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The assessment of pasture quality in permanent grasslands is essential for their conservation andmanagement, as it
can contribute to making real-time decisions for livestock management. In this study, we assessed the potential of
Sentinel-2 configuration to predict forage quality in high diverse Mediterranean permanent grasslands of open
woodlands.We evaluated the performance of Partial Least Squares Regression (PLS)models to predict crude protein
(CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and enzyme digestibility of organic matter (EDOM)
by using three different reflectance datasets: (i) laboratory measurements of reflectance of dry and ground pasture
samples re-sampled to Sentinel-2 configuration (Spec-lab) (ii) field in-situ measurements of grasslands canopy re-
flectance resampled to Sentinel-2 configuration (Spec-field); (iii) and Bottom Of Atmosphere Sentinel-2 imagery.
For the three reflectance datasets, the models to predict CP content showed moderate performance and predictive
ability. Mean R2test = 0.68 were obtained using Spec-lab data, mean R2test decreased by 0.11 with Spec-field and by
0.18 when Sentinel-2 reflectance was used. Statistics for NDF showed worse predictions than those obtained for
CP: predictions produced with Spec-lab showed mean R2test = 0.64 and mean RPDtest = 1.73. The mean values of
R2test = 0.50 and RPDtest = 1.54 using Sentinel-2 BOA reflectance were marginally better than the values obtained
with Spec-field (mean R2test = 0.48, mean RPDtest = 1.43). For ADF and EDOM, only predictions made with Spec-
lab produced acceptable results. Bands from the red-edge region, especially band 5, and the SWIR regions showed
the highest contribution to estimating CP and NDF. Bands 2, blue and 4, red also seem to be important. The imple-
mentation of field spectroscopy in combination with Sentinel-2 imagery proved to be feasible to produce forage
quality maps and to develop larger datasets. This study contributes to increasing knowledge of the potential and
applicability of Sentinel-2 to predict the quality of Mediterranean permanent grasslands in open woodlands.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Mediterranean permanent grasslands are present in South Africa,
California, Chile, southern Australia and in the Mediterranean basin it-
self (Cosentino et al., 2014), being the latter a global biodiversity
hotspot due to its high number of endemic plants (Myers et al., 2000).
Mediterranean grasslands play a vital role to satisfy the demand for an-
imal products and the provision of ecosystem services such as carbon
sequestration, control of soil erosion andwildfires, and biodiversity con-
servation (Porqueddu et al., 2016; Porqueddu et al., 2017). Permanent
grasslands in the Mediterranean basin are especially important in
open woodland, which cover about 3.1 million hectares in Spain and
Portugal (Moreno and Pulido, 2009). This savanna-like agroforestry sys-
tem, known asDehesa in Spain andMontado in Portugal is recognised as
a highly biodiverse andmultifunctional ecosystem, being an example of
the integration of land-use and biodiversity conservation (Bugalho
et al., 2011; Moreno and Pulido, 2009; Plieninger and Wlbrand, 2001).
Dehesa andMontado farms are devoted to livestock rearing at low stock-
ing rates whose feed relies mainly on rain-fed permanent grasslands
and acorn of evergreen oaks (Plieninger and Wlbrand, 2001).

These grasslands are species-rich communities with high diversity
and mainly dominated by annuals (Marañón, 1991; Olea and San
Miguel-Ayanz, 2006) with a low yield that is strongly affected by the
inter- and intra- annual variability of rainfall (Cosentino et al., 2014;
Olea and San Miguel-Ayanz, 2006). Its high diversity together with the
low synchrony among species and functional groups (Pérez-Ramos
et al., 2020) contribute to increasing the spatial and temporal heteroge-
neity in pasture production and quality of these grasslands. Under fu-
ture climate change conditions, the expected reduction of rainfall and
the uncertainty on its inter-annual distribution (Giannakopoulos et al.,
2009; Giorgi and Lionello, 2008) challenges the productivity ofMediter-
ranean grasslands and hence, their capacity to sustain livestock produc-
tion and their associated ecosystem services (Ma et al., 2017). In this
context, the development of tools for continuousmonitoring to provide
real-time information for decision-making has become pivotal for the
conservation and efficient management of permanent grasslands
(Defourny et al., 2019; Gómez-Giráldez et al., 2019; Stumpf et al.,
2020; Wolfert et al., 2017). The use of remote-sensing technologies is
proving to be a promising tool to support efficient management of per-
manent grasslands through the provision of information about botani-
cal composition, structure, phenology, quantity and quality (Ali et al.,
2016; Fauvel et al., 2020; Gómez-Giráldez et al., 2020; Wachendorf
et al., 2018). Quality can be defined as the set of properties inherent to
grasslands that allow assessing their value. In this study, we refer to
the quality of grasslands as their value to feed livestock. In this context,
grasslands quality depends on properties such as nutrients concentra-
tion and physical composition that determine the intake, digestibility
and partitioning of metabolized products (Dumont et al., 2015). Pasture
quality is estimated by chemical analyses that typically report the con-
tent of crude protein or nitrogen, ash, fibre (acid detergent fibre and
neutral detergent fibre), metabolisable energy and digestibility
(Dumont et al., 2015; Pullanagari et al., 2013). There are other parame-
ters relevant to livestock performance such as biomass. In this study, we
will focus on quality, determined by the following pasture quality vari-
ables: crude protein (CP), neutral detergent fibre (NDF), acid detergent
fibre (ADF) and enzyme digestibility of organic matter (EDOM). Based
on this definition of pasture quality and the variables studied, a pasture
of high quality is characterised by a high content of CP and a low content
of fibres which leads to a high EDOM. Assessment of pasture quality is
essential for the management of grasslands as it is crucial to make
real-time decisions for adjusting stocking rates, carrying capacity and
additional feedstuff needs (Raab et al., 2020; Ramoelo and Cho, 2018;
Starks et al., 2006). Laboratory chemical methods have been tradition-
ally used to determine the quality of grasslands. Conversely to
remote-sensing techniques, laboratory methods are costly, time-
consuming and do not provide real-time information or possibilities
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for grassland quality mapping (Mansour et al., 2012; Starks et al.,
2006). The amount of destructive sampling required to obtain represen-
tative data, the difficulty to access some sampling sites and the delay
between sampling and availability of the results determine the low
practicability of laboratory-based methods to assess pasture quality
in Mediterranean grasslands (Pullanagari et al., 2013). Remote-
sensing-based methods allow timely spatial predictions at a lower
cost with the disadvantage of a lowered accuracy of the assessments
(Pullanagari et al., 2013). However, the commented advantages might
compensate the loss of accuracy and facilitate its implementation in
farms of Mediterranean open woodlands. The development in the last
decades of new remote-sensing technologies such as unmanned aerial
vehicles (UAVs) equipped with hyperspectral cameras and machine
learning algorithms enablemore accurate predictions of grassland qual-
ity (Ali et al., 2016; Gao, 2006). UAVs can provide hyperspectral data at
high spatial resolution; however, this technology needs to be operated
by specialised companies, which might imply an economic constraint
(Askari et al., 2019; Raab et al., 2020). In order to facilitate the applica-
bility to farm management, the technology to implement must be
low-cost and easy to use by farmers and grassland managers. Satellite
images, although at a coarser resolution, can provide information for
evaluating large areas. The Sentinel-2 satellite constellation, launched
in 2015, has proven to be a promising tool for permanent grassland
monitoring (Punalekar et al., 2018). Sentinel-2 is a sensor system devel-
oped by the European Space Agency (ESA) that provide freely available
data worldwide with a revisiting time of 5 days and 13 spectral bands:
four bands at 10 m, six bands at 20 m and three bands at 60 m spatial
resolution (ESA, 2020). The spectral configuration of Sentinel-2, with
the availability of three red-edge and two NIR bands has a great poten-
tial to study grassland quality due to the known sensibility of these re-
gions of the spectrum to changes in nitrogen, chlorophyll and fibre
content of plants (Curran et al., 1992; Frampton et al., 2013;
Jacquemoud et al., 1995; Kawamura et al., 2008; Kokaly, 2001). It allows
establishing relationships between reflectance at certain Sentinel-2
bands with grassland quality parameters CP, NDF, ADF and digestibility.
In the last decades new algorithms of multivariate machine learning
have arisen and gained popularity such as of Partial Least Squares
Regression (PLS), random forest, support vector machine and artificial
neural network. In particular, PLS has become the state-of-the-art
method and one the most widespread and efficient techniques to
analyse spectroscopy data (Kucheryavskiy, 2018; Wold et al., 2001). In
addition to be one of the most studied and robust methods to deal
with reflectance and forage data, its popularity is also due to the few
hyperparameters that need to be set; only the number of latent
variables (PLS components) used to decompose the predictors and
responses which can be determined by automatically cross-validation
(Kucheryavskiy, 2018).

Previous studies have aimed at establishing relationships between
Sentinel-2 bands and grassland quality parameters. Ramoelo et al.
(2015) demonstrated the potential of Sentinel-2 to predict leaf nitrogen
content in rangelands from South Africa using simulated Sentinel-2
data, reporting R2 values of 0.90 with high importance of the red-edge
and shortwave region bands. Raab et al. (2020) investigated the use of
Sentinel-1 and Sentinel-2 data to estimate pasture quantity and quality
of semi-natural grasslands in the south-east of Germany and obtained
high R2 values for ADF concentration (R2 = 0.79) and CP (R2 = 0.72)
with the bands from the narrow near-infrared and red-edge regions
being the most important ones for the predictions. The utility of com-
bining resampledfield spectra data and actual satellite images to predict
grass foliar nitrogen concentration, CP and NDF have also been explored
in previous studies (Lugassi et al., 2019; Mutanga et al., 2015; Ramoelo
and Cho, 2018). In some of these works, field spectroscopy has allowed
the development ofmodels based on spectroradiometer data resampled
to Sentinel-2 configuration that can be used on Sentinel-2 images
(Ramoelo and Cho, 2018). The comparison ofmodels for pasture quality
estimation using spectral data resampled to Sentinel-2 spectral
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configuration recorded with both, field spectroradiometers on grass-
land canopy and with Visible-Near-Infrared (Vis-NIRS) spectrometer
on dried and ground pasture samples, can provide useful information.
For example, they can inform about the potential of Sentinel-2 to pre-
dict pasture quality in high diverse Mediterranean permanent grass-
lands and be used to investigate the factors affecting the accuracy of
models. In particular, field spectroscopy can contribute to developing
more robust models. Some of the limiting factors to calibrate robust
models with Sentinel-2 data are the labour of intensive sampling collec-
tion, the match between the sampled data and the reflectance at pixel
level in heterogeneous grasslands, and themismatch between sampling
and Sentinel-2 data (Pullanagari et al., 2013; Ramoelo and Cho, 2018).
Field spectroscopy data can be easily collected ensuring a good match
between the sampled data and the reflectance recorded. It is more flex-
ible in terms of collecting a wide range of data due to the finer spatial
resolution (Pullanagari et al., 2012; Pullanagari et al., 2021). Also, it
can help to overcome the constrain of scattered trees in open wood-
lands to obtain tree-free signal of reflectance to calibrate predictive
models. Therefore, the combination of field spectroscopy resampled to
Sentinel-2 spectral configuration and Sentinel-2 imagery can be an in-
teresting approach to facilitate the use of Sentinel-2 in themanagement
of grasslands from open woodlands.

