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Simple Summary: In 2021, the identification of effective biomarkers became a major focus of prostate
cancer (PCa) in order to improve outcomes and select potentially responsive patients. The aim of
this contribution is to review the main 2021 novelties in prognostic and therapeutic markers in PCa,
with special reference to PCa grading, aggressive variant PCa and molecular markers predicting
significant disease or response to therapy.

Abstract: The 2021 novelties in prognostic and therapeutic tissue markers in patients with prostate
cancer (PCa) can be subdivided into two major groups. The first group is related to prognostic
markers based on morphological and immunohistochemical evaluations. The novelties in this
group can then be subdivided into two subgroups, one involving morphologic evaluation only, i.e.,
PCa grading, and the other involving both morphologic and immunohistochemical evaluations, i.e.,
aggressive variant PCa (AVPCa). Grading concerns androgen-dependent PCa, while AVPCa represents
a late phase in its natural history, when it becomes androgen-independent. The novelties of the other
major group are related to molecular markers predicting significant disease or response to therapy.
This group mainly includes novelties in the molecular evaluation of PCa in tissue material and liquid
biopsies.

Keywords: prostate cancer; Gleason grading system; grade groups; aggressive variant prostate
cancer; DNA damage repair pathway; DNA mismatch repair; PARPi; immunotherapy

1. Introduction

Prostate cancer is the most frequent malignant tumor in the male population world-
wide, as well as one of the most common among all the leading causes of cancer-related
death. Although several men receive an early-stage disease diagnosis and run an indolent
course, many cases are characterized by locally advanced or metastatic disease at the time
of diagnosis.

In 2021, the identification of effective biomarkers became a major focus in prostate
cancer (PCa) in order to improve outcomes and select potentially responsive patients. The
uropathologist has to integrate information from morphologic and immunohistochemical
evaluations with the data obtained from molecular investigations. The goal is to improve
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the understanding of molecular data to identify actionable targets, as well as to develop
novel treatments for patients with advanced PCa, and to extend survival [1].

The aim of this contribution is to review the main 2021 novelties in prognostic and
therapeutic markers in PCa, with special reference to PCa grading, aggressive variant PCa
and molecular markers predicting significant disease or response to therapy.

2. PCa Grading

The Gleason grading system is a quintessential prognostic factor when predicting
findings in radical prostatectomy, biochemical failure, local recurrences, and lymph node
or distant metastasis in patients receiving radical prostatectomy, radiation therapy and
other therapies, including active surveillance. The grading system has been modified over
time to reflect changes in diagnostic approaches, particularly a shift to an early detection
of PCa. Modifications have been made to improve concordance between prostate biopsy
and radical prostatectomy grading. This led to a precise description of the remaining three
Gleason architectural patterns (i.e., grade 3–5) and a 5-tier grade grouping system (i.e.,
Grade Groups (GGs)) [2]. The latter was endorsed in the 2014 International Society of
Urological Pathology (ISUP) conference [3]. The GGs correspond to groups of Gleason
scores (GSs). They improve the communication between the morphologic observations and
patients and clinicians. For instance, a GS 3 + 3 = 6 is assigned GG1 to indicate a favorable
prognosis. A GS 3 + 4 = 7 is placed in a separate GG, i.e., GG2, compared to 4 + 3 = 7, i.e.,
GG3, to indicate a higher risk of recurrence of the latter.

2.1. ISUP and GUPS

The Gleason grading system was updated in 2019 following the ISUP consensus
conference [4] and a Genitourinary Pathology Society (GUPS) “White Paper” [5]. The pros
and cons of the ISUP and GUPS recommendations are reported in detail in an article on this
topic [6]. There are some differences between the recommendations from the two societies,
with some examples as follows.

Intraductal carcinoma of the prostate (IDC-P) (Figure 1A) and invasive cribriform PCa
(Figure 1B) are associated with worse outcomes.

The ISUP and the GUPS concur with the reporting of pure IDC-P, both recommending
that pure isolated IDC-P should not be graded, and that immunohistochemistry should be
performed cases when no associated invasive PCa component is seen.

