
UNIVERSIDAD DE CÓRDOBA
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Avanzada, Enerǵıa y Plasmas” del Departamento de Informática y Análisis Numérico de
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of Córdoba, grant reference 2019/00213.





Mención de Doctorado Internacional

Esta Tesis cumple los criterios establecidos por la Universidad de Córdoba para la ob-

tención del T́ıtulo de Doctor con Mención Internacional. Para ello se presentan los sigu-

ientes requisitos:

1. Estancias predoctorales realizadas en otros páıses europeos:
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I do not fear computers. I fear the lack of them.

Isaac Asimov

1
Introduction

In the last decade, artificial intelligence (AI) has been a hot-topic in the day-to-day life,

significantly increasing its interest over time. This wide area consists in the study of those

devices able to perceive their environment, collect data, and, in consequence, perform

an action to maximise the chances of success [155]. Nowadays, it is difficult to think in

a field of science or, in general, in daily life, in which data generated in the different

processes is not collected. Moreover, the massive growth of this data makes the extraction

of knowledge a process only feasible for automatic techniques, given that this extraction

is not within the reach of human beings.

Commonly, AI is designed to improve the quality of our lives: not only does it make

our lives better, but also it is able to make them more comfortable. There are countless

applications of AI in the health field improving the associated processes. For instance, in

comparison to humans, AI is able to analyse radiological scans up to 10, 000 times faster

than a radiologist1, or to provide advice on how to create a better workout by monitoring

both the heartbeats and 3D movement2.

In the end, AI is a novel science making computers, robots, and, in general, any de-

vice, to think as human beings. It tries to simulate the way human brains think, work, and

make decisions in every situation. AI aims to solve a wide range of problems: knowledge

1https://www.enlitic.com/
2https://welcome.moov.cc/

1
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2 1. Introduction

representation, natural language processing or learning, among others.

This Thesis proposes novel methods for time series data mining aiming to solve

different real-world problems. Specifically, this Thesis is framed in the machine learning

(ML) field, which can be divided in several sub-areas depending on the task to be tackled

or the methodology to be applied. In this sense, more specific subtopics of ML covered

in this Thesis include ordinal classification (OC), artificial neural networks (ANNs), time

series, and many and varied applications related with real-world problems: fog prediction

and detection of convective situations, both in airports, forecasting for wave and solar

energy, and donor-recipient matching in liver transplantation (LT), among others.

1.1 Machine learning

Artificial intelligence (AI) consists of several wide sub-areas, and, in this Thesis, we focus

on the process of learning from experience, which is also known as machine learning (ML).

More specifically, ML is the field of study dealing with automatic techniques or algorithms

able to improve their performance automatically through experience (expressed in the

form of existing examples of data or patterns) [26]. Besides, regarding the kind of data

analysed in this Thesis, we focus on time series, which can be defined as temporal data in

which data points are collected chronologically.

These automatic techniques (also known as ML techniques) can be classified follow-

ing different criteria: according to the specific reasoning approach, according to the type

of input/output data, or according to the task or problem to be solved. In this Thesis, the

latter is the criterion considered. In this way, ML approaches can be divided into these

learning problems: supervised, unsupervised, semi-supervised and reinforcement learning

[26]. Figure 1.1.1 shows a taxonomy with these main four paradigms of ML techniques.

Specifically, these four types of learning can be described as follows:

• Supervised learning is the learning problem in which the examples of input data

(commonly represented as a matrix of vectors of features or attributes X) have a

desired output value [129]. The main goal of this sort of learning is to accurately

learn a mapping function from the set of input attributes to the output, using just the

training set, which is obtained from historical data. Once the learning function has

been trained, it will be able to predict the output value of the examples belonging

to the test dataset (unseen data during the training step). This learning function

is assessed iteratively during the training step, aiming to predict, as accurate as

possible, new unknown examples.

Regarding the output variable, the following subdivision can be distinguished:
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Semi-supervised 
learning
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Machine learning
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Data-driven 
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Algorithm learns how to 
react to actions taken in 

an environment

Halfway between 
supervised and 

unsupervised learning

Figure 1.1.1: Paradigms of ML techniques.

◦ Regression is the task in which the output variable Y can only take real val-

ues. Linear [131], ridge [91] or lasso [173] regressions are some of the most

popular techniques belonging to this group.

◦ Classification consists in predicting a discrete or nominal output variable Y ∈
Y. Given that it is the most used technique in ML, there are a wide range

of approaches included in this group: support vector machines (SVMs) [45],

Gaussian processes (GPs) [147], decision trees (DTs) [142], or artificial neural

networks (ANNs) [197], among others.

◦ Ordinal classification is an emerging field, belonging to the classification area,

with the particularity that categories follow a natural order relationship among

them. It is also known as ordinal regression (OR). The better known approaches

of this group are: proportional odds model (POM) [125], kernel discriminant

analysis for ordinal regression (KDLOR) [170], support vector for ordinal re-

gression with implicit constraints (SVORIM), and support vector for ordinal
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regression with explicit constraints (SVOREX) [39], to mention a few.

• Unsupervised learning is the learning problem applied to datasets whose examples

only include input data (for notation simplicity, the input data is also represented as

X) [90]. In other words, the examples are not labelled according to ground-truth,

therefore, there is not a division of the dataset into training and test sets. The main

goal of unsupervised learning is twofold: to determine groups of data presenting a

similar structure among them, and to reduce the dimensionality of the data.

Depending on the goal, the following subdivision can be distinguished:

◦ Clustering is the unsupervised task aiming to group the patterns according to

the similarities of the input characteristics X. Based on the way the clusters are

formed, there are numerous clustering methods: partitional [33], hierarchical

[104] or density-based algorithms [110], among others.

◦ Dimensionality reduction is the task aiming to simplify the complexity of the

model and avoid overfitting by reducing the number of variables, characteristics

or features of the dataset. There are two main categories: feature selection,

where the goal is to choose a subset of variables or features [82], and feature

extraction, whose aim is to derive the features in order to build a new subspace

[83].

• Semi-supervised learning is a mixed variant making use of both supervised and unsu-

pervised learning approaches [204]. This paradigm is applied to those datasets com-

bining, generally, a small amount of labelled (or supervised) patterns with a huge

amount of unlabelled (or unsupervised) examples. Specifically, this sort of learning

is applied when the acquisition of labelled data is an arduous task involving huge

costs. Thus, having some supervised data is of great practical value.

• Reinforcement learning is based on how software agents maximise the cumulative

rewards by taking actions in a concrete environment [171]. The goal is to learn

which actions are the most worthy to increase the reward. It differs from supervised

learning in that the patterns do not need to be labelled, and it differs from unsuper-

vised learning in that it does not aim to find a hidden structure on the data.

To sum up, ML is a field of science that aims to extract relevant information and

knowledge from processes present in almost all the fields. However, depending on the

problem to be solved, and the amount and sort of available data, different algorithms

can be applied. ML techniques can be employed in several applications, raising special

attention to those problems infeasible to be solved by standard statistical techniques. ML

has been used in a wide range of applications, from health (donor-recipient matching in
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order to increase the survival time) through technology-related applications (face recog-

nition systems aiming to identify human faces from images or video frames) to weather

forecasting (predicting whether an airport is able to properly operate under certain future

conditions).

In this Thesis, several ML techniques have been applied to different problems, not

only to solve them, but also as a baseline to check if the proposed methodologies achieve

better results than previous approaches. Specifically, we have primarily focused on the first

two types of learning described above (supervised –regression, classification, and ordinal

classification– and unsupervised –clustering–).

1.2 Ordinal classification

Classification algorithms learn a mapping function from a set of features to a categorical

target variable, also known as class attribute. Particularly, there are countless applications

involving tasks for whose the order among the labels is of significant impact, such as

people’s age estimation [35, 134] or predicting the severity’s degree of an illness [193].

Figure 1.2.1 shows examples from the convective clouds formation prediction problem

considering 4 different ordinal classes. These problems could be solved using a standard

regressor, where the goal is predicting the classes as integer values (“1” for the first class,

“2” for the second class...). However, the main disadvantage of the standard regression

paradigm is assuming that all the values in the class attribute are separated by the same

distance [189].

In this way, it is interesting to consider this kind of learning problems from the

ordinal point of view, which is commonly referred in the literature as ordinal classifica-

tion (OC) or ordinal regression (OR) [81]. OC, as standard classification, tries to find

a mapping function from the features to the class attribute Y ∈ Y = {C1, C2, . . . , CJ},
where C1, C2, . . . , CJ are the class labels. However, as previously stated, the main differ-

ence is that OC techniques take into account the order relationship between the labels,

i.e. C1 ≺ C2 ≺ . . . ≺ CJ . In this way, for OC, the greater the distance is between the real

and the predicted class values, the greater the misclassification cost is [13] (although a

specific distance between labels is not assumed).

In order to get a deeper insight into these misclassification errors and their asso-

ciated costs, we have the following example. Lets consider a disease with the following

stages: none ≺ mild ≺ moderate ≺ severe ≺ extreme. A standard classifier will penalise

equally all the misclassifications, this is, predicting a person whose disease’s stage is none

as mild or as extreme is equally penalised, given that neither the order of the labels is

taken into account nor the distance between them. However, obviously, there is a signifi-
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Figure 1.2.1: Examples taken from a convective clouds formation prediction problem. Images are
ordered by the class they belong, from left to right and top to bottom.

cant difference between both misclassification errors, and therefore, the use of an ordinal

classifier is a much better approach. In this case, the ordinal classifier will penalise differ-

ently both errors, giving more importance to misclassifying a person whose disease’s stage

is none as extreme than misclassifying it as mild.

More formally, the OC paradigm could be defined as follows: let consider a set of

N points, D = {X,y}, where X = {x1,x2, . . . ,xN} and y = {y1, y2, . . . , yN}, being xi ∈
X ⊆ RK the input feature vectors and yi ∈ Y = {C1, C2, . . . , CJ} the label, i.e. xi is the i-

th pattern taking values in aK-dimensional input space and yi takes values in a label space

of J different labels. The goal of an ordinal classifier is to learn a classification function

f(x) : X → Y, where x ∈ X, by using a training set D, able to predict accurately the

categories of new patterns. Under the OC paradigm, a natural label ordering is assumed,

i.e. C1 ≺ C2 ≺ . . . ≺ CJ , where the operator ≺ represents an order relationship. There

are several OC techniques and metrics considering the rank of the label, in other words,

the position of a given label in the ordinal scale Y. This position can be expressed by the

function O(·), so that O(Cj) = j, where j ∈ 1, 2, . . . , J .

Previous to the use of specific OC techniques, these problems were solved by using

both nominal classification and regression approaches. The former did not consider the

order information between the labels, whereas the latter considered Y ∈ R, and hence,

the real values in R are ordered by the operator <, replacing the qualitative information
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of the labels Y by quantitative information. Therefore, the use of ordinal classifiers avoids

both problems and leads to better performances [81]. There are several ordinal classifiers

that could be organised according the taxonomy shown in Figure 1.2.2.

Ordinal 
classification

Based on projecting 
patterns into a one 

dimensional space and 
separating classes by 

ordered thresholds

Threshold models

- Cumulative link models
- Support vector machines
- Discriminant learning
- Perceptron learning
- Augmented binary classification 
- Ensembles
- Gaussian processes

Based on adaptations of 
other standard problems 

by making some 
assumptions

Naïve approaches

Regression techniques

Nominal classification

Cost-sensitive approaches

Based on converting the 
single multiclass problem 

into several binary 
subproblems, taking the 

order into account

Ordinal binary 
decompositions

Multiple output single 
model

Multiple models

Figure 1.2.2: OC taxonomy.

According to this taxonomy, three different groups of methods can be established:

• Näıve approaches are simplifications or adaptations of well-known methods from

the nominal classification or regression literature. The following subdivision can be

made:

◦ Regression techniques can be adapted to the ordinal paradigm by mapping all

the different labels into real values, typically related with their position in the

ordinal scale [109, 174].

◦ Nominal classification methods can be applied to ordinal datasets by simply

ignoring the order of the labels. Generally, this behaviour leads these methods

to require more data [4, 84].

◦ Cost-sensitive approaches introduce the concept of giving different penalisation
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to the misclassification errors [108, 176]. However, this group of methods has

the difficulty of choosing the appropriate costs for each error.

• Ordinal binary decomposition methods decompose the ordinal target problem into

binary subproblems, which are then estimated by single or multiple models. Gener-

ally, there are two different ideas:

◦ Multiple models, in which a different model is trained for each subproblem.

After that, the output of all the independent binary models is put in common

and combined into an ordinal output [66].

◦ Multiple output single model, in which a single model is trained for all the

decomposed problems. In other words, models pertaining to this group can

manage to solve each subproblem using a single structure. The best example

is the use of artificial neural networks (ANNs), where each output neuron can

solve a different subproblem [46].

• Threshold Models are, however, the most popular techniques. They consider the task

as one itself and assume there is an unobserved latent variable representing the la-

bels of the problem in a continuous function. These methods need to estimate both

a function f(x) that predicts the latent variable and a set of J−1 thresholds that de-

fine intervals (one for each class), taking into account the ordinal target information.

Figure 1.2.3 shows an example of test patterns in a 3-class ordinal problem, where

crosses represent correctly classified patterns and circles represent misclassification

errors.

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8
x 10−3

Threshold 1 Threshold 2

Figure 1.2.3: Projection of patterns according to the thresholds learnt from data.

There are several methods belonging to this category, but the most popular ones are

the following:
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◦ Proportional odds model (POM) [125], a linear model which was the first

specifically-designed approximation to OC.

◦ Adaptations of support vector machines (SVMs) to OC. There are several dif-

ferent SVM-based techniques: support vector for ordinal regression with im-

plicit constraints (SVORIM) [39], support vector for ordinal regression with

explicit constraints (SVOREX) [39] or reduction applied to support vector ma-

chine (RedSVM) [114], among others.

◦ Kernel discriminant analysis for ordinal regression (KDLOR) [170] is based on

discriminant learning, which is easily adapted to OC given that the definition

of the thresholds can be used to discriminate between the classes.

1.3 Clustering

One of the main tasks of exploratory data mining is clustering, which consists in grouping

a set of objects by how similar they are. In this way, similar objects are grouped in the same

group (also called cluster). Apart from being an exploratory technique, clustering is also

a well-known method for statistical data analysis with several paramount applications:

pattern recognition [19] or information retrieval [191], among others.

There is a wide range of clustering techniques that differ in the way clusters are

found [59]. However, the main objective of all the clustering methods is to minimise the

intra-cluster distance, this is, the distance between all the objects belonging to the same

cluster, while maximising the distance between the different clusters. In this way, Figure

1.3.1 shows an example of a cluster analysis applied to a synthetic problem. As can be seen

in the figure, the three clusters are distant from the others and there are dense areas of

objects close to the centroid, which is the most representative object of a cluster (it could

be an existing object –G3–, or, usually, the mean or median of all the objects belonging to

the cluster –G1 and G2–).

The main notion of what a cluster is varies significantly in its properties. Figure

1.3.2 shows a taxonomy with the main cluster models existing in the literature. In the

taxonomy, we have only included the most popular clustering algorithms given that there

are more than 100 published clustering algorithms, and, as the notion of clustering varies,

its categorisation is not trivial3.

Therefore, the main clustering methods can be described as follows:

• Partitional clustering [33] consists in finding a given number of clusters k, by assign-

ing the objects to the nearest cluster centroid. The main two algorithms belonging to

3Further information about clustering techniques and taxonomies can be found in [192].



10 1. Introduction

Figure 1.3.1: Clusters obtained for a synthetic problem. Centroids are represented by crosses.

this group are k-means [122] and k-medoids [105]. The main advantages of these

iterative methods are their low computational cost and that they partition the data

space into a regional structure (known as Voronoi diagram). However, they have

several drawbacks, such as requiring the number of clusters k in advance or that

they can only find a local optimum. Moreover, these two methods are stochastic, i.e.

for two consecutive runs the results will vary, due to random initialisation.

• Hierarchical clustering [152] is based on finding clusters by building a hierarchy

of them, also known as dendrogram. There are two main approaches [104]: 1) ag-

glomerative, based on the bottom-up paradigm, in which each object starts in its own

cluster, and, in each iteration, a pair of clusters are merged. And 2) divisive, based

on the top-down paradigm, in which all the objects start in the same cluster, and

splits are performed in each iteration. These methods require the use of a distance

function or a similarity measure and a linkage criterion determining the way the

distance between two clusters is computed [132]. Finally, the main disadvantages of

these methods are the time and memory complexities. The main hierarchical clus-

tering algorithms are: 1) BIRCH [203], which follows an agglomerative strategy; it

firstly generates a small and compact summary of the dataset, which is what is clus-

tered, instead of clustering the raw data. 2) CURE [78], which is another hierarchical

clustering algorithm following the agglomerative strategy; it consists in adopting a

middle ground between the cluster centroid and all objects located in the extremes.

And, 3) Bisecting k-means [103], which is the most representative algorithm follow-

ing the divisive scheme; it is based on the well-known k-means clustering method,

but instead of partitioning the data into k clusters, it splits one cluster into two
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Figure 1.3.2: Clustering models taxonomy.

clusters in each bisecting step, until k clusters are obtained.

• Density-based clustering [110] defines clusters by areas whose density of points is

higher than the remaining areas of the data space. This method avoids creating a

cluster for objects in sparse areas or border points, considering them as outliers. The

most popular methods are: 1) DBSCAN [58], which is based on grouping objects by

their distance. However, they need to satisfy a density criterion (the original criterion

is to include a minimum number of objects within a given radius). And, 2) OPTICS

[9], which is a generalisation of DBSCAN removing the need to introduce the value

of the radius beforehand.

• Distribution-based clustering [70] assumes that data objects follow a distribution,

being the Gaussian distribution one of the most widely used. The more the distance

from an object to the distribution centre, the less probability an object has to belong

to that cluster. The main disadvantage of these methods is that they suffer from the

overfitting problem, given that choosing a more complex distribution will usually
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explain the data better.

• Grid-based clustering [70] is a simple way to cluster data objects. It defines a grid

structure, and data objects belong to that grid (also known as cell). There are two

main approaches: 1) CLIQUE [3], in which clustering starts at single-dimension sub-

space and move upwards towards higher dimension subspaces, and, 2) STING [182],

which processes many common region oriented queries on a set of objects, working

as a hierarchical clustering method. However, the main disadvantage of both tech-

niques is that they penalise their accuracy to increase the simplicity of the methods.

Assessing the quality of the clustering is a fundamental step of the clustering process

[107]. For this purpose, a wide range of specific evaluation metrics have been presented

in the literature [149]. They can be divided into two different categories:

• External measures [20], which make use of the class labels (also known as ground

truth, if they are available) for evaluating the clusters extracted. It is important to

clarify that the ground truth is not used during the clustering stage. Rand index (RI)

[144] is the most common external evaluation metric. It penalises false positive and

false negative decisions during clustering. An improvement (or correction) to the RI

was introduced by Vinh et al. in [179], proposing the adjusted rand index (ARI). This

external evaluation metric introduces a correction by using the expected similarity

of all pair-wise comparisons between clusters specified by a random model.

• Internal measures [10], that assesses the goodness of the clusters extracted accord-

ing to different criteria (depending on the metric to be used), but without using the

ground truth. The most common internal evaluation metrics are the following4:

◦ Caliński-Harabasz index (CH) [31] is a radio-type index, in which the cohesion

is estimated based on the intra-cluster distance (i.e. the distances from the

cluster centroid to the cluster objects), whereas the separation is based on the

distance from all the cluster centroids to the global centroid.

◦ Davies Boulding index (DB) [49] attempts to maximise the distance between

clusters while minimising the intra-cluster distances.

◦ Dunn index (DU) [55] aims to find compact and well-separated clusters. It

is sensitive to noise, however, different corrections have been proposed in the

literature to avoid this issue, by considering different notions of cluster distance

or cluster diameter.

◦ Silhouette index (SI) [153] measures the goodness of a cluster structure by

computing the cohesion as the intra-cluster distance and considering the near-

est neighbour distance for the separation.
4Further information about internal clustering evaluation metrics can be found in [140]
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◦ Sum of squared error (SSE) is the most simple measure. It computes the error

as the distance from the cluster centroid to each of the cluster objects.

Finally, as it was mentioned above, there is no uniform definition for clustering,

and probably, it will not exist, given that there are many completely different applications

for clustering. Focusing on the extraction-of-information point of view, clustering could

be considered a preprocessing technique itself. Mainly, it can be used to discover useful

information from the data or to discover relationships among all the variables [70].

1.4 Artificial neural networks

Artificial neural networks (ANNs) [26] are one of the most common modelling technique

in the machine learning (ML) field, given their ability to learn and to correct errors, achiev-

ing outstanding results for real-world applications. They are based on simulating the bi-

ological neural networks from human beings brains, imitating the way humans analyse

and process information. ANNs are composed by nodes (also known as artificial neurons),

that emulate the neurons in a biological brain, also emulating the synapses by connec-

tions transmitting signals between these nodes. The first approach to neurons was the

McCulloch–Pitts neuron [126], which consisted in the weighted sum of the inputs fol-

lowed by the application of a non-linear function, also known as activation function.

The most basic model type of ANN is the feed-forward neural network (FNN). In this

sort of ANN, the signals only move in the forward direction, from the inputs to the output

nodes, going through the hidden nodes. A simple example of an FNN is shown in Figure

1.4.1, composed of an input layer with K nodes, a hidden layer with M neurons, and an

output layer with J − 1 nodes, where the number of neurons in the input layer matches

with the number of independent variables from the model, and the number of neurons in

the output layer is the number of classes minus one (classification model with J classes).

Depending on the ANN considered, the hidden layer will be composed of different

sort of activation functions or basis functions. Regardless the hidden layer type, a one

hidden layer FNN output can be written as:

fj(x,w,β) = βj0 +
M∑

m=1

βjmBm(x,wm), j = 1, . . . , J − 1, (1.1)

where Bm(x,wm) represents the set of non-linear transformations of the input vector

xT = (x1, x2, . . . , xK), with K being its dimension; bias is considered in the output layer

with the element B0(x,wm) = 1; βT
j = (βj1,βj2, . . . ,βjM ) are the coefficients from the

non-linear transformation estimated from the data; wT
m = (wm1, wm2, . . . , wmK) are the
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ﾺ

Figure 1.4.1: Example of a FNN.

parameters related to the basis functions; M is the number of basis functions required to

minimise some defined error function and J is the number of outputs of the problem.

In the case of a classification problem, the outputs may be transformed to probabil-

ities by using the softmax function [26]:

pj(x) =
exp fj(x,w,β)∑J
i=1 exp fi(x,w,β)

, j = 1, 2, . . . , J, (1.2)

where, given that all probabilities have to sum 1, it is assumed that fJ(x,w,β) = 0.

The set of non-linear transformations of the input vector, also known as basis func-

tions, Bm(x,wm), is formed by an activation function (the total input arriving to the node)

and by an output or transfer function (the output of the neuron activation).

According to the sort of basis functions, two main groups can be considered:

• Local or kernel functions, which present a better performance when approximating

isolated data. However, when dealing with global environment or a vast amount of

inputs, the performance decreases considerably. The radial basis functions (RBFs)

[23] are an example of local functions.
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• Global or projection functions, which present difficulties when dealing with iso-

lated data. By contrast, they are capable of achieving an outstanding performance

on global environments, and on problems where the number of variables is high.

Sigmoidal units (SUs) [121] and product units (PUs) [124] are examples of global

functions.

On the other hand, according to the sort of activation function, two main types of

networks can be differentiated:

• Additive model, which is the most common. Its output function is defined as:

Bm(x,wm) = h(wm
0 + wm

1 x1 + wm
2 x2 + . . .+ wm

KxK), (1.3)

whereK is the number of inputs, wm
0 is the bias and h(·) is the transfer function, both

associated with neuron m. There are many different additive nodes: the perceptron

[126], SUs and the identity function, among others.