Overall, there is a need for information about the potential of Setinel-
2 for the management and conservation of high diverse permanent
Mediterranean grasslands and the limitations affecting its implementa-
tion. The availability of high-quality pasture for grazing livestock has
been pointed out as essential by stakeholders of agroforestry systems
to ensure the system resilience (Camilli et al., 2018). Extensive systems
such as Dehesa, rely mainly on pasture to feed the livestock (Olea and
SanMiguel-Ayanz, 2006). Therefore, it is of key importance for farmers
of open woodlands grasslands to have timely information about the
pasture quality. Through targeted management, remote sensing of pas-
ture quality using Sentinel-2 data can contribute to a more efficient and
competitive management of open woodlands farms. In the context of
conservation, Dehesa and Montados are considered as habitats to be
protected under the European Habitats Directive (“Dehesas with ever-
green Quercus spp”, code 6310) (Habitats Directive, 1992), which
means that the member states are obligated to guarantee the good
state of conservation of this habitat. Its conservation relies on the land
use by grazing livestock in a human-managed extensive system and
can therefore be altered by both overgrazing and abandonment
(Moreno and Pulido, 2009). This association between conservation
and land use has motivated its acknowledgement as a typical high na-
ture value (HNV) farmland area (Paracchini et al., 2008; Ferraz-de-
Oliveira et al., 2016). The continuous monitoring of the pasture quality
of these systems using remote sensing can be implemented to facilitate
a management compatible with the conservation of this high-interest
ecosystem.

There are very few studies focused on monitoring pasture quality
in high diverse permanent Mediterranean grasslands using remotely
sensed data (Lugassi et al., 2019; Serrano et al., 2018). In this study,
the potential and limitations of Sentinel-2 configuration to promote
and facilitate the implementation of this technology in Mediterra-
nean permanent grasslands is investigated. In particular, we evalu-
ate the accuracy PLS models to predict CP, NDF, ADF and EDOM in
high diverse Mediterranean permanent grasslands based on data
from: (i) laboratory measurements of Vis-NIRS reflectance of dry
and ground pasture samples resampled to Sentinel-2 configuration
(ii) field in-situ measurements of grassland canopy reflectance
resampled to Sentinel-2 configuration; (iii) and Bottom Of Atmosphere
Sentinel-2 imagery. The contribution of specific Sentinel-2 bands to
these predictions and the combination of satellite imagery with field
spectroscopy for pasture quality estimation and mapping was also
explored. This study will provide further insight into the potential
of Sentinel-2 configuration to estimate pasture quality with PLS
models and the implications and limitations of this technology for
3

the management of Mediterranean permanent grasslands of open
woodlands.

2. Material and methods

2.1. Study area

The study was carried out on eight Dehesa farms from the
southern Spain region of Andalusia (Fig. 1). This region is
characterised by a Mediterranean continental climate with hot sum-
mers and cool rainy winters. Soils are mainly cambisols, with pH
~5–7, with a loamy-clay and loamy-sandy texture and low fertility
(CSIC-IARA, 1989). The general topography is flat or characterised
by a sequence of rolling hills and plateaus, with no pronounced
slopes. The altitude ranges from 370 m.a.s.l. to 750 m.a.s.l. The
mean annual rainfall varies from 516 mm to 620 mm along the
farms and the mean annual temperature is around 17 °C (Global
Climate Monitor, 2020). Two of the farms are devoted to sheep and
Iberian pig breeding and the other six to cattle and Iberian pig
breeding. Permanent grasslands of farms included plant communi-
ties dominated by annual low-grown herbs and grasses belonging
to the Helianthemetalia guttati, Malcomietalia and Poetalia bulbosae
alliances (Rodwell et al., 2002). Irrigated grasslands of Trifolium
repens and Lolium spp. and permanent grasslands reseeded with
commercial seed mixtures, mainly legumes, were also present on
these farms.

2.2. Grassland sampling and reference measurements

Grassland samplings were conducted during the growing season of
2012–2013 in farms 1–4 and during the growing season of 2018–2019
in farms 5–8. These samplings were designed to cover the different
types of grasslands of Dehesa farms throughout the growing season. It
included permanent natural grasslands, reseeded grasslands with com-
mercial seed mixes and irrigated grasslands. The pasture sampling car-
ried out in 2012–2013 was designed to study the effect of grazing on
pasture quality (Fernández et al., 2014). For that purpose, one grazing
exclusion plot of 4 × 8mwas established per farm in permanent natural
grasslands from farms 1 to 4. Samples of pasture contained in sampling
quadrats (0.4 × 0.4 m) were cut to ground level, four inside and four
outside of the exclusion plots. Eight samples were collected per farm
(farms 1 to 4) in five dates, January/February, March, April, May and
June, which provided with 160 samples. After removing 35 samples
from quadrats with extremely low pasture production or partially cov-
ering bare ground, 125 were available from the 2012–2013 sampling
campaign. The design of the sampling campaign of 2018–2019 was
governed by the presence of adjacent trees, which together with the
geolocation error of 10 m 95.45% conf. level of Sentinel-2 (Gascon
et al., 2017) may affect the reflectance of proximal pixels. 25 tree-free
20 × 20 m Sentinel-2 pixels were identified in total on fields of the
farms 5 to 8 (13 in permanent natural grasslands, 9 in reseeded grass-
land and 3 in irrigated grasslands). Once located the pixels on the
ground using a SXBlue II GPS sub-meter receiver (Geneq inc, Montreal,
Quebec, Canada) we selected one the 10 × 10 m pixel, from now on re-
ferred to as “site”, and we randomly set four sampling quadrats (0.4 ×
0.4m) and the pasture contained in it cut to ground level. This sampling
was repeated on three dates: November/December, February and May
(Tables 1 and S1) over the 25 pixels which provided 300 samples
from 2018 to 2019. With both sampling campaigns, 425 samples were
available for modelling (Table S1).

The pasture samples were dried in the oven for 48 h at 60 °C and
ground to pass through a 1-mm sieve. Then, the ground samples were
subjected to chemical analysis for crude protein (CP), neutral detergent
fibre (NDF), acid detergent fibre (ADF) and enzyme digestibility of or-
ganic matter (EDOM) at the Laboratory of Animal Nutrition of SERIDA
(Villaviciosa, Spain).



Fig. 1. Location of farms in theDehesa area of Andalusia (Spain)where permanent grasslandswere sampled. Source: Dehesa area illustrated in green is provided by theWMSof theDehesa
systems distribution in Andalusia (REDIAM, 2020).
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2.3. Spectra measurement and processing

From the 2012–2013 sampling campaign, field in-situ canopy reflec-
tance was available for all samples (125 samples), whereas from the
second sampling campaign (2018–2019) field in-situ reflectance was
measured in the sampling performed in May (48 samples) on farm 5,
which adds up to 173 samples (Spec-field from now on) (Fig. 2).
Spec-field reflectance spectra of the pasture contained within the sam-
pling quadrats (0.4 × 0.4 m) was measured with an ASD FieldSpec
Spectroradiometer (ASD Inc., Boulder, Colorado, USA) before cutting
the pasture. Reflectance was measured in the whole range of 350 nm
to 2500 nm with an interpolated resolution of 1 nm. This interpolation
is done internally by the spectrometer, which has a resolution of
1.4 nm in the 350–1000 nm range (SWIR-1 sensor) and 2 nm in the
1000–2500 nm range (SWIR-2 sensor). The spectra were taken using
a fibre optic probe attached to the pistol grip between 10:00 and
15:00 under clear sky conditions from a nadir orientation at 1.20 m
height resulting in a 0.22 m2 recording area. Four reflectance measure-
ments were recorded for each sampling quadrat and white references
Table 1
Sentinel-2 data acquisitions and sampling date of the pasture samples.

Farm Sampling date Sentinel-2 data acquisitions Spacecraft Tile

Farm 5
2018-11-29 2018-11-30 Sentinel-2A
2019-02-19 2019-02-21 Sentinel-2A 30SUH
2019-05-14 2019-05-14 Sentinel-2B

Farm 6
2018-12-05 2018-11-28 Sentinel-2B
2019-02-25 2019-02-26 Sentinel-2B 29SQC
2019-05-07 2019-05-07 Sentinel-2B

Farm 7
2018-12-04 2018-12-06 Sentinel-2A
2019-02-26 2019-02-26 Sentinel-2B 29SPC
2019-05-08 2019-05-05 Sentinel-2A

Farm 8
2018-12-04 2018-12-08 Sentinel-2B
2019-02-26 2019-02-26 Sentinel-2B 29SQB
2019-05-08 2019-05-07 Sentinel-2B

4

were taken on a Spectralon panel (Labsphere, NorthSutton, NH) every
four samples. The final reflectance measurement representative of
each quadrant was the average of the four replicates.

For comparison purposes, the spectrum Vis-NIRS of these 173 pas-
ture samples was recorded in a laboratory after drying and grounding
the samples (Spec-lab from now on). Spec-lab measurements of the
ground samples were scannedwith a portable LabSpec 5000 spectrom-
eter (ASD Inc., Boulder, Colorado, USA) using IndicoPro 6.0 spectrum ac-
quisition software. The equipment has a nominal spectral resolution of
3 nm at 700 nm (visible and near-infrared region) and 10 nm at 1400
and 2100 nm (short-wavelength infrared region). Internal data sam-
pling rate of spectrometer (1.4 nm at 350–1000 nm and 2.2 nm at
1001–2500 nm) is interpolated to 1 nm across the full spectral range
(350–2500 nm). The pasture samples were measured using High-
Intensity Muglight, model-A122100, (ASD Inc.) equipped with a sap-
phire window using an ASDI sampling tray adapter with a quartz win-
dow having a 110 mm2 spot diameter (ASD Inc.). Four replicates of
each sample were scanned, two for each tray adapter by rotating it
45°. An average of 50 spectra was collected from each replicate and
stored as an average spectrum. White reference scans were taken be-
tween every sample scan. Thefinal spectrumwas obtained by averaging
the four replicates.