There is no fundamental disagreement between the ISUP and the GUPS regarding the
clinical implication of IDC-P associated with invasive PCa. Both societies agree that the
presence of an IDC-P component in such a setting represents an adverse prognostic factor.

A major point of departure between the two societies is that ISUP recommends grading
IDC-P when it is associated with invasive PCa, whereas GUPS recommends not grading
IDC-P in any setting [6].

Concerning the issue of whether or not to grade IDC-P patterns into the overall grade
being assessed, choosing one or the other recommendation “to apply uniformly in practice
with fellow departmental or institutional colleagues, in consultation with local urologist,
oncologist, and radiation oncologist stakeholders” has been suggested [7]. Which of the
two sets of recommendations is used is “referenced in report comments, documenting the
approach taken, especially for the key divergent scenario, where incorporating the pattern
seen in extensive IDC-P, admixed with invasive carcinoma, into the grade assessment, or
excluding it, could change the definitive GG” [7]. However, the current situation can be
confusing for clinicians and patients as well.
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Figure 1. Intraductal carcinoma of the prostate (IDC-P) (A) and invasive cribriform PCa (B).

Moving beyond the current definition and grading of IDC-P, its biological significance
is the most important. Invasive cribriform and intraductal carcinoma are reported to have
a significantly higher percentage of genome alterations (genomic instability) and somatic
copy number alterations [8]. In 2018, Velho et al. analyzed 150 unselected patients with
recurrent or metastatic prostate cancer and found that men with germline mutations were
more likely to harbor intraductal/ductal histology (48% vs. 12%, p < 0.01) [9]. Recently,
Lozano et al. examined the association of germline alterations in BRCA2 (BReast CAncer
gene 2) patients and other tumor molecular features with IDC and/or cribriform histologies.
Even though no significant differences were found between BRCA2 carriers and non-
carriers in the prevalence of IDC, IDC was independently associated with bi-allelic BRCA2
alterations and phosphatase and tensin homolog gene (PTEN) homozygous loss [10].

Thus, the importance of recognizing the IDC-P growth pattern is not only related to
the prognosis and management of the patient, but may have additional implications for
the families and target therapy. To address this issue, the National Comprehensive Cancer
Network® (NCCN) guidelines for prostate cancer recommend considering germline testing
for men who have prostate cancer with cribriform morphology or IDC [11,11].

2.2. Gleason Grading, Computational Pathology and Artificial Intelligence

Computer-based diagnosis of PCa on glass slides can be achieved by machine learning
(ML) [8]. It is now possible to grade PCa on virtual slides, thus improving the reproducibil-
ity and accuracy of computer-based methods. Several researchers have dealt with PCa
grading based on digital pathology and artificial intelligence (AI) [12]. Lucas et al. [13] have
built an automatic classification of the Gleason patterns. When distinguishing between
Gleason patterns 4 or higher and Gleason pattern 3, accuracy was 90%, with specificity
and sensitivity being 94% and 77%, respectively. The concordance between their computer-
based GG evaluation and the evaluation made by a pathologist was 65%. This method can
assist pathologists in defining GG in prostate biopsies.

AI can create algorithms that allow a generalist to function as a specialist. Nag-
pal et al. [14] adopted “a supervised learning method to develop a deep learning system
(DLS) for PCa grading” on radical prostatectomies. The accuracy of the GG assignment was
assessed by generalists, in comparison to specialists. The DLS outperformed the generalist
pathologists.
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3. Aggressive Variant of PCa

PCa may evolve into an androgen receptor (AR)-independent phenotype, character-
ized by a rapidly progressive disease course, including secondary deposits in visceral
sites [15]. The term aggressive variant prostate cancer (AVPCa) is used to refer to this clini-
cally aggressive form [15]. It shows low or absent androgen receptor (AR) expression and
is associated with low serum levels of prostate-specific antigen (PSA) [16]. Transformation
to AR-independent AVPCa, i.e., metastatic castration-resistant prostate cancer (mCRPC),
occurs as a mechanism of adaptive resistance to AR-targeted therapies, including newer
AR-targeted treatments [16]. Mutations and amplifications of the AR gene are reported
in 1% of primary PCa and in approximately 60% of metastatic tumors. AR mutations
predominantly occur in the AR androgen-binding domain [17,18]. Some mutations enable
the activation of AR by other adrenal androgens, some increase AR-transcriptional activity,
while others have been demonstrated to confer resistance to enzalutamide, abiraterone and
other anti-androgens drugs [19].