• Multiplicative model, which is a recent strategy trying to lead with those situations

in which there is an interaction between the variables or the decision regions are not

separable by hyperplanes [162]:

Bm(x,wm) = x
wm

1
1 · xw

m
2

2 · . . . · xw
m
K

K , (1.4)

where a bias term makes no sense. Note that the general expression corresponds

with the PU, being able to generalise other kinds of multiplicative units, given that

the weights are real numbers.

Summarising, three main basis functions can be found in the literature:

• The SU is the most common basis function due to its ability to approximate any

continuous function accurately. However, they fail in local optima frequently. Using

the notation described above, SU is represented as:

Bm(x,wm) =
1

1 + e−(wm0+
∑K

i=1 wmixi)
, m = 1, ...,M. (1.5)

• PU is a basis function that not only is it able to retain the properties of a universal

approximator, but also it only uses a small number of multiplicative neurons [163].

According to the notation followed so far, the PU is expressed as:

Bm(x,wm) =

K∏
i=1

xwmi
i , m = 1, . . . ,M. (1.6)
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• RBFs behave as different local elements, one for each hidden neuron, each pattern

activating a different set of units. In this way, the number of local optima is de-

creased, making the training stage easier. Following the notation presented above,

RBF is expressed as:

Bm(x,wm) = e
− 1

2

(∑K
i=1(xi−cmi)

2

rm

)
, m = 1, . . . ,M, (1.7)

where the vector of weights of them-th hidden neuron, wm, includes both a centroid

cm and a radium rm for the corresponding Gaussian basis function, in such a way

that wm = {rm, cm}.

Therefore, there are three well-known FNNs with respect to the basis function used

in the hidden layer:

• Sigmoidal unit neural networks (SUNNs) are also known as multilayer perceptrons

(MLPs). SUs provide several advantages: they are able to approximate any given

function with accuracy, being universal approximators [48, 92]. Moreover, even

though reaching a local optimum is frequent, they are easy to be trained.

• Product unit neural networks (PUNNs) [56] are those ANNs following a multiplica-

tive model of projection. PUNNs are also considered to be universal approximators

[92]. It is worthy of mention that PUNNs benefit from the information capacity of

individual PUs, which is much higher than additive neurons. Moreover, they have

been proved to be excellent in problems with interactions of different order between

the inputs. Nevertheless, PUNNs present a major disadvantage, the error surface is

complex, leading frequently to local optima.

• Radial basis function neural networks (RBFNNs) are those ANNs considering ker-

nel/local transfer functions. Each RBF node uses Gaussian functions to make local

approximations to the input space. Note that the use of a linear output layer com-

bines the effect of each hidden neuron, which are supposed to be adjusted to dif-

ferent regions of the input space (centre of the region) with a specific radius. This

kind of ANN frequently uses the Euclidean distance as the activation function (the

centre of the RBF is wm) and the Gaussian function as the transfer function. Finally,

RBFNNs are also considered to be universal approximators [138].

1.4.1 Hybrid artificial neural networks

So far, ANNs presented only make use of one type of basis function in the hidden layer.

However, the mixture of different basis functions could have several advantages, such as
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providing flexible decision borders or complementing the characteristics of the different

families of basis functions. It has been demonstrated that any continuous function could

be decomposed into two types of functions mutually exclusive, a projection function (SUs,

PUs), and a kernel function (RBFs) [54]. A basic example of a hybrid FNN is shown in

Figure 1.4.2, being composed of an input layer with K nodes, a hidden layer with M1

hidden neurons of the first type and M2 hidden neurons of the second type, and an output

layer with J − 1 nodes.

Figure 1.4.2: Structure of a hybrid ANN.

For these models, the ANN output can be written in the following way:

fj(x,θ) = βj0 +

M1∑
m=1

β1jmB
1
m(x,w1

m) +

M2∑
m=1

β2jmB
2
m(x,w2

m), j = 1, 2, . . . , J − 1, (1.8)

where M1 and M2 are the number of hidden neurons of the first and the second type of

hidden neuron, respectively, θ = {β,w1
1, . . . ,w

1
M1
,w2

1, . . . ,w
2
M2
, } is the vector containing

all the coefficients of the neural network, β = {βj0, β1j1, . . . , β1jM1
, β2j1, . . . , β

2
jM2
} includes

the coefficients between hidden and output layers, and w1
m and w2

m represent the weights

connecting the input layer to the m-th hidden neuron of the first and the second types,

respectively. Any of the basis functions previously defined (Equations 1.5, 1.6 or 1.7) can
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be used for B1
m(x,w1

m) and B2
m(x,w2

m).

1.4.2 Artificial neural networks training

Focusing on the simplest ANN, the training step consists in estimating the values of w

and β, i.e. the coefficients of the ANN, and the structure of the network, i.e. the number

of neurons in the hidden layers. M (note that in the case of hybrid ANNs, M is defined

as M = M1 + M2) and the number of connections between layers. There are two main

groups of methods:

• Classic methods, which typically lead to suboptimal solutions for the problem ad-

dressed. In this group, it can be found several different approaches:

◦ Constructive methods, which start with a simple structure and add nodes and

links trying to increase the performance previously achieved, according to an

expert opinion, generally using a trial and error method [30]. Nevertheless,

these methods frequently fall in local optima.

◦ Destructive methods, which are the opposite methods, they start with a com-

plex structure and delete nodes and connections aiming to improve the perfor-

mance [148]. They have the same disadvantage of falling in local optima.

◦ Gradient-based methods, are the most common technique for training ANNs.

The back-propagation (BP) algorithm [154] is the most common one. In order

to avoid falling in local optima, a group of parameters, such as the learning

rate, the number of hidden layers or the weight initialisation, among others, are

set in advance. However, they still suffer from some disadvantages, such as the

impossibility of computing the gradient with non-derivable activation functions

or the impossibility of reaching the global minimum if the error function is

multimodal and/or non-derivable.

• Heuristic methods, which were developed in order to counteract the disadvantages

presented by the classic methods. In this way, the most common techniques are:

◦ Variants for the BP algorithm: using adaptative speed, optimising the learning

parameters [200], or using the iRprop+ algorithm [96], among others.

◦ Standard approaches, such as simulated annealing [177] or tabu search [75].

◦ More advanced techniques, such as evolutionary algorithms (EAs) [14], which

have been proved to achieve excellent results.

In the last few years, EAs have been widely used for training ANNs, given that not

only are they able to optimise the values of the links, but also they also consider modifi-
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cations of the architecture of the network. Therefore, in this Thesis, evolutionary artificial

neural networks (EANNs) [88] have been used.

1.4.3 Evolutionary artificial neural networks

EAs have been widely used in the literature for both training classification [151] and

regression ANNs [43, 79]. EAs are highly efficient for searching a set of weights close to

the optimum ones with two main advantages: 1) not using gradient information and 2)

not forcing the fitness function to be derivable. EAs are able to automatically optimise

the connection weights and the architecture of the network. The general structure of the

EANN algorithm considered in this work is shown in Algorithm 1 [124].

Algorithm 1: EANN

generate a random population P
while stopping criteria is not satisfied do

evaluate and rank the individuals
keep the best individual
for worst 10% of P do

replace with the best 10% of P
end
parametric mutation to the best 10% of P
structural mutation to the remaining 90% of P
evaluate and rank the individuals
the worst individual is replaced by the best individual of P stored previously

end
return the best individual

In Algorithm 1, the population P is composed of the individuals, which in this case,

represent ANN models. Regarding the evaluation of the individuals, it could be done by

means of any error function, such as the mean squared error (MSE) when dealing with

regression problems, or using a performance measure, such as the correct classification

rate (CCR) or the minimum sensitivity (MS) [64] or an error, such as the cross-entropy

(E), when dealing with nominal classification problems. Moreover, the ranking or the

selection of the best individual is done by maximising the fitness (minimising the error or

maximising the performance metric). Furthermore, as can be seen, there are two mutation

operators:

• The parametric mutator, which optimises the values of the network weights. This is

done by adding a Gaussian noise to the connections of the individual, this is, a value

following a normal distribution with mean zero and α ·T variance, N(0, α ·T ), where

α is a dynamic parameter different for every kind of connection (α1 for connections

between the input and the hidden layer, and α2 for connections between the hidden
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and the output layer). Moreover, T is the temperature value, defined as T = 1−A(g),

whereA(g) is the fitness function for the network g, similar to a simulated annealing.

• The structural mutator, which modifies the architecture of the ANN model. There

are five different types:

◦ Node addition, which consists in adding neurons to the ANN model.

◦ Node deletion, which consists in deleting exiting neurons of the ANN model.

◦ Connection addition, which is based on adding new connections to the ANN

model.

◦ Connection deletion, which is based on deleting existing connections of the

ANN model.

◦ Node fusion, which consists in the fusion or union of two neurons of the ANN

model.

The ones related with connections can be applied to the hidden and output layer,

whereas the remaining structural mutations can only be applied to the hidden layer.

One of these structural mutations are applied to a β% of the population. For this,

each individual has a temperature value, T , and, depending on whether this value

is higher than a random value on the range [0, 1], the first structural mutation is

applied according to the order in which they have been previously described. Note

that, if there is a special circumstance in which the structural mutation can not be

applied (neurons without links or not having hidden layer, among others), the next

type of structural mutation (following the pre-established order) will be applied.

Note that, at the beginning of the EA, the fitness value of the individuals is close

to 0, and therefore, the temperature value, T , is high. In this way, the ratio of mutations

is higher. As we advance in the evolutionary process, T decreases, and, therefore, the

changes are smaller, thus refining the search.

On the other hand, sometimes there are problems where the ANNs have to be opti-

mised according to more than one objective, which are known as multi-objective problems

(MOPs). For these problems, the EAs used for optimisation are known as multi-objective

evolutionary algorithms (MOEAs) [40]. Generally, MOEAs work in the same way as EAs,

but now, they take into account at least two objective functions to guide the searching pro-

cess. When MOEAs are used in the training step of ANNs, it is known as multi-objective

evolutionary artificial neural networks (MOEANNs) [101].
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1.4.4 Multi-objective evolutionary artificial neural networks

MOEANNs have been proved to be competitive for both classification [80] and regres-

sion problems [160]. In order to get an insight into MOEANNs, it is required to for-

mally introduce the concept of MOPs. In this way, a MOP could be defined as a prob-

lem aiming to find a vector z∗ = [z∗1 , z
∗
2 , . . . , z

∗
l ]T that optimises a function vector f(z) =

[f1(z), f2(z), . . . , ft(z)]T, satisfying b inequality constraints, gi(z) ≥ 0 for i = 1, 2, . . . , b,

and d equality constraints, hi(z) = 0 for i = 1, 2, . . . , d.

A MOP has t objectives and the functions f(·) : Ω → A represent the relation be-

tween the search space Ω and the objective function space A. In this sense, the solution of

a MOP is generally multiple, i.e. there are several optimal solutions, given that for most

cases the objective functions are conflicting (optimising one of them leads the other one

to worse results).

At this point, the concept of Pareto optimality need to be explained. A solution z∗ ∈
Ω can be considered Pareto optimal if there is no z ∈ Ω whose function f(z) dominates

f(z∗). It is said that a vector z dominates another vector z′ (denoted by z � z′), if and only

if ∀i ∈ {1, 2, . . . , t}, zi ≤ z′i and ∃i ∈ {1, 2, . . . , t} : zi < z′i. In this way, the set of Pareto

optimal (P∗) is defined as:

P∗ := {z∗ ∈ Ω | @z ∈ Ω, f(z) � f(z∗)} , (1.9)

hence, the Pareto front (PF∗) is expressed as:

PF∗ := {u = f(z)|z ∈ P∗} . (1.10)

Therefore, the Pareto front matches the global minimum of the MOP, i.e. given a

vector of functions f(·) : Ω ⊆ Rt → Rl, Ω 6= 0, and t ≥ 2, the set PF∗ : f(z∗) is called

global minimum, if and only if ∀z ∈ Ω : f(z∗) � f(z).

Finally, there are two types of solutions z∗ ∈ Ω: 1) weakly non-dominated solution if

there is no z ∈ Ω such that fi(z) < fi(z
∗), for i = 1, 2, . . . , t, and 2) strictly Pareto optimal

if there is no z ∈ Ω, z 6= z∗, such that fi(z) ≤ fi(z∗), for i = 1, 2, . . . , t.

From the previous definitions, we can extract that MOPs do not have a single solu-

tion able to optimise simultaneously all the objective functions, given that for most cases,

they are conflicting. In this way, there are numerous Pareto optimal P∗ solutions (possi-

bly infinite). Note that all the Pareto optimal solutions P∗ (also known as non-dominated

solutions) are considered to be equally good, being all of them part of the Pareto front

PF∗. Non-dominated solutions are those that can not improve the value for one objective

function, without decreasing any of the values for the remaining objective functions. An
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example of a Pareto front PF∗ with two objective functions is shown in Figure 1.4.3.

f1

f2 Non-dominated solution

Dominated solution

Pareto front

Figure 1.4.3: Pareto front obtained for a problem with two objective functions.

Problems with two or more objectives can also be optimised by EAs. They are known

as MOEAs [40, 50]. One of the most popular MOEAs is the non-dominated sorting genetic

algorithm II (NSGA-II) [51], which is an elitist method using different operators to pre-

serve the diversity and the best solutions from one generation to the next.

NSGA-II is an improved version of the non-dominated sorting genetic algorithm

(NSGA), using an operator known as crowding, which is used to select those disperse

solutions among all the individuals (or solutions) from the last Pareto front PF∗. The

higher the crowding distance from one solution to the rest of the solutions belonging to

the Pareto front, the best.

Moreover, for each generation, NSGA-II creates a set of individuals by joining the

current population and the one created by selection, crossover and mutation. From this

set, the different Pareto fronts are extracted (grouped and ordered by the number of dom-

inated solutions), i.e. the first Pareto front is formed by all the non-dominated solutions.

As with EAs, MOEAs can be used to optimise ANNs, which are known as MOEANNs.

A general structure of the MOEANN algorithm is shown in Algorithm 2.

Algorithm 2 starts with a random generation of individuals (in this case, ANNs),
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Algorithm 2: MOEANN

generate a random population P
evaluate and rank the individuals according to Pareto front strategy
while stopping criteria is not satisfied do

tournament selection to choose P individuals for the mutations
random parametric and structural mutations (offspring of size P : population
Q)

parents and mutated offspring (P +Q)
evaluate and rank the individuals
keep the P best individuals

end
return the first Pareto front

which are evaluated according to at least two objective functions, and then, sorted in

Pareto fronts following the concept of Pareto dominance. After that, until satisfying the

stopping criteria, new individuals are generated by tournament techniques and paramet-

ric and structural mutations are probabilistically applied (these mutations are those de-

scribed in Section 1.4.3). Best individuals are kept in each generation. Finally, once the

evolutionary process is finished, the set of solutions providing the best performance need

to be selected. For this purpose, the strategy of choosing the two extremes of the front

is followed (for those MOPs with two objective functions), i.e. the best model in terms

of each objective functions are chosen, given that these models are those maximising (or

minimising) each of the objective functions.

1.5 Time series

Time series are a special kind of data, in which data points are collected chronologically.

Time series are also considered as a function varying across time. Examples of time series

can be found in several fields, such as the height of ocean tides, the daily closing value of

the different stock market indices, or the number of daily sales for a given product. There

are numerous tasks that could be applied to time series [67], depending on the purpose

and the area of application. In the context of statistics, econometrics or meteorology, the

main goal of time series analysis is forecasting [36]. Regarding the signal processing area,

it is mainly used for detection and estimation [178]. Finally, in the primary area concern-

ing this Thesis (data mining, pattern recognition and machine learning (ML)), time series

analysis can be used for querying by contents (time series motifs) [115], anomaly detec-

tion [34], classification [17, 62], clustering [1], segmentation [106] or prediction [186],

among others.

As previously stated, generally, this Thesis is focused on time series analysis. More
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precisely, it concerns time series clustering (where time series segmentation is used), time

series prediction, and finally, time series classification (both nominal and ordinal).

1.5.1 Time series prediction

Time series prediction (also known as time series forecasting) is one of the most popular

time series data mining techniques. It consists in estimating the next value of a time series,

which is quite often the ultimate goal of time series data mining. More formally, if a time

series is defined as X = {xn}Nn=1, the prediction task will estimate the value xN+l, where

l is the number of points to be estimated.

In time series prediction, historical data (i.e. information about past) can be used to

predict future values. Traditionally, time series prediction has been approached consider-

ing the concept of stationarity. A time series is considered stationary when its data varies

around the same mean value, with constant variance, and the relationship between val-

ues depends only on the number of points between them. This is, the distribution of the

values for a given time series X = {x1, x2, . . . , xk} is the same distribution for the values

{x1+h, x2+h, . . . , xk+h}, where the relationship between these values depends only on the

h values separating them.

We can find the following time series models in the state-of-the-art that are con-

sidered traditional prediction models: autoregressive model (AR), moving average model

(MA), autoregressive moving average model (ARMA), and autoregressive integrated mov-

ing average model (ARIMA).

Autoregressive models

ARs are one of the simplest form of prediction, also known by the notation AR(p). An AR

model of order p consists in performing the forecasting via a regression equation, where

the independent variables are the p previous lagged values of the dependent variable:

xn = δ + β1xn−1 + β2xn−2 + · · ·+ βpxn−p + εn, (1.11)

where δ is a constant, β = (β1, β2, . . . , βp) are the model parameters, and εn is white noise

(a white noise time series ε = {εn}Nn=1 has zero mean and constant variance).

Moving average models

The MA is the other simplest form of forecasting, based on the idea of computing the

average of past values to forecast future values. The notation MA(q) refers to a moving
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average model of order q, i.e. the past q values are used to predict future values in the

following way:

xn = µ+ εn + α1εn−1 + α2εn−2 + · · ·+ αqεn−q, (1.12)

where µ is the mean of the time series, α = (α1, α2, . . . , αq) are the parameters of the

model, and εn, εn−1, . . . , εn−q are white noise error terms (with mean zero and σ2 vari-

ance).

Autoregressive moving average models

The polynomial combination of an AR(p) term and an MA(q) term is known as ARMA

model with order (p, q). ARMA(p, q) is given by:

xn = δ+ β1xn−1 + β2xn−2 + · · ·+ βpxn−p + εn +α1εn−1 +α2εn−2 + · · ·+αqεn−q. (1.13)

Autoregressive integrated moving average models

A generalisation of the ARMA model is presented in ARIMA models, which are typically

applied to non-stationary time series. A non-stationary time series can be transformed into

a stationary time series by including an initial differencing step (which corresponds to the

integrated feature of the model). This differencing step can be applied one or more times

in order to remove the non-stationarity. ARIMA models are denoted by ARIMA(p, d, q),

where p is the order of the AR model, d is the number of differencing steps, and q is the

order of the MA model. An ARIMA(p,d,q) model can be written as:

xdn = δ+ β1x
d
n−1 + β2x

d
n−2 + · · ·+ βpx

d
n−p + εn +α1εn−1 +α2εn−2 + · · ·+αqεn−q, (1.14)

where xdn is the differenced time series (d differencing steps).

Order selection for traditional prediction models

Choosing appropriate values for these previous traditional prediction models is not a trivial

task. However, there are two plots (or functions) that help in the decision of appropriate

values for p and q. These functions are the autocorrelation function (ACF) and the partial

autocorrelation function (PACF). The former returns the values of autocorrelation of any

time series with its lagged values, whereas the latter returns the correlation of the residuals

(being what remains after removing the effects explained by earlier lags). Note that the

first PACF coefficient is identical to the first ACF coefficient, given that no lagged values are

removed. In this way, ACF and PACF are functions that help to determine the appropriate

values for p and q.
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In order to choose the orders p and q, we need to assure that the time series is

stationary. If not, the time series need to be transformed to stationary by differencing it.

Once the time series is stabilised, according to the ACF and PACF plots, we have three

possible ways to determine these orders:

1. If the ACF shows a gradual decrease of its terms, and simultaneously the PACF shows

a sharp drop after p significant lags, we can consider that the time series can be

modelled by an AR(p).

2. On the other hand, if the PACF shows the gradual decrease, and at the same time,

the ACF shows the sharp drop after q number of lags, we can consider that the time

series can be modelled by a MA(q).

3. Otherwise, if both ACF and PACF plots show a gradual decrease, then an ARMA(p,q)

process should be considered for modelling the time series.

There are other widely used measures for identifying the model, such as the Akaike

information criterion (AIC) [6] or the bayesian information criterion (BIC) [164].

1.5.2 Time series classification

Time series classification (TSC) is the most popular technique in time series data mining.

It consists in developing a mapping function from the space of inputs to a probability dis-

tribution over the class labels. More formally, a TSC dataset is defined as D = {ti, yi}Mi=1,

with M patterns. ti = {xi1, xi2, . . . xiNi} represents a time series pattern (note that the ex-

istence of an individual Ni for each pattern implies that unequal-length time series could

be considered), and yi is the i-th discrete class value, yi ∈ Y = {C1, C2, ..., CJ}, with J

possible values.

According to the nature of the labels assigned to the time series, the ordinal classifi-

cation (OC) methodology could result in better results by considering their ordinal nature.

In this sense, TSC field could be divided into two separate fields: nominal (known in the

literature as TSC) and ordinal (in this Thesis, we propose the use of TSOC as the abbre-

viation for time series ordinal classification (TSOC) field). TSOC, up to the knowledge of

the author, is an unexplored field, which has just started to receive some attention. In this

Section, TSC is revised in big detail given its trajectory in the literature.

Time series nominal classification

In the last decade, the TSC field has been through an enormous rise of interest. Numerous

approaches have been proposed to solve this task, many of them involving some process-

ing or filtering of the time series before constructing the classifier. Bagnall et al. in [17]
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proposed a taxonomy to improve the understanding of the advantages and disadvantages

of existing approaches. Figure 1.5.1 shows a taxonomy including novel algorithms pro-

posed in the literature.

Time series 
classification (TSC)

Short independent 
patterns defining a class

Phase independent 
shapelets

Time series are compared 
as a vector or by a 
distance measure

Whole time series

Derives features from 
phase dependent 

intervals

Phase dependent 
intervals

Form frequency counts of 
recurring patterns on the 

time series

Dictionary-based 
approaches

Combinations of 
approaches into a single 

classifier

Ensemble 
approaches

- Time series forest (TSF)
- Time series bag of features (TSBF)

- Dynamic time warping (DTW)
- Weighted DTW (WDTW)
- Elastic ensemble (EE)

- Fast shapelets (FS)
- Shapelet transform (ST)
- Learned shapelets (LS)

- Bag of patterns (BOP)
- Bag of SFA symbols (BOSS)

- Collective of transformations-based ensemble 
(COTE)
- Hierarchical vote system COTE (HIVE-COTE)
- Time series combination of heterogeneous and 
integrated embedding forest (TS-CHIEF)

Fits models to each time 
series and then compares 
using similarity between 

them

Model-based 
approaches

- Autoregressive models (ARs)
- Hidden Markov models (HMMs)
- Kernel models (KMs)

Adaptations of deep 
learning models to one 
dimensional time series 

data

Deep learning 
approaches

- Residual networks (Resnet)
- InceptionTime
- Relative position matrix and convolutional 
neural networks (RPMCNN)

Figure 1.5.1: TSC techniques taxonomy.

The main TSC techniques can be described as follows:

• Whole time series: this group of techniques employs similarity/distance measures

with a nearest neighbour classifier. This kind of techniques is appropriate only when

there are discriminatory features over the whole time series. Dynamic time warping

(DTW) [98] and its weighted version, weighted dynamic time warping (WDTW)

[100] are the most popular distance measures in the state-of-the-art. Even though

many novel alternatives have been presented in the literature, Wang et al. in [183]
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demonstrated that none of them were significantly better than DTW. Moreover, Lines

and Bagnall in [119] proposed the elastic ensemble (EE), which is an ensemble of 11

nearest neighbours classifiers with different distance measures, demonstrating that

this approach outperformed significantly every single component.