Both, Spec-field and Spec-lab measurements were then spectrally
resampled to match the spectral specifications of the Sentinel-2 data
(Table 2). The spectral resamplingwas performed using the “resample2”
function of the prospectr package (Stevens and Ramirez-Lopez, 2014) in
R v. 3.6.1 (R Development Core Team, 2019). This function resamples
the original signal to a lower resolution signal (configuration of
Sentinel-2 data in this case) using full-width half maximum (FWHM)
values (Stevens and Ramirez-Lopez, 2014; Lugassi et al., 2019). Band
1, band 9 and band 10 were excluded from all the analyses in this
study because of their coarser spatial resolution (60 m) as their main
use is atmospheric applications.

Level-2A Bottom Of Atmosphere (BOA) reflectance Sentinel-2 data
(ESA, 2020) of the 25 selected pixels of 20 and 10 m resolution of



Fig. 2. Conceptual framework of the modelling approach followed in this study.
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farms 5 to 8 was extracted on the three different dates (Table 1) from
Google Earth Engine platform (Gorelick et al., 2017). Datawas extracted
ensuring that the images were cloud- and cloud shadow-free over the
study area. Bands of 20m resolutionwere not resampled to 10m spatial
resolution to prevent the inclusion of tree signal from adjacent pixels.
Level-2A product are derived from the associated Level-1C products
and are systematically generated by ESA for the Euro-Mediterranean re-
gion since March 2018 (ESA, 2020). Using Sen2Cor processor, the Level
1C input data are atmospheric-, terrain and cirrus corrected to deliver
the final Level-2A products (Mueller-Wilm et al., 2017).

The differences of the three reflectance datasets and their variations
related to the pasture quality variables were evaluated. All analyses of
this study were performed in R v. 3.6.1 (R Development Core Team,
2019). The K-mean cluster analysis using the variables of pasture qual-
ity was performed using the kmeans function of the “factoextra” package
(Kassambara andMundt, 2017). The number of clusters was defined by
the “elbow method”, being three the optimal number (Kodinariya and
Makwana, 2013). The average reflectance spectra of the clusters ob-
tained was calculated and plotted for the three reflectance datasets.
Table 2
Spectral and spatial specifications of the Sentinel-2 bands.

Band Band Centre
(nm)

Bandwidth
(nm)

Spatial resolution
(m)

1-Coastal aerosol 443 20 60
2-Blue 490 65 10
3-Green 560 35 10
4-Red 665 30 10
5-Red-edge-1 705 15 20
6-Red-edge-2 740 15 20
7-Red-edge-3 783 20 20
8-Near-infrared (NIR) 842 115 10
8A-Narrow NIR 865 20 20
9-Water vapour 945 20 60
10-Short-wave infrared
(SWIR)-cirrus

1375 30 60

11-SWIR-1 1610 90 20
12-SWIR-2 2190 180 20

5

2.4. Modelling approach and statistical analysis

The potential of Sentinel-2 configuration to estimate pasture quality
was compared between Spec-lab, Spec-field and Sentinel-2 BOA reflec-
tance. Since Spec-field measurements were available from the
2012–2013 sampling (125 samples) and May from 2018 to 2019 sam-
pling on farm 5 (48 samples), the same 173 samples were available to
compare Spec-lab and Spec-field-based modelling as mentioned above
(Fig. 2). For Sentinel-2 BOA-based modelling, the pasture quality mea-
surements of the four quadrats at each one of the 25 sites selected
were averaged for every sampling, so a representative value of the qual-
ity variable at the site could be associatedwith its corresponding reflec-
tance on each of the three dates (N = 75). A table summarising the
grassland samplings and data used for each reflectance dataset can be
found in Table S1 of Supplementary Material.

When PLS and other machine learning algorithms are used, is key to
develop a representative training dataset of the spectral features of the
vegetation to calibrate robust models. Outliers in the training data can
lead to biased predictions and underfit of the models (Wang et al.,
2018). Outliers, which can be defined as samples departing from the
bulk of the data can be produced by objects belonging to underrepre-
senteddata or samples fromanother population, laboratory errors or in-
strument errors (Martens and Naes, 1992; Valderrama et al., 2007).
Since these sources of errors are common in Vis-NIRS spectroscopy
and remote sensing, detection of outliers is commonly applied
(Morellos et al., 2016; Xu et al., 2018; Xu et al., 2014). The novel outlier
detection approach based on Projection-Based Modelling implemented
in “mdatools” was used to exclude outlier samples (Kucheryavskiy,
2019; Rodionova and Pomerantsev, 2020). This method is based on
the calculation of the score distance, orthogonal distance, and Y-
residuals which are used to compute a so-called “total distance” of
every sample, and an outlier threshold for outlier detection in regres-
sion problems (Rodionova and Pomerantsev, 2020). The method con-
sists of an iterative process that avoids masking and swamping effects
in outlier removal. Further detailed information on the method and ex-
amples can be obtained in Rodionova and Pomerantsev (2020) and
Kucheryavskiy (2020a).
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Relationships between pasture quality variables (CP, NDF, ADF
and EDOM) and reflectance were assessed using Partial Least
Squares Regression (PLS) models performed with “mdatools” pack-
age (Kucheryavskiy, 2019; Kucheryavskiy, 2020b). Pasture quality
measurements were log- or squared transformed when necessary
to meet normality (Shapiro-Wilk test, p > 0.05). Although non-
normally distributed data can be used to fit PLS models, substantial
loss of power of PLS models was observed when small datasets
were used (Goodhue et al., 2012). PLS regression is a standard and
widely-used tool in chemometrics (Wold et al., 2001) and prediction
of pasture quality (Lobos et al., 2013; Parrini et al., 2018). It relates a
vector Y with the response variable (CP, NDF, ADF or EDOM) and a
matrix X with the predictor variables (reflectance values at the
Sentinel-2 bands) by a lineal multivariate regression model. PLS
decomposes Y and X on n orthogonal latent variables (LVs) (PLS-
components) that maximise the covariance between response and
predictors (Wold, 1966; Zhou et al., 2019). By using these LVs,
calibration equations can be created to predict the variable of inter-
est Y, when a new Xmatrix is used. This method is highly effective in
dealing with collinearity and a high number of predictor variables
(Wold et al., 2001).

Data were randomly split into 70% for calibration and 30% for the
external test. The models built with the calibration set were
validated using leave-one-out (LOO) cross-validation. The optimal
number of LVs was selected according to the Wold's R criterion,
which is based on the cross-validation. During LOO cross-
validation, N-1 models (N being the number of samples) of one LV
are built by iteratively withholding each sample (one sample at a
time is kept out the calibration and used for prediction). The total
Predicted Error Sum of Squares (PRESS) is calculated by summing
the PRESS of the N-1 models. This procedure is repeated for n LVs
until the ratio between PRESS value of the current and the next LV
is the unity (Wold, 1978; Li et al., 2002). This value denotes that
the optimal number of LVs has been reached. The R2, Root Mean
Squared Error (RMSE), bias, Standard Error of Prediction (SEP) and
Ratio of Predicted Deviation (RPD) were used to assess and validate
the models. The R2 is a measure of how well the data fit the regres-
sion model. The RMSE is used to assess the average accuracy of the
prediction. The SEP indicates the precision of the predictions while
the bias is the systematic difference between the predicted and the
measured values. The RPD is the ratio of the standard deviation of
the pasture quality variables from the SEP and is used to estimate
the predictive ability of the model. An RPD value of one would
mean that the SEP is equal to the standard deviation of the laboratory
measurements and therefore, the model would have no use for
predictions. Using R2 and RPD, the prediction ability of the models
can be classified following the thresholds proposed by Askari et al.
(2015) and used by Askari et al. (2019) to assess PLS predictive
models built with Sentinel-2 data: “excellent” (RPD ≥ 2.5 and R2 ≥
0.8), “good” (2 ≤ RPD < 2.5 and R2 ≥ 0.7), “moderate” (1.5 ≤ RPD <
2 and R2 ≥ 0.60) and “poor” accuracy(RPD < 1.5 and R2 < 0.6).
Viscarra Rossel et al. (2006) classified RPD values as: RPD values
between 1.4 and 1.8 indicate fair predictive ability, useful only for
qualitative assessments and correlations while RPD values over 1.8
can be used for quantitative assessments.

The importance of the bands in the predictive models was assessed
by looking at the regression coefficients of the PLSmodels. The inference
of the regression coefficients was obtained by applying a Jack-Knifing
approach implemented in “mdatools” package (Kucheryavskiy, 2020b).
Jack-Knifing is a resampling method used to calculate bias and the
variance of estimates (Martens and Martens, 2000; Friedl and
Stampfer, 2002). The resamples are generated by deleting single cases
from the original sample (Friedl and Stampfer, 2002). In this case,
Jack-Knifing was used to calculate a p-value of the regression coeffi-
cients of the PLS models by setting the Jack-Knifing option and full
cross-validation in “mdatools” (Kucheryavskiy, 2020b). A regression
6

coefficient was considered as significant when the Jack-Knifing inferred
p-value was <0.05.

Given the relatively small size of the datasets, the stability (or the
robustness) of the models was tested by a bootstrap procedure.
Following the approach of Mutanga et al. (2004) and Kawamura
et al. (2008), the random partition in calibration (70%) and test
(30%) was repeated 1000 times with replacement. A PLS model
was built for each partition and the value of R2, RMSE, RPD and
regression coefficients were extracted. Mean and confidence inter-
vals (CI) (2.5 and 97.5 percentiles) of R2, RMSE, RPD and regression
coefficients were reported. The number of LVs was described by the
mode of the 1000 models. This procedure improves the methodol-
ogy of previous studies in which a single value of these statistics is
reported using a dataset of similar size (Askari et al., 2019; Lugassi
et al., 2019; Ramoelo et al., 2015). The bootstrap procedure allowed
determining the certainty of the results reported by each model
(Mutanga et al., 2004; Mutanga et al., 2015). For the regression coef-
ficients, the percentage of times that each band resulted as signifi-
cant (p < 0.05, according to Jack-Knifing procedure) in the 1000
models was also included in order to assess their stability.