Morphologically, AVPCa is made up of solid sheets of cells devoid of pleomorphism,
with round and enlarged nuclei with prominent nucleoli and slightly basophilic cyto-
plasm [20] (Figure 2). The cells do not show the typical architectural features of prostatic
adenocarcinoma, and mimic the undifferentiated carcinoma of other organs and locations.
The final diagnosis is based on the immunohistochemical expression of markers usually
seen in PCa, particularly the Prostate-Specific Membrane Antigen (see below) [11].
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As shown with immunohistochemical techniques, a subset of AVPCa can also express
neuroendocrine (NE) makers, such as chromogranin A, synaptophysin and CD56. Since
such tumors can develop following androgen receptor pathway inhibition, castration-
resistant PCa transdifferentiates in a clonally divergent manner to become a treatment-
related NE PCa. This lineage plasticity program is dependent on activation of the tran-
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scription factor E2F1 in concert with the BET bromodomain chromatin reader BRD4. Thus,
blocking this E2F1/BRD4-regulated program with BET inhibitors decreased the growth
of neuroendocrine PCa tumor models [21]. In this setting, a study on CRPC and neuroen-
docrine PCa models has demonstrated that combination therapy with PARP inhibitors and
CDK4/6 inhibitors resulted in synergistic suppression of the p-Rb1-E2F1 axis and induced
apoptosis and suppressed neuroendocrine differentiation in PCa, paving the way for new
trials testing this combination [22].

The tumors that do not show NE differentiation might harbor somatic and/or germline
alterations in the DNA repair pathway [20]. The identification of such subtypes has an
important clinical relevance for the potential benefits of platinum-based chemotherapy,
poly (ADP-ribose) polymerase inhibitors (PARPi), and further therapies [15] (see below).

4. Molecular Markers Predicting Significant Disease or Response to Therapy

Morphologic and immunohistochemical findings have been useful in predicting tu-
mor behavior and prognosis. Recent investigations have demonstrated that molecular
biomarkers can predict clinical outcomes in a manner that outperforms traditional mor-
phology [23]. Many prognostic biomarker candidates have been proposed [14] (Table 1).
For instance, several investigations have shown that the loss of PTEN is linked to poor
prognosis in PCa patients [24]. In a cohort of mCRPC, PTEN deletions were reported
in around 30% of patients and another 10% of patients harbored truncating mutations
and gene fusions. PTEN loss is typically mutually exclusive with several other genomic
alterations in human prostate cancer, including SPOP mutation and CHD1 loss [25,26].
Its loss of expression in biopsy samples predicts increased risk of CRPC, metastasis, and
prostate-cancer-specific mortality in surgically treated patients [26,27]. As well as being
a prognostic biomarker, PTEN loss has proved to be a predictive biomarker of response
to therapy with Ipatasertib [28]. Ipatasertib is a novel oral ATP-competitive inhibitor of
Akt that, in combination with abiraterone, has been demonstrated to be superior to abi-
raterone alone in patients with mCRPC, especially in tumors with PTEN-loss. This result
was recently confirmed at ASCO 2021 by the results of the phase III trial (IPATential150).
Improved radiographic progression-free survival (rPFS) was reported for the combination
of Ipatasertib plus Abiraterone plus prednisone compared to placebo plus abiraterone plus
prednisone as a first-line therapy in patients with PTEN-loss, but not in the intention to
treat (ITT) group. In both, trial PTEN loss was defined by immunohistochemistry (IHC)
as a minimum of 50% of the specimen’s tumor area with no detectable PTEN staining
(by Ventana assay using SP218 antibody). During exploratory biomarker analysis, the
authors evidenced that a consistent benefit in the Ipatasertib arm was observed when
PTEN loss was reported in a higher percentage of tumor area. Moreover, patients with
genomic alterations in PIK3CA/AKT1/PTEN assessed by Next Generation Sequencing
(NGS) had a greater rPFS advantage in the combination arm compared to patients with no
detectable alterations [29].

