; Martinez-Urtaza et al., 2008). 

3.3.4. Fish shelf-life assessment  

The average level of AMB after harvesting in both fish species was 3.01 log cfu/g. 

These values are in line with those reported by other authors for these species, in which 

counts for fresh fish ranged from 3 to 4 log cfu/g (Özden et al., 2007; Papadopoulos et 

al., 2003; Parlapani et al., 2013). The concentration levels based on the type of location 

corresponded to 3.74 and 2.28 log cfu/g for location A and B, respectively. These values 

were inputted into the selected predictive microbiology model to 

predict Pseudomonas growth as a representative spoilage microorganism of fresh 

Mediterranean fishes at two relevant temperatures (4 and 8 °C). Pseudomonas spp. was 

appraised as suitable microorganism to predict shelf-life, since it is usually predominant 

in fish products and is equally considered a relevant spoilage microorganism for chilled 

stored Mediterranean fish, under air packaging as it was demonstrated by several studies 

(Paleologos et al., 2004; Papadopoulos et al., 2003; Parlapani et al., 

2013, 2014; Taliadourou et al., 2003; Tryfinopoulou et al., 2002). The simulated curves 

and kinetic parameters are presented in Figure 3.1 and Table 3.6, respectively. 
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Figure 3.1. Growth curves for Pseudomonas spp. predicted with the model 

by Koutsoumanis and Nychas (2000) at 4 and 8 °C for the aquaculture Mediterranean fish 

species. The concentration levels found for aerobic mesophilic bacteria in our study of 

3.74 and 2.28 log (cfu/g) for locations A and B, respectively were extrapolated as initial 

values of Pseudomonas spp. The black and grey solid lines correspond with concentration 

data estimated for location A at 4 and 8 °C, respectively, while the black and grey dashed 

lines represent for the growth estimates obtained for location B at 4 and 8 °C, respectively. 

The horizontal dashed line located at the concentration of 7.0 log cfu/g defines the end of 

shelf-life for fresh fish based on sensory quality criteria. Locations: A (estuary of the river 

Guadalquivir, Sevilla, Spain) and B (estuary of the river Guadiana, Huelva, Spain). 

Table 3.6. Prediction parameters for the growth of Pseudomonas spp. and shelf-life 

estimation at two storage temperatures (4 and 8 °C) based on microbial data obtained in 

this study for Gilthead sea bream and Sea bass produced in two different aquaculture 

locations. 

Location 
Temperature 

(°C) 
λ (h) µmax log (cfu/h) 

Maximum 
population 
log(cfu/g) 

Shelf-life 
time (d)b 

Aa 
4 10.68 0.040 9.18 4 

8 6.97 0.063 9.17 3 
      

B 
4 10.68 0.04 9.17 5 

8 6.97 0.063 9.18 4 
a Location:  A (estuary of the river Guadalquivir, Sevilla, Spain) and B (estuary of the river Guadiana, Huelva, Spain). 
b Day when the microbial species reached the concentration of 7 log cfu/g defining the end of shelf-life for fresh fish. 
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The end of shelf-life on fresh fish was reached when the predominant microorganism 

(i.e. Pseudomonas spp.) exceeded the upper limit of acceptability of 7 log cfu/g which is 

usually linked to sensory deterioration in fresh fish (ICMSF, 1986; Olafsdóttir et al., 

1997). The shelf-life predictions for both fish species were 4 and 3 days at 4 and 8 °C, 

respectively, for location A, while for location B, the shelf-life was estimated in 5 and 4 

days at the same temperatures. The difference in shelf-life between the two production 

location systems (A and B) was of 1 day, which, in our case, accounts for the 20% and 

25% of the total shelf-life at 4 and 8 °C, respectively. This result proves the relevant 

impact of the hygienic conditions at primary production (i.e., fish farming) on the 

microbiological quality of harvested fish, and hence on the food quality along the food 

production-distribution chain and shelf-life duration. In our example, fish product 

obtained in location A, with worse microbiological quality, showed shorter shelf-life, 

increasing the probability of non-conformities, the generation of food waste, and 

consumer complaints (e.g. sensory rejection). As mentioned above, the use of adequate 

facilities for water treatment and a better hygienic control on water management systems 

seem to be key to ensure a good microbiological quality in harvested fish, which is 

expected to affect the next steps along the food chain. 

3.4. Conclusion 

Results in our study suggest that the location and the associated physico-chemical 

parameters and organic load of water could significantly affect microbiological quality of 

Gilthead sea bream and Sea bass. The indicator microorganisms, lactic acid bacteria, 

aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. 

coagulase + were demonstrated to be influenced by the location, showing higher 

concentrations in location A. On the other hand, neither L. 

monocytogenes nor Salmonella spp. were present in samples of both fish species and 

estuary water. Importantly, the predictive analysis demonstrated that the initial 

microbiological quality could have a remarkable effect on the product shelf-life, being 

longer for location B, where samples showed better microbiological quality. 

Notwithstanding of foregoing, the pathogenic species V. parahaemolyticus was only 

found in water of location B, which showed lower levels of hygiene indicator 

microorganisms. Therefore, no relation could be stablished between hygiene indicators 

and presence of pathogenic Vibrio spp. Apart from the isolated Vibrio spp. identified as 

fish pathogens, attention should be given to other Vibrio spp. that are not traditionally 
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considered as human pathogens but in the last few years have been linked with illness 

cases in humans. Summing up, results stress the relevance of controlling the 

microbiological quality of water and fishes in estuary production systems in order to 

ensure the quality and safety of Gilthead sea bream and Sea bass and along the food chain. 
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Appendix A. Supplementary Table 3.1 

The following is the Supplementary data to this article: 

Download : Download spreadsheet (17KB). 

https://ars.els-cdn.com/content/image/1-s2.0-S0740002020300873-mmc1.xlsx
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HIGHLIGHTS 

• Lactobacillus sakei strain L115 induced an early stationary phase of Listeria 

monocytogenes. 

• Lb. sakei L115 produced a reduction of the maximum growth rate of L. 

monocytogenes of 31-48%. 

• Maximum population density of L. monocytogenes in coculture with L. sakei L115 

decreased by 36% at 4 °C. 

• Square-root-model-described properly the growth rate of both microorganisms in 

monoculture. 

• Modified Jameson and Lotka-Volterra models, using the inhibition coefficient α (%), 

could predict microbial interaction.  
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Abstract 

In this study, the inhibitory capacity of Lactobacillus sakei strain L115 against Listeria 

monocytogenes has been assayed at 4, 8, 11, 15 and 20 °C in broth culture. Besides, the 

use of predictive microbiology models for describing growth of both microorganisms in 

monoculture and coculture has been proposed. A preliminary inhibitory test confirmed 

the ability of Lb. sakei strain L115 to prevent the growth of a five-strain cocktail of L. 

monocytogenes. Next, the growth of microorganisms in isolation, i.e. in monoculture, 

was monitored and kinetic parameters maximum specific growth rate (μsp;max) and 

maximum population density (Nmax) were estimated by fitting the Baranyi model to 

recorded data. Inhibition coefficients (α) were calculated for the two kinetic parameters 

tested (μsp:max and Nmax) to quantify the percentage of reduction of growth when the 

microorganisms were in coculture in comparison with monoculture. The kinetic 

parameters were input into three interaction models, developed based on modifications 

of the Baranyi growth model, namely Jameson effect, new modified version of the 

Jameson effect and Lotka-Volterra models. Two approaches were utilized for simulation, 

one using the monoculture μsp;max, under the hypothesis that the growth potential is similar 

under monoculture and coculture conditions provided the environmental conditions are 

not modified, and the other one, based on adjusting the monoculture kinetic parameter by 

applying the corresponding α to reproduce the observed μsp;max under coculture conditions, 

assuming, in this approach, that the existence of a heterogeneous population can change 

the growth potential of each microbial population. It was observed that in coculture, μsp;max 

of L. monocytogenes decreased (e.g., α= 31% at 4 °C) and the Nmax was much lower than 

that of monoculture (e.g., α= 36% at 4 °C). The best simulation performance was achieved 

applying α to adjust the estimated monoculture growth rate, with the modified Jameson 

and Lotka-Volterra models showing better fit to the observed microbial interaction data 

as demonstrated by the fact that 100% data points fell within the acceptable simulation 

zone (± 0.5 log CFU/mL from the simulated data). More research is needed to clarify the 

mechanisms of interaction between the microorganisms as well as the role of temperature. 

 

Keywords: microbial interactions; Lotka-Volterra model; Jameson effect; bacteriocins; 

predictive microbiology; bioprotective cultures; lactic acid bacteria.  
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4.1. Introduction 

Listeria monocytogenes is a foodborne pathogen posing a significant risk to human 

health because of the fatal consequences of the disease, i.e. listeriosis, in 

immunocompromised individuals including meningitis, septicemia, miscarriages in 

pregnant women, etc. (CDC, 2017). In non-immunocompromised people, L. 

monocytogenes is not considered a pathogen of concern, as it generally causes a mild 

form of illness (Angelidis & Koutsoumanis, 2006). Foodborne outbreaks investigations 

have pointed out that ready-to-eat foods constitute the main vehicle for L. monocytogenes 

in Asia, Europe and USA (EFSA, 2015; Lomonaco et al., 2013; Makino et al., 2005). In 

this sense, in the summer of 2019, a large outbreak of listeriosis linked to the consumption 

of a chilled roasted pork meat product (known as “carne mechada”) was reported in Spain, 

with a total of 217 reported cases, 3 deaths and 6 women that had miscarriages linked to 

this outbreak (CCAES, 2019). 

Biopreservation is a preservation technique based on the use of natural antimicrobial 

agents produced by microorganisms, endowed with high potential to reduce microbial 

and organoleptic deterioration of foods, thus extending their shelf-life. This technique, 

used in combination with other preservation methods, can result in an improvement of 

food safety and quality, while it satisfies the increasing consumer demand for more 

natural products (Singh, 2018; Yusuf, 2018). Regarding food safety, the inhibitory effect 

of biopreservative cultures against foodborne pathogens has been widely used, e.g. 

through the addition of starter bioprotective cultures. In this sense, lactic acid bacteria 

(LAB) are regarded as ideal antagonists of pathogens in food-associated microbial 

communities (Vereecken et al., 2003). A well-known LAB, Lactobacillus sakei, is widely 

used in France and Western Europe in association with micrococci and yeasts as a starter 

for the manufacture of fermented sausages (Champomier-Verges et al., 2002). Besides 

that, this species has also been used with the aim of inhibiting the development of 

pathogens in foods (Bredholt et al., 2001; Chaillou et al., 2014; Ruiz Martinez et al., 

2015). Additionally, Lb. sakei is considered one of the most psychrotrophic species 

among the LAB genera since some strains can grow at 2-4 °C (Champomier-Verges et 

al., 2002) highlighting its potential application for improving the quality and safety of 

refrigerated ready-to-eat foods. Katikou et al. (2005) demonstrated that Lb. sakei strain 

L115 (CECT 4808) produced bacteriocin-like inhibitory substances against L. 

monocytogenes growth. In the same study, this strain also reduced significantly the levels 
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of spoilage microorganisms in beef slices during refrigerated storage. In a later study by 

the same group (Katikou et al., 2007), the above-mentioned strain was shown to improve 

the shelf-life of vacuum-packaged trout fillets stored at 4 °C. Although these results have 

shown promise for its application in food biopreservation, the spectrum of action and the 

level of inhibition under different temperature conditions (e.g. refrigeration and 

temperature abuse) requires further research.  

Predictive microbial interaction models may help to clarify how specific conditions 

that prevail in the food environment influence the effectiveness of LAB growth and/or of 

their metabolites production (Leroy & De Vuyst, 2003). In this sense, the development 

and application of microbial interaction models for the effect of LAB on pathogenic (or 

spoilage) bacteria continues to be a strategic research line in the field of predictive 

microbiology (Quinto et al., 2016). Modelling approaches have been focused on the well-

known Jameson and Lotka-Volterra interaction models (Giménez & Dalgaard, 2004; 

Vereecken et al., 2000). However, the modified Jameson model (Le Marc et al., 2009), 

based on the estimation of a critical concentration of both microorganisms that inhibit the 

growth of each other could be a promising strategy to model microbial interaction of Lb. 

sakei against the L. monocytogenes cocktail. 

Previous studies have attempted to model the inhibitory effect of Lb. sakei against 

single strains of pathogens such as Yersinia enterocolitica IP 1105 O:8 (Janssen et al., 

2006), Listeria innocua LMG 13568 (Leroy et al., 2005) and L. monocytogenes Scott A 

(Quinto et al., 2016) in liquid laboratory media. However, its inhibition kinetics has not 

been evaluated against pathogenic strain mixtures, which can be found in real food 

systems. The aim of this study was to describe and evaluate the potential interaction 

between Lb. sakei strain L115 (CECT 4808) and a five-strain cocktail of L. 

monocytogenes in mono- and coculture within a temperature range from 4 to 20 °C by 

using predictive microbial interaction models. 

4.2. Material and Methods 

4.2.1. Inoculum preparation 

Bacterial lyophilized cultures of Lb. sakei and L. monocytogenes were obtained from 

the Spanish Type Culture Collection (CECT, Valencia, Spain) and reconstituted 

following the manufacturer’s recommendations. The strains used for the assay were Lb. 

sakei L115 (CECT 4808), with demonstrated anti-listerial activity (Katikou et al., 2005), 
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and a cocktail of five strains of L. monocytogenes, namely CIP 59.53, NCTC 11994, Li2, 

CIP 78.39 and KCTC 3569 (CECT 935, CECT 4032, CECT 5366, CECT 5725 and CECT 

7467, respectively). The L. monocytogenes strains used for the experiments were selected 

on the basis of the isolation source, i.e. clinical samples in humans and food samples of 

animal origin (poultry and chicken). Also, as negative control, a non-bacteriocin 

producing strain, i.e. Lb. sakei strain NCFB 2714 (CECT 906T), was acquired. 

Strains of Lb. sakei and L. monocytogenes were resuscitated in individually in Brain 

Heart Infusion broth (BHI, Oxoid, Basingstoke, U.K), incubating at 30 and 37 °C for 24 

h, respectively. Afterwards, the strains were subcultured twice followed by incubation at 

the same temperatures until the early stationary phase was reached (18-20 h). Prior to 

inoculation in test media, cultures were washed twice with phosphate-buffered saline 

(PBS) (Medicago AB, Uppsala, Sweden) by centrifugation at 4.100 rpm (Jouan C4i, 

Thermo Electron Corporation, France) for 10 min and finally re-suspended in BHI. The 

cocktail of L. monocytogenes strains was prepared by mixing volumes of 1 mL from each 

Listeria strain suspension (5 × 109 CFU/mL approx.) in a sterile test tube. 

4.2.2. Antimicrobial activity test 

The anti-listerial capacity of Lb. sakei L115 was tested against the prepared cocktail 

of L. monocytogenes strains. To this aim, the procedure of Benkerroum et al. (2000) was 

adapted for the inhibitory test, based on the agar spot method. An overnight grown culture 

of the test organism in De Man, Rogosa and Sharpe broth (MRS, Oxoid) was serially 

diluted in 0.85% saline solution and 0.1 mL aliquots were surface-plated on MRS agar 

(Oxoid) to obtain separate colonies, spaced 3 cm apart approx. measured with a caliper 

(Powerfix Profi, Germany). Plates were incubated at 33 °C for 24 h under 10% CO2. Then, 

the MRS agar plates were carefully overlaid with 5 mL of Tryptone Soya Agar (0.7%) 

(TSA, Oxoid) inoculated with 0.1 mL of an 18-h culture cocktail of the 5 L. 

monocytogenes strains. The concentration of the cocktail was ≈ 5 × 107 CFU/ mL. Plates 

were incubated at 37 °C for 24 h. The bactericidal activity was demonstrated by the 

formation of clear zones around colonies of the putative producers (i.e. inhibition halos). 

Five replicates were performed following the same protocol and the size of Lb. sakei 

colonies and inhibition zones were measured using a digital caliper.  
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4.2.3. Growth assessment of Lb. sakei and L. monocytogenes cocktail in monoculture 

The growth of Lb. sakei and L. monocytogenes cocktail was individually assessed 

through absorbance measurements using the Bioscreen C (Labsystems, Finland). 

Microtiter plates (10 × 10 wells) were filled with 400 µL of inoculated BHI at a 

concentration of ca. 105 CFU/mL for each bacterial culture. Absorbance measurements 

were taken with a wideband filter (420–580 nm) using a total of sixteen replicates and 

four blanks (non-inoculated BHI medium) per culture. Microtiter plates were incubated 

at five different temperatures (4, 8, 11, 15 and 20 °C) for a period from 2 to 21 days. 

Absorbance measurements expressed in logarithmic scale were transformed into viable 

cell counts (log CFU/mL) by performing calibration curves (Supplementary File 4.1) as 

described by Bolívar et al. (2018). To check for calibration curves performance, 

enumeration tests were carried out at different time points during the growth of the 

monoculture experiments in Bioscreen. 

4.2.4. Assessment of Lb. sakei and L. monocytogenes growth in coculture 

Growth experiments in coculture were monitored by plate counts. In these 

experiments, suspensions of ≈ 104 and 102 CFU/mL of Lb. sakei and L. monocytogenes 

respectively, were prepared in flasks of 100 mL BHI. After inoculation, flasks were 

incubated at the five studied temperatures (4, 8, 11, 15 and 20 °C). 

For enumeration analysis of Lb. sakei, 0.1 mL of adequate dilutions were spread, in 

duplicate, onto MRS agar which were incubated at 33 °C for 48 h under 10% CO2. L. 

monocytogenes counts were determined using Oxford agar (Oxoid) incubated at 37 °C 

for 24 h. Cultures flasks were periodically sampled until the stationary phase was reached. 

Two independent trials per experiment were performed. pH was measured throughout the 

storage period at regular time intervals using a pHmeter (Crison Basic 20, Alella, Spain). 

4.2.5 Modelling Lb. sakei and L. monocytogenes growth under different temperature 

conditions 

4.2.5.1. Primary model 

The Baranyi and Roberts primary model (Baranyi & Roberts, 1994), as described in 

Eq. 4.1 and 4.2, was fitted to growth data obtained from mono- and coculture experiments. 