2.5. Spatial predictions based on Sentinel-2 imagery using models cali-
brated with field spectrometry

The use of field spectrometry to calibrate PLS predictive models
based on Sentinel-2 configuration was investigated by “combining”
the whole Spec-field dataset (N = 173) for calibration and cross-
validation and the Sentinel-2 BOA dataset (N = 75) for test. Since
the reflectance spectra of the two datasets were acquired using
different sensors, the representativity of both sets was checked by
Principal Components Analysis (PCA) based on the covariance ma-
trix, and the Distance of Mahalanobis (DMH). These algorithms
helped to evaluate that the calibration set and the test set showed
representativity (they are in the same spatial space and have the
same variance–covariance) so that the prediction error depended
on the model, and not on the differences of the data sets (Jouan-
Rimbaud et al., 1998). The reflectance values of both sets were sub-
jected to a PCA and plotted over a score plot to check the overlap of
their spatial location. Additionally, the DMHs of each Sentinel-2
sample to the centre of the population was calculated in order to
identify extremely different observations of the overall characteris-
tics of the calibration dataset (Spec-field). According to Shenk and
Westerhaus (1996) criterion, sample spectra with DMH > 3.0 are
not suitable to be predicted.

After the PLS model was calibrated and cross validated with the
Spec-field dataset, the reflectance values of the Sentinel-2 data
were used to test the predictive accuracy and precision over CP,
NDF, ADF and EDOM. The R2, RPD and RMSE of calibration, cross-
validation and test of the model were reported. Spatial prediction
maps at 10 m resolution over fields of irrigated and natural grass-
lands were computed using the calibration model and Sentinel-2
free cloud images on four different dates (2018-11-13; 2019-04-
04; 2019-05-07; 2019-06-28). Pixels with tree influence on the re-
flectance value were excluded from the mapping. For ease of maps
interpretation, CP values were back-transformed to the original
scale with the follow adjustment for variance:

by ¼ 10

bΨþ
1
N∑

N
i¼1
bΨi − Ψi

� �2
2

 !
,

whereby are the back-transformed values, bΨ are the estimated andΨ the
observed values, both on the logarithmic scale. The expression of the
numerator in the exponent represents the mean squared error of the
test dataset.



Fig. 3. (a) Results of K-means clusters analysis performed using the following pasture
variables: Crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF),
and enzyme digestibility of organic matter (EDOM). The ellipse represents the 95%
confidence interval. L, Cluster grouping low quality samples; M, Cluster grouping
medium quality samples; H, Cluster grouping high quality samples. Mean reflectance of
samples included in each cluster at the centre of Sentinel-2 bands for: Spec-lab dataset
(N=173) (b), Spec-field dataset (N= 173) (c) and Sentinel-2 BOA dataset (N=75) (d).
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3. Results

3.1. Pasture quality values

An overview of the pasture quality values provided by the samplings
is summarised in Table 3. Due to the diverse grasslands sampled and
mainly to the different dates of sampling throughout the growing sea-
son, there was a large variation and wide range of values within all
the pasture quality variables. CP showed a range of 24 points in the
dataset used in combination with Spec-lab and Spec-field. For the
same dataset, NDF showed a range of 46.5 points, while ADF reported
a lower range, 29.1 points. The largest range was obtained for EDOM
with a value of 47.8 points. The range of variables used for the analysis
using Sentinel-2 images was lower. Overall, in both datasets, CP and
EDOM values decreased from November to July while the opposite oc-
curred with NDF and ADF (Fig. S1). CP was the variable that showed
the largest variation, with a coefficient of variation of 46.2% for the
dataset used for Spec-lab and Spec-field and 34.3% for the reference
measurements used with Sentinel-2 BOA reflectance data. NDF and
ADF showed a CV of 21% for the Spec-lab and Spec-field dataset, slightly
higher than the CV of EDOM (19%). The CV of thefibreswas lower in the
Sentinel-2 dataset. The EDOM values used for the Sentinel-2 dataset
showed the lowest variation (CV = 12%).

Fig. 3 A illustrates the groups produced by a K-means cluster analysis
performed using the pasture variables. Three clusters of samples can be
identified showing clear differences in their pasture quality variables.
The higher the CP and EDOM % of the clusters, the lower the NDF and
ADF% and vice versa. The pasture quality can be ordered from lower to
higher quality as: cluster L< clusterM< clusterH. These differences be-
tween clusters can also be observed in some regions of themean reflec-
tance spectra of Spec-lab, Spec-field and Sentinel-2 BOA of each cluster
(Fig. 3b; c; d). Spec-field and Sentinel-2mean reflectance is very similar,
showing the comparable features in the spectra. For the three sets of re-
flectance datasets, the clusters M and H, with higher CP and EDOM,
showed lower reflectance values than the mean reflectance of the clus-
ter L along the visible (490–665 nm) region of the spectra, especially in
band 4 (red-665 nm). In the case of Spec-lab, this difference remains in
the Red-edge (705–783 nm) and NIR region (Fig. 3. b). In Spec-field and
Sentinel-2 datasets, themean reflectance of cluster Hwas clearly higher
in the Red-edge (705–783 nm) and NIR regions (842–865 nm) than the
reflectance spectra of clusters L and M. Finally, the mean reflectance
values of the three clusters for Spec-field and Sentinel-2 showed some
differences in bands 11 and 12 (SWIR region;1610–2190 nm) while
for Spec-lab reflectance, these values were identical.

3.2. Performance of models

Table 4 shows the mean, the confidence intervals of R2, RMSE and
the mode of nLV for calibrations and R2, RMSE and RPD for cross-
validations as summary of the 1000 PLS models built for each
Table 3
Descriptive statistics of the pasture quality variables used to fit the PLS models.

Pasture
variables
(% DM)

Minimum Mean Maximum Range SD CV

Spec-lab and
Spec-field

(N = 173)

CP 3.7 12.2 27.7 24.0 5.7 46.2
NDF 24.9 51.2 71.3 46.5 10.7 20.9
ADF 15.7 31.3 44.8 29.1 6.6 21.0
EDOM 38.5 59.0 86.2 47.8 11.2 19.0

Sentinel-2
(N = 75)

CP 5.3 13.4 26.0 20.7 4.6 34.3
NDF 31.7 45.4 69.6 37.9 8.9 19.6
ADF 16.8 30.1 39.0 22.2 5.4 17.9
EDOM 42.7 62.8 80.6 37.9 7.9 12.6

CP-Crude protein; NDF-neutral detergent fibre; ADF-acid detergent fibre; EDOM-enzyme
digestibility of organic matter; SD- Standard deviation; CV- coefficient of variation.
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reflectance dataset (Spec-lab, Spec-field and Sentinel-2 BOA). To predict
CP using Spec-lab reflectance data, the mode of LVs used to build the
models was 5. For the rest of the models, the mode of LVs was 2–3
depending on the combinations of variables/reflectance data. Models
fitted with Spec-lab data performed better than models based on
Spec-field and Sentinel-2 BOA. Overall, means of R2 and RPD decreased
according to the reflectance data used following the order of Spec-
lab>Spec-field>Sentinel-2 BOA. The opposite occurred with RMSE
and the amplitude of the CI models fitted with Sentinel-2 data reported
higher RMSE values andwider CI thanmodels fittedwith Spec-field and
Spec-lab respectively. The statistics of models built with Spec-lab data
reflect acceptable calibration models with R2

cv and RPDcv mean values
over 0.60 and 1.60 respectively (Table 4).

Acceptable calibration models were obtained to predict CP with
Spec-lab (mean R2

cv = 0.69 and mean RPDcv = 1.80) and Spec-field



Table 4
Summary statistics of calibrationmodels for Spec-lab, Spec-field and Sentinel-2 datasets.Mean and confidence intervals (95%) of R2, RMSE, RPD andmode of nLV calculated fromN=1000
random partitions of the datasets.

Spectral data Variable n Mean nLV R2 cal RMSE cal R2 cv RMSE cv RPD cv

Spec-lab

Log (CP) % 124
1.04
[0.86]

5
0.73

(0.68–0.78)
0.10

(0.09–0.11)
0.69

(0.63–0.74)
0.11

(0.10–0.12)
1.80

(1.65–1.97)

NDF2g/10 g 124
27.38
[44.12]

3
0.69

(0.64–0.75)
5.81

(5.17–6.26)
0.66

(0.61–0.72)
6.11

(5.55–6.53)
1.72

(1.60–1.89)

ADF2g/10 g 124
10.24
[17.10]

2
0.66

(0.62–0.69)
2.31

(2.14–2.47)
0.63

(0.59–0.67)
2.39

(2.21–2.54)
1.66

(1.58–1.76)

Log (EDOM) % 124
1.76
[0.35]

2
0.73

(0.67–0.79)
0.043

(0.037–0.047)
0.70

(0.65–0.76)
0.045

(0.040–0.049)
1.85

(1.69–2.04)

Spec-field

Log (CP) % 124
1.04
[0.86]

3
0.64

(0.58–0.70)
0.12

(0.11–0.13)
0.61

(0.54–0.67)
0.12

(0.12–0.13)
1.60

(1.48–1.74)

NDF2g/10 g 124
27.38
[44.12]

3
0.49

(0.41–0.58)
7.39

(6.85–7.83)
0.46

(0.37–0.55)
7.66

(7.07–8.12)
1.36

(1.27–1.49)

ADF2g/10 g 124
10.24
[17.10]

3
0.48

(0.41–0.57)
2.84

(2.56–3.04)
0.45

(0.37–0.54)
2.94

(2.65–3.15)
1.35

(1.27–1.47)

Log (EDOM) % 124
1.76
[0.35]

3
0.53

(0.43–0.62)
0.056

(0.050–0.064)
0.49

(0.39–0.60)
0.058

(0.052–0.064)
1.41

(1.28–1.58)

Sentinel-2

Log (CP) % 55
1.10
[0.67]

3
0.62

(0.54–0.71)
0.10

(0.08–0.11)
0.52

(0.43–0.62)
0.11

(0.09–0.12)
1.47

(1.33–1.64)

Log (NDF) % 55
1.65
[0.33]

3
0.61

(0.52–0.71)
0.05

(0.04–0.06)
0.53

(0.43–0.64)
0.06

(0.06–0.05)
1.48

(1.34–1.67)