• Phase dependent intervals: techniques belonging to this group are excellent when

applied to long time series datasets, including phase dependent discriminatory pat-

terns and regions of noise. Main algorithms are time series forest (TSF) [52] and an

extension known as time series bag of features (TSBF) [21]. Both techniques employ

a random forest approach along with summary statistics of each interval as features.

• Phase independent shapelets: in this case, the location of the patterns extracted from

the time series is irrelevant, i.e. the patterns define the classes but the location of

the pattern could be in any point of the measurement. These patterns or subseries

are known as shapelets. Main approaches involving the use of shapelets are fast

shapelets (FS) [143], shapelet transform (ST) [89], or learned shapelets (LS) [76].

• Dictionary-based approaches: methods belonging to this group classify time series by

the frequency of repetition of subseries, i.e. train the classifiers from the histograms

which result from the frequency counts of recurring patterns. The most popular algo-

rithms in this group are bag of patterns (BOP) [117], which works by representing

time series as symbols (using the SAX [116] method), and then build the classi-

fier, and the bag of symbolic Fourier approximation symbols (BOSS) [161], which

is a improved version of BOP using the discrete Fourier transform for the windows

creations, among other differences.

• Ensemble approaches: this group covers combinations from several individual ap-

proaches into a single classifier. The main approaches of this kind are the collective of

transformation-based ensemble (COTE) [18], its extension, hierarchical vote system

collective of transformation-based ensemble (HIVE-COTE) [120], and the time series

combination of heterogeneous and integrated embedding forest (TS-CHIEF) [168].

On the one hand, HIVE-COTE is the state-of-the-art in the TSC field, consisting in an

ensemble encapsulating classifiers built on the different previously explained data

representations. On the other hand, TS-CHIEF is a novel ensemble approach, in

which embeddings of time series are integrated using tree-structured classifiers.

• Model-based approaches: this set of techniques fit generative models to each time

series and then compare them by using the distance between models. The most well-

known approaches in this field are based on fitting AR models [16], applying hidden

Markov models (HMM) [169], or kernel model (KM) [37], among others.
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• Deep learning (DL) approaches: in the last years, DL have been proved to be excel-

lent for TSC [62]. Adaptations of DL methods to one-dimensional time series data

are also the state-of-the-art in this area. The main techniques include the applica-

tion of residual networks (Resnet) [185], which conform the most deepest architec-

ture applied to TSC task, or inceptionTime [63], which is proved to be on pair of

HIVE-COTE accuracy but with higher scalability. Another approach is relative posi-

tion matrix and convolutional neural network (RPMCNN) [38], which consists in

transforming time series to structural images and then applying a simplified version

of the popular VGGNet architecture.

Time series ordinal classification

For those time series datasets where there is a natural order between the labels and the

number of classes is higher than 2, nominal classifiers are not the best option. In this con-

text, this Thesis proposes to consider TSOC, which bridges the gap by applying the ordinal

classification paradigm in order to maximise the performance on those ordinal time series

datasets. TSOC requires time series datasets in which the class attribute Y is defined as

Y ∈ Y = {C1, C2, . . . , CJ}, where J is the number of categories and {C1, C2, . . . , CJ} are

the ordinal labels, satisfying the constraint C1 ≺ C2 ≺ . . . ≺ CJ . As aforementioned, up-

to-the-knowledge of the authors, there are no specific ordinal approaches in the literature,

this Thesis proposing some techniques for this novel field.

Time series shapelets

In this Thesis, we focus on shapelets, which have been used for both TSC and TSOC tasks.

Shapelets are phase independent subsequences of the time series forming a new primitive

for TSC. They were firstly proposed by Ye and Keogh [198, 199], yet improved versions

and new perspectives have been presented in the literature [27, 76, 89]. An example of a

shapelet is shown in Figure 1.5.2, in which each time series represents the distances from

the border points to the centre of the each image. In this example, the shapelet is extracted

from the first time series (in red colour), and it is a unique characteristic from that time

series (in this case, something representative from the tractors is the metal fender and

hood). Then, the matches are shown for the remaining testing time series.

More formally, a shapelet s = {s1, s2, . . . , sv} is a subsequence of a time series ti,

where v ≤ Ni. One of the main approaches with shapelets is using them to build a trans-

formed dataset, in which the transformed attributes represent the shape-similarity be-

tween the original time series and the shapelets. This approach is known as ST, and it

begins by the shapelet generation procedure, with the main steps shown in Algorithm 3.
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Figure 1.5.2: Example of a shapelet matching procedure.

Specifically, the shapelet generation procedure is divided into three main parts: 1)

generation of candidates (subsequences) satisfying the previous length constraint (v ≤
Ni), 2) computation of distances between the candidate and the time series to measure

their similarity, and 3) evaluation of the candidate quality. The most recent version of

ST [27] uses the the euclidean distance to measure the distance between the shapelets

and the time series (note that this distance is computed as the minimum of the distances

between the shapelet, and all possible subsequences of the time series with the same

length of the shapelet), and the information gain (IG) to evaluate the quality of each

shapelet. In this sense, the IG measures how well the shapelet class is discriminated from

the rest, according to the set of distances between the shapelet s and the time series t.

To compute the IG the set of distances, ds, from the evaluated shapelet s to all the time

series t need to be calculated and sorted. Then, all the possible split points (average points

between two consecutive distances) are evaluated, keeping the best IG split point. The IG

of a shapelet s is defined as:

IG(s) = maxsp∈dsIG(sp), (1.15)

where IG(sp) is the IG for an specific split point (sp), and it is expressed as:

IG(sp) = H(ds)−
(
|s−p |
|ds|

H(|s−p |) +
|s+p |
|ds|

H(|s+p |)
)
, (1.16)
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Algorithm 3: Main steps of the best shapelet set S generation.

S ← ∅ // Shapelet set
for Each time series ti do
Sti ← ∅
bestQuality ← 0
for v ← min to max do

Pv ← Generate candidates(ti, v)
for Candidate s in Pv do

ds ← Calculate distances(s, t)
quality ← Evaluate candidate (s, t)
if quality > bestQuality then
Sti ← S
bestQuality ← quality

end
end

end
S ← Sti
Sort S by quality
Remove similar shapelets in S

end
return Best shapelet set S

where s−p are the elements of the sorted distance set located at the left of the split point,

sp, whereas s+p are the remaining elements. Moreover, |ds| and H(ds) are the cardinality

and the entropy of the set ds, respectively, being the entropy defined as:

H(ds) = −
∑
c∈Y

pc log pc, (1.17)

where pc is the a priori probability of class c.

Once the best shapelets set S is obtained following the main steps explained in

Algorithm 3, a new transformed dataset is built, in which each attribute represents a

shapelet, S, and the value of the attribute is the distance between the shapelet s and all the

original time series t, ds. In this sense, any classifier could be applied to the transformed

dataset, disassociating the shapelet extraction procedure from the classification stage.

1.5.3 Time series clustering

Time series clustering consists in grouping time series aiming to discover interesting pat-

terns in the time series datasets. This field has received a lot of attention during this

last decade, hence, there are several recent review papers regarding time series clustering

[1, 67, 113]. Time series clustering is commonly applied as a preprocessing step for several
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tasks: 1) anomaly detection [112], 2) recognition of dynamic changes [87], 3) prediction

[77], or 4) classification [2], among others.

More formally, given a time series clustering dataset defined as D = {Ti}Mi=1, where

Ti = {tj}Ni
j=1 is a time series of length N , the objective of time series clustering is to

organize them into L groups, G = {G1,G2, . . .GL}, optimizing the clustering quality, where

∀Gi 6= Gj ,Gi ∩ Gj = ∅ and
⋃L

l=1 Gl = G.

Time series clustering algorithms can be classified into 3 different sets according

to [1]. Figure 1.5.3 shows a taxonomy including the main techniques proposed in the

literature.

Time series 
clustering

Combines temporal 
proximity with the 

similarity between its 
values

Time point 
clustering

Each time series is 
defined as a discrete 

object

Whole time series 
clustering

Model-based approaches

Feature-based approaches

Shape-based approaches

Groups the segments 
extracted from a given 

time series

Subsequence 
clustering

Figure 1.5.3: Time series clustering techniques taxonomy.

The taxonomy can be described as follows:

• Whole time series clustering defines each time series as a discrete object and clusters

a set of time series measuring their similarity and applying a conventional clustering

algorithm.

◦ Model-based approaches: techniques pertaining to this group convert the origi-

nal raw time series into a set of model parameters. The distance between mod-
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els is measured, and a classic clustering algorithm is then applied. There are

two main algorithms in this group: Yang et al. in [195] proposed the combina-

tion of rival penalised competitive learning with other representations into an

unsupervised ensemble, and Yang and Jiang in [196] presented a novel HMM

with bi-weighting scheme to solve problems related with the initialisation and

model selection of time series clustering algorithms.

◦ Feature-based approaches: in this group, methods create a new representation

of the time series by transforming them into a set of statistical characteristics.

Note that each time series is converted to a new representation whose size is

smaller than the original time series. One of the advantages of this group is its

application to unequal-length time series datasets, given that the feature vector

have the same length. Then, a standard distance measure is calculated, and a

clustering algorithm is applied. Two algorithms belonging to this category are

the one proposed by Räsänen et al. in [146], which is based on an efficient

computational method for statistical feature-based clustering, and the one pro-

posed by Hautamaki et al. in [86], who presented a raw time series clustering

using the DTW distance for hierarchical and partitional clustering algorithms.

The problem of DTW is that it can be highly sensitive to noise.

◦ Shape-based approaches: methods belonging to this group aim to match the

shapes of the different time series. A conventional clustering algorithm is ap-

plied using an appropriate distance measure. Paparrizos et al. in [137] pre-

sented an approach using a normalized version of the cross-correlation measure

that bears in mind the shapes of the time series, the proposal made by Asadi

et al. in [11] consists in a novel method based on HMMs ensembles, and, re-

cently, Wang et al. in [184] developed a new technique focused on studying the

trend of time series. In their proposal, the similarity between two time series is

measured by using an area-based shape distance.

• Subsequence clustering is considered as the clustering of segments obtained from a

time series segmentation algorithm.

• Time point clustering combine the temporal proximity of time points with the simi-

larity between their corresponding values.

1.5.4 Time series to image transformation

The transformation of 1D time series to 2D image-like representation is interesting given

its use for other posterior tasks, such as classification or clustering. The transformation

of time series to 2D image-like representation is highly motivated by the subsequent ap-

plication of DL techniques, such as convolutional neural networks (CNNs). This line of
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research is being tackled at the moment of writing this Thesis, and therefore, is a future

research. More concretely, it is related to the development of a novel technique for TSC

based on the use of different CNN techniques applied to the 2D image-like representation

of the time series.

This idea has been previously approached in the literature in many and varied forms.

For instance, Sezer and Ozbayoglu in [166] presented a novel technique in which 1D fi-

nancial time series are transformed to images by computing 15 different technical indica-

tor instances with various parameter settings, resulting each time series in 15 × 15 pixels

sized images. Furthermore, Hatami et al. in [85] developed a framework for TSC in which

recurrence plots (RPs) are used for encoding 1D time series into texture images; once the

time series are transformed to images, a CNN is applied. One of the main advantages of

using RPs is the visualisation of significant details of the phase space trajectory through

the 2D images. Moreover, Chen and Shi in [38] proposed a novel technique using the

relative position matrix which converts preprocessed time series to texture images. The

preprocessing step applied to the time series consists in a dimensionality reduction stage,

carried out by using the piecewise aggregation approximation (PAA) method.

There are some other approaches following the idea of converting 1D time series

data to 2D image-like data. Said and Erradi in [157], a deep learning framework was

proposed for the gap forecasting between mobile crowdsourced service supply and the

demand at a given time and space. In this paper, the time series are encoded by using the

gramian angular summation field (GASF), the gramian angular difference field (GADF)

and RPs. After the conversion of time series, CNNs are applied. Mo et al. in [128], the

time series are firstly mapped into two-dimensional greyscale images by a sliding window

approach. This approach is applied to classify, locate and detect network traffic data, aimed

to detect network traffic outliers. Besides, Olivier and Aldrich in [135] presents a novel

approach for dynamic monitoring of grinding circuits, in which a modified version of RPs

is used to generate the images from the original time series. This version, also known as

global RP, consists in removing the threshold function in order to provide a global view of

the trajectories in all neighbourhoods. This idea has also been applied to multivariate time

series by Yang et al. in [194], in which sensor classification is carried out by converting

multivariate time series sensor data into two-dimensional coloured images, concatenating

them for the subsequent application of CNN. The methods used to create the images were

GASF, GADF and Markov transition fields (MTFs).

To sum up, although the way original time series are converted to images changes

from one paper to another, the main idea behind all these approaches is to apply CNNs

to the obtained images. In this way, the subsequent application of CNN architectures aims

to automatically learn a high-level abstract representation of low-level raw time series

data. Moreover, many of the previous works follow the general workflow presented in
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Figure 1.5.4, in case TSC was the task to be performed. To carry out the dimensionality

reduction stage, any of the segmentation procedures existing in the literature [106] could

be applied. Once the dimensionality-reduced time series has been obtained, the next step is

developing the mapping function to get the image-like representation. It could be done by

computing the mean of the segments or by using any distance matrix, and then, applying

a colour mapping to the obtained matrix.

Original time series Dimensionality reduction Image-like representation

Transformation-to-image stage

OutputFully connectedPoolingConvolutionInput

Feature extraction Classification

Figure 1.5.4: Overall workflow for TSC via time series to image transformation.

1.6 Applications in real-world problems

In this Thesis, several real-world problems have been considered in order to validate the

methodologies proposed, and to address the difficulties or issues found for these appli-

cations. In this way, the real-world problems selected could be divided into the following

groups:

1. Atmospheric events: prediction of fog formation in the airport of Valladolid (Spain),

and prediction of convective cloud formation in the airport of Madrid (Spain).

2. Engineering applications: prediction of solar energy and prediction of energy-flux,

which are related with renewable energy processes, and, on the other hand, mod-
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elling of desiccant wheels and modelling of the acoustic behaviour produced by

induction motors.

3. Health: determination of a patient typology with human immunodeficiency virus

(HIV)/hepatitis C virus (HCV), and donor-recipient matching in liver transplanta-

tion.

1.6.1 Atmospheric events

This group of applications concerns the prediction of different meteorological situations,

which occur constantly and in many forms. In this way, the prediction of low-visibility

events due to fog or the prediction of convective cloud formation are of significant impact.

The data for both events are collected in airports, specifically, in the Valladolid and Madrid

airports (Spain), respectively.

Fog prediction

Predicting low-visibility events is very important in many human activities, and crucial

in transportation facilities such as airports, where they can cause severe impact in flight

scheduling and safety. One of the main factors reducing the visibility is the presence of fog

[22]. Fog is a meteorological phenomenon consisting of the suspension of tiny, usually mi-

croscopic, water droplets in the air, reducing the horizontal visibility at the Earth’s surface

to less than 1 km [190].

The presence of fog makes the airport managers activate specific low-visibility pro-

cedures to sustain safely operations in reduced visibility. In this way, there a lot of potential

problems such as larger time-intervals during landing and taking-off operations, increases

in traffic controllers and pilots workload, and suspension of runway operations, among

others.

There are two main ways for addressing this problem: 1) predicting the fog forma-

tion in real-time, where an example in this line was presented by Ahmed et al. in [5],

who proposed the use of a bi-spectral brightness temperature difference technique along

with satellite images, while another example is the one presented by Dey in [53], in which

the use of the brightness temperature difference technique is discussed; and 2) predicting

visibility at different time-horizons, where, for instance, Colabone et al. in [41] proposed

the use of a multilayer perceptron (MLP) for hourly fog forecasting, whereas [28, 57, 60]

predict the occurrence of fog with a prediction time-horizon up to 3h, 6h and 18h, re-

spectively. For both approaches, the prediction can be based both on previous values, and

on external data related to fog prediction. However, the main drawback associated with

autoregressive models (ARs) is, as described in Section 1.5.1, the selection of the order p.
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Generally, low-visibility events are characterised through the runway visual range

(RVR), which is a meteorological variable defined as the vision range of a pilot for see-

ing the runway surface markings, or the lights delineating the runway [136]. Following

the guidelines provided in [95], RVR values above 2000 metres are not significant for air-

port operational purposes regarding visibility. However, if the RVR is below 2000 metres,

three categories can be differentiated: poor visibility (0 ≤ RV R < 1000), medium visi-

bility (1000 ≤ RV R < 1990), and situations that do not have a significant impact on the

aeronautical operations (1990 ≤ RV R). It can be seen that these categories (visibility con-

dition at the airport) show a natural order. Figure 1.6.1 includes a multivariate time series

of all the input atmospheric time series, in which the category of the day is extracted from

categorising the RVR. Note that most of the days are misty or foggy, and that standard

regression could not be possible as RVR is truncated (when the value is higher that 2000,

the exact distance is not known).
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Figure 1.6.1: Example of a multivariate time series, in which the output time series RVR reflects
foggy days, poor visibility days corresponding to 0 ≤ RV R < 1000.

Most of the works published in the literature mainly tackle the problem of fog pre-

diction as a regression approach. Therefore, in this Thesis, we tackled this problem from

the ordinal classification (OC) point of view.

Convective cloud prediction

Another atmospheric phenomenon vastly affecting human activities and transportation fa-

cilities are convective cloud formations. As previously mentioned, anticipating to extreme

weather conditions such as convective cloud formation is an arduous task for the opera-
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tional weather forecasters [32]. It is well-known in the forecaster community that stability

indices derived from temperature and humidity data are widely used for predicting con-

vective situations. Some of them are the lifted index [69], the total of totals index [127],

or the convective available potential energy [130], among others.

Normally, the combination of these indices is used to improve the prediction results

obtained individually [159]. In this sense, there are several approaches. For example, the

one proposed by Sánchez et al. in [158], who performed an analysis of the pre-convective

conditions in Argentina based on the information of 713 days of radiosonde data. More-

over, Púčik et al. in [141] used 16421 proximity soundings taken at 32 central European

stations to assess environments of severe and non-severe thunderstorms.

Regarding the kind of data characterising the occurrence of convection, it has been

assumed that the resolution of surface-station observations is not enough, and that the

numerical weather prediction (NWP) models are not able to accurately predict the exact

location and time of the convective situation [205]. Therefore, satellite information to

forecast the occurrence of convection could help standard approaches identify atmospheric

conditions that favours convection.

Thus, the combination of satellite information and stability indices with machine

learning (ML) techniques could be adequate, given that they have been proved to be

excellent in predicting accurately a wide range of local atmospheric phenomenal [123].

In this Thesis, we propose two different ways of tackling this problem: 1) from the

multi-objective point of view: as the dataset is highly imbalanced, both accuracy (which

measures the global performance) and minimum sensitivity (MS) (which measures the

performance of the most difficult class) should be optimised, with the difficulty that both

metrics are conflictive under some circumstances [64]. And, 2) by tackling the problem

from the OC perspective: the forecasting is done considering the ordinal nature of the

different convective situations.

1.6.2 Engineering applications

This group of applications concerns different engineering applications. The first two main

applications consider the high environmental impact of current energy resources together

with the need for addressing the impact of climate change. In this sense, an important

development of renewable energy sources has been observed during past years. The in-

ternational energy agency stated that electricity generation from renewable energy is ex-

pected to rise up to 39% by 2050 [25]. Hence, in this Thesis, these two main applications

are related to harvesting renewable energy: the prediction of solar radiation at the radio-

metric station of Toledo (Spain), and the flux of energy prediction in the Gulf of Alaska

(USA). Furthermore, other two engineering applications are also addressed. They are re-
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lated with the modelling of desiccant wheels, widely used as dehumidification systems,

and the modelling of the acoustic behaviour of induction motors.

Solar energy prediction

Among renewable resources, solar energy is one of the most developed ones, being widely

accepted as the future renewable source, mainly due to the high availability of the solar re-

source. Furthermore, solar energy, as source of energy, is clean, sustainable, and extremely

abundant [73]. One of the main drawbacks of solar energy, when compared to others re-

newable resources, is the difficulty for managing its inherent intermittence. In this sense,

the estimation of solar energy availability and the optimal management of energy system

in any part of the world are challenging tasks.

In the last years, several approaches have been presented in the literature to im-

prove the performance achieved by standard methods [8, 165] or by classical astronomical

equations [97]. However, they have several disadvantages that NWP models counteracts

by being able to model the dynamics of the atmosphere, as well as the physical processes

involved, employing a set of equations based on physical laws of motion and thermody-

namics [139].

Furthermore, in recent years, ML techniques has become an important alterna-

tive/complement to NWP in solar energy prediction problems, given its ability to obtain re-

liable and accurate forecasts. Some techniques combine NWP models with ML algorithms,

such as [180], in which hourly global radiation for five places in Mediterranean area was

performed combining a hybrid autoregressive moving average model (ARMA)/artificial

neural network (ANN) model with ALADIN, a well-known NWP model. Ghimire et al.
in [72] proposed a deep learning (DL) hybrid model to predict solar radiation in two

phases, firstly a convolutional network is used to extract features, and secondly, a long-

short-time memory (LSTM) network is applied for the prediction stage. Moreover, Alharbi

in [7] presented a case study of solar radiation prediction in Arabia Saudi comparing the

performance of ANN with classical training and extreme learning machines (ELMs).

The use of satellite data also contributes to an increase in the performance of the

prediction stage. For example, Zarzalejo et al. in [201] used fuzzy logic and ANNs for

estimating hourly global radiation from satellite images, or Şahin et al. in [156] presented

an approach combining ELMs with satellite data and geographic variables to predict solar

radiation over Turkey.

In this Thesis, given the wide variety of methods proposed in the state-of-the-art,

we present a robust comparison between several ML regressors when applied to solar ra-

diation estimation problem. The comparison should be performed not only against ML

algorithms, but also against NWP models based on satellite measurements such a Coper-
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nicus atmosphere monitoring service (CAMS) or SolarGIS©.

Energy flux prediction

Other renewable and eco-friendly sources of energy are tides and waves. These sources

have three main advantages: 1) they are always available (i.e. their nature is not intermit-

tent), 2) they can be used in many parts of the world, including oceans or big seas, and

3) given that the energy storage is limited and that around 40% of the world’s population

live within 100 km of the coast, a cost-effective transmission of electricity is possible.

The behaviour of wave energy have been modelled from different points of view

[133]: 1) physical models [94], 2) statistical models [118], and 3) by the application of

ML techniques [47], among others. Focusing on ML techniques, there are a wide range

of approaches in the state-of-the-art. Cornejo-Bueno et al. in [44] presented a grouping

genetic algorithm applied to ELMs to predict the significant wave height and the flux of

energy. Fernández et al. in [65] proposed the use of meteorological data, obtained from

national center for atmospheric research (NCAR) Reanalysis project, and applied several

ordinal classifiers for the prediction of both significant wave height and flux of energy.

Kumar et al. in [111] used an ensemble of ELMs for the prediction of significant wave

height in 10 stations of varying terrains from Gulf of Mexico, Brazil and Korean region.

Note that, for the estimation of the flux of energy, buoys parameters (significant wave

height and average wave period) need to be computed beforehand.

Furthermore, given that the data is collected from sensors located at the buoys, it is

typical that the buoys break down due to unexpected events, resulting in discontinuities

in the buoys data time series [145]. Therefore, using reanalysis variables as input data,

where no observed data is required, not only does it improve its applicability to other sites,

but also it avoids problems related with missing data. Figure 1.6.2 shows the energy flux

time series collected during 2018 from buoy 46001 located in the Gulf of Alaska.