The growth curves were adjusted using the DMFit Excel add-in (http://www.combase.cc) 

(Baranyi & Tamplin, 2004). The kinetic parameter maximum specific growth rate (μsp;max, 

http://www.combase.cc/
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h-1) from monoculture experiments were further used to develop secondary models (see 

Section 4.2.5.2) and introduced as inputs in the microbial interaction model (see Section 

4.2.5.4). The parameters estimated from coculture conditions maximum specific growth 

rate (μco, h-1) and maximum population density (Nmax;co, log CFU/mL) were used for 

comparison purposes by estimating the inhibition coefficient (see Section 4.2.5.3). 
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                               (4.2) 

where Nt  is the cell concentration (log (CFU/mL)) at time t (h), N0 is the cell concentration 

(CFU/mL) at time zero, μsp;max  is the maximum specific growth rate (h-1), tlag is the duration 

of the lag time of the growth curve (h), Nmax is the maximum population density (log 

(CFU/mL)), m is a curvature factor (m = 1), F(t) represents an adjustment function for 

the model (Baranyi & Roberts, 1994). 

4.2.5.2. Secondary model 

The primary growth parameter μsp;max (h
-1) from monoculture experiments, were used 

to fit the square root model (Eq.(4.3)) (Ratkowsky et al., 1982) in order to describe the 

influence of the storage temperature. The model was fitted by a linear regression using 

Microsoft Excel® (Redmond, USA). 

( );max minsp b T T =  −
                                                                                                  (4.3) 

where µsp;max was described previously (Eqs.(4.1) and (4.2)); b is a constant, T (°C) is the 

temperature and Tmin is the theoretical minimum temperature for growth. The values of 

μsp;max predicted by the secondary models in monoculture were used for the simulation of 

the interaction models (see Section 4.2.5.4). 

The ability of primary and secondary models to describe the experimental data was 

analyzed by the statistical indices Standard Error (SE), Adjusted R-square (R2-Adj.) and 

Root Mean Squared Error (RMSE) (Eqs.(4.4)–(4.6)) (Hervas et al., 2001). 
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where yi and ӯi is the observed and predicted values, respectively, n is the number of 

observations in the growth curve and k is the number of fitted parameters of the model. 

2 1
1 residuals

total

SSn
Adjusted R

n s SS

 − 
= −   

−                                                                               (4.5) 

where n is the number of observations in the growth curve, s is the number of fitted 

parameters of the model, SSresiduals is the residual sum of squares and SStotal is the total sum 

of squares. 
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                                                                                                 (4.6) 

where yi and ӯi is the observed and predicted values, respectively, and n is the number of 

observations in the growth curve. 

4.2.5.3. Inhibition coefficient for Lb. sakei and L. monocytogenes 

The inhibition effect between the selected Lb. sakei strain and L. monocytogenes 

cocktail was described by an inhibition coefficient (α) for μsp;max and Nmax. This was defined 

as the complement of the fraction between the kinetic parameter in coculture (µco or Nmax;co) 

and monoculture (µmono or Nmax;mono) (Eqs. (4.7) and (4.8)). The standard deviation was 

calculated using the values (in percentage) of the results and the mean value of the 

inhibition coefficient. 









−=

mono

coα



 1                                                                                                       (4.7) 

1 c

m

max

on

o

o

max

x

N

ma

N
α

N

 
= − 

 
 

                                                                                          (4.8) 

4.2.5.4. Simulating microbial interaction of Lb. sakei and L. monocytogenes 

To describe the interaction between Lb. sakei and L. monocytogenes cocktail at 

different temperature conditions three different predictive models of microbial interaction 

were applied: the Jameson effect model, a new modified version of the Jameson effect 

model and the Lotka-Volterra model. Maximum specific growth rate was defined, in 

abovementioned equations, following two approaches. In the first approach, it was 

assumed that maximum specific growth rate was an intrinsic characteristic of each 

microbial population and therefore, invariant under the same environmental conditions, 



Chapter 4 

162 

regardless of the presence of another microbial population. Thus, the kinetic parameters 

obtained in monoculture for L. monocytogenes and Lb. sakei were used to input models 

to simulate microbial interaction (Rubinow, 1984). On the contrary, for the second 

approach, growth potential of one population was considered to be affected by the 

existence of the other microbial population. In this case, maximum specific growth rate 

under microbial interaction was not equal to the one observed in monoculture, and 

therefore, it was defined based on the growth capacity exhibited in coculture experiments. 

In the first hypothesis, maximum specific growth rate (µsp;max; h
-1) was described based on 

the outcome of the secondary model of monoculture experiments. Whereas, for the 

second one, the inhibition coefficient (α) was applied to the secondary model outcome to 

consider the interaction effect of the other microbial population. In both approaches, Nmax, 

understood as the maximum carrying capacity of the population, was considered to be 

equal in coculture and monoculture, so that the secondary model for this parameter 

obtained under coculture conditions was used to define this parameter in both approaches. 

The traditional Jameson effect model (Giménez & Dalgaard, 2004; Jameson, 1962), 

based on Eqs. (4.9)–(4.12), describes the microbial interaction as the growth suppression 

of the minority of the population when the dominant bacterial population reaches their 

Nmax (Giménez & Dalgaard, 2004; Irlinger & Mounier, 2009; Jameson, 1962; Ross et al., 

2000). 
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Q μ
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where N is the cell concentration (CFU/mL) at time t, μsp;max is the maximum specific 

growth rate (h-1), Nmax is the maximum population density (CFU/mL) and Q is a measure 

of the physiological state of cells at time t. The subscript letters Ls and Lm in the parameters 

stand for Lb. sakei and L. monocytogenes, respectively. 

The value of Q at t=0 (Q0) was calculated for both microorganisms as follows: 

( )0

1

1sp ;maxμ λ
Q

e


=
−

                                                                                                           (4.13) 
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where e is the Euler´s number, μsp;max is as above, and tlag is the lag time estimated from 

coculture experiments. 

A new modified version of the Jameson effect model (Costa et al., 2019), represented 

by Eqs. (4.14)–(4.17), replace NmaxLs and NmaxLm by the parameters NcriLs and NcriLm, that 

describe the maximum critical concentration that a microbial population should reach to 

inhibit the growth of the other microbial population. The NcriLs and NcriLm parameters are 

lower than NmaxLs and NmaxLm respectively, and this assumption was demonstrated to enhance 

the performance of the model for Staphylococcus aureus in milk in presence of a starter 

culture, providing more accurate predictions (Le Marc et al., 2009). 
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where Ncri is the maximum critical concentration (CFU/mL) of Lb. sakei that inhibits the 

growth of L. monocytogenes and vice-versa. The subscript letters Ls and Lm in the 

parameters are as above. The rest of model parameters are as described in Eqs. (4.9)–

(4.13). 

Additionally, the Lotka-Volterra model was used to describe the interaction between 

Lb. sakei and L. monocytogenes cocktail according to Eqs. (4.18)–(4.21) (Cornu et al., 

2011; Dens et al., 1999; Lotka, 1956; Vereecken et al., 2000). This model includes two 

empirical parameters (the so-called competition factors), reflecting the degree of 

interaction or inhibition between both populations (FLsLm and FLmLs). The growth of L. 

monocytogenes can be affected depending on the empirical parameter value for Lb. sakei 

(FLsLm), as follows: 

1) If 0 < FLsLm < 1, L. monocytogenes grows with reduced µsp;max after Lb. sakei reaches 

Nmax.  

2) If FLsLm = 1, L. monocytogenes stops growing when Lb. sakei reaches its Nmax. 

3) If FLsLm > 1, L. monocytogenes population declines when Lb. sakei reaches its Nmax. 



Chapter 4 

164 

1
1

Ls Ls LsLm Lm Ls
Ls sp;max Ls

max Ls Ls

dN N F N Q
N μ

dt N Q

   + 
=   −    

+   

                                               (4.18) 

1
1

Lm Lm LmLs Ls Lm
Lm sp;max Lm

max Lm Lm

dN N F N Q
N μ

dt N Q

   + 
=   −    

+   

                                            (4.19) 

1
Ls

Lst sp;max Ls

dQ
Q μ

dt
−=                                                                                                    (4.20) 

1
Lm

Lmt sp;max Lm

dQ
Q μ

dt
−=                                                                                                 (4.21) 

where FLsLm and FLmLs are, respectively, the competition factor parameters of Lb. sakei on 

L. monocytogenes cocktail and vice-versa. The other parameters are as indicated in Eqs. 

(4.9)–(4.13). 

The three interaction models were computed in MATLAB version R2015b (The 

MathWorkInc®, Natick, USA) using the functions fmincon and ode45, intended to 

optimize non-linear problems and perform numerical integrations based on the 4th order 

Runge Kutta algorithms, respectively, in order to simulate the simultaneous growth of 

both microorganisms. The prediction performance of the tested interaction models was 

assessed by calculating corrected Akaike information criterion (AICCc) and RMSE. In 

order to compare the observed and predicted growth in coculture, acceptable simulation 

zone (ASZ) was used and defined as ±0.5 log CFU/mL from the simulated L. 

monocytogenes and Lb. sakei counts. The simulations were considered acceptable when 

at least 70% of the observed values (log CFU/mL) were inside the corresponding zone 

(Oscar, 2005; Møller et al., 2013). 

4.3. Results and Discussion 

4.3.1. Assessing Lb. sakei and L. monocytogenes growth in mono and coculture at 

different temperature conditions 

4.3.1.1. Microbial growth in monoculture 

Lb. sakei and L. monocytogenes cocktail grew at all temperatures studied. Calibration 

curves have been extensively used to express microbial counts from absorbance 

measurements. Francois et al. (2005) and Valero et al. (2006) found that calibration 

curves may deviate in their slope when performed at different temperatures and/or pH 

values. In our study, these potential deviations were taken into account in relation to the 

applied temperature range (4-20 °C). The high μmax values of L. monocytogenes found in 

our study in comparison with those obtained by Valero et al. (2006) may be attributed to 
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the strains used. These authors used a single strain while in this study, a cocktail was 

assayed. It is well reported that differences in phenotypic responses among strains of the 

same microbial species constitute an important source of variability in microbiological 

studies (Lianou & Koutsoumanis, 2013). When using cocktails, some strains are generally 

dominant on the others (Pal et al., 2008), thus presenting faster adaptation and growth. 

Further works should focus on the study of extrinsic factors (i.e. temperature) on the 

dominance of certain individual strains over the others within a cocktail, since this fact 

could introduce additional variability in the estimated μmax values. 

The kinetic parameters μsp;max and Nmax for both microorganisms were estimated by 

fitting the Baranyi and Roberts model to data. For the sake of clarity, growth rate was 

also expressed as maximum growth rate (μmax, log CFU/h) hereinafter. Parameters are 

shown in Table 4.1. 

Table 4.1. Kinetic parameters ± standard error of Lactobacillus sakei strain L115 and 

Listeria monocytogenes cocktail obtained by the fitted Baranyi and Roberts model for 

experiments in monoculture. 

Temp. 
(°C) 

Microorganisms in 
monoculture 

µmax  
(log CFU/h) 

Nmax (log 
CFU/mL) 

RMSE b(log 
CFU/mL) 

R2-Adj.c 

4 
Lb. sakei 0.021±0.001a 8.05±0.021 0.119 0.987 

L. monocytogenes 0.037±0.001 9.26±0.025 0.116 0.992 

8 
Lb. sakei 0.091±0.005 7.69±0.029 0.128 0.989 

L. monocytogenes 0.072±0.003 9.21±0.024 0.084 0.994 

11 
Lb. sakei 0.108±0.002 8.11±0.013 0.037 0.999 

L. monocytogenes 0.128±0.003 9.26±0.012 0.037 0.999 

15 
Lb. sakei 0.144±0.005 8.10±0.035 0.129 0.997 

L. monocytogenes 0.211±0.019 9.16±0.083 0.198 0.989 

20 
Lb. sakei 0.275±0.018 8.46±0.038 0.070 0.996 

L. monocytogenes 0.328±0.028 9.28±0.079 0.153 0.994 
a Standard error (SE). 
b Root mean squared error (RMSE). 
c Adjusted coefficient of determination. 
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The model showed an excellent adjustment, with a R2-Adj. ≥ 0.98 and low values of 

RMSE (< 0.20 log CFU/mL). As expected, an increase of temperature from 4 to 20 °C 

caused an increment in μmax of Lb. sakei and L. monocytogenes from 0.021±0.001 and 

0.037±0.001 log CFU/h to 0.0275±0.018 and 0.328±0.028 log CFU/h, respectively. 

However, this effect was not observed in the case of Nmax, since final values ranged 

between 7.69 and 9.28 log CFU/mL, for Lb. sakei and L. monocytogenes, respectively, 

without showing any trend. 

Growth of L. monocytogenes matched the results found by Bolívar et al. (2018) in 

fish-based juice at 4 °C (0.031 log CFU/h) but they were different at higher temperatures 

(20 °C = 0.204 log CFU/h) probably due to the use of a food matrix based medium instead 

of BHI, as in the present study. In relation to Lb. sakei, it was capable to grow at all 

assayed temperatures, including refrigeration temperatures. It is noteworthy that at 4 °C 

Lb. sakei grew slower than L. monocytogenes as denoted by the estimated growth rates 

(Table 4.1). Matamoros et al. (2009) and Boulares et al. (2012) highlighted that LAB 

species having good ability to grow at low temperatures should be considered as good 

candidates for biopreservation of refrigerated foods. 

The effect of temperature on growth rate of the microorganisms grown in monoculture 

was studied by fitting square root model to growth data (Fig. 4.1). 

 

Fig. 4.1. Temperature effect on the maximum specific growth rate (μsp;max) of Lactobacillus 

sakei strain L115 (o) and Listeria monocytogenes cocktail () in monoculture. The lines 

represent the fitted model of the secondary model for Lb. sakei (- - -) and L. 

monocytogenes cocktail (―).  

The model satisfactorily described the effect of temperature on the growth rate of Lb. 

sakei strain L115 and L. monocytogenes cocktail showing low RMSE values (<0.27 h-0.5) 
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and acceptable R2-Adj. values (≥0.84) for each microorganism. The best-fit parameter b 

from the square root model was 0.033 and 0.037 for Lb. sakei and L. monocytogenes, 

respectively, as shown in Table 4.2. Giménez & Dalgaard (2004) and Koseki et al. (2011) 

agreed on the suitability of the square root model to assess the effect of temperature on 

μmax of L. monocytogenes in microbial interaction models with spoilage microorganisms. 

Table 4.2. Estimated parameters ± standard error (SE) and statistical indices of the square 

root model for the effect of temperature on the maximum specific growth rate (μsp;max; h
-1) 

of Lactobacillus sakei strain L115 and Listeria monocytogenes cocktail in monoculture 

on BHI broth. 

Microorganisms b (h-0.5 °C-1) Tmin (°C) RMSEb (h-0.5) R2-Adj.c 

Lb. sakei 0.033±0.004a -3.94±2.152 0.223 0.859 

L. monocytogenes 0.037±0.001 -3.61±0.513 0.271 0.842 
a Standard error (SE).  
b Root mean squared error (RMSE). 
c Adjusted coefficient of determination (R2-Adj). 

4.3.2.1. Microbial growth in coculture 

As a previous step, an inhibitory test was performed, showing that the non-bacteriocin 

producing strain, Lb. sakei NCFB 2714, produced inhibition halos of 2.87 ± 0.49ø mm, 

while Lb. sakei strain L115 presented inhibition zones of 5.81 ± 0.67ø mm, thus 

confirming the anti-listerial activity reported by Katikou et al. (2005). 

The growth of Lb. sakei L155 and L. monocytogenes cocktail in coculture and the 

parameters of the Baranyi primary models at different temperature are presented in Fig. 

4.2 and Table 4.3, respectively. As expected, the increase of temperature led to shorter tlag 

and higher μmax values for both microorganisms. Both visual and statistical analyses 

showed that the Baranyi model properly described the growth of the two microorganisms 

at all temperatures studied; the values for the R2-Adj. were around 0.99 and the RMSE 

values were as low as 0.07-0.13 log CFU/mL. Quinto et al. (2016) obtained similar values 

of R2 when evaluating the effect of competitive growth of Lb. sakei MN on the growth 

kinetics of L. monocytogenes Scott A in meat gravy. 
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Fig. 4.2. Observed growth data of Lactobacillus sakei strain L115 (o) and Listeria monocytogenes cocktail () in coculture at (a) 4 °C, (b) 8 

°C, (c) 11 °C, (d) 15 °C and (e) 20 °C. The lines represent the Baranyi model fitted to Lb. sakei (- - -) and L. monocytogenes cocktail (―) 

growth. 
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Table 4.3. Average ± standard error (SE) of kinetic parameters and statistical indices obtained by fitting the Baranyi and Roberts model to 

growth data of Lactobacillus sakei strain L115 and Listeria monocytogenes cocktail in coculture experiments at 4, 8, 11, 15 and 20 °C. 

Temp. (°C) 
Microorganisms  

in coculture 
tlag (h) 

µmax  
(log CFU/h) 

Nmax  
(log CFU/mL) 

RMSEb 
(log CFU/mL) R2-Adj.c Time to Nmax (h)d 

4 
Lb. sakei 

L. monocytogenes 
73.2 ± 13.9a 
73.1 ± 19.4 

0.0269 ± 0.003 
0.0255 ± 0.004 

7.62 ± 0.063 
5.95 ± 0.078 

0.103 
0.123 

0.996 
0.994 

261.0 
286.0 

        

8 
Lb. sakei 

L. monocytogenes 
41.0 ± 2.8 
30.6 ± 3.5 

0.0495 ± 0.002 
0.0397 ± 0.002 

8.13 ± 0.043 
7.07 ± 0.051 

0.085 
0.086 

0.998 
0.998 

172.0 
172.0 

        

11 
Lb. sakei 

L. monocytogenes 
23.8 ± 1.5 
11.3 ± 2.4 

0.0740 ± 0.003 
0.0662 ± 0.003 

7.86 ± 0.037 
7.68 ± 0.071 

0.069 
0.087 

0.998 
0.998 

95.50 
115.5 

        

15 
Lb. sakei 

L. monocytogenes 
12.8 ± 5.1 
8.0 ± 3.7 

0.1322 ± 0.042 
0.1280 ± 0.016 

7.85 ± 0.053 
6.55 ± 0.059 

0.102 
0.122 

0.990 
0.995 

70.5 
70.5 

        

20 
Lb. sakei 

L. monocytogenes 
4.5 ± 1.2 
7.1 ± 1.1 

0.2056 ± 0.016 
0.1895 ± 0.014 

8.59 ± 0.084 
6.69 ± 0.074 

0.126 
0.103 

0.996 
0.996 

31.0  
35.0 

a Standard error (SE).  
b Root mean squared error (RMSE). 
c Adjusted coefficient of determination (R2-Adj.). 
d Time to reach Nmax, assuming that this time is when N = 100 – 99% Nmax, was calculated by the bisection algorithm (iterations= 5000; tolerance= 0.01%) applied to the fitted growth model. 
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The values of µmax obtained for L. monocytogenes in coculture with Lb. sakei were 

noticeably lower than those in monoculture. The inhibition ratios for μmax of L. 

monocytogenes cocktail and Lb. sakei for the different temperatures can be observed in 

Table 4.4. The largest inhibition levels of L. monocytogenes were observed at 

intermediate temperatures, corresponding to 8 and 11 °C, as denoted by the calculated 

inhibition ratio (α), which indicates that growth rate in coculture was reduced by 45 and 

48%, respectively. The lowest inhibition was observed at 4 °C (α= 31%). On the other 

hand, μmax for Lb. sakei was also affected by L. monocytogenes especially at 8 and 11 °C, 

with α= 46 and 31%, respectively. These results point out a possible interaction due to 

competition for nutrients, which was dependent on temperature conditions. This 

temperature-dependent effect has also been reported by other authors for the interaction 

between L. monocytogenes and Lb. sakei (Aguilar & Klotz, 2010). No recognizable 

pattern for the temperature effect can be identified based on the values of Table 4.4. The 

lack of mathematical correlation between temperature and the reduction of growth rate of 

L. monocytogenes in coculture (i.e. growth inhibition) was also observed by Quinto et al. 

(2016). However, these authors reported lower µmax values for L. monocytogenes in 

coculture with Lb. sakei MN than those reported in our study (Table 4.3). These 

differences could be attributed to the strain used; a single strain, Scott A, in the study of 

Quinto et al. (2016), while a cocktail was tested in this study, in which the expected higher 

between-cell variability could lead to the strain(s) more resistant to the inhibition by Lb. 

sakei (i.e. competitive) became dominant in the cocktail populations.  