ADF2g/10 g 55
9.38

[12.10]
2

0.40
(0.29–0.51)

2.39
(2.14–2.64)

0.33
(0.22–0.43)

2.54
(2.28–2.77)

1.23
(1.14–1.34)

EDOM % 55
62.7
[35.2]

2
0.40

(0.25–0.55)
6.01

(4.93–6.86)
0.32

(0.19–0.44)
6.43

(5.48–7.13)
1.23

(1.12–1.35)

CP-Crude protein; NDF-neutral detergent fibre; ADF-acid detergent fibre; EDOM-enzyme digestibility of organic matter; Mean - average of pasture variable measured with range of the
observed values in squared brackets; nLV- mode of the number of latent variables; RMSE- root mean square error; RPD-ratio of predicted deviation; cal- calibration statistics; cv-cross-
validation statistics. Values in brackets correspond to the confidence interval (2.5 and 97.5 percentiles). A different transformation was applied to NDF and EDOM for Sentinel-2 dataset.
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(mean R2
cv = 0.61 and mean RPDcv = 1.60). In models built with

Sentinel-2 data for CP prediction, mean R2
cv and mean RPDcv were

lower, 0.52 and 1.47 respectively, although the upper limit of CI of the
1000models laid over 0.60 in R2

cv and over 1.60 in RPDcv (Table 4).Mod-
erate results were obtained by models calibrated for NDF with Spec-lab
(mean R2

cv = 0.66 and mean RPDcv = 1.72) and poor with Spec-field
(mean R2

cv = 0.46 and mean RPDcv = 1.36). The statistics obtained
when Sentinel-2 data was used to predict NDF (mean R2

cv = 0.53 and
mean RPDcv = 1.48) were slightly better than in models run with
Spec-field, with values of the upper limits of the CI of 0.64 in R2

cv and
1.67 in RPDcv indicating that somemodels of the 1000 runs hadmoder-
ate prediction ability. The calibration model statistics obtained for ADF
were very poor for models fitted with Spec-field and Sentinel-2. The
best statistics were obtained for EDOM prediction models that showed
a mean R2 value of 0.70 and RPD of 1.85. However, these statistics
dropped to very low values when the models were built with Spec-
field and Sentinel-2 reflectance data.

Results of the predictions on the external test samples are presented
in Fig. 4. (a) (Spec-lab and Spec-field) and Fig. 4. (b) (Sentinel-2). The
figures show the density distribution of the 1000 values of R2

test, RMSEtest
and RPDtest calculated by the bootstrap procedure, indicating the mean
and the CI (2.5 and 97.5 percentiles). As for the calibration, the test sta-
tistics showed anoverall decreasingperformance, stability and certainty
of the predictions following the order Spec-lab>Spec-field>Sentinel-2
BOA. This was denoted by lower R2

test and RPDtest, higher RMSEtest and
wider CI.MeanR2

test, RPDtest and RMSEtest valueswere similar to their re-
spective mean values of RMSEcv and RMSEcal for all variables and
models built with the different reflectance datasets (Table 4). The
mean systematic error given by the bias was negligible for all predic-
tions. Therefore, the precision of the predictions (SEPtest) (data not
shown) was very similar to their accuracy (RMSEtest).

For all reflectance datasets, the prediction ability of CP content was
relatively moderate, with RPDtest mean values always over 1.50. Com-
pared to the values obtained with Spec-lab reflectance (mean R2

test =
0.68), the mean R2

test decreased by 0.11 with Spec-field and by 0.18
when Sentinel-2 BOA reflectance was used. The difference of the R2

test

mean value between models fitted with Spec-field reflectance (R2test =
8

0.57) and models built with Sentinel-2 BOA reflectance (R2
test = 0.50)

was marginal. However, Fig. 4. (b) shows that the density distribution
of R2

test and RPDtest for CP predictions using Sentinel-2 BOA are specially
flattened, presenting a wide CI, which indicates lower stability and
certainty of the predictions. The average accuracy of the prediction,
denoted by the mean RMSEtest were 0.11, 0.13 and 0.11 (log-trans-
formed values) for models built with Spec-lab, Spec-field and
Sentinel-2 BOA reflectance respectively. Note that although the mean
RMSEtest of the models fitted with Spec-field was higher than the
mean RMSEtest of Sentinel-2 BOA models, the range of the data used
has to be considered when comparing both models, being 0.86 for
values used with Spec-lab and Spec-field vs 0.67 for reference data
used with Sentinel-2 BOA reflectance (Table 4).

R2
test and RPDtest statistics for NDF were worse than those obtained

for CP using Spec-lab and Spec-field and very similar when Sentinel-2
BOA reflectance was used. Predictions made with Spec-lab reported
a moderate predictive ability with mean R2

test = 0.64 and mean
RPDtest = 1.73. The mean values of R2

test and RPDtest using Sentinel-2
BOA reflectance (mean R2

test = 0.50 and mean RPDtest = 1.54) were
marginally better than the values obtained for predictions made with
Spec-field (mean R2

test = 0.48 and mean RPDtest = 1.43). However, it
can be observed in Fig. 4(b) that the distribution of R2

test and RPDtest

for Sentinel-2 BOA data is more flattened and has wider CIs, indicating
lower stability and certainty of the predictions than those made with
Spec-field.

For the rest of the variables, only predictions made with Spec-lab
produced acceptable results. In the case of EDOM, the mean values ob-
tained for R2

test (0.68) and RPDtest (1.84) were similar to those obtained
for CP predictions. Weak predictions were obtained for ADF and EDOM
with Spec-field reflectance and especially with Sentinel-2 BOA data,
showing very low predictive ability with mean values of R2

test = 0.30
and RPDtest = 1.30.

3.3. Sentinel-2 bands contribution to pasture quality PLS models

The importance of the Sentinel-2 bands using Spec-lab, Spec-field
and Sentinel-2 reflectance to predict CP, NDF, ADF and EDOM are



Fig. 4. Density distribution of R2, root mean square error (RMSE) and ratio of predicted deviation (RPD) of predictions over Spec-lab and Spec-field test data (N=49) (a) and Sentinel-2
test data (N= 20) (b). Calculated from N= 1000 random partitions of the dataset. The predicted parameters are; crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre
(ADF), and enzyme digestibility of organicmatter (EDOM). Solid lines show themean and dashed lines show the confidence intervals (2.5 and 97.5 percentiles). A different transformation
was applied to NDF and EDOM for Sentinel-2 dataset.
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presented in Figs. 5 and 6. Main attention will be focused on those
models that reported better predictive accuracy and precision. To assess
CP using Spec-lab, the bands of the Red-edge region, band 7 (783 nm),
band 6 (740 nm), and especially band 5 (705 nm) showed, together
with band 12 (SWIR-2, 2190nm), the greatest coefficients and therefore
impact on the predictions. All these bands were significant in most of
the 1000 PLSmodels built for this dataset with the bootstrap procedure.
The bands 4 (red, 665 nm) and 8a (narrow NIR, 865 nm) also showed
9

influence on the PLS predictions, although the coefficients were inferior
and the percentage of models in which these bands resulted significant
were lower: 75.7% and 73.8% respectively. For the prediction of CP with
Spec-field, the red-edge region and the band 4 (red, 665 nm) also
showed a great influence on the prediction. As well as with Spec-lab,
the band 5 (red-edge-1, 705 nm) had the greatest coefficient for CP pre-
diction. The main difference between models built with Spec-lab and
models built with Spec-field was in the SWIR region (bands 11 and



Fig. 5. Regression coefficients averaged over N = 1000 PLS models fitted with Spec-lab and Spec-field data. CP- Crude protein; NDF- neutral detergent fibre; ADF- acid detergent fibre;
EDOM- enzyme digestibility of organic matter. Error bars indicate the confidence intervals (2.5 and 97.5 percentiles). Numbers indicate the percentage of PLS models in which this
band resulted as significant based on jack-knifing procedure.

J. Fernández-Habas, A.M. García Moreno, M.ªT. Hidalgo-Fernández et al. Science of the Total Environment 791 (2021) 148101
12). While for most of the PLSmodels of Spec-lab the band 11 (SWIR-1,
1610 nm)was not significant, for models built with Spec-field this band
was significant in 74% of the models. The opposite occurred with the
band 12 (SWIR-2, 2190 nm). In the case of the models fitted with
Sentinel-2 BOA reflectance data for CP prediction, the most important
bands for the predictions, as well as in models of Spec-field (Fig. 5),
were bands 4 (red, 665 nm), 5 (red-edge-1, 705 nm) and 11 (SWIR-1,
1610 nm) (Fig. 6).

Bands 2 (blue, 490 nm), 4 (red, 665 nm) and 12 (SWIR-2, 2190 nm)
were the most relevant for NDF prediction in models built with Spec-
lab. Bands 7 (red-edge-3, 783 nm), and 11 (SWIR-1, 1610 nm) were
also important. However, the CI of the bands was considerably wide.
For the predictions of the fibres with Spec-field, all bands but the
bands 6 (red-edge-2, 740 nm) and 12 (SWIR-2, 2190 nm) for NDF and
the band 6 for ADF reported high coefficients, being significant in almost
all the 1000 PLSmodels built. Themost important bandswere located at
the visible region (bands 2, 3 and 4) and the band 5 (red-edge-1, 705
10
nm). The bands 2 and 4 from the visible region together with band 6
(red-edge-2, 740 nm) and 11(SWIR-1, 1610 nm) had themaximum im-
portance on the PLS models developed for NDF with Sentinel-2 BOA
data.

Regarding the predictive model of EDOM, only models run
with Spec-lab reported acceptable statistics, the bands 2 (blue,
490 nm) and 4 (red, 665 nm) from the visible region and 6 and
7 from the red-edge region being the most important bands in
the models.

3.4. Calibration of Sentinel-2 model based on field spectrometry

The result of the PCA performed with canopy reflectance spectra re-
corded in situ (Spec-field) and Sentinel-2 BOA from satellite images are
presented in Fig. S2. Both datasets showed overlap, which indicates that
they are in the same spatial location. The three first principal compo-
nents were used to calculate the DMH as they explained 99% of the



Fig. 6. Regression coefficients averaged over N= 1000 PLSmodels fittedwith Sentinel-2 data. CP- Crude protein; NDF- neutral detergent fibre; ADF- acid detergent fibre; EDOM- enzyme
digestibility of organic matter. Error bars indicate the confidence intervals (2.5 and 97.5 percentiles). Numbers indicate the percentage of PLS models in which this band resulted as
significant based on jack-knifing procedure.