Regarding this problem, in this Thesis we propose a multi-task evolutionary artificial

neural network (MTEANN) model able to tackle short- and long-term energy flux predic-

tion (6h, 12h, 24h and 48h) simultaneously considering ML algorithms and reanalysis data

for developing accurate flux of energy prediction models.

Desiccant wheels modelling

In order to maintain the required indoor conditions in buildings with high latent loads,

for example in the food and pharmaceutical industries, dehumidification systems are nec-

essary. Conventional dehumidification systems depend mainly on electrical energy, which

should be decreased to reduce the environmental impact associated with air dehumidifica-
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Figure 1.6.2: Energy flux time series collected from buoy 46001 located in the Gulf of Alaska.

tion. In this sense, desiccant wheels (DWs) could be a serious alternative to conventional

dehumidification systems. They are based on direct expansion units, which also depend

on electrical energy. However, an acceptable dehumidification capacity is achieved when

the DW are activated at low temperature, hence reducing the pollution associated to air

dehumidification.

In this sense, modelling the behaviour of these devices is an interesting research

line, given that the mathematical models require low computational load. Several dif-

ferent mathematical models have been used in the literature to adjust the behaviour of

the DWs, from first- or second-order equations [42] to multi-objective genetic algorithms

combined with response surface methodology [202]. More recently, complex models have

been applied, such as a multi-objective genetic algorithm combined with response surface

methodology [202], or [99], in which, ANNs are trained by means of a standard back-

propagation (BP) algorithm.

Based on the limitations of the previous articles, in this Thesis, we propose a MTEANN

able to predict, simultaneously, the outlet process air temperature and the outlet process

air humidity ratio.

Induction motors acoustic behaviour modelling

Electric induction motors are widely used in industrial and household applications, from

small electrical devices to large industrial machinery and vehicles. One of the objects of

research regarding induction motors is their noise component, given that people suffer

from physical and psychological discomfort when they are exposed to their noise during a
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long time.

Typically, in the literature, the noise generated by electric motors has been modelled

in two main ways: by the electric power signal and mechanical vibration [24], and by

recording the noise in a semi-anechoic chamber [61]. However, tackling noise prediction

without separating the noise of the electric motor from the environmental noise is of

significant interest. Therefore, the equivalent sound pressure level is used to measure the

physical discomfort, whereas the loudness, roughness and sharpness are used to measure

the psychological discomfort. Note that it is easier to measure the electrical parameter

than to register the complete sound and then calculate the sound quality parameters.

ANNs have been successfully used in this field, Huang et al. in [93] proposed the use

of a regression-based deep belief network combined with a support vector machine (SVM)

for assessing the sound quality of vehicle interior. Tenenbaum et al. in [172] presented an

approach based on ANNs to determine the annoyance of different electric vehicle sounds

for a constant speed, single car pass-by situation. Furthermore, ANNs have been also used

to develop a new technique to produce fast and robust auralizations for room acoustics

simulation [172]. Regarding the prediction of the acoustic behaviour of induction motors,

in this Thesis, we propose the use of MTEANNs in order to predict the four aforementioned

measures simultaneously.

1.6.3 Health

This group of applications includes two main health problems. The first one is related

with determining the typology of patients with HIV/HCV to be treated with antivirals,

whereas the second one concerns organ transplantation, more concretely addressing the

donor-recipient matching in liver transplantation (LT).

HIV/HCV patient typology

Chronic HCV is a major cause of cirrhosis, LT, and liver-related deaths worldwide [187].

Given that HCV and HIV are found to be transmitted together, patients are usually infected

with both viruses [188]. In the last years, several researchers and doctors have claimed for

an universal treatment of this disease [175]. However, given the huge number of patients

requiring the treatment, prioritisation criteria has been established by scientific societies

and health authorities.

These prioritisation criteria are aimed to achieve the maximum survival rate and

best clinical benefits for the patients. Nevertheless, they have not been assessed. In this

way, identifying the typology of patient requiring the treatment first is an important is-

sue. Moreover, recognising those patient-related variables limiting treatment uptake in
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HIV/HCV co-infected patients is also an interesting task. For these purposes, in this Thesis,

we propose the use of ANNs, given that these models could achieve exceptional accuracy.

ANNs have been used in the field previously: Wang et al. [181] presented an ANN

approach to predict virological response to therapy from HIV genotype. On the other hand,

Resino et al. in [150] proposed the use of ANNs for the prediction of significant fibrosis

among HIV/HCV co-infected patients, reaching to the conclusion that ANNs are useful and

helpful for guiding therapeutic decisions in HIV/HCV co-infected patients.

Machine learning in organ transplantation

ML techniques play an important role in organ transplantation. In the last decade, there

has been an explosion of interest in data mining associated to organ transplantation, with

numerous approaches proposed in the literature aiming to find universal models or, at

least, models for multi-centre cohorts or from different countries [74].

ML can be applied to donor-recipient matching, whose objective is to maximise the

probability of graft survival after a certain time. One of the main benefits of using ML for

this task is that the decision process is objective, given that there is no human subjectivity

in the selection of the donors and recipients, among others [12]. Numerous works have

been published in the literature: Shadabi et al. [167] estimated the graft survival proba-

bility in kidney transplantation using an ANN to predict if the graft survived after a certain

time. Briceño et al. [29] presented a novel donor-recipient matching model to improve the

performance of current clinical decision-making systems in LT.

Moreover, the rationale of assigning a given donor to a potential candidate on the

waiting list is causing some controversy, specially for LT, where there is an increasing

number of candidates and a scarce number of available donors. Several scores have been

introduced in the literature aiming to solve this issue, such as the model for end-stage liver

disease (MELD) [102], among others. However, all these scores have their supporters and

detractors, for instance, in the case of MELD, its aim is to decrease the mortality in the

waiting list without affecting the result of the transplant. Therefore, there is a need of a

balanced score to maximise the survival benefit among all possible candidates, without

perjuring the most critical receipts on the waiting list.

In this Thesis, we present the current opinion, and a review of the state-of-the-art

in ML methods when applied to organ transplantation. Moreover, we carry out a compar-

ison between statistical methods and ML techniques for donor-recipient matching, when

applied to LT.





The goal is to turn data into information,
and information into insight.

Carly Fiorina

2
Motivation and objectives

This chapter introduces the motivation, challenges, and objectives considered in this The-

sis, as well as the main publications derived from it.

2.1 Motivation and challenges

First of all, the development of this Thesis begins with works based on applying artificial

neural networks (ANNs) to real-world problems, mainly using time series data, given that

several research projects involve providing machine learning (ML) based solutions for this

kind of data. Getting deep into ANNs models will lead to other challenges and objectives

more specifically related with time series. In this sense, from the previous chapter, we can

differentiate between three main large areas based on time series data mining. Firstly,

time series clustering is a challenging task based on identifying interesting groups in time

series datasets. Secondly, one of the most popular goals regarding time series data min-

ing is time series classification (TSC). Specifically, during the last years, many approaches

have been published in the state-of-the-art, mainly applied to nominal time series, how-

ever, when dealing with ordinal time series, the performance of these classification tasks

could be improved by means of ordinal techniques, nevertheless, time series ordinal clas-

sification (TSOC) is yet an unexplored field. And, finally, the development of time series

prediction models taking nominal, ordinal and regression predictions into account is inter-

45
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esting for comparing the difference of performance between the different points of view.

Furthermore, and from a transversal point of view common to the three previous areas,

the preprocessing of time series is a field with significant impact given that, nowadays,

time series datasets include a vast amount of information, and this field can help alleviate

the burden of subsequent tasks. Moreover, apart from time series data mining approaches,

non-temporal data regression has also been considered, providing interesting ideas and

techniques to solve engineering and health applications.

Based on these comments, we can synthesise the following open challenges:

• Time series preprocessing: previous to the application of other tasks such as classi-

fication, prediction or clustering, preprocessing the time series has a significant im-

pact on the performance of subsequent tasks. In this sense, the preprocessing could

be done in several ways: recovering missing data from the time series or mapping

the original time series to a different form of representation by projecting the seg-

ments obtained during a time series segmentation into vectors of statistical features,

among others.

• Time series clustering: one of the main contributions of this Thesis will be made in

the field of time series clustering. There are several ways for performing a clustering

task applied to time series, depending on the way time series are treated. Specifically,

standard approaches only search for similarities between the different time series,

and then, cluster them following these distances. However, it has been demonstrated

that the application of preprocessing techniques, such as a time series segmentation,

has some advantages. In this way, we consider that it could be interesting to exploit

the similarities found in subsequences of the time series. Besides, few works can

be found in the literature for clustering unequal-length time series. This could be

affordable given that unequal-length time series are segmented into unequal-length

segments, which are then projected into feature vectors of the same length, vastly

reducing the size of the data without a large loss of information, in such a way that

the subsequent clustering task increases its quality and performance.

• Time series classification: as stated previously, classification is the most popular

task in the context of time series. The state-of-the-art includes a wide variety of

approaches, from standard techniques (similarity/distance measures with a nearest

neighbour classifier, for instance) to more complex deep learning (DL) models (resid-

ual networks (Resnet), for instance). The last approaches presented in the area try

to maintain the accuracy achieved by the best methods, while being computationally

effective. In this sense, hierarchical vote system collective of transformation-based

ensemble (HIVE-COTE) is the one achieving the highest accuracy, but its compu-

tational cost is huge, given that it is an ensemble of classifiers built on different
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representations. Therefore, efforts should be made on alleviating the computational

load associated to these techniques. Specifically, in this Thesis, we will focus on the

shapelet transform (ST) [89], which has raised a lot of attention given its versatil-

ity. In this way, the main idea behind this transformation will be modified for both

TSC and TSOC, respectively. Note that the field of TSOC has not been previously

considered in the literature.

• Time series prediction: it is the most frequent task concerning time series, consist-

ing in predicting the next values taking into account the previous values of the time

series. An interesting approach is transforming the prediction model to a classifica-

tion model in which both the next value and the next event could be determined.

In this sense, several approaches could be considered, such as the use of autoregres-

sive models (ARs) or the transformation from longitudinal data to transversal data.

Besides, apart from some previous ideas, adapting novel ML techniques for classifica-

tion and optimising them by advanced algorithms, such as evolutionary algorithms

(EAs), will result in an increase of the performance measures.

• Real-world applications: the development of methods should also include its appli-

cation to real-world problems. In this sense, we have considered a wide range of

problems from different areas, such as atmospheric events, engineering applications

and health.

2.2 Objectives

The aforementioned challenges will be addressed by different works presented in this

Thesis. In order to specify more formally the previous challenges, the following objectives

have been defined:

1. To propose different artificial neural network (ANN) architectures by hybridising ac-

tivation functions or combining them in hidden and output layers, aiming to search

for a good balance and to improve the performance achieved by standard models.

2. To adapt evolutionary artificial neural networks (EANNs) for its application to two

different sorts of problems: multi-objective problems (MOPs), in which two objec-

tives are considered during the optimisation of the ANNs, and multi-task problems,

in which two problems are learned at the same time, providing useful information

and making contributions to both tasks.

3. To review the state-of-the-art in preprocessing and analysis techniques for time se-

ries, with the aim of studying new representation forms alleviating the difficulty of

subsequent tasks.
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4. To study and develop a novel approach to time series clustering by preprocessing the

time series with time series segmentation, reducing their dimensionality by carrying

out a statistical feature extraction process.

5. To analyse and survey the shapelet transform (ST) methodology, in order to provide

improvements to this methodology by developing a new proposal in the time series

classification (TSC) field.

6. To adapt and develop a novel approach based on the ST technique for its applica-

tion to ordinal data, opening a new branch in TSC known as time series ordinal

classification (TSOC).

7. To apply the methods described above to the following real-world problems:

(a) Prediction of fog formation in airports.

(b) Prediction of convective situations formation in airports.

(c) Prediction of solar radiation.

(d) Prediction of energy flux from ocean waves.

(e) Modelling of desiccant wheels (DWs).

(f) Modelling of the acoustic behaviour of induction motors.

(g) Identification of human immunodeficiency virus (HIV)/hepatitis C virus (HCV)

co-infected patient typology.

(h) Donor-recipient matching in liver transplantation (LT).

2.3 Summary of the Thesis

In the last years, there has been an increase in the number of fields improving their stan-

dard processes by using machine learning (ML) techniques. The main reason for this is

that the vast amount of data generated by these processes is difficult to be processed by

humans. Therefore, the development of automatic methods to process and extract relevant

information from these data processes is of great necessity, giving that these approaches

could lead to an increase in the economic benefit of enterprises or to a reduction in the

workload of some current employments. Concretely, in this Thesis, ML approaches are

applied to problems concerning time series data. Time series is a special kind of data in

which data points are collected chronologically. Time series are present in a wide vari-

ety of fields, such as atmospheric events or engineering applications. Besides, according

to the main objective to be satisfied, there are different tasks in the literature applied to

time series. Some of them are those on which this Thesis is mainly focused: clustering,

classification, prediction and, in general, analysis.
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Generally, the amount of data to be processed is huge, arising the need of methods

able to reduce the dimensionality of time series without decreasing the amount of infor-

mation. In this sense, the application of time series segmentation procedures dividing the

time series into different subsequences is a good option, given that each segment defines a

specific behaviour. Once the different segments are obtained, the use of statistical features

to characterise them is an excellent way to maximise the information of the time series

and simultaneously reducing considerably their dimensionality.

In the case of time series clustering, the objective is to find groups of similar time

series with the idea of discovering interesting patterns in time series datasets. In this The-

sis, we have developed a novel time series clustering technique. The aim of this proposal

is twofold: to reduce as much as possible the dimensionality and to develop a time series

clustering approach able to outperform current state-of-the-art techniques. In this sense,

for the first objective, the time series are segmented in order to divide the them identifying

different behaviours. Then, these segments are projected into a vector of statistical fea-

tures aiming to reduce the dimensionality of the time series. Once this preprocessing step

is done, the clustering of the time series is carried out, with a significantly lower compu-

tational load. This novel approach has been tested on all the time series datasets available

in the University of East Anglia and University of California Riverside (UEA/UCR) time

series classification (TSC) repository.

Regarding time series classification, two main paths could be differentiated: firstly,

nominal TSC, which is a well-known field involving a wide variety of proposals and trans-

formations applied to time series. Concretely, one of the most popular transformation is

the shapelet transform (ST), which has been widely used in this field. The original method

extracts shapelets from the original time series and uses them for classification purposes.

Nevertheless, the full enumeration of all possible shapelets is very time consuming. There-

fore, in this Thesis, we have developed a hybrid method that starts with the best shapelets

extracted by using the original approach with a time constraint and then tunes these

shapelets by using a convolutional neural network (CNN) model. Secondly, time series or-

dinal classification (TSOC) is an unexplored field beginning with this Thesis. In this way,

we have adapted the original ST to the ordinal classification (OC) paradigm by proposing

several shapelet quality measures taking advantage of the ordinal information of the time

series. This methodology leads to better results than the state-of-the-art TSC techniques

for those ordinal time series datasets. All these proposals have been tested on all the time

series datasets available in the UEA/UCR TSC repository.

With respect to time series prediction, it is based on estimating the next value or

values of the time series by considering the previous ones. In this Thesis, several differ-

ent approaches have been considered depending on the problem to be solved. Firstly, the

prediction of low-visibility events produced by fog conditions is carried out by means of
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hybrid autoregressive models (ARs) combining fixed-size and dynamic windows, adapting

itself to the dynamics of the time series. Secondly, the prediction of convective cloud for-

mation (which is a highly imbalance problem given that the number of convective cloud

events is much lower than that of non-convective situations) is performed in two com-

pletely different ways: 1) tackling the problem as a multi-objective classification task by

the use of multi-objective evolutionary artificial neural networks (MOEANNs), in which

the two conflictive objectives are accuracy of the minority class and the global accuracy,

and 2) tackling the problem from the OC point of view, in which, in order to reduce the

imbalance degree, an oversampling approach is proposed along with the use of OC tech-

niques. Thirdly, the prediction of solar radiation is carried out by means of evolutionary

artificial neural networks (EANNs) with different combinations of basis functions in the

hidden and output layers. Finally, the last challenging problem is the prediction of en-

ergy flux from waves and tides. For this, a multitask EANN has been proposed aiming

to predict the energy flux at several prediction time horizons (from 6h to 48h). All these

proposals and techniques have been corroborated and discussed according to physical and

atmospheric models.

The work developed in this Thesis is supported by 11 JCR-indexed papers in inter-

national journals (7 Q1, 3 Q2, 1 Q3), 11 papers in international conferences, and 4 papers

in national conferences.

2.4 Publications

The following papers have been published in international journals (J):
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Mateo, J. Sanz-Justo, S. Salcedo-Sanz y C. Hervás-Mart́ınez. “Evolutionary artificial

neural networks for accurate solar radiation prediction”, Energy, Vol. 210, 2020, pp.

1− 11.

JCR (2019): 6.082 Position: 3/61 (Q1).

DOI: 10.1016/j.energy.2020.118374



52 2. Motivation and objectives
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C. Hervás-Mart́ınez. “Distribution-based discretisation and ordinal classification ap-

plied to wave height prediction”. 19th International Conference on Intelligence Data

Engineering and Automated Learning (IDEAL 2018). 2018. LNCS, Vol. 11315, pp.

171− 179.

DOI: 10.1007/978-3-030-03496-2 20

C5 D. Guijo-Rubio, P.J. Villalón-Vaquero, P.A. Gutiérrez, M.D. Ayllón, J. Briceño y C.

Hervás-Mart́ınez. “Modelling survival by machine learning methods in liver trans-



2.4. Publications 53

plantation: application to the UNOS dataset”. 20th International Conference on In-

telligent Data Engineering and Automated Learning (IDEAL 2019). 2019. LNCS, Vol.

11872, pp. 97− 104.

DOI: 10.1007/978-3-030-33617-2 11

C6 D. Guijo-Rubio, P.A. Gutiérrez, R. Tavenard y A. Bagnall. “A hybrid approach to

time series classification with shapelets”. 20th International Conference on Intel-

ligent Data Engineering and Automated Learning (IDEAL 2019). 2019. LNCS, Vol.

11871, pp. 137− 144.

DOI: https://doi.org/10.1007/978-3-030-33607-3 16

C7 D. Guijo-Rubio, P.A. Gutiérrez, A. Bagnall y C. Hervás-Mart́ınez. “Time series ordi-

nal classification via shapelets”. 2020 IEEE International Joint Conference on Neural

Networks (IJCNN 2020). 2020. Glasgow, UK. pp. 1− 8.

DOI: 10.1109/IJCNN48605.2020.9207200

C8 D. Guijo-Rubio, P.A. Gutiérrez, A. Bagnall y C. Hervás-Mart́ınez. “Ordinal versus

nominal time series classification”. 5th Workshop on Advances Analytics and Learn-

ing on Temporal Data (AALTD 2020). 2020. LNAI, Vol. 12588, pp. 19− 29.

DOI: 10.1007/978-3-030-65742-0 2
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Without big data, you are blind and deaf and in the
middle of a freeway.

Geoffrey Moore

3
Time series preprocessing

This chapter presents a novel technique for time series clustering, which could be consid-

ered as a preprocessing technique for subsequent tasks such as classification or prediction

of time series.

3.1 Time series clustering

Time series clustering is a field receiving a lot of attention in the last decade. In this sense,

a novel approach has been presented based on the characterisation of segments obtained

after carrying out a segmentation strategy over the time series.

Main publication associated to this section:

• D. Guijo-Rubio, A.M. Durán-Rosal, P.A. Gutiérrez, A. Troncoso and C. Hervás-Mart́ınez.

“Time series clustering based on the characterisation of segment typologies”, IEEE

Transactions on Cybernetics. 2020.

JCR (2019): 11.079 Position: 5/136 (Q1).

DOI: 10.1109/TCYB.2019.2962584

Other publications associated to this section:

• D. Guijo-Rubio, A.M. Durán-Rosal, P.A. Gutiérrez y C. Hervás-Mart́ınez. “Clustering
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de Series Temporales basado en la Extracción de Tipoloǵıas de Segmentos”. I Con-

greso de Investigadores Noveles de la Universidad de Córdoba (CIN-UCO 2016).

2016. pp. 201− 204.

URL: http://www.uco.es/investigacion/ucci/es/congreso-cientifico-de-investigadores-

noveles

• D. Guijo-Rubio, A.M. Durán-Rosal, P.A. Gutiérrez, A. Troncoso y C. Hervás-Mart́ınez.

“Time series clustering based on the characterisation of segment typologies”. 3er

Bilbao Data Science Workshop (BiDAS 3). 2018.

URL: https://wp.bcamath.org/bidas3/

3.1.1 Time series clustering based on the characterisation of segment ty-
pologies

In this paper, we present a novel technique for time series clustering, testing its perfor-

mance over the whole set of datasets belonging to the University of East Anglia and Uni-

versity of California Riverside (UEA/UCR) time series classification (TSC) repository. The

method proposed consists of two clustering stages: the first one consists in the application

of a segmentation technique used to simplify the time series, whereas the second stage

consists in the application of a final clustering algorithm for grouping the time series.

More concretely, the first stage is associated with the simplification of the time series.

First of all, the SwiftSeg segmentation procedure [68] is carried out to divide each time

series into segments. This segmentation algorithm introduces points of the time series iter-

atively into a growing window and generates the corresponding least-squares polynomial

approximation of the segment. This segmentation involves the use of an error threshold

for the segmentation procedure, SEPmax, which is the maximum error allowed for which

the window is not further grown. After that, all these unequal-length segments are pro-

jected into a fixed-size vector in which each position corresponds with a different statistical

feature extracted from the segments. At this point, all these vector of characteristics are

equal-length and are clustered into k = 2 groups (higher values for k resulted in lower

clustering quality, increasing the computational cost).

On the other hand, the second stage is associated with creating a common struc-

ture for all the time series belonging to the dataset, and clustering them. In this sense,

first of all, a mapping step is carried out to generate a common representation from the

cluster stage applied to the individual time series. This common representation consists

in including the following information from each of the clusters: 1) the centroid, which is

the average of all cluster points, and 2) the mapping of the segment with higher variance

(which is one of the statistical features extracted from the segments) in order to include

the most characteristic segment of the cluster. Besides, apart from this information, two
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more characteristics are included into this time series representation: 1) the error differ-

ence between the segment least similar to its centroid (farthest segment) and the segment

most similar to its centroid (closest segment), and 2) the number of segments extracted

from the time series. Therefore, this common representation for each time series has length

(w × k) + v, where w is the length of the mapped cluster, expressed as w = (l × 2) being

l the length of the segment representation (all the statistical features extracted from the

segment), it is ×2 due to information of the centroid and the extreme segment are both

included, k is the number of clusters, and v = 2 given that this is the extra information we

are considering for the time series. After all this mapping, a final hierarchical clustering

stage is performed with the idea of grouping similar time series in the same cluster.

According to the way of adjusting the parameter SEPmax, we defined two different

strategies: 1) selecting the SEPmax leading to the best Caliński-Harabasz index (CH) index

(known as TS3CCH), and 2) selecting the SEPmax by means of a majority voting system

in which a wide variety of internal measures is used (known as TS3CMV ).

This methodology is applied to 84 datasets from the UEA/UCR TSC repository, and

the results achieved are compared against 3 state-of-the-art techniques. From the results,

we can highlight that, for larger datasets, the methodology proposed, known as TS3CCH ,

obtains better solutions than the rest of the methods, not only in terms of rand index

(RI), but also achieving significantly lowest computational time. On the other hand, for

medium-size time series, the results achieved by TS3CMV are similar to those achieved

by WDTW [100] and better than the rest of the approaches.