Microbial interaction in culture broth medium 

171 

Table 4.4. Inhibition ratio (α), expressed in percentage (%), ± standard deviation of the 

maximum specific growth rate (μsp;max; h
-1) and maximum population density (Nmax; log 

CFU/mL) for Listeria monocytogenes cocktail and Lactobacillus sakei in coculture at the 

five temperatures studied. 

a Inhibition ratio (%) between the maximum specific growth rate in coculture (µco) and monoculture (µmono) of L. 
monocytogenes and Lb. sakei, respectively, using Eq. (6). 
b Inhibition ratio (%) between the maximum population density in coculture (Nmaxco) and monoculture (Nmaxmono) of L. 
monocytogenes and Lb. sakei, respectively, using Eq. (7). 
* The negative α values corresponded to an increase of the kinetic parameter in coculture. 
 

Lb. sakei did not show a noticeable reduction on Nmax in coculture as shown by the 

values obtained for α, which were lower than 5% at all studied temperatures (Table 4.4). 

In turn, for L. monocytogenes, Nmax was drastically affected in coculture, decreasing from 

9.26 log CFU/mL, observed in monoculture at all temperature, to 5.95 log CFU/mL in 

coculture at 4 °C. For this temperature, the inhibitory effect (α) on this parameter resulted 

in a reduction of 36% with respect to the values obtained in monoculture. At 11 °C, Nmax 

was 7.68 log CFU/mL while at 15-20 °C, values were around 6.67 log CFU/mL. 

According to the growth curves (Fig. 4.2) and the time to reach Nmax shown in Table 4.3, 

at 8, 15 and 20 °C, L. monocytogenes growth ceased when Lb. sakei reached its Nmax, 

whereas at 4 and 11 °C, the pathogen stopped growing around 20-25 h after Lb sakei 

achieved Nmax.   

The differences between Nmax of L. monocytogenes in coculture and monoculture 

indicate that Lb. sakei strain induced an early stationary phase of L. monocytogenes 

cocktail, corroborating that the depletion of nutritive substance (s) and/or generation of 

metabolic products of Lb. sakei may affect the growth of L. monocytogenes cocktail 

(Leroy & De Vuyst, 2003). Other authors have observed a decrease in Nmax values of L. 

monocytogenes when cocultured with LAB being attributed to competition for nutrients 

or cell-to-cell contact (Buchanan & Bagi, 1997; Huang et al., 2016). Similar results were 

obtained by Quinto et al. (2016), although with more dramatic reductions of L. 

monocytogenes in coculture at the lower temperatures (Nmax around 3 log CFU/mL at 4 

Temperature (°C) 
L. monocytogenes Lb. sakei 

α (μsp;max)
 a α (Nmax)

b α (μsp;max) α (Nmax) 
4 31±0.16 36±0.01 -28±0.22* 5±0.01 

8 45±0.05 23±0.01 46±0.05 -6±0.01* 

11 48±0.04 17±0.01 31±0.04 3±0.01 

15 39±0.14 28±0.01 8±0.42 3±0.01 

20 42±0.09 28±0.02 25±0.11 -2±0.02* 

http://aem.asm.org/search?author1=Luc+De+Vuyst&sortspec=date&submit=Submit
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and 10 °C). The use of a cocktail of L. monocytogenes allows the presence of more 

adapted strains to the environment, being able to reach a higher Nmax than those cases 

where a single strain is used. Other authors have reported that, when Lactobacillus spp. 

grew in coculture with L. monocytogenes at 4 °C up to 7.38 log CFU/mL, the Nmax of L. 

monocytogenes was only 5.07 log CFU/mL (Ye et al., 2014). Mataragas et al. (2003) 

studied the antagonism of LAB against L. monocytogenes in sliced cooked cured pork 

shoulder stored under vacuum or modified atmosphere at 4±2 °C. In their study, LAB had 

an antagonistic effect on L. monocytogenes growth in the pork product under vacuum 

conditions. Values of Nmax of L. monocytogenes decreased from 7.3 log CFU/g in 

monoculture to 3.3-3.6 log CFU/g in coculture experiments. A similar trend was obtained 

in our study, when Nmax for Lb. sakei and L. monocytogenes in coculture were 7.62 and 

5.95 log CFU/mL, respectively, at 4 °C, thus confirming the inhibitory effect of the LAB 

used. 

Regarding the medium pH, a slight decrease was observed in this parameter, starting 

when the bacteria entered in the exponential phase, and reaching final values of 6.4-6.7 

at 4, 8 and 11 °C, 6.2 at 15 °C and 5.9 at 20 °C at the stationary phase of the 

microorganisms. This slight decrease in the pH may be related to the low concentration 

of glucose (0.2% w/v) present in the culture medium (BHI). As the level of production of 

organic acids greatly depends on the concentration of carbon source like glucose, the 

inhibition by organic acids in the medium might be discarded. This fact was also 

corroborated by previous studies. For instance, Vereecken & Van Impe (2002) 

demonstrated that the initial glucose concentration present in culture media largely 

influenced the production of lactic acid and other metabolites by LAB and thus, their 

antimicrobial activity. Al-Zeyara et al. (2011) investigated the interaction between the 

natural microbiota of food, including LAB, on the growth of L. monocytogenes in TSB, 

a medium with 2 g of glucose. The study concluded that the acid production was not the 

inhibition factor since the pH slightly decreased from 7.2 to 6.3 once L. monocytogenes 

had stopped growing. As expected, the pH decrease observed in our study was more 

evident as temperature increases, likely due to the higher microbial metabolic activity at 

higher temperatures, thus increasing production of organic acids. 

Overall, the Listeria inhibition pattern observed in our study can be mostly explained 

by nutrient competition and depletion, affecting Listeria kinetic parameters µmax and Nmax. 

Moreover, the role of the potential bacteriocin production should be considered in the 

inhibitory effect on L. monocytogenes. Other authors have found a major inhibition by 



Microbial interaction in culture broth medium 

173 

other bacteriocin-producing microorganisms (Leroy et al., 2002), possibly due to 

differences in the tested bacterial strain and experimental set-up. In this respect, further 

studies considering molecular aspects are needed to elucidate the role of bacteriocin 

production by Lb. sakei L115 on the inhibition of Listeria growth. 

4.3.2. Performance of microbial interaction models for Lb. sakei and L. monocytogenes 

cocktail growth in coculture 

Three different interaction models, that is, the Jameson-effect based model, a 

modified version of the Jameson model (Giménez & Dalgaard, 2004) and the Lotka-

Volterra model (Dens et al., 1999; Fujikawa, 2016) were used to simulate the effect of 

Lb. sakei growth on Listeria behaviour in BHI. The models were applied following the 

two approaches described in Section 4.2.5.4, consisting of not applying and applying the 

inhibition coefficient (α). In general, a deceleration of L. monocytogenes growth and the 

induction of early stationary phase when the Lb. sakei reached the stationary phase were 

observed. The adequacy of the above models to simulate the observations was evaluated 

statistically through AICc and RMSE and their prediction capacity, with ASZ. Their 

values can be consulted in Tables 4.5 and 4.6, for both approaches, together with the fitted 

interaction model parameters. For the former approach, where monoculture maximum 

specific growth rates were used (i.e. not applying α), the best fitting was obtained with 

the Lotka-Volterra model according to the statistical indexes (Table 4.5) and visual 

analysis (Figure 4.3 a.1-e.1). The ASZ for L. monocytogenes was equal to or above 70% 

for models at 4 and 20 °C (Table 4.5). However, no model was able to describe, 

satisfactorily, the simultaneous growth of Lb. sakei and L. monocytogenes cocktail at 8 

and 11 (ASZ ≤40%), overestimating, in both cases, Listeria growth (Figure 4.3 b.1-c.1 

and Table 4.5). The best results were obtained with Lotka-Volterra model for 4 and  

20 °C, with ASZ values > 80% and RMSE<0.5. In the second approach, in which μmono 

values from the secondary models were adjusted using α, fit results showed better 

performance, and all temperatures could be represented adequately by the tested models 

as shown by Figure 4.3 a.2-e.2, especially by the modified Jameson model and Lotka-

Volterra model. These models exhibited ASZ levels for L. monocytogenes equal to 100%, 

excepting for 20 °C, for which it was 85%, while for Lb. sakei, values were always above 

85%. AICc and RMSE results, shown in Table 4.6, also confirmed the adequacy of the 

above models. There are other studies in the literature that have evaluated the modified 
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version approaches of the Jameson and Lotka-Volterra models demonstrating a good 

performance to describe the dynamics of the interaction between microbial species in 

different systems (culture broth and foods) (Blanco-Lizarazo et al., 2016; Cornu et al., 

2011; Costa et al., 2019; Giménez & Dalgaard, 2004; Le Marc et al., 2009; Vereecken et 

al., 2000; Ye et al., 2014). Despite the Lotka-Volterra model presented worse fitting with 

the first approach, FLsLm values, slightly above 1, were in line with the fact that the cease 

of the L. monocytogenes growth was observed when Lb sakei reached its Nmax (Table 4.5). 

For the second approach, with much better fitting, the parameter was lower than 1, 

indicating that there was inhibition but, in less extent than what was shown in the first 

approach (Table 4.6). According to these results, it is likely that the use of a monoculture 

maximum specific growth rate adjusted for coculture conditions renders this interaction 

factor less meaningful or representative for the observed microbial interaction 

phenomenon. This trend could be similarly observed for Lscri. from the modified Jameson 

model, showing lower concentrations for the first approach. Therefore, in these cases, 

where maximum specific growth rate observed at monoculture conditions is adjusted 

(reduced) to represent coculture conditions, both FLsLm and α should be considered jointly 

to obtain a more reliable (correct) mathematical interpretation of the microbial interaction 

observed.  
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Table 4.5. Estimated interaction parameters and goodness-of-fit indexes obtained from the simulation and fitting of different interaction 

models considering the approach in which the monoculture maximum specific growth rate obtained from the secondary models is used to 

define this kinetic parameter in the model equations. The models describe the simultaneous growth of Lactobacillus sakei strain L155 and 

Listeria monocytogenes cocktail in BHI broth stored at 4, 8, 11, 15 and 20 °C. 

a Number of samples for Lb. sakei and L. monocytogenes cocktail (n). 
b Root mean squared error (RMSE). 
c Acceptable simulation zone (ASZ). 
d Corrected akaike information criterion (AICc). 
e Maximum critical concentration for L. monocytogenes cocktail obtained from the modified version of the Jameson model (Lmcri). 
f Maximum critical concentration for Lb. sakei obtained from the modified version of the Jameson model (Lscri). 
g Competition factor of L. monoctytogenes cocktail in Lb. sakei obtained from Lotka-Volterra model (FLmLs). 
h Competition factor of Lb. sakei in L. monoctytogenes cocktail obtained from Lotka-Volterra model (FLsLm).  

Temp. 
(°C) 

na 

Jameson model Modified version of Jameson model Lotka-Volterra model 

Lb. sakei 
L. monocytogenes 

cocktail 
Lb. sakei 

L. monocytogenes 
cocktail 

Lb. sakei 
L. monocytogenes 

cocktail 

RMSEb 
ASZ 
(%)c RMSE 

ASZ 
(%) 

RMSE AICcd ASZ 
(%) 

Lmcri
e
 

(CFU/mL) 
RMSE AICc 

ASZ 
(%) 

Lscri
f
 

(CFU/mL) 
RMSE AICc 

ASZ 
(%) FLmLs

g RMSE AICc ASZ 
(%) 

FLsLm
h 

4 13 0.304 92.3 0.426 69.2 0.350 -23.42 92.3 1.00x108±5.
10x106 

0.415 -18.98 86.4 9.23x107±7.
07x106 

0.304 -23.37 92.3 0.00 0.359 -13.78 86.4 1.20±0.15  

8 15 0.338 86.7 1.522 26.7 0.377 -25.75 86.7 7.00x108±3.
89x108 

1.519 16.07 33.3 8.12x107±1.
36x107 

0.342 -25.07 86.7 0.00 1.293 14.85 40.0 1.25±0.21  

11 13 0.230 100 1.584 23.1 0.301 -27.36 92.3 7.03x108±9.
11x107 

2.265 25.14 15.4 6.48x107±1.
13x107 

0.258 -27.62 100 0.00 1.246 13.35 38.5 1.36±0.25  

15 13 0.194 100 0.549 61.5 0.223 -35.07 100 9.99x107±6.
24x106 

0.600 -9.38 61.5 1.08x108±9.
89x106 

0.194 -35.00 100 0.00 0.516 -9.56 61.5 1.04±0.09 

20 12 0.339 83.3 0.411 83.3 0.397 -18.02 83.3 9.26x107±1.
03x107 

0.468 -13.99 83.3 1.05x108±8.
67x106 

0.339 -17.98 83.3 0.00 0.399 -14.11 83.3 1.05±0.08  



Chapter 4 

176 

Table 4.6. Estimated interaction parameters and goodness-of-fit indexes obtained from the simulation and fitting of different interaction 

models considering the approach in which the monoculture maximum specific growth rate based on the secondary models, which is used to 

define this kinetic parameter in the model equations, is previously adjusted with the inhibition factor (α). The models describe the 

simultaneous growth of Lactobacillus sakei strain L155 and Listeria monocytogenes cocktail in BHI broth stored at 4, 8, 11, 15 and 20 °C. 

 a Number of samples for Lb. sakei and L. monocytogenes cocktail (n). 
b Root mean squared error (RMSE). 
c Acceptable simulation zone (ASZ).  
d Corrected akaike information criterion (AICc). 
e Maximum critical concentration for L. monocytogenes cocktail obtained from the modified version of the Jameson model (Lmcri). 
f Maximum critical concentration for Lb. sakei obtained from the modified version of the Jameson model (Lscri). 
g Competition factor of L. monoctytogenes cocktail in Lb. sakei obtained from Lotka-Volterra model (FLmLs). 
h Competition factor of Lb. sakei in L. monoctytogenes cocktail obtained from Lotka-Volterra model (FLsLm).  

Temp. 
(°C) 

na 

Jameson model Modified version of Jameson model Lotka-Volterra model 

Lb. sakei 
L. monocytogenes 

cocktail 
Lb. sakei 

L. monocytogenes 
cocktail 

Lb. sakei 
L. monocytogenes 

cocktail 

RMSEb 
ASZ 
(%)c RMSE 

ASZ 
(%) 

RMSE AICcd ASZ 
(%) 

Lmcri
e
 

(CFU/mL) 
RMSE AICc 

ASZ 
(%) 

Lscri
f
 

(CFU/mL) 
RMSE AICc 

ASZ 
(%) FLmLs

g RMSE AICc ASZ 
(%) 

FLsLm
h 

4 13 0.304 92.3 0.380 86.4 0.350 -23.38 92.3 1.30x108±8.
58x106 

0.331 -24.82 100 1.61x108±1.
09x107 

0.304 -23.37 92.3 0.00 0.287 -24.82 100 0.69±0.04 

8 15 0.342 86.7 0.650 73.3 0.385 -25.08 86.7 1.10x109±7.
10x107 

0.211 -43.18 100 1.73x108±1.
01x107 

0.342 -25.07 86.7 0.00 0.187 -43.18 100 0.64±0.04 

11 13 0.258 100 0.847 61.5 0.342 -23.99 84.6 7.43x108±9.
48x107 

0.221 -35.37 100 3.15x108±4.
08x107 

0.258 -27.62 100 0.00 0.181 -36.86 100 0.38±0.05 

15 13 0.194 100 0.966 53.8 0.224 -35.01 100 9.89x107±7.
06x106 

0.439 -17.51 84.6 1.57x108±1.
07x107 

0.194 -35.00 100 0.00 0.380 -17.50 84.6 0.71±0.05 

20 12 0.339 83.3 0.810 66.7 0.398 -17.98 83.3 9.77x107±1.
02x107 

0.221 -32.14 100 3.90x108±4.
29x107 

0.339 -17.98 83.3 0.00 0.188 -32.16 100 0.27±0.03 
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Fig. 4.3. Observed growth data of Lactobacillus sakei strain L115 (o) and Listeria monocytogenes cocktail () in coculture at (a) 4 °C, (b) 8 

°C, (c) 11 °C, (d) 15 °C and (e) 20 °C. The lines represent the predictions for Lb. sakei (- - -), L. monocytogenes cocktail (―) growth obtained 

from the Lotka-Volterra model considering two different approaches: 1) using the monoculture maximum growth rate obtained from the 

secondary model and 2) adjusting the estimated monoculture maximum growth rate by applying the inhibition factor (α) (2). The acceptable 

simulation zone (ASZ) defined as ± 0.5 log CFU/mL from the observed counts is represented by a dotted line (∙∙∙∙∙).  
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The failure of the first approach to describe the microbial competition in some of the 

temperatures (8 and 11 °C) could bring in question the statement by Rubinow (1984) claiming 

that the growth potential is characteristic to the species and the environment. The Rubinow´s 

hypothesis assumes that the growth rate for a specific microbial population would be invariant 

under the same environmental conditions regardless of whether or not there is another microbial 

population in the same substrate. This hypothesis is supported by several scientific studies, that 

have been able to obtain reliable growth predictions for coculture conditions, assuming that the 

maximum growth rate of the mixed culture is the same one as the estimated in pure culture 

(Cornu et al., 2002; Cornu et al., 2011). However, the results, in our work, suggest that coculture 

conditions could influence growth potential in some cases (i.e. temperature conditions). A 

possible explanation for this finding could be that environment can change dynamically 

overgrowth since the microbial activity can modify the physico-chemical properties (i.e., pH, 

lactate, etc.) of the substrate due to the production of metabolites (e.g. bacteriocins) or 

degradation of chemical compounds. This would lead to different growth potentials of the 

microbial populations along incubation period. Besides, it should not be discarded that the mere 

presence of a heterogenous microbial population can influence the capacity of each population 

to exploit the environmental resources required to grow. In our study, no conclusive data could 

be provided concerning what (molecular and biological) phenomena could be behind the fact 

that the growth potential in coculture conditions was reduced in spite of the physico-chemical 

factors were similar between experiments. These results and gaps suggest that a more biological 

knowledge should be developed for a deeper understanding of the mechanisms of microbial 

interaction and coexistence as well as how the interaction depends on environmental conditions 

(Vandermeer & Goldber, 2003). In any case, from a practical point of view, this study highlights 

the importance of assessing the impact of the microbial ecology on the microbial kinetic 

parameters in order to develop more accurate microbial interaction models. 