Table 5
Summary statistic of calibration models fitted with Spec-field data to predict over Senti-
nel-2 data.

Spectral
data

Variable n Mean nLV R2
cal

RMSE
cal

R2
cv

RMSE
cv

RPD
cv

Spec-field

Log (CP) % 173
1.04
[0.87]

3 0.62 0.12 0.60 0.13 1.59

NDF2g/10 g 173
27.45
[44.72]

3 0.49 7.45 0.46 7.64 1.37

ADF2g/10 g 173
10.24
[17.59]

3 0.48 2.86 0.45 2.93 1.36

Log (EDOM) % 173
1.76

[0.351]
3 0.51 0.057 0.49 0.059 1.40

CP-Crude protein; NDF-neutral detergent fibre; ADF-acid detergent fibre; EDOM-enzyme
digestibility of organic matter; Mean - average of measurements with range in squared
brackets; NLV- number of latent variables; RMSE- root mean square error; RPD-ratio of
predicted deviation; cal- calibration statistics; cv-cross-validation statistics.
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variance. The DMH to the centre of the population of calibration (Spec-
field) was always below 3.

Calibration and cross-validation statistics of the models built with
the Spec-field reflectance dataset are presented in Table 5. Moderate
performance was obtained for the model calibrated for CP with R2 =
0.60 and RPD= 1.59 of cross-validation. Weak models were produced
for the rest of the variables.

Fig. 7 shows the predicted vsmeasured plots for each pasture quality
variable (CP, NDF, ADF and EDOM) of the test set corresponding to the
Sentinel-2 BOA reflectance data. As for the cross-validation, only predic-
tions of CP reported statisticswith values close to “moderate” predictive
ability with RPD value over 1.50 and R2 of 0.54. The rest of the models
for NDF, ADF and EDOMshowed poor predictive abilitywith RPD values
below 1.40 and high RMSE values that indicate low prediction accuracy.

According to the thresholds to classify spatial predictionmodels pre-
viously explained (Askari et al., 2019), being “moderate”=1.5 ≤ RPD <
2 and R2 ≥ 0.60, and the results obtained for the different variables
(Table 5), only maps for CP were generated. Spatial predictions of CP
11



Fig. 7. Predictions of CP-Crude protein; NDF- neutral detergent fibre; ADF- acid detergent fibre; EDOM- enzyme digestibility of organic matter using PLSmodels fittedwith Spec-field data
(Table 4) and Sentinel-2 data for prediction (N=75). Mean - average ofmeasurementswith range in brackets; nLV- number of latent variables; RMSE- rootmean square error; RPD- ratio
of predicted deviation. Dashed line represents the 1:1.

J. Fernández-Habas, A.M. García Moreno, M.ªT. Hidalgo-Fernández et al. Science of the Total Environment 791 (2021) 148101
based on Sentinel-2 images in fields of irrigated and natural grasslands
from farm 5 on different dates are presented in Fig. 8. Differences over
time and between fields can be observed. In November (2018-11-13),
at the beginning of the growing season, natural grasslands had higher
CP content (18–14%) than irrigated grasslands (14–10%). On the next
date, in April (2019-04-04) when pastures were at the peak of growth,
both fields showed similar CP content (20–16%). From that date, the CP
content in the field of natural grasslands drops to values below 6% in
June (2019-06-28) whereas the irrigated field keeps CP values over
12%. It can also be observed that the CP content in the irrigated field is
more homogeneous than in natural grasslands (Fig. 8).

4. Discussion

4.1. Potential of Sentinel-2 configuration for estimating pasture quality and
modelling approach used

This study explored the potential of Sentinel-2 configuration to as-
sess pasture quality in high-diversity grasslands of Dehesa systems
using PLS models. The values of the pasture quality variables analysed
(Table 3) fall within the usual range of pasture quality parameters of
Mediterranean permanent grassland in Dehesa systems (Perez Corona
et al., 1998; Vázquez-De-Aldana et al., 2008). We used three different
reflectance datasets to investigate the capabilities of Sentinel-2
12
configuration to predict pasture quality. Since Vis-NIRS techniques
with the whole spectral range (350–2500 nm) are used in laboratories
for the chemical analysis of the variables studied here, the use of Spec-
lab reflectance allowed to identify the maximum potential to establish
a relationship between pasture quality variables and reflectance for
Sentinel-2 bands. This reflectance data is free of factors such as water
content or soil and atmospheric influences that affect field in-situ can-
opy reflectance and satellite-based predictions (Mansour et al., 2012).
Therefore, the results obtained using Spec-lab reflectance help to inform
the maximum accuracy that might be achieved with Sentinel-2 config-
uration for predictions of the quality variables for the studied pastures.
According to Viscarra Rossel et al. (2006), models with RPD values be-
tween 1.4 and 1.8 could be used for assessment and correlations while
values over 1.8 may indicate that quantitative predictions are possible.
The mean RPDtest values obtained with Spec-lab were 1.84 for EDOM
and 1.82 for CP. Lower values were obtained for the fibres, with 1.73
for NDF and 1.68 for ADF. These results illustrate that the potential of
Sentinel-2 configuration to predict pasture quality in Mediterranean
permanent grasslands may be limited to moderate prediction models
that could allow qualitative assessments. The mean R2

test values ranged
between 0.68 and 0.64, which is considerably lower than R2 values
obtained for predictions of pasture quality variables using the whole
spectral range (García-Ciudad et al., 1993). Although Sentinel-2 config-
uration has improved the spectral and temporal characteristics



Fig. 8. Spatial predictions of crude protein (CP) for four different dates in fields of irrigated and natural grasslands in farm 5. Predictionsmade using a PLSmodel fitted with Spec-field data
(Table 5) and Sentinel-2 images for prediction. Source: Background image; aerial orthophotography at 0.5 m resolution from July of 2016 (Linea, 2020).
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compared with Landsat and SPOT to assess biophysical variables in veg-
etation (Frampton et al., 2013), the reduced spectral resolution is a basic
limiting factor to obtain precise quantitative predictions. This limitation
needs to be considered when planning the tool to be used for pasture
quality assessment in order to adjust the specifications to the precision
required. For example, Askari et al. (2019) reported better predictions of
CP in mixtures of clover (Trifolium repens L.) and perennial ryegrass
(Lolium perenne) using hyperspectral imagery (R2

cv = 0.82 and
RPDcv= 2.51) compared to the predictionsmadewith Sentinel-2 imag-
ery (R2

cv = 0.62 and RPDcv = 1.60). However, as the same authors
stated, the cost of acquiring hyperspectral images is amajor limiting fac-
tor for the evaluation of grassland (Askari et al., 2019; Mansour et al.,
2012) and it might not compensate for the increment of precision. The
high-priority candidate mission of the European Space Agency: Coper-
nicus Hyperspectral Imaging Mission for the Environment (CHIME)
(Nieke and Rast, 2018) is expected to deliver a new-generation imaging
13
spectrometer. That hyperspectral spectrometer will cover the full spec-
tral range between400 and 2500nmwith contiguous narrowbands at a
spatial resolution similar to Sentinel-2 (30–60 m) (Nieke and Rast,
2018). This new generation of hyperspectral satellites could overcome
the constrain of the spectral coverage of multispectral satellites and
allow the improvement of grasslands quality assessments from qualita-
tive to quantitative (Rast et al., 2019). Another constraint for the remote
sensing of permanent grasslands in open woodland as Dehesa and
Montado is the presence of scattered trees. The spatial resolution of
Sentinel-2 forces to seek open pasture areaswhere there is no influence
of trees on thepixel reflectance. This tool could have nopossibility of ap-
plication inDehesa andMontado farmswith high tree cover andno open
areas. A feasible option might be the analysis of pixels as representative
observations in sampling areas without tree cover that could character-
ise the status of the rest of the grassland. However, the information pro-
videdmight not be representative of the pasture below the canopy since
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its phenology and quality might differ from the pasture beyond the tree
canopy (López-Carrasco et al., 2015). Other satellite constellations with
finer spatial resolution such as WorldView-2 (Adjorlolo et al., 2015) or
the use of aircraft vehicles (Askari et al., 2019; Lu and He, 2017) could
partially overcome this limitation and provide more data although at a
higher cost. The development of pasture quality maps using Sentinel-2
imagery is restricted to areas without trees (see 4.3. Use of field
spectrometry for Sentinel-2model calibration and pasture qualitymap-
ping). Further research is needed to isolate the influence of tree canopy
reflectance in pixels partially covered by trees.

One of the factors affecting the prediction accuracy and model per-
formance is the high species diversity of the permanent grasslands
analysed in this study. Heterogeneous pastureswithmultiple functional
groups and different phenological stages might produce confounding
effects on the relationship between pasture quality variables and reflec-
tance (Fava et al., 2009; Kattenborn et al., 2019; Tong and He, 2017;
Zhou et al., 2019). This factor is expected to be especially important
when using canopy reflectance and satellite imagery. Differing leaf
area index of grassland communities with multiple species may affect
the canopy reflectance and therefore the potential to estimate plant
components (Kattenborn et al., 2019; Pellissier et al., 2015). In fact,
one of the main limitations for remote-sensing of foliar chemistry is
that the chemical composition can be confounded by phenology or can-
opy geometry (Curran, 1989). Contrasting results have been obtained
when developing predictive models for specific pastures and/or devel-
opment status. Biewer et al. (2009) reported improved estimates of CP
by using legume-specific calibrations. Zhou et al. (2019) did not find
any influence of mixture types and developmental stages on CP predic-
tions, although the pastures studied were less heterogeneous. Zeng and
Chen (2018) obtained greatly improved estimates of CP, NDF, and ADF
in wheatgrass communities when data from different growth stages
were included in the models compared to those developed with data
from individual growth stages. However, the differences may be attrib-
uted to the wider range of the dataset. Our study provides an overview
of the potential of generalised models to predict forage quality in
Mediterranean permanent grasslands using samples from high-
diversity and different phenological stages. Further research is needed
to explore the possibilities to improve predictions using separate
prediction models for specific phenological stages or mixtures in high-
diversity Mediterranean grasslands. The differences in model perfor-
mance of Spec-lab-based models and models built with Spec-field and
Sentinel-2 BOA seem also to point to the influence of water content,
leaf area index and soil background. Although these factors were not
explicitly investigated in this study, canopy reflectance spectra is clearly
affected by thepresence of bare soil over the target areas (Atzberger and
Richter, 2012; Jacquemoud et al., 2009; Mansour et al., 2012; Yue et al.,
2020). Soil moisture and plant water content can also be a source of
noise in the reflectance spectra of Spec-field and Sentinel-2 (Kokaly,
2001; Ramoelo et al., 2011). Water absorbs in similar regions of the
spectra than other organic compounds, which results in a combined or
masked effect on the reflectance (Kokaly, 2001). For example, the
O\\H is a common absorption bond for water and lignin (Curran,
1989). The controlled condition in which Spec-lab reflectance data
was acquired and the use of ground dried samples prevents it from
introducing this noise. Overall, the differences in mean R2