Some conclusions can be extracted from these results: 1) for large datasets with long

time series, our method achieves a good performance in terms of RI; 2) the computational

load associated with the segmentation process and the first hierarchical clustering is high,

but the global cost is more than acceptable given that the final clustering does not depend

on the length of the original time series; 3) for datasets with a large number of medium-

length time series, the performance of our method is competitive, achieving good results

in terms of RI; 4) our approach is designed for large time series datasets with medium-

to-large-length time series, given that one of the advantages is the huge summarisation of

information carried out in the first stage.
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Abstract—Time-series clustering is the process of grouping
time series with respect to their similarity or characteristics.
Previous approaches usually combine a specific distance mea-
sure for time series and a standard clustering method. However,
these approaches do not take the similarity of the different sub-
sequences of each time series into account, which can be used
to better compare the time-series objects of the dataset. In this
article, we propose a novel technique of time-series clustering
consisting of two clustering stages. In a first step, a least-squares
polynomial segmentation procedure is applied to each time series,
which is based on a growing window technique that returns
different-length segments. Then, all of the segments are pro-
jected into the same dimensional space, based on the coefficients
of the model that approximates the segment and a set of statisti-
cal features. After mapping, a first hierarchical clustering phase
is applied to all mapped segments, returning groups of segments
for each time series. These clusters are used to represent all time
series in the same dimensional space, after defining another spe-
cific mapping process. In a second and final clustering stage, all
the time-series objects are grouped. We consider internal clus-
tering quality to automatically adjust the main parameter of
the algorithm, which is an error threshold for the segmenta-
tion. The results obtained on 84 datasets from the UCR Time
Series Classification Archive have been compared against three
state-of-the-art methods, showing that the performance of this
methodology is very promising, especially on larger datasets.

Index Terms—Data mining, feature extraction, segmentation,
time-series clustering.

I. INTRODUCTION

T IME series are an important class of temporal data objects
collected chronologically [1]. Given that they tend to
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be high dimensional, directly dealing with them in its raw
format is very expensive in terms of processing and storage
cost, which makes them difficult to analyze. However, time
series have applications in many different fields of science,
engineering, economics, finance, etc.

In recent years, there has been a high explosion of interest
in mining time-series databases. Clustering is one of these
data mining techniques, where similar data are organized into
related or homogeneous groups without specific knowledge
of the group definitions [2]. Usually, clustering is used as a
preprocessing step for other data mining tasks.

Time-series clustering consists of grouping time series.
There are several recent review papers dealing with time-
series clustering [3]–[5]. It can be used as a preprocessing
step for anomaly detection [6], for recognizing dynamic
changes in the time series [7], for prediction [8], and for
classification [9]. For example, the application of these tech-
niques can be used to discover common patterns preceding
important paleoclimate events [10] or mining gene expression
patterns [11].

Time-series clustering can be approached by considering
specific distance measures for time series combined with the
standard clustering techniques [4], [12]. Some of these met-
rics are designed for equal-length time series, such as the
standard Euclidean distance, which is applied to time series
in [13], while others, such as the dynamic time warping
(DTW) [14], [15], can be used for time series of differ-
ent size, allowing the comparison of one-to-many points
(i.e., it is an elastic measure). There have been many attempts
to obtain better time-series distance metrics as extensions
of DTW [16]–[19]. Moreover, apart from adapting distance
measures, some authors propose specific versions of the clus-
tering algorithm to deal with their special characteristics [20].
Interesting work about other types of similarity measures in
time series and its effect over dataset size, accuracy, and speed
can be found in [21] and [22].

On the other hand, time-series segmentation consists in cut-
ting the series in some specific points, trying to achieve two
different objectives: 1) dividing time series in segments as a
procedure for discovering useful patterns (homogeneous seg-
ments) [10], [23]–[25] or 2) approximating the time series with
a set of simple models for each segment without losing too
much information [26]–[29].

These works of time-series segmentation open a new per-
spective for time-series clustering, given that previous time-
series clustering proposals only search for similarities between

2168-2267 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Prediction is very difficult, especially if it’s about the
future.

Niels Bohr

4
Time series prediction

The prediction of time series is considered the most important field regarding time series

data mining, not only due the wide variety of objectives that need to be fulfilled, but also

given that most of the tasks are highly challenging. In this sense, there are a huge variety

of approaches to this problem. Traditionally, time series prediction has been accomplished

by means of standard statistical procedures (such as autoregressive models (ARs), mov-

ing average models (MAs) or a mixture of them, such as autoregressive moving average

model (ARMA) or autoregressive integrated moving average model (ARIMA), among oth-

ers). Thus, in this Thesis, we have focused on time series prediction by transforming the

prediction problem into classification or regression tasks. According to the strategy fol-

lowed, more concretely, it could be accomplished by using ordinal classifications (OCs) or

by using a regression point of view.

4.1 Time series ordinal prediction

This chapter shows some of the contributions of this Thesis based on the topic of time se-

ries prediction following the ordinal classifications (OCs) paradigm. In this way, this chap-

ter includes the prediction of low-visibility events produced by atmospheric conditions,

causing inconveniences in the proper operating conditions in the airports of Valladolid

and Madrid-Barajas, respectively.

59



60 4. Time series prediction

Main publications associated to this section:

• D. Guijo-Rubio, P.A. Gutiérrez, C. Casanova-Mateo, J. Sanz-Justo, S. Salcedo-Sanz

and C. Hervás-Mart́ınez. “Prediction of low-visibility events due to fog using ordinal

classification”, Atmospheric Research, Vol. 214, 2018, pp. 64− 73.

JCR (2018): 4.114. Position: 13/86 (Q1).

DOI: 10.1016/j.atmosres.2018.07.017

• D. Guijo-Rubio, C. Casanova-Mateo, J. Sanz-Justo, P.A. Gutiérrez, S. Cornejo-Bueno,

C. Hervás-Mart́ınez y S. Salcedo-Sanz. “Ordinal regression algorithms for the analy-

sis of convective situations over Madrid-Barajas airport”, Atmospheric Research, Vol.

236, 2020, pp. 104798.

JCR (2019): 4.676 Position: 13/93 (Q1).

DOI: 10.1016/j.atmosres.2019.104798

Other publications associated to this section:

• D. Guijo-Rubio, A. M. Durán-Rosal, A. M. Gómez-Orellana, P. A. Gutiérrez, and
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4.1.1 Prediction of low-visibility events due to fog using ordinal classifica-
tion

In this paper, the prediction of low-visibility events due to fog is carried out. Anticipating

to meteorological phenomena that can have a severe impact on daily human activities is
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crucial, especially for transportation facilities such as airports, in which altering schedules

or safety has a significant repercussion on the economical side (lower traffic load for the

airspace capacity), producing, in this sense, larger time-intervals between landings and

take-offs, increases in the controllers and pilots workload or suspension of the runway

operations, among others.

Given the importance of predicting the low-visibility events due to the presence of

fog, we have centred our study in one of the airports in which the number of reduced

visibility days is large, the Valladolid airport. The low visibility events have been recorded

hourly and can be characterised by the runway visual range (RVR), measured from visi-

bilimetres located along the runway. Furthermore, as fog can be modelled by meteorolog-

ical variables, wind speed and direction, temperature, relative humidity and atmospheric

pressure (known as QNH) have been used.

In this work, rather than predicting the RVR from a regression point of view, we

propose using a categorical perspective, with three main categories: FOG (0 ≤ RV R <

1000), MIST (1000 ≤ RV R < 1990) and CLEAR (1990 ≤ RV R), whereRV R is the average

of the RVR of a day. In this sense, the prediction is performed on a daily basis. Furthermore,

we propose three different kinds of windows for generating a set of input variables, based

on previous values of the original time series and focused on autoregressive models (ARs).

The first approach is the fixed window, which resembles the AR structure, i.e. it includes

the n previous events of the time series. On the other hand, we have also proposed the use

of two dynamic windows: 1) dynamic windows based on label changes, i.e. past values

of the time series are included until there is a change in the RVR label, and 2) dynamic

windows based on variance change, i.e. the same previous idea is carried out, but rather

than expecting a RVR label change, past values are added to the window until the variance

of the information included does not exceed a given threshold.

Then, the transformed dataset is built using the different windows and four sta-

tistical features (mean, variance, skewness and autocorrelation). For instance, the fixed

windows are constructed by computing the variance, the skewness and the autocorrela-

tion coefficient, whereas the dynamic windows are constructed by computing the average.

Once the original dataset has been transformed, the corresponding classifier is trained. In

this way, given that the outcome is categorical, and due to the nature of the variable, this

problem is tackled as an OC one. Four different ordinal classifiers and a nominal one are

applied to the transformed dataset. The results demonstrate that the combination of the

three previously described windows along with the use of the kernel discriminant analysis

for ordinal regression (KDLOR) classifier, achieves the best performance in terms of both

minimum sensitivity (MS) and average mean absolute error (AMAE), not only against the

rest of the proposals, but also against the persistence approach (these models predict the

same category that the one observed for the previous event, in this case, the previous
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day), whose performance is considerably high, given that it will be right for long runs,

only failing when there are changes.
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A B S T R A C T

The prediction of low-visibility events is very important in many human activities, and crucial in transportation
facilities such as airports, where they can cause severe impact in flight scheduling and safety. The design of
accurate predictors for low-visibility events can be approached by modelling future visibility conditions based on
past values of different input variables, recorded at the airport. The use of autoregressive time series forecasters
involves adjusting the order of the model (number of past series values or size of the sliding window), which
usually depends on the dynamical nature of the time series. Moreover, the same window size is normally used for
all the data, thought it would be reasonable to use different sliding windows. In this paper, we propose a hybrid
prediction model for daily low-visibility events, which combines fixed-size and dynamic windows, and adapts its
size according to the dynamics of the time series. Moreover, visibility is labelled using three ordered categories
(FOG, MIST and CLEAR), and the prediction is then carried out by means of ordinal classifiers, in order to take
advantage of the ordinal nature of low-visibility events. We evaluate the model using a dataset from Valladolid
airport (Spain), where radiation fog is very common in autumn and winter months. The considered data set
includes five different meteorological input variables (wind speed and direction, temperature, relative humidity
and QNH – pressure adjusted at mean sea level) and the Runway Visual Range (RVR), which is used to char-
acterize the low-visibility events at the airport. The results show that the proposed hybrid window model with
ordinal classification leads to very robust performance prediction in daily time-horizon, improving the results
obtained by the persistence model and alternative prediction schemes tested.

1. Introduction

Fog is a meteorological phenomenon consisting of the suspension of
very small, usually microscopic water droplets in the air, generally
reducing the horizontal visibility at the Earth's surface to< 1 km (WMO
2011). Basically, fog is a cloud at ground level, that has been studied
extensively from different points of view (Román Cascón 2015; Román-
Cascón et al. 2012). Different fog types can be classified according to
the two main physical processes which produce saturation of the air:
cooling and the addition of water vapour. In the first group we have the
radiation fog, that can occur in long nights and clear skies as a result of
the thermal radiation cooling, the advection fog, that can arise when
warm and moist air is moving over a colder surface, and the up-slope or
orographic fog, formed when the air is forced up a slope undergoing an
adiabatic cooling process. The second group includes in turn two main

types: the steam fog, produced by rapid evaporation from an underlying
warm water surface, and the frontal fog, caused by rain falling into cold
air and moistening it. In all the cases, when the horizontal visibility is at
least 1 km, but not> 5 km, the phenomenon is called mist (WMO
2011).

As it is well known, adverse weather phenomena can strongly affect
air traffic management and flight operations (da Rocha et al. 2015; Dey
2018). Thunderstorms, icing, turbulence or wind shear conditions can
greatly disrupt air traffic flows, leading to flight delays, diversions or
cancellations. However, fog is perhaps the most important local visi-
bility-reducing phenomenon that affects airport operations, since it can
strongly reduce runway capacity (Bergot et al. 2007).

The number of runways fully available is a key element in the global
airspace capacity, since they largely determine the number of departing
or arriving flights within an airspace area. Therefore, any local weather

https://doi.org/10.1016/j.atmosres.2018.07.017
Received 12 April 2018; Received in revised form 13 July 2018; Accepted 16 July 2018

⁎ Corresponding author at: Department of Computer Science and Numerical Analysis, University of Córdoba, Rabanales Campus, Albert Einstein Building 3rd Floor,
14071 Córdoba, Spain.

E-mail address: dguijo@uco.es (D. Guijo-Rubio).

Atmospheric Research 214 (2018) 64–73

Available online 20 July 2018
0169-8095/ © 2018 Elsevier B.V. All rights reserved.

T



64 4. Time series prediction

4.1.2 Ordinal regression algorithms for the analysis of convective situations
over Madrid-Barajas airport

In this paper, we tackle another problem related with meteorological phenomenon affect-

ing daily human activities, concretely in airports. As stated before, anticipating to these

meteorological events makes a great improvement in air and land operations at the air-

port. In this work, we deal with 12-h time horizon in the prediction of convective clouds

present at the Madrid-Barajas airport, the one with most air traffic given the huge number

of connections available.

As can be imagined, these meteorological events are not common in Spain and,

therefore, this is why anticipating to them is of an enormous importance. The presence

of convective clouds, especially of cumulus congestus and cumulonimbus, typically leads

to airspace constraints, affects fuelling and handling operations, and, what is more sig-

nificant, it could produce flight diversions. Handling with these circumstances cause over-

whelming workload situations, in such a way that pilots need to change the planned routes

or to activate special safety operations to avoid unnecessary conflicts. These events can be

characterised by atmospheric data such as vertical temperature, wind speed and direction,

water vapour content, and so on. Therefore, for this work, we have considered two sorts

of variables: 1) derived from the radiosonde station located at the airport, and 2) derived

from ECMWF ERA-Interim reanalysis project. Moreover, in order to avoid including over-

lapping information, we carried out correlation tests and removed all the variables with

high correlation values.

On the other hand, the objective variable of our problem is ordinal, due to the

nature of the problem. In this way, each event representing the presence of a given type

of weather situation in the following 12h time-horizon is encoded as follows: CLEAR (no

convective clouds sighted in the next 12h), TCU (cumulus congestus sighted in the next

12h, but neither cumulonimbus nor thunderstorms), CB (cumulonimbus sighted in the

next 12h, but no thunderstorms) and TS (thunderstorm sighted in the next 12h). Note

that there is an obvious order in which CLEAR periods are preferred than TS periods.

As was previously stated, CLEAR days are by far more common than any of the other

categories, and, therefore, we have carried out an undersampling procedure removing a

30% of the training patterns with the CLEAR class. After that, an ordinal oversampling

has been applied, given that the dataset is still highly imbalanced. Moreover, due to the

ordinal nature of the problem, the oversampling technique must be ordinal given that

otherwise the ordinal information present in the classes would be ignored.

Once the final oversampled dataset has been built, an ordinal classifier is applied. In

this work, 13 ordinal classifiers are applied and compared against 4 nominal techniques,

in order to demonstrate that ordinal approaches achieve better results. Furthermore, the
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results after applying the ordinal oversampling procedure are better than without applying

it.

In addition, a comparison and verification of the results achieved is carried out to

judge the quality of the proposed methodology. In this way, the results achieved by the

best ordinal classifier are compared against terminal aerodrome forecasts (TAFs), which

are tools that contribute towards the security, safety, and efficiency of international air

navigation. Hence, the comparison demonstrated that our approach achieves better results

than TAFs when dealing with extreme categories (TCU, CB and TS), whereas TAFs are

generally better avoiding false alarms.
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A B S T R A C T

In this paper we tackle a problem of convective situations analysis at Adolfo-Suarez Madrid-Barajas International
Airport (Spain), based on Ordinal Regression algorithms. The diagnosis of convective clouds is key in a large
airport like Barajas, since these meteorological events are associated with strong winds and local precipitation,
which may affect air and land operations at the airport. In this work, we deal with a 12-h time horizon in the
analysis of convective clouds, using as input variables data from a radiosonde station and also from numerical
weather models. The information about the objective variable (convective clouds presence at the airport) has
been obtained from the Madrid-Barajas METAR and SPECI aeronautical reports. We treat the problem as an
ordinal regression task, where there exist a natural order among the classes. Moreover, the classification problem
is highly imbalanced, since there are very few convective clouds events compared to clear days. Thus, a process
of oversampling is applied to the database in order to obtain a better balance of the samples for this specific
problem. An important number of ordinal regression methods are then tested in the experimental part of the
work, showing that the best approach for this problem is the SVORIM algorithm, based on the Support Vector
Machine strategy, but adapted for ordinal regression problems. The SVORIM algorithm shows a good accuracy in
the case of thunderstorms and Cumulonimbus clouds, which represent a real hazard for the airport operations.

1. Introduction

Air traffic can be greatly disrupted by adverse weather conditions as
pointed out in Borsky and Unterberger (2019). Turbulence, wind shear,
low-visibility events or icing represent a serious risk to aviation. Spe-
cifically, convective clouds have a significant impact on airports op-
erations (Lee and Craun, 2013; Bolgiani et al., 2018). Among the dif-
ferent types of convective clouds, Cumulus Congestus (also known as
Towering Cumulus) and Cumulonimbus are particularly threatening
when they form nearby the Terminal Manoeuvring Areas, or TMA (area
of controlled airspace surrounding a major airport where there is a high
volume of traffic). Convective clouds can lead to airspace constraints,
increase airborne holding, affect fueling and handling operations,
produce flight diversions (with the added problem that if the number of
flights diverted is significantly high, alternative airports could not ac-
commodate all the aircrafts) and, in summary, they lead to a scenario
where pilots and air traffic controllers have to tackle with an

overwhelming workload situation. Under these circumstances, air
traffic controllers are expected to provide the most appropriate advice
to pilots in order to avoid flight areas of adverse convective conditions,
or to set an appropriate safe separation to accommodate arriving and
departing traffics at airports to prevent them from unnecessary con-
flicts. Consequently, the International Civil Aviation Organization
(ICAO) has determined that it is necessary to inform about their ex-
istence, when they are observed, in the airport local weather reports,
and to forecast their possible formation in and around airports (ICAO,
2016). Nevertheless, the forecasting of these convective situations is
still a difficult and challenging task (Sánchez et al., 2009).

Towering Cumulus clouds are strongly sprouting Cumulus with
generally sharp outlines and often great vertical extent (WMO, 2017).
They may produce precipitation as well as turbulence, wind shear and
icing. Towering Cumulus often develops into Cumulonimbus, which are
heavy and dense clouds, with a considerable vertical extent, in the form
of a mountain or huge towers (WMO, 2017). Note that Cumulonimbus
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4.2 Time series forecasting

This chapters specifies some contributions of the Thesis focused on the prediction of time

series from a more traditional point of view (nominal classification or regression), but

incorporating advanced methods for this. Diverse approaches have been considered in

this Thesis, including three different perspectives: 1) nominal classification based on a

multi-objective paradigm, 2) standard regression using advanced artificial neural networks

(ANNs) models, and 3) multi-task models for regression.
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4.2.1 Prediction of convective clouds formation using multi-objective evolu-
tionary neural computation techniques

In this paper, we also tackle the prediction of convective clouds formation, but rather

than predicting it from the ordinal classification (OC) point of view, we approach it by

means of evolutionary algorithms (EAs) applied to ANNs. One of the reasons behind the

use of ANNs is that they have been successfully used for previous atmospheric events

prediction problems. As we stated before, the dataset is highly imbalanced given that the

number of CLEAR days is much higher than the number of days of the remaining classes.
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Therefore, the use of mono-objective evolutionary artificial neural networks (EANNs) will

aim to classify most of the patterns in the majority class (in this case the CLEAR class),

achieving, in this case, a high performance in terms of accuracy, which represents the

global performance.

On the other hand, it is worthy of mention that, when dealing with highly imbal-

anced datasets, accuracy is not the best performance measure, at least when the models

are only optimised by using it. In this sense, if this measure is combined with any other

metric aiming to achieve a good performance for the minority classes, the model will im-

prove significantly its quality. One of the metrics following the idea of reaching a notable

performance for minority classes is the minimum sensitivity (MS). Note that accuracy and

MS are opposite, given that if one objective increases, it leads to a decrease in the other

one, i.e. an increase in the global accuracy does not necessarily mean that the accuracy of

the minority classes will increase (in general, the majority class will increase its accuracy),

and, otherwise, an increase in the MS could not correspond to an increase in the global

accuracy (in general, the majority class will decrease its accuracy). Therefore, in this work

we propose the use of a multi-objective methodology, aiming to get the highest MS with-

out disregarding the global performance. The proposed methodology is a multi-objective

evolutionary artificial neural network (MOEANN).

Regarding the structure of the ANNs, we propose the use of the most common basis

functions in the literature: sigmoidal units (SUs), product units (PUs) and radial basis

functions (RBFs). Apart from these basis functions, we also considered mixtures of them,

in such a way that projection functions (SUs and PUs) are combined with the kernel

function RBF, giving rise to SURBF and PURBF, respectively. Furthermore, in order to

robustly check the performance of the MOEANN, we also run two types of mono-objective

EANNs depending on the objective function (one optimises accuracy whereas the second

one optimises the MS).

The results achieved demonstrate that, if we only consider the global accuracy, using

a mono-objective EANNs optimised by this metric will lead to the best results (disregard-

ing the minority classes). However, given that we are more interested in anticipating the

convective clouds formation, we should aim to correctly predict the minority classes (with-

out losing too much global performance). Therefore, MOEANNs are able to improve the

performance on these opposite measures (accuracy and MS), achieving balanced results.

Finally, these results are compared against standard terminal aerodrome forecasts (TAFs),

obtaining improvements in the classification of the most difficult convective situation pre-

diction.
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Abstract
The prediction of convective clouds formation is a very important problem in different areas such as agriculture, natural

hazards prevention or transport-related facilities. In this paper, we evaluate the capacity of different types of evolutionary

artificial neural networks to predict the formation of convective clouds, tackling the problem as a classification task. We

use data from Madrid-Barajas airport, including variables and indices derived from the Madrid-Barajas airport radiosonde

station. As objective variable, we use the cloud information contained in the METAR and SPECI meteorological reports

from the same airport and we consider a prediction time horizon of 12 h. The performance of different types of evolu-

tionary artificial neural networks has been discussed and analysed, including three types of basis functions (sigmoidal unit,

product unit and radial basis function) and two types of models, a mono-objective evolutionary algorithm with two

objective functions and a multi-objective evolutionary algorithm optimised by the two objective functions simultaneously.

We show that some of the developed neuro-evolutionary models obtain high quality solutions to this problem, due to its

high unbalance characteristic.

Keywords Convection initialisation prediction � Machine learning algorithms � Neural networks � Unbalanced databases

1 Introduction

Convective weather conditions can significantly affect

many strategic economical areas such as electric supply,

communications, logistic services and transport, especially

air traffic. The identification of atmospheric situations that

favours the initiation of convection as well as the accurate

prediction of its timing and location is still a difficult task

for the operational weather forecasters [1]. The basic

ingredients for convection to occur stated by Johns and

Doswell [2] (a sufficiently moist and deep layer in the low

or mid-atmosphere, conditional instability and a triggering

mechanism) are still the base of many tools and applica-

tions developed to support the forecast of convection ini-

tiation. However, several works discussing the results

obtained in many field studies have been published in the

last years [3–6], which shows that there is still room for

improving our knowledge about convective initiation.

As it is well known throughout the weather forecasters

community, one of the most widely used tools for pre-

dicting the occurrence of convection is the stability indices

derived, in most cases, from the temperature and humidity

data measured by the sounding (upper-air) stations. These

indices, such as the lifted index [7], the total of totals index

[8] or the Convective Available Potential Energy (CAPE)

Index [9], try to characterise, with varying degrees of

success, if the current atmospheric conditions favour con-

vection and, eventually, the formation of cumulus con-

gestus and cumulonimbus clouds that can bring adverse
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4.2.2 Evolutionary artificial neural networks for accurate solar radiation
prediction

In this paper, we carry out the prediction of solar radiation. In the last decades, the de-

mand of electricity has been increasing every year, and the availability of fossil fuels, such

as petroleum or coal, is getting compromised progressively. Apart from that, we should

bear in mind that these sources of energy have a significant impact on climate change.