4.4. Conclusion 

The present study demonstrated that the growth rate and maximum population density of L. 

monocytogenes noticeably decreased when cocultured in presence of Lb. sakei L115, thus the 

inhibitory effect of Lb. sakei L115 against a number of mixed strains of the pathogen was 

confirmed. The combination of a high concentration of Lb. sakei L115, low temperatures, 

depletion for nutrients and bacteriocin production can be hypothesized as the main causes for 

inhibiting the growth of L. monocytogenes. In addition, the simultaneous growth of Lb. sakei 
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and L. monocytogenes cocktail could be better simulated with the Lotka-Volterra model and 

modified Jameson model under the hypothesis that the growth potential of one population is 

affected (reduced) in presence of another population rather than assuming that this potential 

growth could be constant at monoculture and coculture conditions as represented by the first 

approach in this study. Notwithstanding, more research is needed to clarify the inhibitory role 

of Lb. sakei on Listeria growth capacity at a biomolecular level. As experiments were carried 

out in culture broth medium, the impact of food matrix on the interaction phenomenon should 

be also assessed. The findings of this study could be the first step to develop more mechanistic 

models able to describe different microbial interaction patterns, including those observed in the 

present study. 
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Supplementary data to this article can be found online at https:// 
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Appendix B. Supplementary File 4.1 

Absorbance measurements of L. monocytogenes at 6 °C expressed in logarithmic scale were 

transformed into viable cell counts (log CFU/mL) by performing calibration curves as described 

by Bolívar et al. (2018). 

CFU/ml Absorbance 
Absorbance-

Control 
log 

Absorbance 
log CFU/ml 

Control (non-inoculated 
BHI) 

1.80E+09 0.998 0.71771429 -0.144048409 9.255272505 0.28 
 

1.80E+09 0.975 0.69471429 -0.15819377 9.255272505 0.278 
 

1.80E+09 0.979 0.69871429 -0.155700377 9.255272505 0.282 
 

1.80E+09 0.951 0.67071429 -0.173462443 9.255272505 0.281 
 

1.80E+09 0.92 0.63971429 -0.194013951 9.255272505 0.28 
 

4.30E+08 0.487 0.20671429 -0.684629509 8.633468456 0.28 
 

4.30E+08 0.491 0.21071429 -0.67630602 8.633468456 0.281 
 

4.30E+08 0.496 0.21571429 -0.666121093 8.633468456 
  

4.30E+08 0.48 0.19971429 -0.699590869 8.633468456 0.280285714 AVERAGE 
4.30E+08 0.461 0.18071429 -0.743007515 8.633468456 0.001253566 ST. DEV 
8.65E+07 0.302 0.02171429 -1.663254452 7.937016107 

  

8.65E+07 0.301 0.02071429 -1.683730038 7.937016107 
  

8.65E+07 0.299 0.01871429 -1.727826744 7.937016107 
  

8.65E+07 0.3 0.01971429 -1.705218954 7.937016107 
  

8.65E+07 0.297 0.01671429 -1.776912178 7.937016107 
  

3.15E+06 0.281 0.00071429 -3.146128036 6.498310554 
  

3.15E+06 0.281 0.00071429 -3.146128036 6.498310554 
  

3.15E+06 0.281 0.00071429 -3.146128036 6.498310554 
  

3.15E+06 0.281 0.00071429 -3.146128036 6.498310554 
  

3.15E+06 0.281 0.00071429 -3.146128036 6.498310554 
  

 

Calibration curve for L. monocytogenes at 6 °C. 
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Absorbance measurements of L. monocytogenes at 25 °C expressed in logarithmic scale were 

transformed into viable cell counts (log CFU/mL). 

CFU/ml Absorbance  
Absorbance-
Control 

log 
Absorbance 

log CFU/ml 
Control (non-inoculated 
BHI) 

1.41E+09 1.431 1.19866667 0.078698428 9.149219113 
  

1.41E+09 1.391 1.15866667 0.063958513 9.149219113 
  

1.41E+09 1.397 1.16466667 0.066201646 9.149219113 
  

1.41E+09 1.391 1.15866667 0.063958513 9.149219113 0.232 
 

1.41E+09 1.407 1.17466667 0.069914645 9.149219113 0.234 
 

9.15E+08 0.822 0.58966667 -0.229393422 8.961421094 0.232 
 

9.15E+08 0.81 0.57766667 -0.238322692 8.961421094 0.23 
 

9.15E+08 0.78 0.54766667 -0.261483691 8.961421094 0.234 
 

9.15E+08 0.795 0.56266667 -0.249748812 8.961421094 0.232 
 

9.15E+08 0.811 0.57866667 -0.237571534 8.961421094 
  

2.21E+08 0.397 0.16466667 -0.783394306 8.344392274 0.232333333 AVERAGE 

2.21E+08 0.4 0.16766667 -0.77555327 8.344392274 0.001505545 ST. DEV 

2.21E+08 0.403 0.17066667 -0.767851294 8.344392274 
  

2.21E+08 0.405 0.17266667 -0.762791495 8.344392274 
  

2.21E+08 0.408 0.17566667 -0.75531064 8.344392274 
  

3.01E+07 0.291 0.05866667 -1.231608587 7.478566496 
  

3.01E+07 0.29 0.05766667 -1.239075152 7.478566496 
  

3.01E+07 0.289 0.05666667 -1.246672333 7.478566496 
  

3.01E+07 0.287 0.05466667 -1.262277407 7.478566496 
  

3.01E+07 0.287 0.05466667 -1.262277407 7.478566496 
  

1.50E+06 0.264 0.03166667 -1.499397649 6.176091259 
  

1.50E+06 0.266 0.03366667 -1.472799881 6.176091259 
  

1.50E+06 0.264 0.03166667 -1.499397649 6.176091259 
  

1.50E+06 0.263 0.03066667 -1.513333427 6.176091259 
  

1.50E+06 0.266 0.03366667 -1.472799881 6.176091259 
  

 

Calibration curve for L. monocytogenes at 25 °C.  
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Absorbance measurements of Lb. sakei L115 at 6 °C expressed in logarithmic scale were 

transformed into viable cell counts (log CFU/mL). 

CFU/ml Absorbance  
Absorbance-
Control 

log 
Absorbance 

log CFU/ml 
Control (non-inoculated 
BHI) 

2.00E+08 1.246 0.96571429 -0.015151344 8.301029996 
  

2.00E+08 1.277 0.99671429 -0.001429317 8.301029996 
  

2.00E+08 1.255 0.97471429 -0.011122669 8.301029996 
  

2.00E+08 1.248 0.96771429 -0.014252848 8.301029996 
  

2.00E+08 1.238 0.95771429 -0.018764034 8.301029996 0.28 
 

4.45E+07 0.557 0.27671429 -0.557968419 7.648360011 0.278 
 

4.45E+07 0.578 0.29771429 -0.526200325 7.648360011 0.282 
 

4.45E+07 0.55 0.26971429 -0.56909605 7.648360011 0.281 
 

4.45E+07 0.561 0.28071429 -0.551735485 7.648360011 0.28 
 

4.45E+07 0.57 0.28971429 -0.538030089 7.648360011 0.28 
 

3.80E+06 0.306 0.02571429 -1.589825535 6.579783597 0.281 
 

3.80E+06 0.311 0.03071429 -1.51265958 6.579783597 
  

3.80E+06 0.307 0.02671429 -1.573256433 6.579783597 
  

3.80E+06 0.309 0.02871429 -1.541901983 6.579783597 0.280285714 AVERAGE 

3.80E+06 0.307 0.02671429 -1.573256433 6.579783597 0.001253566 ST. DEV 

9.45E+05 0.286 0.00571429 -2.243038049 5.975431809 
  

9.45E+05 0.286 0.00571429 -2.243038049 5.975431809 
  

9.45E+05 0.286 0.00571429 -2.243038049 5.975431809 
  

9.45E+05 0.286 0.00571429 -2.243038049 5.975431809 
  

9.45E+05 0.286 0.00571429 -2.243038049 5.975431809 
  

 

Calibration curve for Lb. sakei L115 at 6 °C.
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Absorbance measurements of Lb. sakei L115 at 25 °C expressed in logarithmic scale were 

transformed into viable cell counts (log CFU/mL). 

CFU/ml Absorbance 
Absorbance-

Control 
log 

Absorbance 
log CFU/ml 

Control (non-inoculated 
BHI) 

3.45E+08 1.441 1.208666667 0.082306545 8.537819095   

3.45E+08 1.443 1.210666667 0.083024585 8.537819095   

3.45E+08 1.439 1.206666667 0.081587316 8.537819095 0.232  

3.45E+08 1.409 1.176666667 0.070653451 8.537819095 0.234  

3.45E+08 1.417 1.184666667 0.073596169 8.537819095 0.232  

1.07E+08 0.94 0.707666667 -0.150171261 8.029383778 0.23  

1.07E+08 0.899 0.666666667 -0.176091259 8.029383778 0.234  

1.07E+08 0.9 0.667666667 -0.175440305 8.029383778 0.232  

1.07E+08 0.946 0.713666667 -0.146504587 8.029383778   

1.07E+08 0.924 0.691666667 -0.160103154 8.029383778 0.232333333 AVERAGE 

2.00E+07 0.478 0.245666667 -0.609653767 7.301029996 0.001505545 ST. DEV 

2.00E+07 0.471 0.238666667 -0.622208232 7.301029996   

2.00E+07 0.468 0.235666667 -0.627701841 7.301029996   

2.00E+07 0.49 0.257666667 -0.588941761 7.301029996   

2.00E+07 0.463 0.230666667 -0.63701516 7.301029996   

1.40E+06 0.295 0.062666667 -1.202963405 6.146128036   

1.40E+06 0.292 0.059666667 -1.224268224 6.146128036   

1.40E+06 0.293 0.060666667 -1.217049867 6.146128036   

1.40E+06 0.292 0.059666667 -1.224268224 6.146128036   

1.40E+06 0.296 0.063666667 -1.196087887 6.146128036   

5.20E+05 0.269 0.036666667 -1.43572857 5.716003344   

5.20E+05 0.269 0.036666667 -1.43572857 5.716003344   

5.20E+05 0.268 0.035666667 -1.447737477 5.716003344   

5.20E+05 0.267 0.034666667 -1.460087915 5.716003344   

5.20E+05 0.269 0.036666667 -1.43572857 5.716003344   

 

Calibration curve for Lb. sakei L115 at 25 °C. 

y = 0.5472x - 4.5845
R² = 0.9976
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HIGHLIGHTS 

• Lactobacillus sakei CTC494 inhibited Listeria monocytogenes in sea bream fillets during 

chilled and moderated abuse temperature storage. 

• L. sakei CTC494 did not increase deterioration of fillets sea bream at an initial level of ≤ 4 

log cfu/g. 

• L. sakei CTC494 showed potential as bioprotective culture for fish products. 

• An approach from both to food was developed for modelling microbial interaction. 

• Model simulation the bioprotective effect of L. sakei CTC494 on L. monocytogenes in 
sea bream.
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Abstract 
The objective of this work was to quantitatively evaluate the effect of Lactobacillus sakei 

CTC494 (sakacin-producing bioprotective strain) against Listeria monocytogenes in fish juice 

and to apply and validate three microbial interaction models (Jameson, modified Jameson and 

Lotka Volterra models) through challenge tests with gilthead sea bream (Sparus aurata) fillets 

under modified atmosphere packaging stored at isothermal and non-isothermal conditions. L. 

sakei CTC494 inhibited L. monocytogenes growth when simultaneously present in the matrix 

(fish juice and fish fillets) at different inoculation ratios pathogen:bioprotector (i.e. 1:1, 1:2 and 

1:3). The higher the inoculation ratio, the stronger the inhibition of L. monocytogenes growth, 

with the ratio 1:3 yielding no growth of the pathogen. The maximum population density (Nmax) 

was the most affected parameter for L. monocytogenes at all inoculation ratios. According to 

the microbiological and sensory analysis outcomes, an initial inoculation level of 4 log cfu/g 

for L. sakei CTC494 would be a suitable bioprotective strategy without compromising the 

sensory quality of the fish product. The performance of the tested interaction models was 

evaluated using the Acceptable Simulation Zone approach. The Lotka Volterra model showed 

slightly better fit than the Jameson-based models with 75- 92 % out of the observed counts 

falling into the Acceptable Simulation Zone, indicating a satisfactory model performance. The 

evaluated interaction models could be used as predictive modelling tool to simulate the 

simultaneous behaviour of bacteriocin-producing Lactobacillus strains and L. monocytogenes; 

thus, supporting the design and optimization of bioprotective culture-based strategies against 

L. monocytogenes in minimally processed fish products. 

 

Keywords: biopreservation, food-borne pathogen, lactic acid bacteria, competition model, 

minimally processed fish, predictive microbiology. 

  



Microbial interaction in gilthead sea bream fillets 

193 

5.1. Introduction 

Global consumption of fresh and minimally processed fish has grown rapidly in recent 

decades. In this regard, aquaculture has been responsible for the extraordinary growth in the 

supply of fish for human consumption, which resulted in a record-high per capita consumption 

of 20.3 kg in 2016 (FAO, 2018). The combination of chemical oxidation of lipids, autolytic 

biochemical reactions and physico-chemical characteristics make fish a highly perishable 

product, but also an ideal environment for growth of spoilage microorganisms and food-borne 

pathogens (Dalgaard et al., 2006; Parlapani et al., 2014). Among the pathogenic bacteria, 

Listeria monocytogenes stands out because of its ability to tolerate salty environments and 

multiply in refrigerated foods, coupled with the high mortality rates in humans (CDC, 2017). 

The pathogen has been isolated from a variety of raw fish and processed fish products 

(Abdollahzadeh et al., 2016; Lennox et al., 2017; Rožman et al., 2016), and according to the 

last report of the European Food Safety Authority (EFSA), “fish and fishery products” showed 

the highest levels of non-compliance with the food safety microbiological criteria for L. 

monocytogenes laid down by Regulation (CE) 2073/2005 (EFSA, 2017). 

Lactic acid bacteria (LAB), and lactobacillus in particular, constitute the dominant 

microbiota in several types of foods and many LAB species are used as microbial food cultures 

(MFC) in food production. In the European Union (EU), there is no specific regulation 

regarding MFC; but with a long history of safe use, they are considered traditional food 

ingredients and are legally permitted without premarket approval. Thus, MFC defined as 

characteristic food ingredients must be listed on the ingredient labels of the final food in 

agreement with the Regulation (EU) 1169/2011. In addition, when added to a food, MFC must 

comply with the requirements established in the General Food Law (Regulation (EC) 

178/2002), i.e. they must be safe for their intended use (Herody et al., 2010; Laulund et al., 

2017). Many LAB genera and species are generally recognized as safe (GRAS) by the FDA 

(2018) and have the qualified presumption of safety (QPS) status established by EFSA. Among 

LAB, Lactobacillus is the genus including a high number of GRAS species, and particularly, 

Lactobacillus sakei is included in the QPS list (EFSA BIOHAZ, 2017), thus not requiring the 

full safety assessment (antibioresistance, virulence, and biogenic amine characterization) for its 

market authorisation in the EU. The application of selected LAB strains as bioprotective 

cultures has demonstrated a high potential to inhibit undesirable spoilage and pathogenic 

bacteria in fresh fish and RTE fish products, including L. monocytogenes (Anacarso et al., 
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2014; Brillet et al., 2005). The inhibitory mechanism of LAB includes microbial growth 

competition as well as microbial antagonism associated with the production of antimicrobial 

metabolites such as organic acids (lactic acid, acetic acid, etc.), hydrogen peroxide and more 

specifically, bacteriocins active against specific bacteria such as L. monocytogenes (Gómez-

Sala et al., 2016). In relation to the latter, sakacins, being produced by certain L. sakei strains, 

belong to subclass IIa of bacteriocins which are generally known to have a strong anti-listerial 

activity (Leroy and De Vuyst, 2000). The lethal action of these bacteriocins results from 

membrane pore formation of the target cell causing depletion of vital components as well as 

dissipation of the proton motive force (Héchard and Sahl, 2002). 

Microbial interaction has been addressed in the predictive microbiology field mainly 

focused on the inhibitory effect of endogenous LAB on L. monocytogenes behaviour 

(Mejlholm and Dalgaard, 2007). Interaction models are usually intended to quantify how much 

the growth one population is reduced by the growth of other populations (Cornu et al., 2011; 

Pérez-Rodríguez and Valero, 2013). Thus, two model approaches are generally used to describe 

the interaction of LAB and L. monocytogenes: i) those based on the Jameson effect 

phenomenon (Jameson, 1962) that describes the simultaneous stop of growth of all bacterial 

populations at the time when the dominant bacteria population reaches its stationary phase 

(Giménez and Dalgaard, 2004; Mellefont et al., 2008; Møller et al., 2013) and ii) the predator-

prey models based on the Lotka Volterra equation, which allow to describe the dynamics of 

two competing bacterial populations by incorporating an additional term describing the 

reduction of the growth rate of a given population, this being proportional to the population 

density of other competing population (Powell et al., 2004; Valenti et al., 2013; Vereecken et 

al., 2000). 