test and mean
RPDtest values between models built with Spec-field and models
constructed with Sentinel-2 were marginal. This might indicate a low
influence of the atmospheric interference in Sentinel-2 BOA data.
However, the CIs of the predictions made with Sentinel-2 denote a
higher uncertainty of these models. The differences between models
run with Sentinel-2 data and Spec-field can be also affected by the
different number of samples. The higher number of samples of Spec-
field dataset (173) compared to Sentinel-2 BOA dataset (75) may
account for the narrower CIs in models built with Spec-field, which
allowed the development of more robust models. Another factor
influencing the accuracy and prediction ability of models constructed
14
with Sentinel-BOA data might be the sample collection. Since the refer-
ence measurements used are a mean value of four samples, a standard
error is associated to this value. Thus, the selection of homogeneous
areas with common management and a suitable sampling design are
essential to reduce the degree of uncertainty (Raab et al., 2020).

Calibrations built to predict NDF and especially CP showed promis-
ing test results that suggest the possibility of performing qualitative as-
sessments based on Sentinel-2 imagery. The mean R2

test obtained for CP
predictions using Spec-field reflectance was similar to previously re-
ported values. Ramoelo et al. (2015) obtained values of R2 = 0.46 in
cross-validations of PLS models of 5 LV to predict leaf nitrogen in
rangelands using field in-situ reflectance resampled to Sentinel-2 con-
figuration. Adjorlolo et al. (2015) obtained R2 = 0.50 in cross-
validation of PLS models fitted with field canopy reflectance resampled
toWorldView-2 band settings to predict CP in grassland communities of
Festuca costata, Themeda triandra and Rendlia altera. Also, similar values
of R2 (0.60) in cross-validations were reported by Kawamura et al.
(2008) in PLS models with 7 LVs using the whole spectral range
(400–2350 nm) and band selection procedures to predict CP in mixed
sown pastures. Askari et al. (2019) obtained slightly better cross-
validation statistics (R2= 0.62 and RPD= 1.60) using Sentinel-2 imag-
ery and PLS models to predict CP compared to the test results of our
study (meanR2

test=0.50 andmeanRPDtest=1.56), although the homo-
geneity of the studied pasture (a mixture of clover and perennial rye-
grass) may explain the improved results.

Few studies have investigated the potential of Sentinel-2 configura-
tion to assess fibre content in pastures. We obtained mean R2

test = 0.48
and mean RPDtest = 1.43 using Spec-field to predict NDF. Lower statis-
tics (bootstrapped mean R2 = 0.31) in PLS models to predict NDF were
obtained by Kawamura et al. (2008) using the whole spectral range
(400–2350 nm, resampled at 5 nm) and band selection, whereas Zeng
and Chen (2018) reported improved R2 values of 0.77 and 0.80 for
NDF and ADF using data of three different growth stages. Acceptable
values were reported by Adjorlolo et al. (2015) (R2 = 0.52) with field
spectroscopy and WorldView-2 configuration to predict NDF. We ob-
tained similar goodness to fit using Sentinel-2 BOA imagery (mean
R2
test = 0.50). The poor results obtained for ADF predictions contrast

with the results of the studies mentioned above. Raab et al. (2020) re-
ported high R2 values (0.79) from ADF predictions using Sentinel-2
and Sentinel-1 data and random forests regressions algorithms. The in-
clusion of radar data from Sentinel-1 could contribute to estimating ADF
since it provides information of the height of the pasture, which is di-
rectly related to the cellulose and lignin content. The same study also
obtained good predictive models for CP (R2 = 0.72). The authors state
that Sentinel-2 data might be sufficient to predict forage quality (Raab
et al., 2020), thus the improved results could respond to the use of the
random forest algorithm along with the higher homogeneity of the
grasslands studied and the dense temporal component of their dataset.
They also demonstrated that the inclusion of indices and simples ratios
combined with variable selection techniques can significantly improve
the prediction accuracy of the models (Raab et al., 2020). Although the
addition of several indices and ratios together with single bands can
lead to multicollineality problems, variable selection techniques can
overcome this problem while improving the prediction ability of the
models (Belgiu and Drăguţ, 2016; Frenich et al., 1995; Kawamura
et al., 2008; Raab et al., 2020; Santos-Rufo et al., 2020). Ramoelo et al.
(2015) also obtained better results predicting nitrogen content by
using random forest (R2 = 0.90 and RMSE = 0.04) than with PLS re-
gression (R2 = 0.46 and RMSE = 0.14). We decided to use PLS regres-
sion for the sake of simplicity and to ease the interpretation of results.
The PLS models were easy to calibrate and the results were also simple
to understand. The similar results between cross-validation and test in-
dicated that there was no overfitting of the models. Machine-learning
techniques such as random forest or support vector machine could be
an asset to detect the non-linear relationship between pasture quality
and canopy reflectance (Zhou et al., 2019). However, these techniques
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can be sensitive to complex modelling approaches (Igne et al., 2010)
while techniques such as PLS regression are simpler to implement and
compute (Askari et al., 2019), which might facilitate its use by consul-
tancies and grasslandsmanagers. Studies comparing PLS, random forest
and support vector machine could be helpful to find the optimal model
to implement with Sentinel-2 data in terms of accuracy and ease of use.
Finally, although EDOMof pasture is positively correlated to CP andneg-
atively to NDF and these two variableswere acceptably predicted, weak
results were obtained for EDOM. The reasoning behind this could be
that EDOM is not a variable directly related to a nutrient of the plants
as is the case of CP with nitrogen, but rather it is a result of the fibre
and CP content. This, together with the differences in digestibility of
themultiple species/ functional groups and their phenology in the sam-
pled grasslands could account for the bad predictions of this variable
using Spec-field and Sentinel-2 BOA.

The wide range of the data acquired from 8 different farms allowed
us to capture the variability of Dehesas grasslands and provide a repre-
sentative modelling of this ecosystem. We highly recommend the im-
plementation of a bootstrap approach to assess the stability and
certainty of the predictive models (Mutanga et al., 2004; Mutanga
et al., 2015). Relatively small sample sizes are used in this kind of
study, typically around 100 samples (Askari et al., 2019; Kawamura
et al., 2008; Mutanga et al., 2004; Raab et al., 2020). As can be observed
in Fig. 4, the wide confidence intervals denote high variability in the re-
sults depending on the corresponding partition, especially for Sentinel-
2 BOA reflectance data, whose sample sizewas 75 compared to the 173-
sample size of Spec-lab and Spec field. Reporting a single value of RMSE,
R2 and RPD could lead to biased conclusions since it does not provide in-
formation about the certainty of the results (Mutanga et al., 2004). We
obtained values of R2

test ranging from 0.1 to 0.8 for CP using Sentinel-2
BOA reflectance. Kawamura et al. (2008) and Mutanga et al. (2004) re-
ported similar bootstrapped values of R2 from CP and nitrogen content
predictions with canopy spectral measurements. We extended this ap-
proach to the analysis of the regression coefficients which allowed us
to delimitate the certainty of the values of these coefficients as well as
the stability of the bands, and therefore permitted amore reliable inter-
pretation of the bands' importance.

Using large and representative datasets that include a wide range
of variation of the studied variable is key to reducing the uncertainty
and improving the accuracy of the predictive models (Norris and
Barnes, 1976). However, the data collection and reference measure-
ment determination can be challenging. Given the growing interest
in predictive models of forage quality in grasslands using remote
sensing applications, the development of public reflectance spectral
libraries from different studies could make available large datasets
to improve calibrations. The use of national libraries has been suc-
cessfully applied for soil property characterization using Vis-NIRS
spectroscopy (Knadel et al., 2012; Liu et al., 2018; Shepherd and
Walsh, 2002).

4.2. Sentinel-2 bands importance on pasture quality assessment

The mean regression coefficients (average of 1000 values) were
used to assess the bands' importance on the predictions of pasture qual-
ity variables (CP, NDF, ADF and EDOM) using PLS regression. For the
prediction of CP, band 4, the red-edge and the SWIR regions had the
greatest impact on the predictions. This was common for all of the
three reflectance datasets. Band 5 (705 nm) proved to be especially im-
portant for CP prediction. These results are in accordance with previous
studies that highlighted the importance of the red-edge region
(700–775 nm) and wavelength reflectance between 1200 and 2400 to
estimate CP using ground-based canopy reflectance (Adjorlolo et al.,
2015; Kawamura et al., 2008; Kokaly, 2001; Ramoelo and Cho, 2018).
Ramoelo et al. (2015), using Sentinel-2 simulated data to predict nitro-
gen content in rangelands, also noted the importance of bands 4 (665
nm), 5 (705 nm) in the red and red-edge region and bands 11 (1610
15
nm) and 12 (2190 nm) in the SWIR region. Raab et al. (2020) reported
simple ratios based on the red-edge region as particularly important to
predict CP. The importance of the red-edge region relies on the correla-
tion between CP (closely related to nitrogen content) and chlorophyll
concentration (Curran, 1989; Pellissier et al., 2015; Raab et al., 2020;
Tong and He, 2017), whereas the importance of the SWIR region re-
spond to absorption due to C\\H, N\\H, O\\H and C\\O bonds
(Adjorlolo et al., 2015; Curran, 1989; Curran et al., 1992; Kawamura
et al., 2008; Kokaly, 2001). Other studies using Sentinel-2 data have
also informed of bands from the visible region (band 3 and band
4) and narrow-NIR (band 8a) as useful bands for CP prediction (Askari
et al., 2019; Lugassi et al., 2019).