Genomic loss can also be determined by fluorescence in situ hybridization (FISH)
techniques. Immunohistochemistry and FISH are often concordant, although some cases
of PTEN expression at IHC may report deletion at FISH [27]. PIK3CA/AKT1/PTEN
alterations can also be detected by liquid-biopsy-based essay. However, the NGS assay
used should be designed to reveal deletions and rearrangements in the target genes. In
the recently published study by Tukachinsky et al. on the genomic analysis of circulating
tumor DNA (ctDNA) in 3334 patients with advanced PCa, only 9% of patients reported an
alteration in this pathway because the platforms used in the study were not designed to
detect deletions, leading to marked under-detection [30].
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Table 1. Tissue biomarkers in predicting upgrading and/or significant disease in prostate cancer (IDC-P: prostatic intraductal
carcinoma).

Biomarkers Description Clinical Impact

PTEN PTEN loss is associated with adverse
oncological outcomes

By itself or in combination with other biomarkers
helps distinguish indolent tumors from those

likely to progress

APC, RASSF1,
TBX15 methylation

DNA methylation biomarkers associated with
cribriform architecture and IDC-P

Detection of DNA methylation-based biomarkers
may act as indicators of cribriform and/or IDC

patterns in biopsy tissue samples

SChLAP 1 Long non-coding RNA overexpressed in 25% of PCa High expression significantly correlates with
metastatic progression of PCa

BRCA 2
BRCA2-mutant PCa harbor increased genomic
instability and a mutational profile similar to

metastatic rather than localized disease

BRCA2-mutant PCa are uniquely aggressive, often
occur in young men, have higher rates of lymph

node and distant metastasis, and increased
mortality, justifying aggressive initial treatment

RNA-based analyses have been developed in order to guide management decisions for
very low-risk and low-risk primary PCa. The role of such RNA-based assays in comparison
with well-established prognostic markers in the active surveillance setting, for instance,
remains to be proved [31].

4.1. Mutations to the DNA Damage Repair Pathway and PARPi

Advances in the technology of DNA sequencing have clarified the genomic landscape
of PCa, including AVPCa [11]. Somatic mutations may change over time, due to selective
pressure from genetic instability and therapy. Repeat testing of tumor DNA is needed
during the course of the disease. Testing from primary or metastatic tissues or blood may
help guide treatment options [32,33]. Tumor-based testing has the potential to identify
germline mutations, with implications for the predisposition to inherited PCa.

Up to 20–25% of metastatic PCa harbor germline or somatic changes in DNA repair
genes involved in the pathways of mismatch repair (MMR) and homologous recombination
repair (HRR) [32,33]. HRR defects can predict responses to PARPi, an enzyme that is
involved in alternative DNA repair mechanisms. PARPi therapy has shown an improved
overall survival in metastatic-castration-resistant PCa in patients with somatic and/or
germline alterations in HRR genes [34]. However, the effect of PARPi therapy is not the
same for all individuals with HRR gene mutations. In fact, in the exploratory gene-by-gene
analysis of the PROFOUND trial, the best objective response rate (ORR) was reported
for BRCA-mutated patients with a significant difference in overall survival (OS) (20.1
vs. 14.4 months for olaparib and enzalutamide or abiraterone, respectively), while no
difference in OS was reported in patients with ATM or CDK12 alterations [35]. At present,
NCCN, ESMO and EAU guidelines recommend tumor testing for HRR for all metastatic
patients [11,36–38]. However, information such as which type of test, how many genes and
which type of alterations are necessary to perform is not specified in these guidelines. A
recent evaluation of the cost-effectiveness of genomic tests to identify patients that could
benefit from olaparib-therapy evidenced that a genomic test restricted to BRCA1,BRCA2,
and ATM is preferred over the standard care strategy, directed to test all 15 prespecified
genes [39].