Predictive models dealing with the interaction between the pathogen Listeria and 

bacteriocin-producing LAB strains in foods other than fermented meat products (Drosinos et 

al., 2006; Leroy et al., 2005) are, to the best knowledge of the authors, not available in literature. 

Their development would provide the food industry with valuable tools to evaluate the effect 

of potential bioprotective cultures against L. monocytogenes in specific food matrices, thereby 

enhancing food safety. In this respect, minimally processed and RTE fish products made of raw 

fish, which are consumed without applying any lethal treatment, could pose a serious risk in 

relation to L. monocytogenes (Jami et al., 2014; Miettinen and Wirtanen, 2005; Rožman et al., 

2016). Sea bream, considered a valuable fish species in Mediterranean EU countries, has been 
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included over the last years as main ingredient in popular non-heated RTE fish products, such 

as sushi, carpaccio and other products (Bolívar et al., 2018). This fish species is mostly 

commercialized fresh as whole fish and in several supermarket chains as filleted fish under 

modified atmosphere packaging (MAP). 

Therefore, the objective of this work was i) to quantitatively evaluate the effect of the 

sakacin-producing bioprotective strain Lactobacillus sakei CTC494 against L. monocytogenes 

CTC1034 in a fish model system and ii) to apply and validate microbial interaction models to 

simulate the simultaneous growth of both microorganisms in gilthead sea bream (Sparus aurata) 

fillets under MAP at isothermal and non-isothermal conditions. 

5.2. Material and Methods 

5.2.1. A step-wise approach for interaction model development 

A step-wise approach was followed to develop interaction models simulating the growth of 

the bioprotective L. sakei CTC494 and L. monocytogenes CTC1034 in fish fillets under MAP 

during isothermal and dynamic storage temperature. A schematic overview of the step-wise 

method is shown in Figure. 5.1. 
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Figure. 5.1. A schematic overview of the modelling approach used in this study. Solid lines 

represent the experiments carried out for data generation, while dotted and dashed lines stand 

for the model building process and interaction model simulation, respectively. Lag phase 

duration: λ, maximum specific growth rate: μmax and maximum population density: Nmax. 

In the first step, the primary kinetic parameters lag time (λ), maximum specific growth rate 

(μmax) and maximum population density (Nmax) were obtained for each microorganism from 

experimental data in mono-culture in fish (sea bream) juice at different temperature conditions 

(Section 5.2.3) and based on those, secondary models were generated (Section 5.2.7.2). 

Secondly, experimental data obtained in fish juice in co-culture were used (Section 5.2.3) to 

estimate competition parameters in interaction models by means of a regression process 

(Section 5.2.7.4). In a third step, the parameters from the secondary models and estimated 

interaction parameters for the model showing the best performance were used to simulate 

microbial interaction on fish fillets stored under MAP at isothermal and non-isothermal 

conditions (Section 5.2.5.2). The values for interaction parameters were assumed to be constant 

in the tested ratios for both microorganisms, hence the average from all assayed temperatures 

was used to define these parameters. Since an effect of the fish matrix and MAP conditions on 

kinetic parameters was expected, the maximum specific growth rate obtained in fish juice was 

adjusted to consider such effects. To determine the adjustment factor, data from experiments 

made with fish fillets (Section 5.2.5.1) were used, in which both microorganisms were 

inoculated separately at the same level and monitored under the same temperature conditions 

used in the fish juice experiments. The adjustment factor for μmax of each microorganism was 

calculated as the ratio between the μmax values obtained in fish product and in fish juice and 

were assumed to be constant for the range of temperatures tested. Therefore, the same 

adjustment factor was applied to simulate the microbial interaction on fresh fish fillets at 

isothermal and non-isothermal temperature conditions. 

5.2.2. Bacterial strains and inoculum preparation 

The bacteriocin-producing L. sakei CTC494 strain was selected as bioprotective culture in 

this study. This strain is a producer of bacteriocin, sakacin K, being able to inhibit the growth 

of spoilage bacteria and Listeria (Hugas et al., 1993). The strain L. monocytogenes CTC1034 

previously used as indicator to study the antagonism the LAB produced bacteriocins (Garriga 

et al., 2002) was used in the present study as target pathogen. This strain has the same serotype 
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(i.e. 4b) as the clinical isolate Scott A. Stock cultures were stored at −80 °C in de Man Rogosa 

and Sharpe (MRS, Oxoid, UK) broth for the LAB strain and in Brain Heart Infusion (BHI, 

Oxoid) for the pathogen, both with 20% glycerol as cryoprotectant. 

Before experiments, L. sakei CTC494 and L. monocytogenes CTC1034 were pre-cultured 

separately at static conditions in MRS (Oxoid, UK) at 33 °C with 10% CO2 and BHI broth (BHI, 

Oxoid) at 37 °C, respectively. Two consecutive 24 h-subcultures were made for each 

microorganism by transferring 0.1 mL to tubes containing 9 mL of fresh respective media and 

incubating at the same above-mentioned temperatures. Then, a third subculture was prepared, 

and tubes were incubated for 18-20 h at the appropriate temperature resulting in early stationary 

phase cultures, with a cell density of ca. 108 cfu/mL and 109 cfu/mL for L. sakei CTC494 and 

L. monocytogenes CTC1034, respectively. 

5.2.3. Experiments with L. sakei CTC494 and L. monocytogenes CTC1034 in mono- and co-

culture in fish juice 

Sterile fish juice was prepared from fresh muscle of gilthead sea bream following the 

protocol described by Bolívar et al. (2018). The prepared cultures (Section 5.2.2) were twice-

washed in phosphate buffered saline solution (PBS) (Medicago AB, Uppsala, Sweden) by 

centrifugation at 4100 rpm (Jouan C4i, Thermo Electron Corporation, France) for 10 min and 

cells were re-suspended in fish juice. The suspensions of L. monocytogenes and L. sakei were 

serially diluted ten-fold in fish juice to obtain the desired concentration to be inoculated to fish 

juice at 1% (v/v). 

Growth experiments were carried out at static conditions in sterile 250-mL Schott bottles 

containing fish juice. In the mono-culture experiments, the inoculum concentration of each 

microorganism was set to ca. 102 cfu/mL. For the co-culture experiments, the inoculum 

concentration of L. monocytogenes was always 102 cfu/mL, while for L. sakei CTC494, three 

different concentrations were investigated, (102, 104 and 106 cfu/mL), thus generating three 

(initial) inoculation ratios L. monocytogenes: L. sakei that corresponded to 1:1, 1:2 and 1:3 

when bacterial concentrations were expressed in logarithmic scale. After inoculation, flasks 

were stored at four constant temperatures targeted at 2, 5, 8 and 12 °C during a period from 5 

to 46 days. Storage temperature was recorded at regular time intervals using data loggers 

(Fourtec, MiniLitE5032L, USA) and the mean of registered temperatures (i.e. 2.2, 5.0, 8.1 and 

12.1 °C) was used for modelling purposes. Each experiment was performed in duplicate. 
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5.2.4. Quality deterioration assessment of fresh fish sea bream fillets under MAP 

5.2.4.1. Fish fillet product description 

Individual plastic trays containing two fresh gilthead sea bream fillets packed under MAP 

were supplied by a private company (Zaragoza, Spain). Fish trays were received at the 

laboratory 18–24 h after processing in expanded polystyrene boxes with flake ice. The average 

weight of the fish fillets was 332.2 ± 12.1 g with an initial pH of 6.11 ± 0.05 (Hanna Edge, 

HI2020, USA). The initial headspace gas composition in the trays was measured using a O2/CO2 

gas analyser (Gaspace 2, Systech Instruments, U.K.) and the obtained values corresponded 

to37.4 ± 0.7% for O2 and 27.0 ± 1.0% for CO2. 

5.2.4.2. Inoculation of fish fillets 

Bacterial suspensions prepared as described in Section 5.2.2 were serially diluted ten-fold 

with physiological saline water (PSW, 0.85 % w/v NaCl). For inoculation, aliquots of 0.01 mL 

were taken from the appropriate decimal dilution and deposited on the caudal region of the fish 

fillet. Inoculation was performed using a 1-mL syringe with needle (BD Plastipak, Spain) 

inserted through an adhesive septum (ø 15 mm, PBI Dansensor, Denmark) which was 

previously placed on the laminate film of the plastic tray. 

5.2.4.3. Sensory analysis 

A preliminary sensory analysis was conducted to assess the effect of the initial level of L. 

sakei CTC494 on fish quality deterioration. In that aim, fish fillets were inoculated with L. sakei 

CTC494 as described in the previous section at three initial concentrations of 102, 104 and 106 

cfu/g (n = 14, 14 and 10, respectively). A control batch was prepared without added bacteria (n 

= 14). All trays were stored at 5.0 ± 0.12 °C. 

A semi-trained sensory panel made up of five members from the Faculty of Veterinary 

(University of Cordoba, Spain) was required in order to evaluate the quality changes of the fish 

fillets using the Quality Index Method (QIM) (Bremner, 1985). This method is based on the 

use of significant sensory parameters and characteristic attributes for raw fish with a scoring 

system of demerit points (≤ 3), which is in direct proportion to their importance in the 

deterioration pattern of the species (Huidobro et al., 2000). The scores for all the characteristics 

are summed-up to give an overall sensory score, the so-called Quality Index (QI) (Botta, 1995). 
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A QI of 0 indicates a very fresh fish and score increases as the freshness's characteristics 

deteriorate (Campus et al., 2011). 

In our study, the QIM was adapted from the scheme proposed by Lougovois et al. (2003) 

and Campus et al. (2011) to evaluate freshness in gilthead sea bream fillets under MAP. The 

attributes scored by the sensory panel are shown in Supplementary Table S5.1. A linear 

correlation was established for each experimental condition (i.e. control and inoculated batches) 

between the freshness expressed by the QI and storage time (Microsoft Excel, Redmond, USA). 

The QI scores obtained by the five panellists in each evaluation day for inoculated and control 

fillets were statistically compared by a t-Student test (p = 0.05) using the statistical software 

package SPSS 24.0 (Chicago, Illinois, USA). 

Sensory results demonstrated that the rate of freshness loss was similar for fillets inoculated 

with 102 and 104 cfu/g of L. sakei compared to control fillets (data not shown). Hence, a level 

of 102 and 104 cfu/g of L. monocytogenes and L. sakei, respectively (ratio 1:2 in log scale) was 

defined for co-inoculation experiments in fish fillets (Section 5.2.5.2). 

The application of L. sakei CTC494 as protective culture was sensory validated on fish 

fillets inoculated with both microorganisms at a ratio 1:2, which corresponded to, in arithmetic 

scale, ca. 102 cfu/g L. monocytogenes CTC1034 and ca. 104 cfu/g L. sakei CTC494. Inoculated 

fish and control (i.e. non-inoculated) fillets were stored at 5 ± 0.12 °C for 8 days. Sensory 

assessment was performed on days 0, 4, 6 and 8. 

5.2.5. Experiments with L. sakei CTC494 and L. monocytogenes CTC1034 on fresh gilthead 

sea bream fillets 

5.2.5.1. Mono-culture experiments 

The effect of food matrix on the growth of L. sakei CTC494 and L. monocytogenes 

CTC1034 was evaluated by inoculating both microorganisms independently in fresh fish fillets. 

For that, fish fillets were acquired and inoculated (n = 36) as described in Sections 5.2.4.1 and 

5.2.4.2. An additional control batch (n = 22) with non-inoculated fish fillets was prepared. 

Experiments were carried out at a target temperature of 5 °C (measured mean temperature of 

4.8 ± 0.14 °C) for 25 days until microorganisms reached the stationary phase. 

5.2.5.2. Co-culture experiments 

The interaction between L. sakei and L. monocytogenes on fish fillets was evaluated by co-

inoculation at the selected 1:2 ratio (i.e. 2 log cfu/g L. monocytogenes and 4 log cfu/g L. sakei), 
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which was previously defined according to results from Section 5.2.4.3. Before inoculation, 

bacterial suspensions were serially diluted ten-fold in PSW to obtain the desired concentration 

and mixed at equal volumes. Control (n = 56) and inoculated (n = 106) fillets were stored at 

two isothermal conditions with a mean of 4.8 ± 0.14 and 8.2 ± 0.10 °C for to 14 and 10 days, 

respectively. For the experiments at non-isothermal conditions, fillets were stored at two 

dynamic temperature profiles, ranging from 4 to 8 °C (profile 1) and from 2.5 to 12 °C (profile 

2), for a total period of 12 and 10 days, respectively. The storage temperature was recorded at 

regular time intervals using data loggers (Fourtec, MiniLitE5032L, USA). 

5.2.6. Microbiological analyses 

For experiments in fish juice, at each sampling point, 1 mL sample was aseptically taken 

from each flask and serially diluted ten-fold in PSW. For experiments with fish product, a 25-

g portion of the (inoculated) fish fillet's caudal region, considered as the analytical sample, was 

taken aseptically and transferred to a stomacher bag containing 225 mL PSW. Samples were 

homogenized for 60 s (1500 rpm) in a stomacher (Masticator, IUL Instruments, Spain). MRS 

agar supplemented with bromocresol purple (BP, 0.12 g/L, Sigma-Aldrich, USA) and Listeria 

selective agar base (Oxoid) containing selective supplement (SR140E; Oxoid) were used for 

the enumeration of L. sakei and L. monocytogenes, respectively. BP is a pH indicator used for 

the enumeration of LAB in foods that indicates the production of lactic acid by changing the 

MRS colour from purple to yellow (Sobrun et al., 2012). Plates were incubated for approx. 48 

h at 33 °C under 10% CO2 for L. sakei and at 37 °C for L. monocytogenes. 

5.2.7. Development of predictive models 

5.2.7.1. Primary model fitting to mono-culture data 

Plate counts for L. sakei and L. monocytogenes were transformed into decimal logarithmic 

values (i.e. log cfu/g or mL). The growth parameters λ, μmax and Nmax obtained from each storage 

temperature for mono and co-culture experiments were estimated by fitting the Baranyi and 

Roberts (1994) defined by Eqs. (5.1) and (5.2) to the observed data (mean of duplicates at each 

sampling point) using DMFit Excel Add-in v. 3.5. 
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where Nt is the cellular concentration (cfu/g or mL) at time t, N0 is the initial concentration 

(cfu/g or mL), μmax is the specific maximum growth rate (h-1), λ is the lag time (h), Nmax is the 

maximum population density (cfu/g or mL), m is a curvature factor, F(t) represents an 

adjustment function for the model. 

5.2.7.2. Secondary models for mono-culture experiments 

The influence of temperature on the primary growth parameters of L. sakei and L. 

monocytogenes in fish juice was estimated using the square-root model (Eq. 5.3) (Ratkowsky 

et al., 1982) which was fitted in MS-Excel (Microsoft, Redmond, USA). 

( )minTTbp −=                                                                                                                     (5.3) 

where p is the kinetic parameter (i.e. λ and μmax), b is a constant, T (°C) is temperature and Tmin 

is the theoretical minimum temperature for growth. 

5.2.7.3. Effect of microbial interaction on kinetics parameters 

To quantify the reduction on L. monocytogenes growth by the bioprotective L. sakei 

CTC494 in fish juice, a reduction ratio (α) was calculated based on the fraction between the 

parameters obtained in co-culture (pco) and mono-culture (pmono) as shown by Eq. (5.4). To that 

aim, the parameters from co-culture experiments were also obtained by the Baranyi model (see 

Section 5.2.7.1). 
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where α is the reduction ratio and pco and pmono the kinetic parameters (i.e. λ and μmax) in co-

culture and mono-culture, respectively.  
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5.2.7.4. Modelling microbial interaction between L. sakei CTC494 and L. monocytogenes 

CTC1034 

To predict the simultaneous growth between the bioprotective L. sakei strain (at different 

initial concentrations) and L. monocytogenes in fish juice stored at 2.2 ± 0.08, 5.0 ± 0.33, 8.1 

± 0.33 and 12.1 ± 0.12 °C, three different microbial interactions models were tested.  

Firstly, the Jameson effect model based on Eqs. (5.5) and (5.6), which assumes that the 

growth of the pathogen halts when the dominant microbial population reaches its Nmax (Cornu 

et al., 2011; Jameson, 1962). 
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where N is the cell concentration (cfu/mL) at time t (h), μmax is the maximum specific growth 

rate (h−1), Nmax is the maximum population density (cfu/mL) and Q is a measure of the 

physiological state of cells at time t (h), for L. sakei (Ls) or L. monocytogenes (Lm). 

The value of Q at t = 0 (Q0) was calculated for both microorganisms as follows: 
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In our study, a modification of the Jameson effect model was also used, represented by Eqs. 

(5.10) and (5.11). This modification includes the parameters NcriLs and NcriLm that describe the 

maximum critical concentration that a population should reach to inhibit the growth of the other 

population (Jameson, 1962; Le Marc et al., 2009; Vasilopoulos et al., 2010). 
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where Ncri is the maximum critical concentration (cfu/mL) of L. sakei (Ls) on L. monocytogenes 

(Lm) and vice-versa. The rest of model parameters are described in Eqs. (5.5) to (5.9). 

Finally, the traditional Lotka Volterra model, also referred to as predator-prey model, was 

used according to Eqs. (5.14) and (5.15). This model includes two empirical parameters 

reflecting the degree of interaction between microbial species (FLsLm and FLmLs) (Cornu et al., 

2011; Fujikawa et al., 2014; Giuffrida et al., 2008). Depending on the empirical parameter value 

for L. sakei (FLsLm), the growth of L. monocytogenes can be affected in three different ways: 

1) If 0 < FLsLm < 1, L. monocytogenes grows with reduced µmax after L. sakei reaches Nmax.  

2) If FLsLm = 1, L. monocytogenes stops growing when L. sakei reaches its Nmax. 

3) If FLsLm > 1, L. monocytogenes population declines when L. sakei reaches its Nmax. 
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where FLsLm and FLmLs are, respectively, the competition factor parameters of L. sakei CTC494 

on L. monocytogenes CTC1034 and vice-versa. The other parameters are as indicated in Eqs. 

(5.5-5.9). 

The interaction parameters Ncri (maximum critical concentration of one population) and FLsLm 

and FLmLs (competition factors of one species on the other) were estimated by regression using 

kinetic parameters derived from mono-culture data (see Sections 5.2.7.1 and 5.2.7.2). To 

estimate the best-fit values of interaction parameters, an optimization procedure was 

implemented in MATLAB version R2015b using the functions fmincon and ode45 (The 

MathWorksInc®, Natick, USA).  
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5.7.2.5. Goodness-of-fit indexes and predictive model performance 

The goodness-of-fit of the primary and secondary models was assessed by root mean square 

error (RMSE) and coefficient of determination (R2). 