Therefore, the development of renewable energy sources not only does it provide an enor-

mous benefit for the environment, but also is the unique way to cover the increase of

energy demand, projected to be around a 60% from 2002 to 2030.

Among all the renewable sources of energy, there are two that highlight from the

rest: the tidal or waves energy and the solar energy. More concretely, the second one is

thought as the future renewable energy source, not only given the extraordinary solar

resource we have available, but also due to the fact that it is a clean energy without risks

for the environment. The main aim of the paper is the prediction of solar radiation in order

to enable optimal management of energy systems.

In recent years, the use of machine learning (ML) techniques has increased in this

field given its ability and accuracy to obtain reliable forecasts. Therefore, in this paper,

we focus on the use of satellite data and EANNs, which have been proved to achieve

excellent results in other renewable energy prediction works. Regarding the architecture

of the ANNs, apart from the typical linear output, we propose the use of an ANN with a PU

in the output layer. Hence, three different ANNs are compared: SU-LO (SU in the hidden

layer with a linear output), RBF-LO (RBF in the hidden layer with a linear output) and

SU-PU (SU in the hidden layer with PU in the output layer). Note that the combination of

RBF in the hidden layer with a PU output layer is not adequate, given that RBFs are local

functions and assessing their interaction would make no sense.

Regarding the data used in the study, the estimation of solar radiation is performed

at the radiometric station of Toledo (Spain) with a 1h time-horizon. Furthermore, for the

predictive variables, we have integrated different sources of satellite data: 1) from the

Meteosat satellites, we have obtained the reflectivity in the visible channels (0.6 and 0.8

µm) and the clear sky radiance. 2) From the Copernicus atmosphere monitoring service

(CAMS), the cloud index as well as the CAMS solar radiation were obtained. And 3) solar

radiation data from the SolarGIS model has also been included. Once all these predictive

variables are obtained, different configurations for the dataset are built, in order to analyse

the behaviour of EANNs under different sets of input data. Therefore, four scenarios are

considered including a variable number of inputs, from 5 to 40, given that satellite data

(i.e. reflectivity and clear sky radiance variables) could be included in several ways: from

including just the central pixel value to including all the pixels values, in this case, 9.
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The results achieved by the different EANNs are then compared against some of the

main state-of-the-art ML algorithms (extreme learning machines (ELMs), support vector

regressors (SVRs) or multilayer perceptrons (MLPs), among others), outperforming all of

them with a large difference of accuracy. Finally, a statistical analysis is carried out compar-

ing the results obtained by the EANNs and the state-of-the-art ML techniques, concluding

that SU-PU shows significant differences with respect to the rest of techniques, except with

RBF-LO and ELM, for which SU-PU shows an improvement, although it is not significant.
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This paper evaluates the performance of different evolutionary neural network models in a problem of
solar radiation prediction at Toledo, Spain. The prediction problem has been tackled exclusively from
satellite-based measurements and variables, which avoids the use of data from ground stations or at-
mospheric soundings. Specifically, three types of neural computation approaches are considered: neural
networks with sigmoid-based neurons, radial basis function units and product units. In all cases these
neural computation algorithms are trained by means of evolutionary algorithms, leading to robust and
accurate models for solar radiation prediction. The results obtained in the solar radiation estimation at
the radiometric station of Toledo show an excellent performance of evolutionary neural networks tested.
The structure sigmoid unit-product unit with evolutionary training has been shown as the best model
among all tested in this paper, able to obtain an extremely accurate prediction of the solar radiation from
satellite images data, and outperforming all other evolutionary neural networks tested, and alternative
Machine Learning approaches such as Support Vector Regressors or Extreme Learning Machines.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Today’s world is completely dependent on electricity, mainly
produced based on fossil fuels such as petroleum, natural gas or
coal. Moreover, according to Ref. [1], the world primary energy
demand is projected to expand by almost 60% from 2002 to 2030,
with an average increase of 1.7% per year. However, the high
environmental impact of current energy resources, together with
the need for addressing the impact of climate change, led to an
important development of renewable energy sources [2]. The In-
ternational Energy Agency (IEA) has stated that electricity gener-
ation from renewable energy is expected to rise up to 39% by 2050
[3]. In fact, renewable sources have experienced a huge growth in

the last two decades, and they are today thought as the resources
which will erase fossil fuels from our society in the next fifty years.
The prevalence of renewable resources has several challenges, that
must be solved before renewable energies overtake fossils as pri-
mal energy resources. The most important issue with renewable
energy sources is to manage their inherent intermittence, which
currently avoid that renewable energies overpass 40% of penetra-
tion in the energetic mix. Among renewable resources, wind and
solar energies are the two most developed ones, but solar resource
is currently thought as the future renewable source, due to the
extraordinary solar resource we have available. More specifically,
solar energy is a clean, extremely abundant and sustainable source
of energy [4], that poses a low risk to the environment. With this
background in mind, it clearly follows that new techniques and
methodologies need to be developed in order to accurately esti-
mate solar energy availability at any part of the world, as well as to
improve its prediction to enable optimal management of energy
systems.

The basis to estimate solar radiation at any given location is to
apply the classical astronomical equations [5]. In addition, thewell-
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4.2.3 Short- and long-term energy flux prediction using Multi-Task Evolu-
tionary Artificial Neural Networks

In this paper, a novel approach to tackle simultaneously short- and long-term energy flux

prediction is presented. As stated before, in the last years, the vast use of fossil fuels

has led to a rise in the global mean temperatures, surface temperatures increasing about

0.2◦C per decade. In this sense, the development of renewable and eco-friendly sources

of energy is of urgent necessity. On the other hand, as aforementioned, solar and tidal

and waves energies are the most popular sources of renewable energy. However, tidal and

waves energies have an import advantage: being constantly available, they do not depend

on the intermittent nature of sun.

The main aim of this paper is to predict the wave energy flux in order to develop

an stable source of energy, given that waves could exhibit a stochastic nature produced

by different environmental elements. Moreover, anticipating to excesses and shortcom-

ings has a significant impact not only on the economic side, but also on the people’s daily

life. Therefore, we have carried out the prediction at short and long time horizons, from

6h to 48h. For this, we propose the use of EANNs, which have been previously applied

to this field of science, achieving an excellent performance in comparison against stan-

dard statistical, meteorological and physical models. The main novelty of this work is to

tackle simultaneously short- and long-term energy flux prediction, considering multi-task

evolutionary artificial neural networks (MTEANNs).

With respect to the data used in this study, two different sources of information

have been integrated: 1) data from the national data buoy center (NDBC), which has

been collected by buoys located in the oceans and seas, including meteorological and

oceanographic observations, such as significant wave height or sea level pressure, among

others; and 2) data from the national center for atmospheric research (NCAR), which

provides reanalysis data of meteorological variables. On the other hand, the predictive

variable is not directly measured by the buoys sensors, but it is derived from two wave

parameters, which are in fact measured by the buoys. More concretely, in this work, we

use data from three different buoys located at Gulf of Alaska.

Regarding the EANNs, the three most popular basis functions (SUs, PUs and RBFs)

are used in the hidden layer. On the other hand, for the output layer, both linear and PUs

are proposed. The results obtained demonstrate that MTEANNs are the best in terms of

both mean squared error (MSE) and standard error of prediction (SEP). Moreover, the

number of connections of the models involves a notable simplicity. Specifically, SU-LI, i.e.

MTEANNs with SUs in the hidden layer and linear output, is the model achieving the

best performance for all the time prediction horizons. Apart from the comparison between

the different proposals of MTEANNs, another comparison against the main state-of-the-
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art ML techniques in regression, including SVRs and ELMs, is carried out, concluding that

MTEANNs are an excellent approach for the prediction of energy flux at both short- and

long-term time prediction horizons.
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A B S T R A C T

This paper presents a novel approach to tackle simultaneously short- and long-term energy flux prediction
(specifically, at 6ℎ, 12ℎ, 24ℎ and 48ℎ time horizons). The methodology proposed is based on the Multi-
Task Learning paradigm in order to solve the four problems with a single model. We consider Multi-Task
Evolutionary Artificial Neural Networks (MTEANN) with four outputs, one for each time prediction horizon.
For this purpose, three buoys located at the Gulf of Alaska are considered. Measurements collected by these
buoys are used to obtain the target values of energy flux, whereas, only reanalysis data are used as input values,
allowing the applicability to other locations. The performance of three different basis functions (Sigmoidal Unit,
Radial Basis Function and Product Unit) are compared against some popular state-of-the-art approaches such
as Extreme Learning Machines and Support Vector Regressors. The results show that MTEANN methodology
using Sigmoidal Units in the hidden layer and a linear output achieves the best performance. In this way,
the multi-task methodology is an excellent and lower-complexity approach for energy flux prediction at both
short- and long-term prediction time horizons. Furthermore, the results also confirm that reanalysis data is
enough for describing well the problem tackled.

1. Introduction

In the last decades, there has been an increase in the carbon dioxide
levels, and in consequence, the global mean temperatures have also
risen. According to the special report regarding global warming done
by the Intergovernmental Panel on Climate Change (IPCC) (Hoegh-
Guldberg et al., 2018) the surface temperatures are increasing by about
0.2◦C per decade. The ongoing rise of the average temperature of the
Earth is leading to wildfires, the expansion of deserts or more intense
storms, among others (Council et al., 2012). Therefore, the interest in
renewable and eco-friendly energy sources such as solar, wind, tides
and waves is in continuous growth (Ellabban et al., 2014). Although
solar and wind are considered the most popular alternative sources
of energy, they have the setback of not being constantly available,
due to the intermittent nature of wind and sun. On the other hand,
tides and waves not only benefit from being always in movement, but
they also can be used in many parts of the world, including oceans
or big seas. Furthermore, given that the energy storage systems are
a major challenge (Palmer and Floyd, 2020) and that around 40%
of the world’s population live within 100 km of the coast, the wave
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and tidal renewable energies allow for a cost-effective transmission of
electricity (Esteban and Leary, 2012).

Waves exhibit a stochastic nature, due to the influence of a great
number of environmental elements. Therefore, they cannot be pre-
dicted straightforwardly as tides. Due to this stochastic behaviour,
the reliability and confidence of wave energy generation need to be
predicted beforehand in order to develop an stable source of energy.
For the generation of electricity from wave energy, Wave Energy Con-
verters (WECs) (Falcão, 2010; Aderinto and Li, 2018) are applied in
order to transform the kinetic energy directly generated by the waves
into electricity (Falnes and Kurniawan, 2020). To model the behaviour
of wave energy, the two most important parameters are the significant
wave height (𝐻𝑠) and the wave energy flux (𝐹𝑒), which have been
widely studied in the literature from different perspectives (Nitsure
et al., 2012): physical models (Ibarra-Berastegi et al., 2015), statistical
models (Lin et al., 2020) or by the application of Machine Learning
(ML) techniques (Cuadra et al., 2016), among others.

Focusing on ML approaches, some of the first works published were
those of Deo and Naidu (1998) and Deo et al. (2001), which con-
sisted in real-time forecasting of 𝐻𝑠 by using Artificial Neural Network
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Computers are able to see, hear and learn. Welcome to
the future.

Dave Waters

5
Time series classification

This chapter presents the works related with time series classification (TSC). More con-

cretely, TSC is divided into two main blocks according to the nature of the time series

dataset. When the target variable takes categorical values without an order, it is known

as standard TSC. On the other hand, if the class attribute values (being also categorical

values) follow a natural order relationship among them, the problem is tackled applying

the ordinal paradigm, and we propose to name this field time series ordinal classification

(TSOC).

5.1 Time series classification

Time series classification (TSC) is the most popular field regarding time series data min-

ing, given the interest raised in the literature. In the last two decades, a huge number of

proposals have been presented to the literature, trying to outperform the approaches in

the state-of-the-art. In this sense, the main open question to be solved regarding TSC is:

Is there any approach reaching the state-of-the-art performance with the lowest time com-
plexity? Two different paths could be differentiated: 1) trying to improve the performance

of the hierarchical vote system collective of transformation-based ensemble (HIVE-COTE)

technique, which is one of the methods achieving the best results in terms of correct

classification rate (CCR), and 2) achieving a non-significant lower performance than the

77



78 5. Time series classification

HIVE-COTE but significantly decreasing the computational time. Bearing in mind the out-

standing performance of HIVE-COTE and considering the first path, one of the main steps

is to improve the individual classifiers belonging to this ensemble technique. Therefore, a

hybrid approach with shapelets has been presented.

Main publications associated to this section:

• D. Guijo-Rubio, P.A. Gutiérrez, R. Tavenard y A. Bagnall. “A hybrid approach to

time series classification with shapelets”. 20th International Conference on Intel-

ligent Data Engineering and Automated Learning (IDEAL 2019). 2019. LNCS, Vol.

11871, pp. 137− 144.

DOI: https://doi.org/10.1007/978-3-030-33607-3 16

5.1.1 A hybrid approach to time series classification with shapelets

In this paper, we present a novel approach to time series classification. As stated above,

the HIVE-COTE is the state-of-the-art in performance for TSC. It consists in an ensemble

encapsulating classifiers built on several data representations. One of the most popular

representations is the shapelet transform (ST), which consists in the transformation of the

original time series dataset by means of phase independent patterns or subseries extracted

from the original time series, known as shapelets.

The traditional extraction procedure of shapelets is divided in four different steps:

1) search, in which random samples of shapelets are extracted from the training set and

the best are kept; 2) transform, in which a completely new dataset is created, and the

attributes are obtained from computing the distances from the shapelets to the original

time series; 3) fit model, in which a classifier is trained over the transformed train dataset;

and 4) predict, which consists in estimating the class values on the test set.

Furthermore, given that shapelets have been a popular research topic, several ap-

proaches have been presented to the literature. One of these proposals was based on

searching for shapelets over the whole space of all possible shapelets, in such a way that

shapelets were no longer subsequences existing in the training set. This method is known

as learned shapelets (LS) [76].

Following this idea, the proposal presented in this paper is a hybrid approach be-

tween original ST and the LS, implementing the LS model as a variant of a convolutional

neural network (CNN), taking time series as inputs and class probabilities as outputs. This

model is composed of two layers: 1) the first extracts a ST-like representation, known as

shapelet layer, and 2) a logistic regression (LR) layer. The shapelet layer contains several

shapelet blocks (grouping shapelets by their length), which in turn are made of two stages:

1) a feature extraction step, computing the pairwise distances between the shapelet and
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the original time series, and 2) a pooling step, retaining the minimum of all these dis-

tances. Besides, the optimisation procedure consists in tuning both the shapelet values

and the LR weights.

Finally, the proposal consisted in applying CNNs, but rather than using the standard

LR classifier, it used the rotation forest (RF) classifier, which was recently proved to be

outstanding when dealing with only numerical attributes [15]. This method has been

evaluated on 92 datasets from the University of East Anglia and University of California

Riverside (UEA/UCR) TSC repository. The hybrid approach is then compared against the

standard ST, using the RF as final classifier, and against the hybrid approach, using the

standard LR. In conclusion, tuning the shapelets significantly improved accuracy achieving

non-significantly worse results than the ST module from HIVE-COTE, which enumerates

all possible shapelets, but decreasing enormously the computational time.
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Abstract. Shapelets are phase independent subseries that can be used
to discriminate between time series. Shapelets have proved to be very
effective primitives for time series classification. The two most promi-
nent shapelet based classification algorithms are the shapelet transform
(ST) and learned shapelets (LS). One significant difference between these
approaches is that ST is data driven, whereas LS searches the entire
shapelet space through stochastic gradient descent. The weakness of the
former is that full enumeration of possible shapelets is very time con-
suming. The problem with the latter is that it is very dependent on the
initialisation of the shapelets. We propose hybridising the two approaches
through a pipeline that includes a time constrained data driven shapelet
search which is then passed to a neural network architecture of learned
shapelets for tuning. The tuned shapelets are extracted and formed into
a transform, which is then classified with a rotation forest. We show that
this hybrid approach is significantly better than either approach in iso-
lation, and that the resulting classifier is not significantly worse than a
full shapelet search.

Keywords: Time series classification · Shapelets · Convolutional
neural networks

1 Introduction

Shapelets [1] are discriminatory phase independent subsequences that form a
basic primitive in many time series algorithms. For classification, shapelets are
assessed using their distance to train set time series and the usefulness of these
distances in discriminating between classes. Shapelet based features define a dis-
tinct form of discrimination which can be characterised as quantifying whether a
particular shape exists in a series or not (at any location). Shapelets have proved
an effective tool for classification [2] and have been a popular research topic. One
key distinction between research threads is whether shapelets are extracted from
the training data or whether the space of all possible shapelets is searched. The

c© Springer Nature Switzerland AG 2019
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5.2 Time series ordinal classification

A special and unexplored field of time series classification (TSC) is time series ordinal

classification (TSOC). It consists in the classification of time series in which the class values

follow a natural order relationship. Up-to-the-knowledge of the authors, this field has not

been tackled previously. Therefore, focusing on the shapelet transform (ST), we firstly

proposed an adaptation of this methodology to the ordinal paradigm, and, secondly, we

performed a comparison against the state-of-the-art techniques in TSC for those ordinal

datasets identified from the University of East Anglia and University of California Riverside

(UEA/UCR) TSC repository.

Main publications associated to this section:

• D. Guijo-Rubio, P.A. Gutiérrez, A. Bagnall y C. Hervás-Mart́ınez. “Time series ordi-

nal classification via shapelets”. 2020 IEEE International Joint Conference on Neural

Networks (IJCNN 2020). 2020. Glasgow, UK. pp. 1− 8.

DOI: 10.1109/IJCNN48605.2020.9207200

• D. Guijo-Rubio, P.A. Gutiérrez, A. Bagnall y C. Hervás-Mart́ınez. “Ordinal versus

nominal time series classification”. 5th Workshop on Advances Analytics and Learn-

ing on Temporal Data (AALTD 2020). 2020. LNAI, Vol. 12588, pp. 19− 29.

DOI: 10.1007/978-3-030-65742-0 2

Other publications associated to this section:

• D. Guijo-Rubio, V. M. Vargas, P. A. Gutiérrez, and C. Hervás-Mart́ınez. “Studying

the effect of different Lp norms in the context of Time Series Ordinal Classification”.

Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2021). 2021.

Accepted.

5.2.1 Time series ordinal classification via shapelets

This is the first paper considering TSOC in a general sense (i.e. not focused to any specific

application). The proposal is focused on the ST algorithm, which has been adapted to ex-

tract the maximum quantity of ordinal information from the time series dataset. Focusing

on the ST algorithm, it is made of the three following main steps: 1) candidate generation,

in which a subsequence from the training set satisfying all the constraint is extracted; 2)

similarity measurement between the candidate and the original time series; and 3) quality

measurement of the candidate. After that, once the best k candidates are extracted, a new

representation of the dataset is built, in which the attributes are the distances between

these k best candidates and the original time series.
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In this sense, in order to incorporate the ordinal nature of the labels into the ST

extraction stage, several shapelet quality measures are considered instead of the standard

information gain (IG), which is the quality measure originally used by the ST algorithm.

The first shapelet quality measure proposed is the Fisher score, typically used for feature

selection. A reformulation of the original Fisher score is defined adapting it to ordinal clas-

sification by including higher costs for distant classes. The second approach is a modified

version of the Pearson’s determination coefficient, that computes the correlation between

the distances obtained from the shapelet to the original time series and the difference of

their class indices. And finally, the last approach is a modified version of the Spearman’s

determination coefficient, which computes the correlation in the same way as Pearson’s

but considers that any of the variables could be either categorical or continuous.

Moreover, rather than applying the rotation forest (RF) as final classifier, we in-

troduce the use of ordinal classifiers such as proportional odds model (POM) or support

vector for ordinal regression with implicit constraints (SVORIM), given that these methods

take advantage of the nature order between the labels. Apart from proposing a novel tech-

nique for TSOC, a first selection of ordinal time series datasets is carried out, identifying

7 ordinal datasets from the whole TSC repository of the UEA/UCR.

The results show that, in terms of correct classification rate (CCR), the best per-

formance is achieved by the ST using the Pearson’s determination coefficient. Moreover,

in terms of average mean absolute error (AMAE) (which measures the ordinal classifi-

cation errors made for every class), the best results are also achieved by ST along with

the Pearson’s determination coefficient. On the other hand, regarding the classifiers, the

average CCR ranks demonstrate that the use of a nominal classifier achieves the best re-

sults, which is natural as CCR does not consider the order between the labels. Besides,

the average AMAE ranks show that SVORIM is the best. Finally, it can be concluded that

the use of the Pearson’s determination coefficient as shapelet quality measure leads to the

best results, the differences being statistically significant in terms of AMAE.
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Abstract—Nominal time series classification has been widely
developed over the last years. However, to the best of our
knowledge, ordinal classification of time series is an unexplored
field, and this paper proposes a first approach in the context of
the shapelet transform (ST). For those time series dataset where
there is a natural order between the labels and the number
of classes is higher than 2, nominal classifiers are not capable
of achieving the best results, because the models impose the
same cost of misclassification to all the errors, regardless the
difference between the predicted and the ground-truth. In this
sense, we consider four different evaluation metrics to do so,
three of them of an ordinal nature. The first one is the widely
known Information Gain (IG), proved to be very competitive
for ST methods, whereas the remaining three measures try to
boost the order information by refining the quality measure.
These three measures are a reformulation of the Fisher score, the
Spearman’s correlation coefficient (ρ), and finally, the Pearson’s
correlation coefficient (R2). An empirical evaluation is carried
out, considering 7 ordinal datasets from the UEA & UCR
time series classification repository, 4 classifiers (2 of them of
nominal nature, whereas the other 2 are of ordinal nature) and
2 performance measures (correct classification rate, CCR, and
average mean absolute error, AMAE). The results show that,
for both performance metrics, the ST quality metric based on
R2 is able to obtain the best results, specially for AMAE, for
which the differences are statistically significant in favour of R2.

Index Terms—Time Series, Ordinal Classification, Ordinal
regression, Shapelet Quality Measures

I. INTRODUCTION

Time series are a widely used sort of temporal data in
which objects are collected over time. In the last years, time
series have been a hot topic in machine learning and data
mining, and can be found in a vast number of fields such
as: fog prediction [1], stock indices [2] or forged-alcohol
detection [3]. Time series classification is a task in which a
label is given to a set of chronologically ordered points. We
focus on a specific case, those problems in which there are
three or more possible categories and they follow an order
relationship.

This kind of classification is known as ordinal classifica-
tion or ordinal regression, being a field of machine learning
tackling problems in which the target variables are discrete
and present a natural order between their labels [4]. An

example is the prediction of the stage of a disease state, in
which a patient could be labelled as none, mild, moderate,
severe or extreme. Obviously, misclassifying a mild patient
as severe, should be far more penalised than misclassifying
that patient as none or moderate. This problem can be
tackled in several ways: 1) as a nominal classification problem,
which ignores the natural order between the labels, 2) as
a regression problem, which implies assigning each label a
numerical value (which requires assuming a distance between
values that can hinder the performance of the regressor), or 3)
as an ordinal classification problem, which is the approach we
consider. This special kind of classification can be found in
several fields, such as meteorological prediction [5], medical
research [6], [7] and wave height prediction [8]. The datasets
used in these projects include an ordered target variable,
and thus, specialised ordinal classifiers are able to achieve
higher performances than nominal classifiers or regressors, by
constructing more accurate models.