The differences in the importance of band 12 (SWIR-2, 2190 nm) be-
tween models built with Spec-lab and models constructed with Spec-
field and Sentinel-2 BOA reflectance could be attributed to the plant
water content and soil background effect (Mansour et al., 2012). SWIR
absorption is affected by the reflectance of leaf water content, masking
reflectance features of other biochemicals, which influence the accuracy
of the predictions (Ramoelo et al., 2011). Ripple (1986) pointed out that
the spectra reflectance region 2080–2350 nm shows sensitivity to
changes in both soil background and relative water content of leaves.
Since the Spec-lab data had no noise from water content or soil, the re-
flectance at band 12 had a great impact on the prediction of CP and NDF.
The reflectance of Spec-field and Sentinel-2 could be affected by these
two factors resulting in a confounding effect to predict CP or NDF that
produced a low regression coefficient. Adjorlolo et al. (2015) informed
that the most highly-ranked waveband for predicting CP using in situ
canopy reflectance and PLS regression was centred at 2280 nm. Differ-
ences between studies might lie in the effect of soil background reflec-
tance. The extent of the influence of soil reflectance on pasture quality
prediction might be worth investigating in further research since it
seems to be one of the main factors affecting the performance of the
predictions.

Concerning the importance of bands for NDF prediction using Spec-
lab data, the selection of bands of the visible region (bands 2, blue and 4,
red) together with the SWIR region and to a lesser extent the red-edge
band 7 is in accordance with previous studies (Kawamura et al., 2008).
The models built with Sentinel-2 BOA reflectance also presented high
regression coefficients in bands 2 and 4 and the red-edge band 6 coin-
ciding with results obtained for Spec-lab. However, band 12 as well as
for CP had lower coefficients, possibly due to the effect of water of soil
background as discussed above. Bands 2 and 4 impact on fibre predic-
tionmight be related to thedetection of pigments in different phenolog-
ical stages of the pasture (Mansour et al., 2012; Ustin et al., 2009). Bands
of the SWIR region have been widely selected for fibre determination
(García-Ciudad et al., 1993), due to the overtones C\\H, C\\N and
N\\H, closely related to fibre components (Clark and Lamb, 1991).
The regression coefficients of models fitted with Spec-field also showed
great impact on the visible region and band 5 (705 nm) although the
weaker calibrations could have affected the regression coefficients as
happened for ADF and EDOM using Spec-field and Sentinel-2 BOA
reflectance.

4.3. Use of field spectrometry for Sentinel-2 model calibration and pasture
quality mapping

As discussed previously, the creation of suitable datasets of pasture
quality samples and reflectance librarieswill be key to developing effec-
tive and efficient Sentinel-2 based predictive models. However, the col-
lection and analysis of samples is tedious and expensive (Starks et al.,
2006). Here, we explored the option of using field canopy reflectance
resampled to the Sentinel-2 configuration to calibrate models that
could be used in combination with Sentinel-2 imagery. This would
allow the use of samples and reflectance measurements already col-
lected to develop robust calibrations that could then be applied to
Sentinel-2 BOA images.
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The PCA analysis (Fig. S2) illustrated that both datasets, Spec-field
and Sentinel-2 BOA were in the same spatial location and showed rep-
resentativity. All the Sentinel-2 samples showed a DMH lower than 3
to the centre of the population of calibration (Spec-field) (Fig. S2).
Since in Vis-NIRS spectroscopy, DMH = 3 is generally the maximum
DMH acceptable to predict new samples using a calibrated model
(Shenk andWesterhaus, 1996; Williams and Sobering, 1996), these re-
sults confirm that these two datasets can be combined to perform PLS
calibrations and predictions. Previous studies have used field canopy re-
flectance and combined it with Sentinel-2 images (Lugassi et al., 2019;
Ramoelo and Cho, 2018). However, to our knowledge, the representa-
tivity of these two different datasets of reflectance has never been
checked.

Only the prediction made for CP produced acceptable results that
allow its use for qualitative assessments of CP (Fig. 7). To illustrate
the potential application of these models, the calibrated model for
CP was used to perform spatial predictions of CP (Fig. 8) showing
clear differences between fields associated with their management.
The reason for irrigated grasslands having lower CP content than
natural grasslands (Fig. 8) is the presence of grazing cattle during
the summer season in the irrigated field. By the first date of map-
ping, in November, at the beginning of growing, the irrigated pas-
tures were mostly consumed with mainly stems remaining (with
lower CP content than leaves). Thus, the quality is clearly lower
than in natural grasslands which are starting to grow and have
been reserved from grazing and therefore have higher CP content
at this date. The CP maps allow identifying differences between
both inter fields and intra fields. Overall, the CP content of natural
grasslands is more heterogeneous. Lugassi et al. (2019), using labo-
ratory and field spectral measurements at Sentinel-2 configuration,
also found spatial heterogeneity in Mediterranean grasslands
responding mainly to changes in topography.

4.4. Implications for management of open woodlands and future studies

The present study has demonstrated that qualitative assessments of
CP and NDF using free-available Sentinel-2 imagery can be successfully
implemented for high-diversity Mediterranean permanent grasslands.
The availability of real-time data of CP and NDF content provided by
Sentinel-2 imagery can be used to assess the carrying capacity of pas-
tures, adjust stocking rates and plan the spatio-temporal livestock graz-
ing on Dehesa farms (Ramoelo and Cho, 2018; Starks et al., 2006). The
managers can also decide in real-time, based on the estimation of CP
of the pastures, if supplementary feeding is necessary (Raab et al.,
2020). It is also an inexpensive way to evaluate interventions such as
grassland improvements with legume mixes or fertilisation without
the need for laborious fieldwork and expensive laboratory analyses
which would need to be done repeatedly. CP maps produced with
Sentinel-2 imagery could help to identify patches where overseeding
with legumes might be needed to improve the CP offer of Dehesa per-
manent grasslands, improving in this way the efficiency of this inter-
vention. The possibility of performing spatial and real-time temporal
monitoring is especially important on large farms where the status of
pastures cannot be inspected visually by managers regularly (CSIRO,
2020).

From the point of view of policies, the Common Agricultural Policy is
giving increasing importance to the provision of ecosystem services and
sustainable management of European grasslands via agri-environment
schemes (Harlio et al., 2019; Simoncini et al., 2019). The high revisiting
time (5 days) of Sentinel-2 allows the establishment of monitoring sys-
temsbased on qualitative assessments of pasture quality to provide spa-
tial data very timely. This is especially relevant in Mediterranean
permanent grasslands because of the high intra- annual changes that
characterise these communities. Therefore, Sentinel-2 reveals as a
promising tool to evaluate the effectiveness of the agri-environment
schemes since it contributes to monitoring the conservation status,
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the sustainability of farming management as well as the provision of
ecosystem services in Mediterranean grassland communities.

Based on the insights provided here, future studies are needed to go
into detail about the remote sensing of Mediterranean permanent
grasslands using Sentinel-2. In this study, we used different sources
and samplings to explore the feasibility of this technique. As Raab
et al. (2020) suggested, the formula by Justice and Townshend (1981)
could be used to calculate the required plot size for the grassland sam-
plings: S = P(1 + 2 L), where S is the length of the plot, P is the spatial
resolution of the pixel and L the geolocation error. However, the plot
size provided by this formula can be difficult to use in open woodlands
landscapeswithout including a tree signal. A feasible setup could consist
of calibrating robust models based on field spectroscopy and then used
them to make spatial predictions with Sentinel-2 imagery. This ap-
proach can improve the match between the reflectance data and the
pasture quality variables in heterogeneous grasslands while overcom-
ing the spatial constrain of scattered trees. It also would help to reduce
the uncertainty of the models by targeting the acquisition of field spec-
troscopy at capturing the variability of the grasslands, which might be
difficult with samplings at the pixel level. Increasing the temporal do-
main of the dataset will be key to improve the predictions and reducing
their uncertainty.

Another research gap for future studies is the comparison of
different models such as PLS, random forest, support vector machine
and artificial neural network and their optimisation through feature
elimination methods. This could also allow the inclusion of multiple
ratios and indices that might enhance the relationship between the
Sentinel-2 derived data and the predicted variable. Alternative
methods to PLS such as convolutional neural networks could capture
strong nonlinear spectral-chemical relationships (Pullanagari et al.,
2021). However, the prediction of pasture quality using Sentinel-2
data in heterogeneous permanent grasslands could be limited to a
certain level regardless of the methodology implemented, and pos-
sibly the improvement compared to the results delivered by Spec-
lab models would be marginal. Therefore, new sensors with finer
spatial and spectral resolution could be necessary to overcome this
limitation in Mediterranean permanent grasslands. Future research
should aim at simulating hyperspectral data, for example, based on
the specifications of the high-priority candidate mission of the
European Space Agency; CHIME (Nieke and Rast, 2018), with differ-
ent machine learning techniques to elucidate the level of accuracy
that could be achieved.

5. Conclusion

The results obtained formodels built with Spec-lab reflectance show
that the potential of Sentinel-2 configuration to predict pasture quality
in Mediterranean permanent grasslands using PLS models may be lim-
ited to moderate prediction ability for assessment of CP, NDF, ADF and
EDOM (1.5 ≤ RPD < 2 and 0.6 ≤ R2 < 0.5) that could allow performing
qualitative assessments. Models built with Sentinel-2 imagery show
test results from predictions of NDF and especially CP suggesting the
possibility of qualitative assessments of these parameters in Mediterra-
nean permanent grasslands of open woodlands.

The differences in accuracy obtained for Spec-lab and those reported
for both, Spec-field and Sentinel-2 BOA images point at the effects of soil
background, water content of vegetation and effects of heterogeneous
canopies of diverse grasslands on reflectance. Additionally, intrinsic fac-
tors associated with the structure of open woodlands such as the pres-
ence of scattered trees restrict the use of Sentinel-2 images to the
management of Mediterranean permanent grasslands. Further research
is needed to tackle these limitations.

In accordance with previous studies, the red-edge (especially band
5) and the SWIR regions show the highest potential for estimating CP
and NDF. Bands 2, blue and 4, red also seem to be important for the pre-
diction of NDF.
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The development of large and representative datasets with a wide
range of variation of pasture quality is pivotal to reducing the uncer-
tainty and improving the accuracy of the predictive models. Using
field spectroscopy in combination with Sentinel-2 imagery can contrib-
ute to developing larger datasets and more robust models.

The qualitative assessment of CP and NDF content in permanent
grasslands of open woodland farms using Sentinel-2-based models is a
powerful tool to improve the efficiency and sustainability of manage-
ment through more informed and effective decision-making.
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