The performance of the developed interaction models to predict the behaviour of the 

bioprotective L. sakei CTC494 and L. monocytogenes CTC1034 in MAP-fish fillets under 

isothermal and non-isothermal temperature conditions was evaluated by the acceptable 

simulation zone (ASZ) approach. Model performance is considered acceptable when at least 

70% of the observed log counts values are within the ASZ, defined as ± 0.5 log-units from the 

simulated concentration in log units (Mejlholm and Dalgaard, 2015; Møller et al., 2013). 

5.3. Results 

5.3.1. Primary growth parameters of L. sakei CTC494 and L. monocytogenes CTC1034 in 

mono-culture in fish juice and fish fillets 

The two studied microorganisms were able to grow in sterile fish juice when stored at 2.2 

± 0.08, 5.0 ± 0.33, 8.1 ± 0.33 and 12.1 ± 0.12 °C and on fish fillets at 4.8 ± 0.14 °C. The growth 

curves obtained from the fit of the Baranyi and Roberts model provided a good description of 

the observed data (Supplementary Fig. S5.1). The parameters λ and μmax varied with 

temperature, while Nmax was not affected, with average values of 7.92 and 8.74 log cfu/mL for 

L. sakei CTC494 and L. monocytogenes CTC1034, respectively. The parameters estimated by 

the Baranyi and Roberts model are shown in Table 5.1. For both fish matrices (juice and fillets) 

the model showed good fit to data (R2 > 0.98) (Supplementary Table S5.2). A minimum of 7 

and a maximum of 23 sampling points were taken for each microorganism depending on the 

storage temperature. In summary, results in mono-culture confirmed that the bioprotective 

strain L. sakei CTC494 presented better ability to grow in fish juice at low temperatures, which 

was also observed on fish fillets. 
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Table 5.1. Estimated lag time (λ), maximum specific growth rate (μmax) and Nmax (maximum population density) and associated standard errors 

for L. sakei CTC494 and L. monocytogenes CTC1034 in mono-culture obtained from the Baranyi and Roberts model in sterile fish juice of 

sea bream and sea bream fillets under modified atmosphere packaging. 

Matrix 
Temp. 
(°C) 

Lactobacillus sakei CTC494  Listeria monocytogenes CTC1034 

log N0 (Ls)  
(log cfu/mL or g) 

λ (h) μmax (h
-1) 

log Nmax  
(log cfu/mL or g) 

 log N0 (Lm) 
(log cfu/mL or g) 

λ (h) μmax (h
-1) 

log Nmax  
(log cfu/mL or g) 

Fish 
juicea 

2.2 2.36 92.4 ± 7.55 0.0351 ± 0.0004 7.70 ± 0.03  2.59 166.7 ± 23.20 0.0226 ± 0.0004 8.92 ± 0.10 

5.0 2.04 43.1 ± 6.72 0.0697 ± 0.0005 7.85 ± 0.05  1.53 36.1 ± 7.13 0.0477 ± 0.0005 8.65 ± 0.05 

8.1 2.67 18.7 ± 5.04 0.1273 ± 0.0039 7.94 ± 0.05  2.29 15.1 ± 6.26 0.0892 ± 0.0019 8.68 ± 0.07 

12.1 2.48 5.3 ± 2.68 0.2140 ± 0.0052 8.17 ± 0.07  2.39 2.0 ± 2.01 0.1685 ± 0.0020 8.70 ± 0.06 

           
Fresh 
fish 
filletsb 

4.8 1.49 33.8 ± 11.39 0.0806 ± 0.0036 7.08 ± 0.13 
 

2.71 56.1 ± 35.23 0.0154 ± 0.0006 5.68 ± 0.13 

a Experiments in sterile fish juice of gilthead sea bream inoculated with ca. 102 cfu/mL of L. sakei or L. monocytogenes. 
b Experiments on gilthead sea bream fillets under modified atmosphere packing inoculated with ca. 102 cfu/g of L. sakei or L. monocytogenes. 
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5.3.2. Secondary model 

The parameters λ and μmax obtained from the Baranyi and Roberts model were used to 

fit a square-root model (Eq. (5.3)). The ability of the secondary models to describe the 

influence of temperature on the growth parameters was proven to be satisfactory 

according to the values from RMSE and R2, whose values were in the ranges 0.064–0.086 

and 0.874–0.999, respectively. A summary of results from the fitting of the square-root 

model for both microorganisms is shown in Table 5.2. 

Table 5.2. Coefficients of the square-root model describing the effect of temperature on 

lag time (λ) and maximum specific growth rate (μmax) of L. sakei CTC494 and L. 

monocytogenes CTC1034 in sterile fish juice of sea bream. 

Parameters Microorganisms b Tmin (°C) RMSEa R2 

λ
 L. sakei CTC494 -0.7269 14.69 7.365 0.9695b 

L. monocytogenes CTC1034 -1.0868 12.42 30.332 0.8737 
      

μmax
 L. sakei CTC494 0.0280 -4.50 0.086 0.9994 

L. monocytogenes CTC1034 0.0263 -3.40 0.064 0.9990 
a RMSE, Root mean square error. 
b R2, Coefficient of determination. 

 

5.3.3. Interaction of L. sakei CTC494 and L. monocytogenes CTC1034 in fish juice ate 

different temperatures and inoculation ratios 

The influence of storage temperature and the inoculation ratio (1:1, 1:2 and 1:3) on 

the interaction of L. sakei CTC494 and L. monocytogenes CTC1034 was assessed. To 

allow a comparison with kinetic parameters in mono-culture, the Baranyi and Roberts 

model without considering interaction was fitted to experimental data in co-culture (Table 

5.3). The statistical indexes for the fitted model presented satisfactory RMSE and R2 

values (Supplementary Table S5.3). 
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Table 5.3. Estimated lag time (λ), maximum specific growth rate (μmax), Nmax (maximum population density) and associated standard error 

from the Baranyi and Roberts model without interaction fitted to the growth of L. sakei CTC494 and L. monocytogenes CTC1034 in co-

culture in sterile fish juice of sea bream. 

Ratioa 
Temp. 
(°C) 

  Lactobacillus sakei CTC494 
 

Listeria monocytogenes CTC1034 
  log N0 (Ls) 

log cfu/mL 
λ (h) μmax (h

-1) 
log Nmax  

(log cfu/mL) 
 log N0 (Lm) 

log cfu/mL 
λ (h) μmax (h

-1) 
log Nmax  

(log cfu/mL) 
1:1 

2.2 

 
2.37 53.3 ± 11.72 0.0350 ± 0.0007 7.74 ± 0.05  2.52 75.4 ± 16.32 0.0223 ± 0.0006 5.77 ± 0.04 

1:2 
 

4.58 59.5 ± 8.08 0.0355 ± 0.0097 7.63 ± 0.04  2.60 106.1 ± 6.45 0.0268 ± 0.0008 4.28 ± 0.01 
1:3 

 
6.77 39.4 ± 14.39 0.0284 ± 0.0027 7.99 ± 0.03  2.57  NGc  

   
         

1:1 

5.0 

 
2.84 30.0 ± 4.72 0.0675 ± 0.0012 7.94 ± 0.07  2.42 36.9 ± 6.87 0.0490 ± 0.0012 5.94 ± 0.03 

1:2 
 

4.59 23.0 ± 7.52 0.0625 ± 0.0026 7.86 ± 0.05  2.49 14.5 ± 18.80 0.0334 ± 0.0053 4.22 ± 7.35 
1:3 

 
6.62 11.8 ± 3.13 0.0294 ± 0.0007 7.68 ± 0.01  2.46b  NG   

 
 

         

1:1 

8.1 

 
2.42 20.3 ± 3.50 0.1373 ± 0.0029 8.11 ± 0.06  2.27 12.3 ± 19.73 0.1085 ± 0.0131 6.07 ± 0.18 

1:2 
 

4.34 15.2 ± 2.15 0.1266 ± 0.0023 8.14 ± 0.03  1.92 0.0 ± 0.00 0.0977 ± 0.0058 4.03 ± 0.11 
1:3 

 
6.37 0.0 ± 0.00 0.0703 ± 0.0027 7.96 ± 0.03  2.24b  NG   

 
 

         

1:1 
12.1 

 
2.49 6.4 ± 1.62 0.2292 ± 0.0035 8.17 ± 0.06  2.33 1.3 ± 1.86 0.1959 ± 0.0035 6.81 ± 0.08 

1:2 
 

4.40 5.1 ± 1.16 0.2273 ± 0.0046 8.20 ± 0.03  2.47 0.0 ± 0.00 0.1733 ± 0.0065 4.86 ± 0.12 
1:3 

 
6.37 0.0 ± 0.00 0.1716 ± 0.0073 8.06 ± 0.03  2.47b  NG  

a Ratio of inoculation of L. monocytogenes CTC1034 and L. sakei CTC494 in fish juice of sea bream where the ratios 1:1, 1:2 or 1:3 represent the initial concentrations 
of 2 log cfu/mL for the L. monocytogenes strain and 2, 4, 6 log cfu/mL for the L. sakei strain, respectively. 
b Observed initial concentration of L. monocytogenes.  
c NG, no growth.
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The most evident outcome from these experiments was that higher ratios produced 

stronger inhibition of L. monocytogenes growth, with the ratio 1:3 yielding no apparent 

growth for the pathogen. The parameter μmax was little influenced, even though values 

obtained in co-culture were generally lower than those obtained in mono-culture. Fig. 5.2 

represents, through a bar diagram, a comparison of λ and Nmax obtained from mono-culture 

and co-culture at the different conditions by using the reduction ratio (α) calculated 

according to Eq. (5.4). From this figure, it can be observed that α for λ varied for L. 

monocytogenes among the different inoculation ratios, but in all co-culture experiments, 

λ presented a reduction with respect to that observed in mono-culture. However, further 

analysis of data confirmed that differences were rather produced by the fitting process 

(i.e. prediction error) affected by the relatively λ short duration (≥5 °C; λ ≤ 36 h) than a 

hypothetical interaction between microorganisms. 

Fig.5.2. Reduction ratio(α), in %, of the parameters (a) lag time (λ) and (b) Nmax for Listeria 

monocytogenes CTC1034 (black bars) and Lactobacillus sakei CTC494 (greys bars) in 

co-culture on sterile juice fish of sea bream at different storage temperatures with three 
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inoculation ratios of L. monocytogenes: L. sakei. The negative bars represent an increase 

in co-culture for the specific parameter. No growth of L. monocytogenes was observed at 

the ratio 1:3 (NG). 

On the other hand, Nmax was the most affected parameter for L. monocytogenes at all 

concentration ratios. For instance, in mono-culture experiments at 5.0 °C (Table 5.1), log 

Nmax was 8.65 log cfu/mL while for co-culture experiments, the parameter was gradually 

decreasing to 5.94 (α = 31%), 4.22 (α = 51%) and 1.37 (α = 84%) log cfu/mL for 

inoculation ratios 1:1, 1:2 and 1:3, respectively. For the latter, the putative “Nmax” was 

taken from observations since the Baranyi and Roberts model could not be fitted to data 

at ratio 1:3 as no growth was observed. Similar inhibition patterns were observed for the 

other assayed temperatures (Fig. 5.2). 

5.3.4. Sensorial analysis 

The sensory evaluation results obtained for sea bream fillets under MAP conditions 

stored at 5 °C are presented in Table 5.4. The QI scores obtained for fish samples 

inoculated at a ratio 1:2 (L. monocytogenes: L. sakei) were compared to control samples 

(i.e. non-inoculated). In general, QI scores increased linearly during storage with a 

correlation coefficient (R2) of 0.82 and 0.67 for control and inoculated batches, 

respectively.  The statistical analysis of QI scores showed that L. sakei CTC494 did not 

significantly affect the sensory properties of fish fillets (p > 0.05) during the evaluated 

storage time (8 days). Though the deterioration rate was slightly lower for control (slope 

= 0.47) than for inoculated samples (slope = 0.55), the differences were not statistically 

significant (p > 0.05). Therefore, from the sensory perspective, the addition level of 104 

cfu/g of L. sakei CTC494 would be suitable as bioprotective strategy without modifying 

the spoilage rate in comparison with a control (non-bioprotected) product.  
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Table 5.4. Quality Index values obtained from the sensory analysis of sea bream fillets 

packaged under modified atmosphere and stored under refrigerated conditions (5 °C, 8 

days) for samples inoculated at a ratio 1:2 (Listeria monocytogenes: Lactobacillus sakei) 

(i.e., 2 log cfu/g and 4 log cfu/g, respectively) and control fillets (non-inoculated). 

Storage time (days)a 
Quality Index 

Inoculated fillets Control fillets 
0 0.3 ± 0.5b 0.0 ± 0.0 
4 0.6 ± 1.3 1.2 ± 1.6 
6 2.0 ± 1.7 2.0 ± 2.0 
8 6.3 ± 0.5 4.8 ± 1.9 

a Storage under modified atmosphere packaging at 5 °C. 
b Mean ± standard deviation (n = 5 panellists). 

 

5.3.5. Modelling interaction of L. sakei CTC494 and L. monocytogenes CTC1034 in fish 

juice 

The three interaction models (Fig. 5.3) were tested using the kinetic parameters (λ, 

µmax and Nmax) obtained from the Baranyi and Roberts model fitted to mono-culture 

experiment data and estimating the respective interaction factors by regression analysis. 

The statistical performance of the models was evaluated by RMSE whose values are 

shown in Table 5.5 together with the estimated parameters.
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Fig. 5.3. Experimental observed data and fitted Jameson (dotted line), modified Jameson 

(dashed line) and Lotka Volterra (solid line) models for Lactobacillus sakei CTC494 (○) 

and Listeria monocytogenes CTC1034 (♦) in sterile fish juice of sea bream stored at (a, 

b, c) 2.2, (d, e, f) 5.0, (g, h, i) 8.1 and (j, k, l) 12.1 °C for the inoculation ratios of L. 

monocytogenes: L. sakei, 1:1, 1:2 and 1:3, respectively. The grey dotted line stands for 

the storage temperature recorded. 
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Table 5.5. Estimated maximum critical concentration (Ncri) of the modified Jameson effect model and competition factors (FLsLm and FLmLs) of 

the Lotka Volterra model and goodness-of-fit index (RMSE) for L. sakei CTC494 and L. monocytogenes CTC1034 in co-colture in fish juice 

of sea bream.  

a Ratio of inoculation of L. monocytogenes CTC1034 and L. sakei CTC494 in sterile fish juice where the ratios 1:1, 1:2 or 1:3 represent the initial concentrations of 2 log cfu/mL for the L. 
monocytogenes strain and 2, 4, 6 log cfu/mL for the L. sakei strain, respectively.  
b n, number of data (sampling points) for L. sakei CTC494 and L. monocytogenes. 
c RMSE, Root mean square error. 
d Lmcri maximum critical concentration for L. monocytogenes CTC1034 obtained from the Jameson´s modified model. 
e Lscri maximum critical concentration for L. sakei CTC494 obtained from the Jameson´s modified model 
f FLmLs competition factor of L. monoctytogenes CTC1034 in L. sakei CTC494 obtained from the Lotka Volterra model. 
g FLsLm competition factor of L. sakei CTC494 in L. monoctytogenes CTC1034 obtained from the Lotka Volterra model.

Ratiosa 
Temp. 
(°C) 

nb 

Jameson model 
 

Modified Jameson model 
 

Lotka Volterra model 
Lactobacillus 

sakei 
CTC494 

 
Listeria 

monocytogenes 
CTC1034 

 Lactobacillus  
sakei CTC494 

 Listeria  
monocytogenes CTC1034 

 Lactobacillus  
sakei CTC494 

 Listeria monocytogenes  
CTC1034 

RMSEc  RMSE  RMSE 
Lmcri

d
 

(cfu/mL) 
 RMSE 

Lscri
e
 

(cfu/mL) 
 RMSE FLmLs

f  RMSE FLsLm
g 

                  

1:1 

2.2 
17 0.314  0.423  0.349 1.00*108  0.469 5.00*107  0.314 0.00  0.370 0.84 

1:2 14 0.293  0.189  0.335 1.00*108  0.215 5.00*107  0.293 0.00  0.181 0.94 
1:3 11 0.224  1.214  0.350 1.00*108  0.369 1.90*107  0.294 0.00  0.308 2.67 
                  

1:1 
5.0 

14 0.370  0.387  0.371 1.00*108  0.316 7.49*107  0.371 0.00  0.316 0.90 
1:2 13 0.279  1.058  0.322 1.00*108  0.687 5.00*107  0.274 0.00  0.481 1.54 
1:3 10 0.139  1.240  0.139 1.00*108  0.612 4.62*107  0.139 0.00  0.612 1.46 
                  

1:1 
8.1 

14 0.216  0.666  0.217 1.00*108  0.592 7.16*107  0.216 0.00  0.530 1.20 
1:2 11 0.300  0.930  0.300 1.00*108  0.609 5.00*107  0.301 0.00  0.606 1.87 
1:3 11 0.190  1.796  0.190 1.00*108  0.978 5.00*107  0.190 0.00  0.973 1.86 
                  

1:1 
12.1 

16 0.213  1.138  0.210 9.99*107  0.328 8.92*107  0.214 0.00  0.312 1.63 
1:2 14 0.108  1.424  0.108 1.00*108  0.382 7.57*107  0.124 0.00  0.341 1.81 
1:3 11 0.105  2.050  0.105 1.00*108  1.089 7.51*107  0.105 0.00  1.089 1.95 
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The Jameson effect model presented the worst fitting to data, showing the highest 

RMSE values. This result suggests that the interaction between both microorganisms 

could not be exclusively explained by the Jameson effect, where growth inhibition is the 

result from a depletion in nutrient bioavailability and toxicity increase when the dominant 

population reaches Nmax. The modified Jameson effect model including the parameter Ncri 

showed better performance, with RMSE lower values. For both microorganisms, Ncri 

remained in the same order of magnitude for the different temperatures and inoculation 

ratios, with average values, in log scale, of 7.7 and 8 log cfu/mL for L. sakei CTC494 and 

L. monocytogenes CTC1034, respectively (Table 5.5). 

The Lotka Volterra interaction model showed slightly better fit to data than the above 

models according to RMSE (Table 5.5) and visual analysis of growth curves (Fig. 5.3). 