Traditionally, nominal time series have been classified using
a similarity measure in conjunction with a standard classifier,
such as k-Nearest Neighbours [9]. This similarity can be
assessed from several points of view: by considering time,
change or shape. We focus on shape based similarity, in which
time series are compared by using phase independent sub-
sequences generally much shorter than the original time series.
These sub-sequences, known as shapelets,were first proposed
as a time series primitive by Ye and Keogh [10]. The original
proposal embedded the shapelet extraction into a decision
tree that used Information Gain (IG) to assess the candidates.
Moreover, this time series primitive has been used in some
other ways in the literature: Hills et al. [11] proposed the
Shapelet Transformation (ST), in which the k best shapelets
are used to convert the original time series dataset into a new
transformed dataset. In this new representation, the attributes
are the distances between the shapelets and the time series
being evaluated. The reason for this is that the transformation
allows the application of any classifiers and avoids the sequen-
tial search for shapelets at each node of the tree. Grabocka
et al. [12] proposed a new perspective in which shapelets are
learned. This method enables the learning of shapelets without
the need of searching for a vast number of candidates.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE
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5.2.2 Ordinal versus nominal time series classification

In this paper, we continue the research line established by the previous paper. The main

aim of this paper is to put in value TSOC and to establish a robust comparison against the

main state-of-the-art approach in TSC. Nevertheless, in this work, the use of the ordinal

classifier POM is removed given that it is a linear method and its implementation does

not consider a regularisation term, which seems to be necessary due to the numerous

shapelets extracted. In the same way than the previous paper, we have concluded that the

Pearson’s determination coefficient along with the use of the ordinal classifier SVORIM

achieves the best rank, not only for CCR, but also in terms of AMAE.

The main novelty of this paper is the comparison against the three main state-of-the-

art techniques in TSC, which are: 1) hierarchical vote system collective of transformation-

based ensemble (HIVE-COTE), a meta-ensemble composed of 5 modules, among which ST

is one of them; 2) InceptionTime, which is an ensemble of convolutional neural network

(CNN) models in which several filters of different lengths are applied at the same time to

the input time series; and finally, 3) time series combination of heterogeneous and inte-

grated embedding forest (TS-CHIEF), which is another ensemble classifier integrating the

most effective embeddings of time series. Note that all these three approaches are based

on the idea of ensembles, which are commonly known to reach outstanding performances.

However, they suffer from the computational load associated to them, in such a way that

they are computationally intensive.

The results of the comparison demonstrate that SVORIM achieves the best results

or the second best for most of the datasets, obtaining the best average ranking. Moreover,

it is worth mentioning that all the classifiers (ordinal or nominal), when applied to the

ST combined with the Pearson’s determination coefficient as shapelet quality measure,

achieve a better average rank than the state-of-the-art TSC techniques. This is due to

these methods are taking advantage of the ordinal information induced by ST using the

Pearson’s determination coefficient as shapelet quality measure.
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Abstract. Time series ordinal classification is one of the less studied
problems in time series data mining. This problem consists in classifying
time series with labels that show a natural order between them. In this
paper, an approach is proposed based on the Shapelet Transform (ST)
specifically adapted to ordinal classification. ST consists of two different
steps: 1) the shapelet extraction procedure and its evaluation; and 2) the
classifier learning using the transformed dataset. In this way, regarding
the first step, 3 ordinal shapelet quality measures are proposed to assess
the shapelets extracted, and, for the second step, an ordinal classifier is
applied once the transformed dataset has been constructed. An empirical
evaluation is carried out, considering 7 ordinal datasets from the UEA &
UCR Time Series Classification (TSC) repository. The results show that
a support vector ordinal classifier applied to the ST using the Pearson’s
correlation coefficient (R2) is the combination achieving the best results
in terms of two evaluation metrics: accuracy and average mean absolute
error. A final comparison against three of the most popular and compet-
itive nominal TSC techniques is performed, demonstrating that ordinal
approaches can achieve higher performances even in terms of accuracy.

Keywords: Time series · Ordinal classification · Ordinal regression ·
Shapelet quality measures

1 Introduction

Time Series Ordinal Classification (TSOC) refers to a prediction problem where
the objective is to classify time series with an ordinal label, i.e. the set of
labels includes a natural order relationship. In this context, ordinal classifica-
tion [12] covers those supervised problems where the target variable is discrete
and includes a natural order relationship among the labels. Ordinal classifica-
tion problems can be found in several fields, such as meteorological prediction
[10,11], or medical research [19], among others.

c© Springer Nature Switzerland AG 2020
V. Lemaire et al. (Eds.): AALTD 2020, LNAI 12588, pp. 19–29, 2020.
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The value of an idea lies in the using of it.

Thomas A. Edison

6
Additional works

This chapter presents additional works tackled during the development of this Thesis,

to satisfy and accomplish several challenges and goals associated with different national

projects granted to the research group. In this sense, this chapter is divided into two com-

pletely different sections: 1) non-temporal data regression, in which various engineer-

ing application problems have been considered, and 2) non-temporal data classification,

in which several health-related problems have been solved, both sections using machine

learning (ML) techniques.

6.1 Non-temporal data regression: engineering applications

Ultimately, engineering processes are usually designed to collect data from the different

operations involved. This data collection is performed aiming to improve operations trying

to minimise as much as possible the cost associated to them. Moreover, these operations

usually concern several objectives, aiming to optimise all of them simultaneously. In this

Section, two real-world problems are solved by applying advanced machine learning (ML)

regression techniques. More concretely, multi-task evolutionary artificial neural networks

(MTEANNs) have been proposed to solve both of them, according to the excellent ability

of this methodology to train a shared structure inferred from the data.
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Main publications associated to this section:

• F. Comino, D. Guijo-Rubio, M. R. de Adana and C. Hervás-Mart́ınez. “Validation

of multitask artificial neural networks to model desiccant wheels activated at low

temperature”, International Journal of Refrigeration, Vol. 100. 2019, pp. 434− 442.

JCR (2019): 3.461 Position: 11/61 (Q1).

DOI: 10.1016/j.ijrefrig.2019.02.002

• F.J. Jiménez-Romero, D. Guijo-Rubio, F.R. Lara-Raya, A. Ruiz-González y C. Hervás-

Mart́ınez. “Validation of artificial neural networks to model the acoustic behaviour

of induction motors”, Applied Acoustics, Vol. 166, 2020, pp. 107332.

JCR (2019): 2.440 Position: 9/32 (Q2).

DOI: 10.1016/j.apacoust.2020.107332

6.1.1 Validation of multitask artificial neural networks to model desiccant
wheels activated at low temperature

In this paper, we present the modelling of desiccant wheels (DWs) activated at low temper-

ature. Food and pharmaceutical industries need to control the internal moisture content,

given that an exceed in the indoor air humidity leads to problems of moulds and fungus.

Hence, controlling the indoor humidity has a great interest for these industries. Moreover,

desiccant wheels provide many advantages over standard systems. Nevertheless, in order

to achieve an excellent dehumidification capacity, significant energy consumption is re-

quired. In this way, when the DWs are activated at low temperature, the environmental

impact is reduced, and, hence, DWs activated at low temperatures are considered for this

study.

The main goal of this paper is to apply artificial neural networks (ANNs) to de-

velop an empirical parsimonious model of a DW activated at low temperatures, achieving

good accuracy without being computationally intensive. For this, numerous experiments

have been performed, covering a wide range of operating conditions of the process and

regeneration air flows. Furthermore, the predictive variables are the outlet process air

temperature and the outlet process air humidity ratio, being both real-valued variables.

Regarding the architecture of the ANN models, the two most common basis func-

tions (sigmoidal unit (SU) and product unit (PU)) are used in the hidden layer, whereas

we only consider linear outputs. Note that another goal of the paper is obtaining simple

models, i.e. with a small number of connections, thus, the use of MTEANNs is justified,

aiming to obtain simple homogeneous models with high accuracy.

The results obtained demonstrated that ANNs with SUs in the hidden layer are the

best method for modelling the DWs, not only in terms of mean squared error (MSE) and
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standard error of prediction (SEP), but also in terms of simplicity (smallest number of

connections). Hence, it can be said that MTEANNs are an effective transfer mechanism

due to the fact that they are highly convenient for extracting common features of multiple

tasks.
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a b s t r a c t 

Desiccant wheels (DW) could be a serious alternative to conventional dehumidification systems based 

on direct expansion units, which depend on electrical energy. The main objective of this work was to 

evaluate the use of multitask artificial neural networks (ANNs) as a modelling technique for DWs acti- 

vated at low temperature with low computational load and good accuracy. Two different ANN models 

were developed to predict two output variables: outlet process air temperature and humidity ratio. The 

results show that a sigmoid unit neural network obtained 0.390 and 2.987 for MSE and SEP, respectively. 

These results outline the effective transfer mechanism of multitask ANNs to extract common features of 

multiple tasks, being useful for modelling a DW activated at low temperature. On the other hand, mois- 

ture removal capacity of the DW and its performance were analysed under several inlet air conditions, 

showing an increase under process air conditions close to saturation air. 

© 2019 Elsevier Ltd and IIR. All rights reserved. 

Validation de réseaux de neurones artificiels multitâches pour modéliser des 

roues déshydratantes activées à basse température 

Mots-clés: Réseaux neuronaux artificiels; Unités sigmoïdes; Modèles empiriques de roues déshydratantes 

1. Introduction 

Dehumidification systems are necessary to maintain the re- 

quired indoor conditions in buildings with high latent loads. Food 

and pharmaceutical industries also have a significant interest in 

controlling the internal moisture content, ( De Antonellis et al., 

2016; Wang et al., 2018 ). Excessive indoor air humidity can cause 

problems related to the indoor air quality of the building ow- 

ing to moulds and fungus, ( Bornehag et al., 2001 ). Therefore, it is 

necessary to control the humidity in an indoor environment. 

Several techniques for removing moisture from air under ambi- 

ent pressure conditions have been studied, ( Mazzei et al., 2005 ). A 

widely used method to dehumidify air is the use of conventional 

dehumidification systems based on direct expansion units, i.e. 

DX systems, which operate according to the vapour-compression 
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cycle. However, these units depend mainly on electrical energy. 

Desiccant dehumidification systems offer a promising alternative 

to conventional dehumidification units. 

A type of desiccant dehumidification system is a desiccant 

wheel (DW). Many authors have analysed DWs experimentally and 

numerically ( Cao et al., 2014; De Antonellis and Kim, 2018 ), in par- 

ticular, focusing on the analysis of parameters influencing outlet 

process air conditions. The air regeneration temperature is usu- 

ally used to control the outlet air conditions of DW ( Harriman III, 

2001 ), because the higher the regeneration air temperature, the 

higher is the dehumidification capacity. Nevertheless, significant 

energy consumption is required to achieve high regeneration tem- 

perature. Other studies showed an acceptable dehumidification ca- 

pacity when the DW was activated at low temperature ( Al-Alili 

et al., 2014; Comino et al., 2016; White et al., 2011 ), thus reducing 

the environmental impact associated with air dehumidification. In 

this study, values below 60 °C were considered as low regeneration 

temperatures. 

https://doi.org/10.1016/j.ijrefrig.2019.02.002 

0140-7007/© 2019 Elsevier Ltd and IIR. All rights reserved. 
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6.1.2 Validation of artificial neural networks to model the acoustic behaviour
of induction motors

In this paper, we validate the use of ANNs for the modelling of the acoustic behaviour

produced by induction motors. Bearing in mind that the population is subject to a wide

range of noises, reducing the physical and psychological discomfort associated to any

device or activity has a significant impact on our lives. One of these devices widely present

in our daily routine are the induction motors, which are used in a wide range of industrial

and household applications such as fridges or washing-machines, among others, or in

transport vehicles.

The main goal of this paper is to develop a MTEANN able to model both the physical

discomfort (typically measured by the equivalent sound pressure level) and the psycho-

logical discomfort (generally studied by the loudness, the roughness and the sharpness).

Therefore, the use of MTEANNs is justified given that it allows predicting these four out-

puts simultaneously in a single model, in general, with fewer connections and better per-

formance, given that it benefits from extracting common features of the different tasks.

ANNs have been previously used in this field, however, up-to-the-knowledge of the

authors, the development of a single model for predicting both the physical and the psy-

chological discomfort of an electric induction motor has not been studied previously. Be-

sides, a total of 40 inputs has been used to characterise the problem, including harmonic

distortions of voltage and intensity, among others. Furthermore, the experimental data

included in the study has been obtained from three different modulation techniques, each

of them with a different primary objective, aiming to obtain a representative sample of

tests and consider a wide variety of values, increasing in this way, the robustness of the

models.

Regarding the ANN architectures, the two most common basis functions are used

in the hidden layer (concretely, SU and PU), both with linear outputs. Even though the

results indicate that both models obtained excellent predictions using a small number of

connections, the ANN using PUs in the hidden layer is the one achieving the best per-

formance in terms of both MSE and SEP. This model only considers 10 variables out of

the initial 40 inputs. Finally, it could be concluded that MTEANNs are excellent to extract

common features of related tasks.
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a b s t r a c t

In the last decade, the sound quality of electric induction motors is a hot topic in the research field.
Specially, due to its high number of applications, the population is exposed to physical and psychological
discomfort caused by the noise emission. Therefore, it is necessary to minimise its psychological impact
on the population. In this way, the main goal of this work is to evaluate the use of multitask artificial neu-
ral networks as a modelling technique for simultaneously predicting psychoacoustic parameters of
induction motors. Several inputs are used, such as, the electrical magnitudes of the motor power signal
and the number of poles, instead of separating the noise of the electric motor from the environmental
noise. Two different kind of artificial neural networks are proposed to evaluate the acoustic quality of
induction motors, by using the equivalent sound pressure, the loudness, the roughness and the sharpness
as outputs. Concretely, two different topologies have been considered: simple models and more complex
models. The former are more interpretable, while the later lead to higher accuracy at the cost of hiding
the cause-effect relationship. Focusing on the simple interpretable models, product unit neural networks
achieved the best results: 38:77 for MSE and 13:11 for SEP. The main benefit of this product unit model is
its simplicity, since only 10 inputs variables are used, outlining the effective transfer mechanism of mul-
titask artificial neural networks to extract common features of multiple tasks. Finally, a deep analysis of
the acoustic quality of induction motors in done using the best product unit neural networks.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Electric induction motors are used in a wide range of industrial
and household applications, from small electrical devices, to large
industrial machinery and transport vehicles.

When an induction motor is designed, it is optimized to work
powered by a 50 Hz sinusoidal signal. In these conditions, the
motor generates the lowest level of electromagnetic noise. There-
fore, the noise increases if the motor is fed by a non-sinusoidal sig-
nal, for instance, when a power inverter is used to generate the
feed signal, using Pulse Width Modulation (PWM) techniques. This
sort of technique is widely used to control the operation of the
induction machine, emitting a higher noise [1,2].

Three noise components can be distinguished according to their
source: mechanical, aerodynamic and electromagnetic noise.
Specifically, the mechanical noise is the result of friction in the
shaft bearings, whereas, aerodynamic noise is caused by the flow
of air driven by the fan through the machine. On the other hand,
the electromagnetic component is originated by the interactions
of the electromagnetic fields generated in the stator and rotor.

https://doi.org/10.1016/j.apacoust.2020.107332
0003-682X/� 2020 Elsevier Ltd. All rights reserved.

Abbreviations: ANN, artificial neural network; B, basis function; d/D, number of
inputs/dataset; f, frequency; f c/kc , control parameter of the HIPWM-FMTC tech-
nique; HIPWM-FMTC, harmonics injection pulse width modulation frequency
modulated triangular carrier using sinusoidal function; HIPWM-FMTC2, harmonics
injection pulse width modulation frequency modulated triangular carrier using
linear function; Ithd, current distortion harmonic; I50; . . . ; I2450, current harmonic
of the indicated frequency; k/l, control parameter of the SLPWM technique; L,
loudness; Laeq, equivalent sound pressure level; M, modulation index; MSE, mean
squared error; n, size of the dataset; Ns, synchronism speed; p, number of poles;
PUNN, product unit neural network; PWM, pulse width modulation; r/R, number of
outputs/roughness; SA, sharpness; SEP, standard error of prediction; SLPWM, slope
pulse width modulation; SUNN, sigmoid unit product unit; Vthd, voltage distortion
harmonic; V50; . . . ;V2450, voltage harmonic of the indicated frequency; w,
parameters of the basis function; x, input vector to the ANN; y, real output; ŷ,
predicted output; a, control parameter of the HIPWM-FMTC2 technique; b,
coefficients of the model.
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6.2 Non-temporal data classification: health-related problems

Health is one of the fields taking more advantage of the use of machine learning (ML)

techniques, giving that most of the processes involve subjectivity (introduced by medi-

cal decisions) and also objectivity (strict mathematical scores). Therefore, developing new

techniques bridging the gap between these two extremes has a significant impact on health

issues. In this sense, two main health-based applications are presented in this Thesis: 1)

human immunodeficiency virus (HIV)/hepatitis C virus (HCV) infection for which deter-

mining the typology of patients to be treated with antivirals is of interest, given the huge

number of patients requiring the treatment; and 2) liver transplantation, in which we can

tackle the problem by performing a survival analysis or by developing a rule-based system

for the management of the waiting list, among others.

Main publications associated to this section:

• A. Rivero-Juárez, D. Guijo-Rubio, F. Téllez, R. Palacios, D. Merino, J. Maćıas, J.C.
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6.2.1 Using machine learning methods to determine a typology of patients
with HIV/HCV infection to be treated with antivirals

In this paper, artificial neural networks (ANNs) are used to identify those factors, for

HIV/HCV co-infected patients, that were not included among the prioritisation criteria

considered before treatment uptake. In the last few years, direct-acting antiviral drugs

have been considered for treating HCV infection with high cure rates. Nevertheless, it

can not be universally provided to all the HIV/HCV co-infected patients, due to the high

number of people waiting for it. Hence, prioritisation criteria have been established by the

competent health authorities with the main goal of achieving the highest survival rates

and maximising the benefits for the co-infected patients. However, this strategy has not

been assessed yet.

Apart from this lack of evaluation, identifying those variables limiting the treatment

uptake for HIV/HCV co-infected patients is of significant interest. For this, data from the

Spanish HERACLES cohort has been used. It is worthy of mention that Spain provides

universal health care access, and that Spanish health authorities elaborated a national

strategy for initialising and prioritising HCV treatment. Nevertheless, clinical, epidemio-

logical and geographic factors associated with low probabilities for having access to the

treatment have not been evaluated.

The goals of this paper are twofold: 1) to develop a classification model based on

ANNs maximising the global performance (known as correct classification rate (CCR)),

and achieving the highest accuracy for the minority class (untreated patients), known

as minimum sensitivity (MS); and 2) to analyse the best model obtained in order to

study which characteristics present in the patients influence more on the probability to

be treated. For this, our study is focused on using ANNs with different basis functions in

the hidden layer. In this sense, we have used three different basis functions: sigmoidal

units (SUs), product units (PUs) and radial basis functions (RBFs). Regarding the charac-

teristics of the population used in the study, 17 patient variables have been used, such as

the age, if they had been in jail or the HCV genotype, among others.

The results obtained have shown that the ANNs using RBFs in the hidden layer

have achieved an excellent performance, using only 8 connections. Moreover, this best

model only considers six input variables, making the model easy to be interpreted and

implemented, leading to a decrease in the quantity of information to be known about

the patient, and, therefore, avoiding information errors. Furthermore, one of the variables

included by the best model is the recent people who inject drugs (PWID), which is object

of discussion. However, its non-inclusion in the best model has reduced significantly the

performance, leading to a trivial classifier, classifying almost all the patterns in one class.

Therefore, its inclusion is mandatory given its denoted importance.
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Abstract

Several European countries have established criteria for prioritising initiation of treatment in

patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical

characteristics. Based on neural network techniques, our objective was to identify those fac-

tors for HIV/HCV co-infected patients (to which clinicians have given careful consideration

before treatment uptake) that have not being included among the prioritisation criteria. This

study was based on the Spanish HERACLES cohort (NCT02511496) (April-September

2015, 2940 patients) and involved application of different neural network models with differ-

ent basis functions (product-unit, sigmoid unit and radial basis function neural networks)

for automatic classification of patients for treatment. An evolutionary algorithm was used to

determine the architecture and estimate the coefficients of the model. This machine learning

methodology found that radial basis neural networks provided a very simple model in terms

of the number of patient characteristics to be considered by the classifier (in this case, six),

returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the

classification of the minority class, untreated patients) of 0.550. Finally, the area under the

ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes

it especially attractive, using just eight connections. The independent variable “recent

PWID” is compulsory due to its importance. The simplicity of the model means that it is

possible to analyse the relationship between patient characteristics and the probability of

belonging to the treated group.
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6.2.2 Modelling survival by machine learning methods in liver transplanta-
tion: application to the UNOS dataset

In this paper, survival analysis (SA) is applied to the liver transplantation (LT) prob-

lem, which is an accepted treatment for patients with end-stage chronic liver disease.

The united network for organ sharing (UNOS) organisation provided us with the largest

dataset regarding transplants and organ sharing with more than 9 kinds of transplants.

One of these is liver transplant, which represents almost a 22% of the transplants made

in the USA. This database contains more than 200, 000 records and over 380 variables,

including variables from the donor, the recipient and from the transplant procedure.

The aim of this paper is to apply SA techniques to model the survival in LT, using

the largest dataset available. Note that working with databases including a huge number

of transplants is of significant interest, given that it allows us to ensure the applicability

of these techniques in predicting LT survival worldwide. More concretely, in this work, the

SA techniques used are based on ML algorithms, given that they have been successfully

applied to handle survival data in other fields.

SA is a branch of the statistics whose main objective is to model data where the out-

come is the time until an event of interest occurs. Note that one of the main characteristics

of this kind of analysis is the presence of censored instances, i.e. the event of interest is

not registered (in this case the liver graft failure), which can not be handled by standard

ML techniques. Therefore, in this paper, the use of complex ML techniques adapted to the

SA is needed, given the difficulty of the problem caused not only by the existence of a 74%

of censored patterns, but also because the mean censored time is 3.95 years.

The following three groups of SA methods are applied: Cox’s-regression-based mod-

els, models based on gradient boosting and adaptations of support vector machines (SVMs)

paradigm to SA. Results denote that gradient boosting-based models stand out as the best

methods regarding the most popular measure in SA, the concordance index (ipcw). On

the other hand, Cox’s-regression-based models are able to obtain more balanced results.
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Abstract. The aim of this study is to develop and validate a machine
learning (ML) model for predicting survival after liver transplantation
based on pre-transplant donor and recipient characteristics. For this pur-
pose, we consider a database from the United Network for Organ Shar-
ing (UNOS), containing 29 variables and 39,095 donor-recipient pairs,
describing liver transplantations performed in the United States of Amer-
ica from November 2004 until June 2015. The dataset contains more
than a 74% of censoring, being a challenging and difficult problem. Sev-
eral methods including proportional-hazards regression models and ML
methods such as Gradient Boosting were applied, using 10 donor char-
acteristics, 15 recipient characteristics and 4 shared variables associated
with the donor-recipient pair. In order to measure the performance of
the seven state-of-the-art methodologies, three different evaluation met-
rics are used, being the concordance index (ipcw) the most suitable for
this problem. The results achieved show that, for each measure, a dif-
ferent technique obtains the highest value, performing almost the same,
but, if we focus on ipcw, Gradient Boosting outperforms the rest of the
methods.

Keywords: United Network for Organ Sharing · Liver transplant ·
Survival analysis · Machine learning

1 Introduction

The Survival Analysis (SA) is a field traditionally tackled by statistical methods,
aiming to model the data where the outcome is the time until the occurrence of
an event of interest. One important characteristic of SA is that, for some of the
instances, the outcomes are unobservable since these are no longer monitored or
the study has finished previous to the occurrence of the event of interest; these
instances are known as censored instances. Note that most of the SA books
introduce the topic from a pure statistical point of view [1,2].

c© Springer Nature Switzerland AG 2019
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6.2.3 Comparison of statistical methods and machine learning techniques
for donor-recipient matching in liver transplantation

In this paper, we tackle the problem of donor-recipient matching in LT. Donor-recipient

matching is one of the most challenging problems nowadays in the heath care system,

given the increasing number of recipients and the decreasing number of donors. In this

study, we face this problem by using the largest dataset containing donor-recipient pairs in

LT, the dataset provided by the UNOS. There are several models in the literature aiming to

support donor-recipient matching, such as the model for end-stage liver disease (MELD).