4.2. Mutations Other than Defective DNA Repair Mechanisms

Germline mutations in the mismatch repair (MMR) genes (i.e., MLH1, PMS2, MSH2,
and MSH6) are seen in Lynch syndrome, an inherited condition that predisposes individu-
als to an increased risk of developing many different types of cancer. Various publications
have suggested a slight increase in risk for PCa in men with this syndrome [40]. HOXB13
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G84E is a germline variant associated with increased risk of developing PCa [41]. It is not
clear whether it is associated with an increased disease aggressiveness.

4.3. Molecular Markers and Immunotherapy

A defective DNA repair system can increase the frequency of DNA mutations. This
is a very important observation in the development of the antitumor immune response.
Mutations in the BRCA2 gene (Figure 3) have been observed in melanoma patients with a
better response to anti-PD-1 (programmed cell death-1 ligand 1) therapy [32]. Such findings
provide support to the potential use of the mutation status in DNA repair genes, in order
to predict the response to immunotherapy in AVPCa.
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Immune checkpoint inhibitors have been approved in advanced solid tumors harbor-
ing genetic defects in DNA mismatch repair (dMMR), including PCa. The detection of
dMMR, using either immunohistochemistry or molecular methods, is therefore needed in
patients with advanced castration-resistant PCa who are being considered for immunother-
apy [42].

However, human PCa specimens are mostly immunologically cold tumors and do not
respond well to immunotherapy, due to their complex immune evasion mechanisms. Bou-
Dargham et al. identified eight different immune evasion clusters, in which the majority of
the clustered PCa patients (around 90%) exhibited immunological ignorance that can result
from the absence of tumor-specific antigens that activate the immune system, or from the
failure of antigen-presenting cells to recognize cancer antigens. Interestingly, they also
reported a series of biomarkers that could predict responses to various immunotherapies
CD48, SP140, KIRREL, RHOB, FBXO17, ANAPC1, EGFR, SOCS3, ALOX15, and UBR2 [43].

4.4. Molecular Markers and Liquid Biopsy

The analysis of circulating tumor cells, circulating free DNA and exosomes in liquid
biopsy has a fundamental role in diagnosis, prognosis and treatment planning for PCa
patients. For instance, somatic alterations can be assessed by extracting DNA from a
tumor tissue sample or using circulating tumor DNA (ctDNA) extracted from a plasma
sample [44]. Peripheral blood samples are typically used for the germline mutation analysis
test using the DNA extracted from peripheral blood leucocytes. The main advantages of
this technique, compared to the tissue test, are that liquid biopsy is an easily repeatable and
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non-invasive test, which represents tumor heterogeneity better than primary biopsy, and is
also better at capturing changes and/or resistance mutations in the genetic tumor profile
during disease progression. Furthermore, ctDNA can provide information on mutation
status and guide treatment options in patients with AVPCa. Clinical validation and test
implementation into routine clinical practice are currently limited [45].

Urinary exosomes, vesicles with a lipid bilayer membrane enclosing proteins, lipids,
RNA, and DNA have been thought to originate from cells of the urogenital tract and
constitute a source of potential biomarkers for PCa, such as PCA3, and TMPRSS2:ERG,
which are currently included in a diagnostic test [46,47]. Recently, Dhondt et al. developed
a mass-spectrometry-based proteomic analysis of urinary EV that identifies a unique
biological profile in prostate cancer, which is not uncovered by the analysis of soluble
proteins [48].

PCa is primarily driven by AR signaling. This has been exploited from the therapeutic
perspective by applying receptor blockade and/or androgen withdrawal [49]. The devel-
opment of constitutively active AR splice variants is one of the mechanisms involved in
hormonal therapy resistance in AVPCa. The detection of one such variant (i.e., AR splice
variant Arv7) in circulating tumor cells or in peripheral whole blood, without the need
for CTC capture, can predict poor response to abiraterone and enzalutamide, i.e., second-
generation AR antagonists [50,51]. Tissue-based ARv7 detection by immunohistochemistry
or in situ hybridization remains at an experimental level.