In the case of the ratio 1:3, a poor fitting was observed for L. monocytogenes although 

this condition also yielded unsatisfactory fitting results for the Jameson effect-based 

models. This could be due to the difficulty of the models to suitably describe the large 

decline of L. monocytogenes population at this ratio. 

As regards the inhibitory effect of L. sakei CTC494 on L. monocytogenes CTC1034 

growth, competition factors (FLsLm) at the lowest temperature (2.2 °C) were below 1 for 

inoculation ratios 1:1 and 1:2, with values of 0.84 and 0.94, respectively. However, for 

the same temperature at ratio 1:3, the competition factor was equal to 2.67. This higher 

value reflected the noticeable decline of L. monocytogenes CTC1034 population (down 

to 0.70 log cfu/mL). For inoculation ratios 1:2 and 1:3, at 5 °C, the competition factors 

increased up to 1.54 and 1.46, respectively. For higher temperatures (8-12 °C), this 

increasing trend in the competition factor was minimized showing a rather variable 

pattern, and therefore, no mathematical model could be derived for such a relationship. 

Thus, for modelling purposes, this parameter was fixed to the average value observed at 

different temperatures for the corresponding inoculation ratio. 

L. monocytogenes CTC1034 did not exert any inhibitory effect on L. sakei CTC494 

as demonstrated by the competition factor (FLmLs) being equal to 0 (Table 5.5). 

5.3.6. Simulation of growth interaction of L. sakei CTC494 and L. monocytogenes 

CTC1034 on fish fillets 

The simultaneous growth of L. sakei CTC494 and L. monocytogenes CTC1034 was 

evaluated in sea bream fillets under MAP at two isothermal (4.8 and 8.2 °C) as well as at 
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two non-isothermal conditions (profile 1: 4-8 °C and profile 2: 2.5-12 °C) at an initial 

inoculation ratio 1:2 based on the sensory analysis outcome (Fig. 5.4). 

Fig. 5.4. Experimental observed data (mean and standard deviation of 3 replicates) and 

simulations provided by the predictive model based on the Lotka Volterra equation for 

Latobacillus sakei CTC494 (○) and Listeria monocytogenes CTC1034 (♦) on sea bream 

fillets under modified atmosphere packaging at isothermal conditions: (a) 4.8 °C, (b) 8.2 

°C; and dynamic temperature conditions (c) profile 1 (4-8 °C) and (d) profile 2 (2.5-12.0 

°C). Dashed and solid line represent the simulations for L. sakei and L. monocytogenes 

strains, respectively. Dotted lines show the acceptable simulation zone (ASZ) used to 

compare observations versus predictions of the interaction between L. sakei CTC494 and 

L. monocytogenes CTC1034. Grey dashed line stands for the storage temperature 

recorded.  

For isothermal conditions, L. sakei CTC494 reached the stationary phase with 10 and 

5 days of storage at 4.8 °C and 8.2 °C, respectively, with an average log Nmax of 7.91 log 

cfu/g, while for L. monocytogenes under the same conditions, log Nmax was 2.23 and 1.87 

log cfu/g respectively. The value obtained at 4.8 °C represented for a reduction of 67% 

compared with log Nmax estimated in mono-culture in fish fillets (5.68 log cfu/g). 

The average pH values for fish fillets remained constant throughout the storage time 

(6.15 ± 0.02) and the gas concentration in the packaging at the end of storage was 31.2% 

± 0.85 and 29.0% ± 0.19 for O2 and CO2, respectively. 
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The kinetic parameters, in the model, for both microorganisms were estimated by 

using the secondary models (λ and µmax) derived from mono-culture experiments except 

for log Nmax which was not temperature dependent and therefore, the average value was 

used instead (i.e., in log scale, 7.92 and 8.74 log cfu/mL for L. sakei CTC494 and L. 

monocytogenes CTC1034, respectively). To consider the effect of food matrix on  

μmax (h-1), the reduction of this parameter on the fresh fish product (4.8 °C) in relation to 

that observed in fish juice in mono-culture was estimated (5.0 °C), which corresponded 

to 0.68. Thus, for simulating growth, the specific growth rate for L. monocytogenes was 

adjusted applying the above reduction rate in the Lotka Volterra model. Due to the 

difficulty to set an equation describing the temperature effect on the competition factor, 

this was fixed to the average of the values obtained at the different temperatures at the 

ratio 1:2, which corresponded to 1.54. It was deemed that the value was representative 

for the assayed temperatures, considering that most temperatures in challenge tests were 

in the range 4-12 °C, where the competition factor was similar. The same reduction rate 

and competition factor were used for the experiments at isothermal conditions (4.8 and 

8.2 °C) as well as for the two dynamic time-temperature profiles. 

Table 5.6 shows RMSE and ASZ values for the growth interaction of L. sakei 

CTC494 and L. monocytogenes CTC1034 on fish fillets predicted by Lotka Volterra 

model. The RMSE values for experiments under isothermal conditions varied between 

0.378 to 0.555 and 0.452 to 0.593 for L. sakei CTC494 and L. monocytogenes CTC1034, 

respectively. The visual inspection of the simulated line also confirmed that good 

performance of models, demonstrating that the model was able to simulate the observed 

slight Listeria increase and subsequent decline, though at 8.2 °C, observations showed a 

more prominent decline than the one predicted by the model simulation (i.e. fail-safe 

prediction). Furthermore, values for ASZ considering as criterion ± 0.5 log-units showed 

that models can mostly accounted for the counts recorded during the interaction 

experiments, with values of 79% (Table 5.6).  
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Table 5.6. Predictive performance of the Lotka Volterra model when applied to simulate 

the simultaneous growth of L. sakei CTC494 and L. monocytogenes CTC1034 in sea 

bream fillets under modified atmosphere packaging stored under isothermal and non-

isothermal conditions. 

Temp. 
(°C) 

na 
Lactobacillus sakei  Listeria monocytogenes 

N0 (LAB) 

 cfu/g 
RMSEb ASZc  N0 (Lm) 

cfu/g 
RMSE ASZ 

     
   

  

4.8 14 3.36 0.555 79%  1.83 0.593 79% 
8.2 14 3.55 0.378 79%  1.65 0.452 79% 

         

Profile 1 
(4-8) 

12 3.71 0.894 75% 

 
1.66 

0.309 92% 

 
 

         

Profile 2 
(2.5-12) 

13 3.96 0.645 77% 

 

1.65 0.615 77% 

 

a n, number of data (sampling points) for L. sakei CTC494 and L. monocytogenes CTC1034. 
b RMSE, Root mean square error. 
c ASZ, acceptable simulation zone defined as ± 0.5 log-units from the simulated log cfu/g values (Møller et al., 2013). 

For non-isothermal temperature conditions, RMSE values ranged from 0.64 to 0.894 

and 0.309 to 0.615 for L. sakei and L. monocytogenes, respectively. Lotka Volterra model 

showed closer predictions to experimental data in fish fillets for L. monocytogenes under 

profile 1. The percentages for the ASZ corresponded to 92% (11/12) and 77% (10/13) for 

profile 1 and 2, respectively. For L. sakei, ASZ values varied between 75 (9/12) and 77% 

(10/13) for both profiles. Lotka Volterra model overestimated the exponential phase of L. 

sakei CTC494, while for L. monocytogenes the same was observed only for profile 2. 

The overestimation in profiles for L. monocytogenes could be considered as a “fail-safe” 

prediction since growth was predicted when no-growth was actually observed (i.e. profile 

2). 

5.4. Discussion 

5.4.1. L. monocytogenes growth in mono-culture 

For L. monocytogenes in mono-culture at 5 °C, µmax values obtained in our study were 

16 % higher than those found by Verheyen et al. (2018) for in fish-protein based 

emulsions at 4 °C used as food model system for fish. On the contrary, the µmax observed 

by Bolívar et al. (2018) in fish juice within the interval 5-11 °C were higher (30-57%) 

than those found in our study in the range 4-12 °C. Differences in growth rates could be 

mainly attributed to strain variability and experimental conditions. By the contrary, the 

predictions provided by Combase Predictor (https://www.combase.cc/index.php/en/) 

https://www.sciencedirect.com/science/article/pii/S0168160514003067?via%3Dihub#bb0175
https://www.combase.cc/index.php/en/
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considering the same physico-chemical characteristics as those obtained for fish juice (pH 

= 6.66; aw = 0.997) were similar in all temperatures studied. Furthermore, the obtained 

µmax for L. monocytogenes in our fish juice were in the range of values reported for other 

fish matrices (i.e. 0.0329-0.2075 at 4-12 °C) such as smoked salmon, raw tuna, vacuum-

packed rainbow trout fillets and sea bream fillets under MAP conditions (Faber, 1991; 

Hisar et al., 2005; Hwang, 2007; Liu et al., 2016; Provincial et al., 2013). 

5.4.2. Growth interaction of L. sakei CTC494 and L. monocytogenes CTC1034 

In general, observations in our study showed that the suppression of Listeria growth 

occurred when the dominant population, i.e. L. sakei CTC494 reached their Nmax. This 

result would signal a potential Jameson effect between populations. Several studies have 

considered the Jameson effect in the simultaneous growth of microorganisms and L. 

monocytogenes on fish products (Beaufort et al., 2007; Giménez and Dalgaard, 2004; 

Koseki et al., 2011; Mejlholm and Dalgaard, 2007). 

According to results, the inhibitory effect was influenced by the inoculation ratio and 

temperature, which has been also reported in other works (Quinto et al., 2016; Yamazaki 

et al., 2003). Differences in inoculum level is key to determine the dominant 

microorganism in the microbial interaction and thus, the level of inhibition between 

microbial populations (Mellefont et al., 2008). Despite this fact, we observed that L. sakei 

CTC494 exerted a slight inhibition on Nmax of L. monocytogenes even when both 

microorganisms were inoculated the same level (ratio 1:1). This inhibition at equal 

inoculum level could be associated with production of bacteriocin since L. sakei CTC494 

produces sakacin K (Hugas et al., 1995; De Vuyst and Leroy, 2007; Leroy et al., 2005; 

Ravyts et al., 2008) and the influence of other metabolites such as organic acids was 

discarded as potential inhibitors because of no relevant changes in pH were detected 

during growth experiments in fish juice and fish samples. 

In summary, the interaction between L. sakei CTC494 and L. monocytogenes 

CTC1034 presented in our study could be understood by a combination of two 

mechanisms: i) a non-specific interaction involving the Jameson effect on the inhibition 

of L. monocytogenes, occurring when L. sakei CTC494 is present at an initial 

concentration higher than L. monocytogenes together with the fact that the bioprotective 

strain grows faster than the pathogen (Mellefont et al., 2008; Jameson, 1962) and ii) 

specific interaction caused by modification of the medium where both microorganisms 

coexist, resulting in an specific antagonistic effect on the growth of L. monocytogenes 
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due to bacteriocin production (i.e. sakacin K) by the bioprotective strain (Aguilar and 

Klotz, 2010; Vescovo et al., 2006). However, the production of bacteriocin was not 

quantified in our study, thus no conclusion can be drawn about which interaction 

phenomenon was more relevant. Nor could mechanistic models be applied due to the lack 

of biological insight into the metabolic and genetic phenomena arising from the 

simultaneous growth of two microbial populations. 

5.4.3. Lotka Volterra's competition fator 

The competition factors for L. monocytogenes (FLsLm) in fish juice were slightly 

temperature dependent for all ratios (Table 5.5). The largest increase in the competition 

factor took place at low temperatures for ratios 1:2 and 1:3 (i.e. 2.2-5 °C) while for ratio 

1:1, higher temperatures (8-12 °C) were responsible for a higher rise of this factor. No 

mathematical expression could be derived from data because of the limited number of 

observations, reduced temperature range and the lack of a clear pattern in data. Møller et 

al. (2013) estimated the competition factors for natural microbiota on growth of 

Salmonella spp. in fresh pork using the Lotka Volterra model and expanded Jameson 

effect model and found dependency on range of storage temperature assayed. By the 

contrary, Mejholm and Dalgaard (2015) using the model proposed by Giménez and 

Dalgaard (2004) did not find that the competition factor was temperature dependent. 

Furthermore, the traditional Jameson effect model or its modification suggested by Le 

Marc et al. (2009) have been used to predict growth of microorganisms in food at different 

storage temperature (Giménez and Dalgaard, 2004; Le Marc et al., 2009; Mejholm and 

Dalgaard, 2007; Vermeulen et al., 2011). In those studies, however, the effect of microbial 

interaction on growth patterns was independent of the studied storage temperatures. The 

divergence between studies to correlate interaction factors with temperature can be 

related to the different conditions used in experiments (i.e. type of microorganism, food 

matrix and inoculum concentration). 

Competition factors, in our study, were also under the influence of the inoculation 

ratio. Thus, the lowest values were obtained for ratios 1:1 and 1:2 (Table 5.5). Baka et al. 

(2014) estimated low competition factors for the interaction between Leuconostoc 

carnosum and L. monocytogenes in vacuum packed Frankfurter sausages stored at 4 °C 

for the ratio 1:1. At intermediate temperatures (8.1-12.1 °C), the competition factors 

decreased with the initial increase of concentration of Leuconostoc carnosum. Fujikawa 

et al. (2014) found that the values for the competition factors did not vary with the 
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combinations of the initial populations of Staphylococcus aureus, Escherichia coli and 

Salmonella spp. at 28 °C. 

According to Baka et al. (2014), differences in values of the competition factor can 

be attributed to the combination of different variables, such as temperature, nutrient 

depletion, pH, bacteriocin production, organic acid, MAP conditions, etc., which can be 

considered as part of the hurdle concept (Leistner, 1995). When these variables are 

identified, the Lotka Volterra model can be modified for more realistic microbial 

interaction descriptions, for instance, the effect of environmental conditions (i.e. 

temperature), the influence of inhibitory substances on lag phase duration of pathogenic 

organisms or whether bacteriocin production is dependent quorum sensing (Dens et al., 

1999, Powell et al., 2004). 

5.4.4 Simulating growth inhibition and bioprotective activity of L. sakei CTC494 on L. 

monocytogenes CTC1034 on fish fillets 

A challenge test on gilthead sea bream fillets under MAP inoculated with L. 

monocytogenes CTC1034 and L. sakei CTC494 in co-culture at ratio 1:2 was carried out 

under isothermal and non-isothermal conditions. The Lotka Volterra model slightly 

overestimated the experimental observations of L. sakei in the exponential phase for the 

profiles 1 and 2. These discrepancies can be partly explained by the fact that the 

performance of a dynamic model depends on the performance of the primary and 

secondary models, and the sudden temperature changes can cause an intermediate lag 

time that cannot be predicted by the models (Longhi et al., 2013). Nevertheless, this fact 

did not affect predictions for Listeria growth, providing a reliable estimate for this 

pathogen for two dynamic conditions, according to the ASZ approach. 

The control of pathogenic bacteria using LAB as bioprotective cultures in fish 

products is widely reported in literature (Bernardi et al., 2011; Chowdhury et al., 2012; 

Ghanbari et al., 2013; Hisar et al., 2005; Matamoros et al., 2009; Nath et al., 2014; Tahiri 

et al., 2009; Tomé et al., 2008; Weiss and Hammes, 2006), thus showing that live 

microbiological cultures can be a more effective alternative to the use of bacteriocins 

(Pilet and Leroy, 2011), which in addition are not permitted by most of the food additive 

regulations. However, the selection of candidates as bioprotective cultures to improve 

food quality and extend shelf-life has been attributed to the capacity not to produce 

undesirable organoleptic changes in foods. In this sense, L. sakei CTC494 is reported in 

literature as a starter culture providing good organoleptic and sensory properties in 
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fermented meat products and as bioprotective (not spoiling) culture in cooked ham 

(Aymerich et al., 2002; Bover-Cid et al., 2001; Hugas et al., 1995; Hugas et al., 1998; 

Hugas et al., 2002). Our study proposed the extension of the use the bacteriocinogenic L. 

sakei CTC494 in raw fish and other minimally processed fish products demonstrating that 

its availability to grow in a different food matrix and its application as a suitable approach 

for controlling L. monocytogenes growth in packaged sea bream fillets stored under 

isothermal and non-isothermal conditions including moderate abuse. 

5.5. Conclusion 

Results demonstrated that the use of the bacteriocinogenic strain L. sakei CTC494, as 

bioprotective culture is a suitable strategy for controlling L. monocytogenes CTC1034 

growth in minimally processed fresh fish products (i.e. filleted gilthead sea bream) under 

refrigerated storage. Furthermore, the modelling approach, developed herein, based on a 

step-wise scheme from mono-culture experiments in fish juice under isothermal 

conditions to experiments performed in co-culture in actual fish product under dynamic 

temperature profiles was proved to be effective to derive reliable microbial interaction 

models. These mathematical models could be used as a predictive tool to simulate the 

simultaneous behaviour of bioprotective lactobacillus strain and L. monocytogenes. Thus, 

these tools can support the design and optimization of bioprotective culture based 

strategies against L. monocytogenes in minimally processed fish products. 
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Appendix C. Supplementary material 

Supplementary data to this article can be found online at https:// 
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Appendix C. Supplementary Table S5.1 

Supplementary Table S5.1. Quality Index Method (QIM) scheme applied to the sensory 

analysis of filleted sea bream under modified atmosphere packaging adapted from 

Lougovois et al. (2003) and Campus et al. (2011). 

 Parameter Attributes 
Demerit 
points 

Appearance Skin Bright, shining, iridescent 0 
  Less bright, some loss of iridescence 1 
  Pale, dull 2 
 Slime/Mucus Clear-transparent 0 
  Slightly cloudy/cloudy 1 

Flesh Colour Fresh, translucent 0 
  Waxy, milky 1 
  Dull, slightly discoloured, yellowish 2 
 Stiffness Firm 0 
  Some softening 1 
  Soft 2 

Odour Odour Fresh 0 
  Neutral 1 
  Slight off-odours 2 
  Spoiled 3 

Quality Index (QI, as the sum of assigned demerit points)  0-10 
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Appendix C. Supplementary Table S5.2 

Supplementary Table S5.2. Goodness-of-fit indexes for the fit of the Baranyi and Roberts 

model to the growth data of L. sakei CTC494 and L. monocytogenes CTC1034 in mono-

culture in sterile fish juice of sea bream and sea bream fillets under modified atmosphere 

packaging at different temperatures. 