However, these models are a subject of discussion, given that some of them focus on

reducing the mortality in the waiting list, disregarding the result of the transplant.

The main goal of this study is to analyse the behaviour of different predictive meth-

ods in this field. For this, the dataset considered is similar to the one considered in the

work presented in previous Subsection 6.2.2. Another important goal of this work is to

obtain an efficient and accurate approach combining information from donors, from re-

cipients, and from the pre- and post- transplant characteristics. Furthermore, four different

end-points, periods of time for controlling the graft-loss, are considered (3 months, 1, 2

and 5 years).

Regarding the survival prediction methods applied to the donor-recipient match-

ing problem, two groups are considered: 1) classical statistical methods, such as logistic

regression (LR), and 2) standard ML techniques, such as SVM, gradient boosting (GB) or

multilayer perceptron (MLP), among others. Apart from these predictive models, standard

widely used scores are used for comparison purposes. The results obtained have outlined

that all the techniques achieve similar performances except LR, which achieves the best

performance. Furthermore, focusing on the 5 years end-point, results have demonstrated

that LR outperforms also the state-of-the-art scores for donor-recipient matching in LT.

In addition, given that LR is the method achieving the best results for the longest

end-point, a rule-based system is developed in order to bridge the gap between the sub-

jective medical decision and the strictly objective mathematical scores. This rule-based

system is objective, not including human subjectivity, it is also optimal, in the sense that it

is able to increase the post-transplant survival rates, and it is fair, because, without signifi-

cant differences between two recipients, the donor-recipient matching is done by using the

MELD score. Some other conclusions can be drawn from this study, such as the fact that

using multicentre datasets is a subject of controversy, given that incongruities can be found

in the procedures applied by the different health care systems. Some of these procedures

include the way missing data is imputed or categorising a same situation contradictorily.



Statistical methods versus machine learning techniques for
donor-recipient matching in liver transplantation

David Guijo-Rubio1,*, Javier Briceño2, Pedro Antonio Gutiérrez1, Maria Dolores
Ayllón2, Rubén Ciria2, César Hervás-Mart́ınez1

1 Department of Computer Sciences and Numerical Analysis, University of Córdoba,
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Abstract

Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays.
Due to the increasing number of recipients and the small amount of donors in liver
transplantation, the allocation method is crucial. In this paper, to establish a fair
comparison, the United Network for Organ Sharing database was used with 4 different
end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28
donor and recipient variables. Modelling techniques were divided into two groups: 1)
classical statistical methods, including Logistic Regression (LR) and Näıve Bayes (NB),
and 2) standard machine learning techniques, including Multilayer Perceptron (MLP),
Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM),
among others. The methods were compared with standard scores, MELD, SOFT and
BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine
learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC =
0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard
scores. The same pattern was reproduced for the others 3 end-points. Complex machine
learning methods were not able to improve the performance of liver allocation, probably
due to the implicit limitations associated to the collection process of the database.

Introduction

Donor-Recipient (D-R) matching is one of the most challenging topics in Liver
Transplantation (LT). Considering the increasing number of candidates for LT and the
scarce number of available donors, the rationale for assignment of a given donor to
potential candidates on a waiting list is a matter of controversy. For this purpose, some
scores have been designed, whose implementation in practice has its supporters and
detractors. Model for End-Stage Liver Disease (MELD) [1], Survival Following Liver
Transplantation score (SOFT) [2] or Balance of Risk (BAR) [3] are examples of the
intention to match donors and recipients to obtain the best post-transplant result.
However, this result is also a subject of discussion. For some of these scores, the main
objective is to decrease the mortality in the waiting list without affecting the result of
the transplant. This is the case of MELD, the most widespread prioritization system
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We can only see a short distance ahead, but we can
see plenty there that needs to be done.

Alan Turing

7
Discussion and conclusions

In this last chapter, the main conclusions extracted from the previous research are de-

scribed, as well as the research lines to be explored in future works.

7.1 Conclusions

In this Thesis, we mainly focus on three research lines regarding time series and on an

additional chapter including some complementary works carried out for covering the chal-

lenges of several national projects. The three main working lines regarding time series are:

preprocessing and clustering, prediction and classification of time series. In the following

subsections, the main contributions to this Thesis are summarised.

7.1.1 Time series preprocessing

Preprocessing is an important area receiving a lot of attention in the last years given

its importance for subsequent tasks, such as prediction or classification, among others.

Concretely, in this Thesis, we present a novel approach to time series clustering, which

consists in grouping time series based on their similarity with the main goal of discovering

significant patterns in the dataset. More concretely, our proposal is divided into two stages.

The first stage is applied to the time series individually, and it is focused on simplifying

101
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the time series as much as possible, keeping the highest quantity of information. The

second stage is applied globally to all the time series of the dataset and consists in using a

clustering algorithm for grouping the time series.

More concretely, the first stage is divided into three sub-stages: 1) the first sub-

stage consists in the application of a segmentation procedure to divide the time series

into segments. This segmentation is carried out by means of a growing window, which

introduces points until exceeding a maximum error computed from the corresponding

least-squares polynomial approximation of the segment. 2) The second sub-stage consists

in projecting all the obtained segments into a fixed-size vector of statistical characteristics,

in order to generate a common structure for all sorts of segments. 3) The last sub-stage is

the clustering of these statistical characteristics vectors representing segments.

Regarding the second stage, once the time series have been reduced to equal-length

vectors of statistical characteristics, a common structure for the time series is built by

including information of the centroids and of the segments with the highest variance.

In this way, both common and specific information of the segments is included, apart

from meta-information of the clustering process, such as the number of segments and

the error difference between the most distant segments. Finally, this stage finishes with

a hierarchical clustering stage, grouping this novel time series representation by their

similarity.

This approach is compared against 3 state-of-the-art techniques over 84 datasets

from the University of East Anglia and University of California Riverside (UEA/UCR) time

series classification (TSC) repository. The results achieved demonstrate that our proposal

outperforms the rest of the approaches when dealing with large datasets including long

time series. Furthermore, the computational load of our approach is competitive against

the rest, being more computationally intensive during the first main stage (segmentation

and vector projection procedures).

According to the objectives established in Chapter 2, Chapter 3 satisfies objectives

3 and 4. Moreover, this topic is supported on 1 JCR-indexed journal paper and 2 na-

tional/international conferences.

7.1.2 Time series prediction

Prediction is the most important field in time series data mining, mainly given that accu-

rately predicting what is going to happen in the future is a challenging task, increasing

its difficulty for larger time prediction horizons. Traditionally, it has been tackled in many

several ways, from using standard autoregressive models (ARs) or moving average models

(MAs) to more complex approaches based on deep learning (DL), such as long-short-time

memory (LSTM) or convolutional neural networks (CNNs). These previous models tackle
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the time series prediction task using real values. Nevertheless, in this Thesis, we propose

several strategies using different types of representation.

On the one hand, we present the idea of transforming the prediction problem into

an ordinal classification (OC) task. This idea has been applied in two different approaches:

1) for predicting low-visibility events due to fog, and 2) for predicting convective cloud

formation. The first approach is carried out in the Valladolid airport (Spain), in which

the presence of fog is frequent. In this paper, the runway visual range (RVR) is used for

characterising the quantity of fog for a given day, which is categorised into three cate-

gories: CLEAR, MIST and FOG, according to the visibility conditions. Note that there is an

ordinal nature among the labels, therefore, the use of ordinal classifiers is interesting for

taking advantage of the ordinal information. Hence, we propose the use of three different

windows based on AR models: 1) fixed window resembling the behaviour of standard AR

models, 2) dynamic window adding values until there is a change in the label, and 3)

dynamic window adding values until there is a change in terms of variance. Finally, to

achieve this prediction, several ordinal classifiers have been applied to the transformed

dataset, comparing them against several state-of-the-art techniques, such as support vec-

tor regressor (SVR) or the persistence model, the latter being based on the prediction rule

Yt = Yt−1. The idea proposed outperforms the rest of the methodologies in terms of both

average mean absolute error (AMAE) and minimum sensitivity (MS).

Regarding the second paper, following the idea of using OC for transforming the

original prediction task, we carry out the prediction of convective situations. In this field,

there are four different kinds of situations: CLEAR, in which there are no clouds sighted,

TCU, which represents cumulus congestus situations, CB, which means that cumulonim-

bus are sighted, and TS, which represents thunderstorm situations. Moreover, regarding

the input features, these events are characterised by means of atmospheric and meteoro-

logical data collected from two sources of information: airport’s radiosonde station and

reanalysis data. As in the previous approach, in this paper, the output is also ordinal, and

therefore, the use of ordinal classifiers is justified. Due to the imbalance degree of the

dataset, i.e. the amount of days with convective situations is tiny in comparison with the

number of clear days, undersampling and ordinal oversampling methods are applied in or-

der to balance the dataset. After that, 13 different ordinal methods are compared against

several state-of-the-art techniques, demonstrating that ordinal approaches perform better.

Another comparison against terminal aerodrome forecasts (TAFs) is also carried out, de-

noting that our approach is better for detecting any situation involving convective clouds

(CB, TCU and TS), whereas TAFs are better at avoiding false alarms.

On the other hand, the second group of approaches follow the idea of time series

forecasting. However, although they belong to the same group, three different perspectives

have been applied. In the first paper, we tackle the problem of convective cloud formation
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from the multi-objective point of view. As previously specified, the dataset is enormously

imbalanced, thus, the multi-objective paradigm fit perfectly with this sort of problems. In

this sense, we apply multi-objective evolutionary artificial neural networks (MOEANNs)

optimising both metrics, the correct classification rate (CCR) and the MS. Concretely, the

first one aims to achieve a good global performance, whereas the second one is designed

to improve the accuracy of the minority classes. The results achieved demonstrate that the

use of the multi-objective methodology is appropriate, given that the best performance in

terms of both previous metrics is achieved by a MOEANN using the MS extreme of the

Pareto front. This methodology is compared against TAFs, concluding that our proposal

improves the results of standard airport mechanisms.

The second paper in this group of approaches consists in solving the challenging

solar radiation prediction problem, which is raising more and more attention given the

interest in renewable energies. The solar radiation prediction is carried out with a 1h

time prediction horizon. Moreover, the predicted variables are obtained from integrating

Meteosat satellites with Copernicus atmosphere monitoring service (CAMS) and Solar-
GIS model. Apart from integrating several sources of information, we propose different

configurations for the dataset, with the aim of increasing the understanding about the

predictive variables importance. Furthermore, in this paper, we propose the use of several

mixtures of basis functions for the hidden and the output layers. Concretely, in this paper

we present the mixture of sigmoidal units (SUs) in hidden layer with product units (PUs)

in the output layer, resulting in an excellent performance for the hourly prediction of so-

lar energy. Our proposal is compared against state-of-the-art techniques such as extreme

learning machines (ELMs), multilayer perceptrons (MLPs) or SVRs, among others.

Finally, the last paper in this group of approaches is based on the application of

multi-task evolutionary artificial neural networks (MTEANNs) to the energy flux predic-

tion. The main goal behind this paper is to develop a methodology able to accurately

predict the energy flux with the aim of stabilising this source of energy, reducing, in this

sense, as much as possible, the influence of the tides and waves stochastic nature. For this,

we select four different time prediction horizons (6h, 12h, 24h and 48h). Moreover, try-

ing to avoid using information collected by measurement instruments, all the input data

used in this paper is obtained from reanalysis sources. This problem is tackled by means

of MTEANNs using several basis functions in the hidden layer (SUs, PUs and radial basis

functions (RBFs)), in combination with linear models and PUs for the output layer. Our

proposal is compared against state-of-the-art methods such as SVRs and ELMs, conclud-

ing that our approach is an excellent technique for both short- and long-term energy flux

prediction.

According to the objectives established in Chapter 2, Chapter 4 partially satisfies

objectives 1, 2, 3, and 7. Regarding publications related with the prediction of time se-
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ries, 5 JCR-indexed journal papers and 3 national/international conferences have been

published.

7.1.3 Time series classification

TSC is the most popular field of time series data mining in the literature due to the huge

interest developed in the last few years. One of the main reasons behind this success is the

existence of a global repository with more than 150 time series datasets increasing more

and more, known as the UEA/UCR TSC repository. Currently, hierarchical vote system col-

lective of transformation-based ensemble (HIVE-COTE) [120] is one of the approaches

achieving the best performance for most of the datasets, but it is computationally inten-

sive, due to the fact that it consists in an ensemble embedding five different approaches.

Therefore, one of the main challenges being tackled nowadays is improving the perfor-

mance of HIVE-COTE (or at least obtaining a non-significantly worse performance) while

decreasing significantly the computational load. In this sense, several approaches have

been presented to the literature. In this Thesis, we propose a hybrid approach for the

shapelet transform (ST) methodology, in order to achieve a competitive performance with

a significant decrease in the computational time.

The method presented to the literature consists in developing a hybrid model be-

tween the standard ST and the learned shapelets (LS) [76] methodology. The main idea

behind this method is taking advantage from the data driven shapelet search of the ST

and from searching for shapelets in the entire shapelet space through stochastic gradient

descent (SGD) (the case of LS). For this, the main proposal lays in hybridising these two

methodologies, including a time constraint of 1 hour data driven search, in which the best

k shapelets are extracted from the training set, and then, using these k best shapelets in

the first layer of a CNN to optimise them. This layer is divided into: 1) a feature extraction

step computing the distances between the shapelet and the original time series, and 2)

a pooling step keeping the minimum of all these distances. Moreover, the optimisation

procedure consists in tuning both the shapelet values and the weights of the logistic re-

gression (LR) using SGD. Once the shapelets are optimised, they are extracted in order to

build the transformed dataset, and after that, the rotation forest (RF) classifier is applied.

The results achieved by this hybrid method are significantly better than either ap-

proach in isolation. Moreover, the results of our proposal are highly competitive with

respect to the full shapelet search included in the ST embedded in the HIVE-COTE, being

the computational load much lower.

Moreover, a second line of research is carried out in this field. From the whole set of

time series datasets of the UEA/UCR TSC repository, there are several time series datasets

including ordinal information among the labels. The classification of these time series
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datasets is proposed to be known as time series ordinal classification (TSOC). Up-to-the-

knowledge of the authors, this field is unexplored in a general way, no approaches having

been published in the literature. Therefore, in this Thesis, we present a first approach

based on the ST, given its importance among the TSC field and a comparison baseline

against the main approaches in the state-of-the-art. The ST pseudocode is composed of

several steps in which ordinal information could be taken into account. In this way, one

of these steps is the quality measurement of the shapelets. For this, we propose up to

three different shapelet quality measures considering ordinal information. They are based

on adaptations to the ordinal paradigm of traditional indices such as the Fisher score or

the Pearson’s and Spearman’s determination coefficients, instead of using the information

gain (IG), which is the standard shapelet quality measure. The results demonstrate that

the Pearson’s determination coefficient adaptation for shapelet quality measure outper-

forms the rest of the scores, independently of the subsequent classifier used. Furthermore,

regarding the classifiers applied to the transform, the most popular ordinal classifiers (pro-

portional odds model (POM) and support vector for ordinal regression with implicit con-

straints (SVORIM)) and other standard classifiers in the literature are selected, in order to

demonstrate that ordinal techniques are able to achieve better results. The results achieved

by SVORIM are better than those obtained by POM or SVR, among others. Hence, the first

paper concludes that the ST using the Pearson’s determination coefficient along with the

use of the SVORIM ordinal classifier obtains the best results, this difference being statisti-

cally significant.

Moreover, this proposed methodology is compared, in a second paper, against the

main state-of-the-art techniques in TSC, which are HIVE-COTE, time series combination

of heterogeneous and integrated embedding forest (TS-CHIEF) [168] and inceptionTime

[63]. These techniques are highly competitive in terms of accuracy, and even though HIVE-

COTE is the best of them, TS-CHIEF and inceptionTime stand out for their scalability and

efficiency. However, when dealing with ordinal datasets, all of them are outperformed by

the ST version adapted to OC, using the Pearson’s determination coefficient as shapelet

quality measure and SVORIM as the final classifier. Also, it is worthy of mention that nom-

inal classifiers benefit from the ordinal information induced by the ST using the Pearson’s

determination coefficient and achieve better results than the three previous ensemble ap-

proaches.

According to the objectives established in Chapter 2, Chapter 5 partially satisfies

objectives 3, 5, and 6. Moreover, the works related to this topic have been done in col-

laboration with the University of East Anglia (UEA), in which two international research

stays were done (3 months each). The research on this topic is based on 4 international

conferences.
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7.1.4 Additional works

Although this Thesis is based on time series data mining, given that the research group

of the author is immersed in several regional and national projects, the following works

are proposed for solving real-world problems regarding many different fields. Concretely,

two main areas have been considered: 1) engineering applications, in which modelling

of desiccant wheels (DWs) and modelling of the acoustic behaviour of induction motors

have been tackled, and 2) health-related problems, in which the work has been focused

on the human immunodeficiency virus (HIV)/hepatitis C virus (HCV) disease and in liver

transplantation (LT).

On the one hand, regarding the engineering applications, two main real-world prob-

lems have been tackled. These engineering applications typically concern more than one

objective, trying to optimise them all simultaneously. Hence, in this Thesis, we carry out

the modelling of DWs and the induction motors acoustic behaviour by using MTEANNs,

which are able to exploit the shared information for related tasks. More concretely, in the

first problem considered we deal with DWs used to control the internal moisture content of

buildings, having a significant impact on some industries, given that it avoids the germina-

tion of fungus, among other advantages. For this, a wide variety of operating conditions for

DWs are used for developing a mathematical model able to predict the outlet process air

temperature and the outlet process air humidity ratio. This mathematical model consists

in a MTEANN using SUs in the hidden layer, which is able to achieve an excellent per-

formance for both outputs. Regarding the second engineering application, MTEANNs are

also proposed for modelling the acoustic behaviour of induction motors. Noises produce

huge physical and psychological discomfort to the population, hence, aiming to reduce it

can have a significant impact on our daily lives. The physical and psychological discomfort

is measured by means of several indices, thus, we propose the use of MTEANNs to extract

common features from these indices. The best results are achieved by a MTEANN using

PUs in the hidden layer. Furthermore, it is worthy of mention that this best model is very

simple and only uses a quarter of the input variables.

On the other hand, regarding health-based problems, other two applications are

considered: firstly we tackle the HIV/HCV disease, for which determining the typology of

co-infected patient to be treated is of enormous interest, given that the number of patients

requiring the treatment is high, and therefore, prioritisation criteria must be established.

Nevertheless, this strategy has not been previously evaluated, paying, in this sense, low

attention to the variables limiting the treatment uptake. In this Thesis, we propose the use

of evolutionary artificial neural networks (EANNs) to develop the simplest possible model

achieving a good performance, in order to analyse which characteristics influence more

on the probability to be treated. The best results are achieved by an artificial neural net-
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work (ANN) with RBFs in the hidden layer. This model only considers 6 inputs, being easy

to be interpreted and implemented. Regarding the second health-based problem, the LT

problem, we present two different ideas for approaching it using the united network for

organ sharing (UNOS) database. This database is composed of more than 200, 000 records

including information from all the parts involved in the LT process: donor, recipient and

transplant procedure. In the first work, survival analysis (SA) techniques are applied in

order to model the survival in LT. For this, several approaches based on machine learning

(ML) techniques are proposed, the gradient boosting (GB) technique applied to SA being

the one achieving the best results. Furthermore, in this Thesis, we also tackle the problem

of donor-recipient matching in LT by means of ML classification tasks. Traditionally, this

matching has been performed following scores such as model for end-stage liver disease

(MELD), but this disregards the result of the transplant. In this sense, we propose the

use of ML techniques and compare them against traditional statistical methods and some

other scores apart from MELD. Besides, we also present a rule-based system halfway be-

tween strict objectivity, included by ML methods, and subjectivity, induced by the medical

decision.

According to the objectives established in Chapter 2, Chapter 6 partially satisfies

objectives 1, 2, and 7. Regarding publications, 4 JCR-indexed journal papers (another one

is currently under review) and 2 national/international conferences have been published.

7.2 General discussion and future work

In this Thesis, three different topics are covered concerning time series data mining and

one extra topic concerning additional works. All of them are solved using a diverse range

of machine learning (ML) approaches. The main proposals are presented in 11 interna-

tional journal papers and 14 national/international conference papers. More concretely,

the topics of this Thesis include: 1) preprocessing of time series, where a time series clus-

tering algorithm based on time series segmentation is proposed; 2) prediction of time

series, in which several approaches are followed to solve this challenging task; 3) clas-

sification of time series, in which both time series classification (TSC) and time series

ordinal classification (TSOC) are approached; and 4) additional works related to several

real-world problems which are solved using a wide variety of ML techniques.

On the first topic, we approach the time series preprocessing area by developing a

novel technique for time series clustering based on time series segmentation and statistical

techniques. On the second topic, we present several ways for tackling the prediction of

time series, considering both nominal/ordinal classification and regression tasks, using a

wide variety of paradigms. On the third topic, we propose a hybrid method for TSC based

on shapelet transform (ST) and a first approach to a novel area, the TSOC field. Finally,
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on the forth topic, we use different ML techniques for solving additional works helping to

tackle the challenges of different regional and national projects.

All of these contributions are applied to a wide range of real-world problems, which

include fog prediction and detection of convective situations, wave height and solar radia-

tion forecasting, donor-recipient matching in liver transplantation (LT), the identification

of human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infected patient ty-

pology, and the modelling of engineering processes, such as desiccant wheels (DWs) or

the acoustic behaviour of induction motors. Therefore, it can be concluded that all the

challenges and objectives presented in Chapter 2 are successfully fulfilled.

Furthermore, as future work, the following ideas can be considered. Firstly, regard-

ing the time series clustering approach presented in this Thesis, instead of using a seg-

mentation procedure based on growing windows, the use of more complex time series

segmentation techniques based on genetic algorithms could improve the performance.

Moreover, the idea of simplifying the time series using statistical characteristics can be

used as previous step for prediction or classification (TSC or TSOC) tasks.

Regarding the time series prediction topic, the prediction of convective situations

can be solved by means of label distribution learning techniques [71], given the nature

of the original dataset. This novel learning paradigm consists in predicting the degree to

which each label describes the instance.

Finally, transforming 1D time series to 2D image-like representation is a recent re-

search line being tackled at the moment of writing this Thesis, which opens a wide re-

search field in time series data mining. Given the outstanding performance achieved by

deep learning (DL) techniques, the use of 2D image-like time series representation has

been shown to be an interesting idea for solving challenging tasks, such as TSC and TSOC,

or other unsupervised tasks, such as time series clustering.

More concretely, the main advantage of this transformation is enabling the subse-

quent application of a convolutional neural network (CNN) model, which has been proved

to be excellent when applied to images. First approaches following this idea have been re-

cently proposed in the literature [38, 157], demonstrating its potential. The way time

series are converted to images includes several steps: first of all, time series are simpli-

fied by means of a time series segmentation approach, then, the segments obtained are

projected into vectors of statistical features which are converted to images by applying a

given transformation. After that, once the images are obtained, a CNN is considered. Note

that there are a lot of possibilities, from modifying the technique for reducing the dimen-

sionality of the time series or the way images are created, to the application of different

CNN models.
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Gómez-Bravo, A. Otero, E. Varo, S. Tomé, et al. Use of artificial intelligence as an

innovative donor-recipient matching model for liver transplantation: results from a

multicenter spanish study. Journal of hepatology, 61(5):1020–1028, 2014.

[30] N. Burgess. A constructive algorithm that converges for real-valued input patterns.

International Journal of Neural Systems, 5(01):59–66, 1994.
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