The radiopharmaceutical Radium-223 (Ra-223) improves survival and prevents skeletal-
related events in men with mCRPC. However, the molecular determinants of response
are poorly understood, and there is an unmet clinical need for biomarkers to guide the
use of Ra-223. Circulating tumor cell (CTC) analyses may serve as prognostic and/or
predictive biomarkers for Ra-223 response. The pre-treatment digital CTC RNA score was
significantly higher in patients who demonstrated a progression on bone scans compared
to those with stable or decreased disease burden [52]. Radium-223 causes double-strand
DNA breaks and produces γH2AX, a potential biomarker for response. In a study by
Chatzkel et al., the feasibility of tracking γH2AX positivity and numeration in circulating
tumor cells was shown [53].

Circulating tumor cells (CTCs) from men with metastatic PCa express immune check-
point ligands B7-H3, PD-L1, PD-L2, and CTLA-4 in a heterogenous manner, and the
detection of such immune checkpoints may enable monitoring patients on immunother-
apy [54].

4.5. Antibody-Drug Conjugates

Antibody-Drug Conjugates (ADCs) are novel compounds consisting of cytotoxic
agents linked to specific antibodies that are able to recognize antigens expressed over
cancer cells’ surfaces. Researchers are focusing on PSMA, STEAP1, TROP2, CD46 and
B7-H3 as optimal antigens that may be targeted by ADCs (Table 2) [55].

Prostate-specific membrane antigen (PSMA), with folate hydrolase, carboxypeptidase
and internalization activities, is an example of these targets. It is expressed in the epithelial
cells in the prostate and strongly upregulated in PCa, with elevated expression correlating
with progression, metastasis and androgen independence (Figure 4). Recently, PSMA has
been an active target of investigation by several approaches, including the utilization of
small molecule inhibitors, RNA aptamer conjugates, PSMA-based immunotherapy, and
PSMA-targeted prodrug therapy. On March 2021, a phase 1 study began to enroll mCRPC
patients to evaluate ARX517, a PSMA ADC conjugated to microtubule-disrupting toxins
AS269 (NCT04662580) [55,56].
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Table 2. The clinical trial data of ADCs in PCa. ARSI = Androgen Receptor Signaling Inhibitor; mCRPC = metastatic
Castration-Resistant Prostate Cancer.

Tissue
Target Drug Disease Strategy Phase Estimated

Completion Date
NCT

Number

PSMA ARX517 mCRPC Single agent 1 August 2024 NCT04662580

STEAP1 AMG 509

PCa refractory to a novel
antiandrogen therapy
and not more than 2

taxane regimens

Single agent 1 October 2025 NCT04221542

TROP2
Sacituzumab

govitecan
(IMMU-132)

mCRPC progressing on
ARSI Single agent 2 October 2021 NCT03725761

CD46 FOR46 mCRPC Single agent 1 December 2021 NCT03575819

B7-H3 MGC018 Advanced solid tumors
including prostate cancer

Single agent or
with anti-PD-1

antibody MGA012
1/2 May 2025 NCT03729596Cancers 2021, 13, x FOR PEER REVIEW 10 of 13 
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5. Conclusions

The Gleason grading system is a powerful marker for predicting biochemical recur-
rence, secondary deposits and survival. The Gleason grading system was updated in 2019
by the ISUP and GUPS [4,5]. A major point of departure between the two societies is
that the ISUP recommends grading IDC-P when associated with invasive PCa, whereas
GUPS recommends not grading IDC-P in any setting [6]. Tissue samples may show the
morphologic spectrum and features of AVPCa. In particular, immunohistochemistry for
PSMA, AR signaling markers and classic NE markers offer support to the definition of the
subtypes [11]. Recent investigations have shown that tissue material and liquid biopsy
from patients with AVPCa, including those with mCRPC, can provide clinically relevant
molecular information, including somatic mutations to the DNA damage repair pathway
and mutations other than defective DNA repair mechanisms. This has important clinical
relevance for the potential benefits of platinum-based chemotherapy, PARPi, and further
therapies. The incorporation of tissue and genetic biomarkers into current PCa prediction
models, in a process called information fusion, will optimize future decision-making and
improve patient outcomes [32]. However, some issues are still the objects of debate among
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the scientific community. How to identify patients who can benefit from a target therapy,
which type of test to offer, test timing and others are questions that need to be solved in
future years.
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