Matrix 
Temp. 
(°C) 

n (Ls)c n (Lm)d 
 

Lactobacillus sakei 
CTC494 

 
Listeria monocytogenes 

CTC1034 

  RMSEe  R2    RMSE  R2  

         
 2.2 12 19  0.061  0.9991f 

 0.154 0.9955 
Fish juicea  5.0 18 23  0.107 0.9972  0.091 0.9985 
 8.1 14 14  0.120 0.9968  0.122 0.9965 
 12.1 14 17  0.126 0.9965  0.105 0.9977 

          
Fresh fish 
filletsb 4.8 7 11  0.191 0.9930  0.151 0.9840 

a Experiments in sterile fish juice of gilthead sea bream inoculated with ca. 102 cfu/mL of L. sakei or L. monocytogenes. 
b Experiments on gilthead sea bream fillets under modified atmosphere packing inoculated with ca. 102 cfu/g of L. sakei 
or L. monocytogenes. 
c n (Ls), number of data (sampling points) for L. sakei CTC494. 
d n (Lm), number of data (sampling points) for L. monocytogenes CTC1034. 
e RMSE, Root mean square error. 
f R2, Coefficient of determination.  
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Appendix C. Supplementary Table S5.3 

Supplementary Table S5.3. Goodness-of-fit indexes for the Baranyi and Roberts model 

without interaction fitted to co-culture growth data of L. sakei CTC494 and L. 

monocytogenes CTC1034 in sterile fish juice of sea bream and sea bream fillets under 

modified atmosphere packaging at different temperature. 

Ratioa 
Temp. 
(°C) 

n (Ls)b n (Lm)c 
  

Lactobacillus sakei 
CTC494 

 Listeria monocytogenes 
CTC1034 

  RMSEd  R2    RMSE  R2  

          
1:1 

2.2 
17 17  0.100 0.9979e 

 0.092 0.9954 

1:2 14 14  0.081 0.9963  0.037 0.9976 

1:3 11 11  0.071 0.9818  NFf 

 
 

        
1:1 

5.0 

14 14  0.113 0.9968  0.074 0.9974 

1:2 13 7  0.117 0.9924  0.157 0.9432 

1:3 10 10  0.023 0.9969  NF 

          
1:1 

8.1 

14 14  0.135 0.9965  0.472 0.9090 
1:2 11 7  0.060 0.9986  0.180 0.9684 

1:3 11 11  0.092 0.9800  NF 
          
1:1 

12.1 

16 11  0.128 0.9965  0.122 0.9970 
1:2 11 7  0.081 0.9970  0.143 0.9823 

1:3 11 11  0.100 0.9761  NF 

a Ratio of inoculation of L. monocytogenes CTC1034 and L. sakei CTC494 in sterile fish juice of gilthead sea bream 
where the ratios 1:1, 1:2 or 1:3 represent the initial concentrations of 2 log cfu/mL for the L. monocytogenes strain and 
2, 4, 6 log cfu/mL for the L. sakei strain, respectively.  
bn (Ls), number of data (sampling points) for L. sakei CTC494. 
c n (Lm), number of data (sampling points) for L. monocytogenes CTC1034. 
d RMSE, Root mean square error. 
e R2, Coefficient of determination. 
f NF, no fit as no growth was observed.  
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Appendix C. Supplementary Figure S5.1 

Supplementary Figure S5.1. Growth curves of Lactobacillus sakei CTC494 (○) and 

Listeria monocytogenes CTC1034 (♦) in mono-culture obtained in sterile fish juice of 

gilthead sea bream at (a) 2.2, (b) 5.0, (c) 8.1 and (d) 12.1 °C and (e) on sea bream fillets 

at 4.8 °C. Dashed line and solid line represent the fittings for the L. sakei and L. 

monocytogenes strains, respectively, obtained with the Baranyi and Roberts model. 

.

0

1

2

3

4

5

6

7

8

9

0 220 440 660 880 1100

lo
g

 (
cf

u
/m

L
)

Time (h)

(a)

0

1

2

3

4

5

6

7

8

9

0 80 160 240 320 400 480 560

lo
g

 (
cf

u
/m

L
)

Time (h)

(b)

0

1

2

3

4

5

6

7

8

9

0 40 80 120 160 200 240 280 320

lo
g

 (
cf

u
/m

L
)

Time (h)

(c)

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

lo
g

 (
cf

u
/m

L
)

Time (h)

(d)

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600

lo
g

 (
cf

u
/m

L
)

Time (h)

(e)



Conclusions 

230 

Conclusions  

First: The review of the fundamentals and mathematical models developed in the area 

of Predictive Microbiology over the last 20 years shows that, despite the great advances 

in the field, there are still microbial phenomena requiring a deeper mathematical 

understanding. One of these phenomena is the interaction of microbial communities in 

food, for which there is a variety of models. These models are suitable to be deployed in 

different food contexts like the use of bioprotective cultures. For their optimal application, 

these models should be developed or/and adjusted considering the underlying 

mechanisms governing interaction and applying tailor-made data generation and 

modelling approaches (Chapter 2). 

Second: In the study of the microbial quality of two Mediterranean fish species 

produced in different Andalusian estuaries, the anatomic part was identified as a factor 

influencing microbial contamination levels, with counts of Enterobacteriaceae, total 

coliforms and Staphylococcus spp. coagulase+ being consistently high in viscera as 

compared to skin. In addition, no significant differences were found for the type of fish 

species, showing, both Gilthead sea bream and Sea bass, a similar microbiological 

contamination profile. Escherichia coli was detected with low prevalence (< 5% 

individuals) in viscera of Gilthead sea bream and Sea bass from location A and only in 

Sea bass from location B. This result confirmed that E. coli could be present in fish 

viscera, probably, as part of the normal intestinal microbiota (Chapter 3). 

Third: The location of estuarine fish farms and the associated physical-chemical 

parameters and organic load of water can significantly affect the microbiological quality 

of Gilthead sea bream and Sea bass. Higher levels of lactic acid bacteria, aerobic 

mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. 

coagulase+ were found in location A. This fact suggests that the control of 

microbiological quality of water in estuaries production systems could be key to improve 

the microbiological quality of harvested fish, and consequently, to enhance the quality 

and safety of Gilthead sea bream and Sea bass along the chain food. (Chapter 3). 

Fourth: Neither Listeria monocytogenes nor Salmonella spp. were detected in 

samples of both fish species and estuary water. However, the presence of Vibrio 

parahaemolyticus, being considered a foodborne pathogen, was detected in one water 
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sample (n = 1/9), which demonstrates the potential incidence of this pathogen in fish 

products derived from estuary production systems (Chapter 3). 

Fifth: Model predictions using prospective data from fish farming demonstrated 

longer shelf-life of 5 and 4 days at 4 and 8 °C, respectively, for fresh fish products (i.e. 

Gilthead sea bream and Sea bass) from location B, where the fish samples showed better 

microbiological quality, demonstrating that the initial microbiological quality could have 

a remarkable effect on the fish product shelf-life (Chapter 3). 

Sixth: The growth in monoculture of Lactobacillus sakei L115 and CTC494 and L. 

monocytogenes was satisfactorily described by using the Baranyi and Roberts model. 

Likewise, empirical models, based on the Bĕlehrádek approach, could be generated to 

describe the effect of temperature on the main kinetic parameters of the three 

microorganisms (Chapter 4). 

Seventh: In-vitro studies demonstrated that Lb. sakei L115 presented inhibition 

against a L. monocytogenes cocktail, confirming its anti-listerial activity. The maximum 

specific growth rate and maximum population density of the L. monocytogenes cocktail, 

obtained from the Baranyi and Roberts model, noticeably decreased from 0.037 to 0.026 

log CFU/h (i.e. 31 %) and from 9.26 to 5.95 log CFU/mL (i.e. 37 %), respectively, when 

the pathogen was co-cultured in presence of Lb. sakei L115. The combination of a high 

concentration of Lb. sakei L115, low temperature, high competition for nutrients and 

bacteriocin production can be hypothesized as the main causes of the growth inhibition 

of L. monocytogenes (Chapter 4). 

Eighth: The simultaneous growth of Lb. sakei L115 and L. monocytogenes cocktail 

in culture broth could be better simulated with the Lotka-Volterra model and a new 

modified version of the Jameson-effect model, in which, the inhibitory effect was 

represented by applying the inhibition coefficients (α) to adjust the estimated 

monoculture maximum specific growth rate to reflect interaction under the hypothesis 

that the growth potential of one population is not affected in presence of another 

population, provided the environmental conditions are not modified. For this approach, 

fitted models showed better performance, and all temperatures could be represented 

adequately for which the acceptable simulation zone (ASZ) levels for L. monocytogenes 

cocktail was 100%, except for 20 °C, in which it was 85%, while Lb. sakei L115, values 

were always above 85% (Chapter 4). 
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Nineth: A stepwise approach based on kinetic parameters from monoculture studies 

was proved to be effective to simulate microbial interaction of Lactobacillus sakei 

CTC494 and L. monocytogenes in actual fish product, by incorporating, as parameters, a 

competition factor and food adjustment factor estimated from in-vitro experiments (i.e. 

sterile fish juice of Gilthead sea bream) (Chapter 5). 

Tenth: The application of different inoculum levels (2, 4 and 6 CFU/mL) of the 

sakacin-producing L. sakei CTC494 inhibited growth of L. monocytogenes inoculated at 

2 log CFU/mL in sterile fish juice of Gilthead sea bream in the temperature range from 2 

to 12 °C. Maximum population density (Nmax) was the most affected parameter for L. 

monocytogenes. For instance, at 5 °C, the Nmax of the pathogen in mono-culture gradually 

decreased from 8.65 log CFU/mL to 5.94 (α = 31%), 4.22 (α = 51%) and 1.37 (α = 84%) 

when co-cultured with L. sakei CTC494 at the inoculum of 2, 4 and 6 log CFU/mL, 

respectively (Chapter 5). 

Eleventh: Validation experiments with actual food samples demonstrated that the use 

of the bioprotective culture at a level of 4 log CFU/g was a suitable strategy to reduce and 

inhibit L. monocytogenes growth (≤ 2 log CFU/g) in Gilthead sea bream fillets packaged 

under modified atmosphere during chilled and moderate abuse temperature storage. L. 

sakei CTC494, did not show any significant sensory impact on the product, as compared 

to a control batch (Chapter 5). 

Twelfth: The present work demonstrated that microbial interaction can be used as 

reliable tools to simulate the simultaneous behavior of bioprotective lactobacillus strains 

and L. monocytogenes. Thus, these tools can support the design and optimization of 

bioprotective culture-based strategies against L. monocytogenes in ready-to-eat fish 

products (Chapter 5)
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ISBN:9781118756423 |Online ISBN:9781118823071 |DOI:10.1002/9781118823071. 

Oral communication 
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to-eat fish products. In: 11th International Conference of Predicitve Modelling in Food, 
Braganza, Portugal, 2019. 

Serra-Castelló, C., Costa, J.C.C.P., Jofré, A., Bolívar, A., Garriga, M., Pérez-Rodríguez, 
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Predictive Modelling in Food, Braganza-Portugal, 2019. 
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Rodríguez, F. Mathematical model of the bio-protector effect of Lactobacillus sakei LA-5 
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Network of Lactic Bacteria (RedBAL), Madrid, Spain, 2019. 

Costa, J.C.C.P., Bover-Cid, S., Zurera, G., Pérez-Rodríguez, F. Modelling interaction of a 
sakacin-producing Lactobacillus sakei (CTC494) and Listeria monocytogenes (CTC1034) in 
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International Conference of Predictive Modelling in Food, Córdoba, Spain, 2017. 

Costa, J.C.C.P., Pérez-Rodríguez. Modelo matemático de interacción entre Lactobacillus sakei 
y Listeria monocytogenes en diferentes condiciones de temperatura. In: 5ª Congreso Científico 
de Investigadores de Formación de la Universidad de Córdoba, Córdoba-España, 2016. 

Posters 

Oliveira, T.S., Ortiz, V.A., Alberte, T.M., Bicca, G.B., Costa, J.C.C.P. Modelling thermal 
inactivation of Salmonella Typhimurum in rice milk. In: 13th Latin American Symposium of 
Food Science, Campinas, Brazil, 2019. 

Bragra, D.J.N., Alberte, T.M., Chaves, M., Costa, J.C.C.P., Alvarenga, V.O., Bicca, G.B. 
Senso Excel: A tool in Excel-VBA for sensory food analysis. In: 13th Latin American 
Symposium of Food Science, Campinas, Brazil, 2019. 



Curricular Summary 

236 

Bolívar, Izquierdo, G.D.P., Valero, A., Costa, J.C.C.P., Zurera, G., Pérez-Rodríguez, F. 
Assessing the growth of Listeria monocytogenes in Mediterranean fish products from marine 
aquaculture. In: IAFP's European Symposium of Food Safety, Brussels, Belgium, 2017. 

Izquierdo, G. D. P., Alguacil, J. M., Costa, J.C.C.P., Bascon, I., Valero, A., Garcia-Gimeno, 
R.M., Zurera, G. Evaluation of methodologies for the isolation of bioprotectives cultures of 
lactic-acid bacteria from aquaculture Mediterranean fish species. In: IAFP's European 
Symposium on Food Safety, 2017, Brussels, Belgium, 2017. 

Bolívar, A., Costa, J.C.C.P., Izquierdo, G.D.P., Zurera, G., Valero, A., Pérez-Rodríguez, F. 
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Mediterranean fish products from marine aquaculture. In: 10th International Conference of 
Predictive Modelling in Food, 2017, Córdoba, Spain, 2017. 

Costa, J.C.C.P., Capurso, M., Pugliese, E., Pérez-Rodriguez, F., Gobetti, M., Valero, A., 
Bolivar, A., Possas, A., Carrasco, E., Garcia-Gimeno, R. M., Zurera, G., Izquierdo, G.D.P. 
Study and modeling of the behavior of Listeria Monocytogenes in vegetable infusions alone 
and in emulsion with olive oil at different temperatures. In: 25th International ICFMH 
Conference – Foodmicro, Dublin, Ireland, 2016. 

Costa, J.C.C.P., Rodriguez-Ruiz, J.P., Floriano, B., Bolívar, A., Valero, A., Zurera, G., García-
Gimeno, R.M., Possas, A., Carrasco, E., Pérez-Rodríguez, F. Identification of pathogenic 
bacteria in Sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) of aquaculture in 
Andalusia (Spain). In: 25th International ICFMH Conference – FoodMicro, Dublin, Ireland, 
2016. 

Bolívar, A., Costa, J.C.C.P., Valero, A., Pérez-Rodríguez, F., Zurera, G., Izquierdo, G.D.P. 
Modelling the growth of Lactobacillus plantarum, Listeria monocytogenes and Salmonella 
spp. in Mediterranean fish-based extract. In: 25th International ICFMH Conference – 
FoodMicro, Dublin, Ireland, 2016. 

Costa, J.C.C.P., Longhi, D., Zandonai, S., Tribuzi, G., Carciofi, B.A.M., Laurindo, J.B., 
Aragão, G.M.F. Modeling the non-isothermal growth of spoilage bacteria in mussels (Perna 
perna) treated with oregano essential oil and heat. In: 12th International Congress on 
Engineering and Food, Quebec, Canada, 2015. 

Tremarin. A., Longhi, D., Costa, J.C.C.P., Salomao, B.C.M., Aragão, G.M.F. Comparasion of 
ergosterol content and radial colonies measurements for Byssochlamys fulva and Neosartorya 
fischeri growth under isothermal conditions: In 8th Internarional Conference on Predictive 
Modelling in Food, Paris, France, 2013. 

Costa, J.C.C.P., Tribuzi, G., Souza, C.K., Tremarin, A., Laurindo, J.B., Aragão, G.M.F. 
Modeling of microbial growth during the shelf-life of mussels (Perna perna) treated with 
oregano essential oil (Origanum vulgare). In: 1st Sao Paulo School of Advanced Sciences – 
Advances in Predictive Modeling and Quantitaive Microbiological Risk Assessment of Food, 
Sao Paulo, Brazil, 2013. 

Academic advisory 

Marina Sáiz Vargas. Application of predictive models for the study of the bio-protector effect 
Lactobacillus sakei CTC494 on Listeria monocytogenes in a surimi product. Work of 
completion for graduation in Food Science and Technology, University of Córdoba, 2019. 

Regiani Zanon Rosa. Elaboration of rosé wine from Niáguara Rosada (Vitislabrusca) grapes 
produced in the State of Rondônia (Brazil): physical-chemical, microbiological and sensory 
parameters. Work of completion for graduation in Food Engineering, Federal University of 
Rondônia, 2017. 

http://lattes.cnpq.br/5663261685138190
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Alciléia Costa. Determination of the kinetic growth parameters of Bacillus coagullans under 
isothermal conditions. Work of completion for graduation in Food Engineering, Federal 
University of Rondônia, 2014. 

Silamara Zandonai. Modelling of the thermo-chemical effect on shelf-life of mussels (Perna 
perna) stored under non-isothermal conditions. Work of completion for graduation in Food 
Engineering, Federal University of Santa Catarina, 2014. 

 
4) Complementary Education 

2018: Multivariant Analysis Techniques. Centro de Estudios Andaluces (Seville, Spain) 16 h. 

2017: EFSA Symposium on Quantitative Microbial Risk Assessment in Food. University of 
Córdoba (Córdoba, Spain) 4 h. 

2017: Toward a new era in Predictive Microbiology: Next-generation omics in model. 
University of Córdoba (Córdoba, Spain) 4 h. 

2015: Isolation, Characterization and Identification of Microorganisms in Foods. Instituto de 
la Grasa, Pablo Olavide University (Seville, Spain) 24 h. 

2014: Optimal experiments design of predictive models. 20th Brazilian Chemical Engineering 
Congress, Federal University of Santa Catarina (Florianopolis, Brazil) 6 h. 

2014: Application of predictive microbiology to assure f. Federal University of Santa Catarina 
(Florianopolis, Brazil) 9 h. 

2013: PCR real time. LAB Trade Brazil 8 h. 

2011: Introduction to using MATLAB: concepts and applications. Federal University of Santa 
Catarina (Florianopolis, Brazil) 16 h. 
 

5) Language 
 

Portuguese: Native speaker 
Spanish: Advanced level 
English: Intermediate level  
 

6) Link for OCIRD and Google Scholar 
https://orcid.org/0000-0001-6839-8746 
https://scholar.google.es/citations?user=Zf3Kuq8AAAAJ&hl=en  
 

7) Otras informaciones relevantes 

Knowledge and experience in Food Science and Technology, focusing mainly on food safety, 
biopreservation, predictive microbiology, mathematical modelling and emerging food 
preservation technologies and statistical analyses (MATLAB, R studio, ComBase, FSSP, 
MicroHibro, etc.). 

https://orcid.org/0000-0001-6839-8746
https://scholar.google.es/citations?user=Zf3Kuq8AAAAJ&hl=en
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