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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• B. bassiana endophytically colonized 
melon, tomato and cotton plants. 

• Cotton was the the least suitable host 
plant for endophytic colonization. 

• B. bassiana re-isolation rate from cotton 
plants increased after the first passage. 

• This is the first report an of improve
ment of endophytic capacity by 
passaging. 

• Virulence stability after successive pas
sage through a host plant was 
demonstrated.  
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A B S T R A C T   

Systemic crop protection using endophytic isolates of entomopathogenic fungi is at the forefront of IPM. 
Nonetheless, any potential trade-offs between virulence and endophytic behaviour must be elucidated if they are 
to be effectively used in pest management strategies. Here we investigated endophytic adaptation in an isolate of 
Beauveria bassiana following successive passage through melon, tomato and cotton tissues. Plants were sprayed 
with a suspension of B. bassiana endophytic isolate EABb 04/01-Tip to initiate endophytic colonization. Once 
colonization was established, the fungus was re-isolated from the plant, applied to another plant and re-isolated 
again; this was repeated to achieve three passages. After each passage, a conidial suspension of each isolate was 
used in bioassays to evaluate both virulence against 4th instar larvae of the model insect Galleria mellonella and to 
quantify the extent of endophytic activity in each respective host plant species. When sprayed leaves were 
inspected for fungal colonization, differences in percentage tissue colonization amongst the plant species were 
detected after the first re-isolation. Endophytic colonization rates in melon and tomato, which varied from 70 to 
100%, were higher than those observed in cotton, which ranged from 40 to 50%; endophytic colonization in 
cotton increased to 75–100% after the third passage. This improvement in endophytic behaviour in cotton, an 
apparently suboptimal plant for fungal colonization, suggests an evolutionary adaptation to localized or transient 
endophytic colonization, while further assays are needed. Meanwhile, when endophytic colonization of non- 
sprayed leaves distant from the sprayed ones was investigated, endophytic activity was evident in all three 
crop species suggesting that movement within plants after successive passage increased the extent of endophytic 
colonization from transient to systemic. The present research highlights the potential for adaptation to 
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endophytic behaviour in crops that are less suitable for endophytic colonization. Furthermore, we demonstrated 
stability in virulence after multiple passages through host plants. This is a key result for the development of IPM 
strategies based on endophytic entomopathogenic fungi.   

1. Introduction 

Entomopathogenic fungi are traditionally considered as a large 
group of species that naturally infect and regulate insect and mite 
populations, and that their main habitats are soil and insect cadavers 
(Lovett and St. Leger, 2017). Recently it has been shown that isolates of 
some entomopathogenic fungi exhibit additional and complementary 
ecological functions, establishing plant associations in the phylloplane, 
rhizosphere and as endophytes (Hu and Bidochka, 2021; Meyling and 
Eilenberg, 2006; Quesada-Moraga, 2020; Vega et al., 2008). Through 
the endophytic pathway, they can systemically protect the plant against 
chewing and sap-sucking pests (Garrido-Jurado et al., 2017; González- 
Mas et al., 2019; Quesada-Moraga et al., 2009; Resquín-Romero et al., 
2016). Endophytic entomopathogenic fungi have also been shown to 
protect plants against phytopathogenic microorganisms and plant vi
ruses, enhance responses to abiotic stresses, promote plant growth, and 
attract natural enemies (Quesada-Moraga, 2020). All of these features 
make these biological control agents very desirable for use in integrated 
pest management (IPM) systems. It has been suggested that entomopa
thogenic fungi evolved from species that were plant associates but 
subsequently gained the ability to infect and kill insects (Barelli et al., 
2016; Gao et al., 2011; Stone and Bidochka, 2020); amongst these, some 
entomopathogenic fungi retained their ancestral ability to also colonize 
various plant species. However, not all entomopathogenic fungi have 
this dual lifestyle and the degree of plant tissue colonization can vary 
depending on host plant species (Gurulingappa et al., 2010; Resquín- 
Romero et al., 2016; Vega, 2018). The entomopathogenic fungal species 
most frequently showing endophytic behaviour are found in the genera 
Beauveria and Metarhizium (Ascomycota: Hypocreales), which typically 
have broad insect host ranges and can endophytically colonize many 
important crop species (Vega, 2018). These species and isolates with 
dual lifestyles have been inoculated on to several important crops for 
artificial establishment (Moonjely and Bidochka, 2019; Vega, 2018). 
However, it is not known whether the opposite process is possible, i.e. 
that strict entomopathogenic fungal isolates can adapt to an endophytic 
lifestyle, or that the endophytic capacity of isolates can be improved 
through adaptation in target host plant species. 

While there is strong evidence for lethal and sublethal effects on 
insects of feeding on endophytically-colonized plants, signs of fungal 
outgrowth on the cadavers are rare, meaning the definitive cause of the 
mortality remains elusive (Garrido-Jurado et al., 2017; Resquín-Romero 
et al., 2016; Sánchez-Rodríguez et al., 2018). It has been proposed that 
these negative effects on herbivorous insects could be as a result of 
antibiosis and feeding deterrence mediated by in planta production of 
fungal and plant secondary metabolites as a consequence of plant de
fense induction (Akello et al., 2008a; Cherry et al., 2004; Vega, 2018). 
Nevertheless, several studies have reported fungal outgrowth on insects 
that died after feeding on plants endophytically-colonized by the ento
mopathogenic fungus Beauveria bassiana (Balsamo) Vuill. (Ascomycota: 
Hypocreales) (Akello et al., 2008b, 2008a; Garrido-Jurado et al., 2017; 
Jaber and Vidal, 2010; Klieber and Reineke, 2016; Powell et al.., 2009; 
Powell et al., 2007). 

It has been proposed that genes involved in virulence against insects 
may have been co-opted from genes involved in plant colonization or 
from horizontal gene transfer during fungal evolution (Screen and St. 
Leger, 2000). This adaptation may involve penetration-related genes 
that regulate penetration of the insect cuticle (from both the inside and 
the outside) and so affect conidia production on the host (Zhang et al., 
2010). It is still not understood whether these endophytic entomopa
thogenic fungi are less evolved than strict entomopathogens, or whether 

they have just followed a different evolutionary pathway in which both 
pathogenic and endophytic colonization genes are maintained, while 
virulence-related genes are inactivated during plant colonization. 
Furthermore, whether entomopathogenic fungi lose pathogenic capacity 
when adapting to grow in non-insect habitats, as occurs when they are 
cultivated in artificial medium, is poorly understood (Ansari and Butt, 
2011). Stability of insect virulence in endophytic entomopathogenic 
fungi is a key goal of present and future research. 

Thus, we studied endophytic adaptation in B. bassiana EABb 04/01- 
Tip, an isolate from a cynipid borer larva with known endophytic ca
pacity. We focused on adaptation after serial passage in planta through 
three crop species (melon, tomato, and cotton), and whether endophytic 
capacity was increased. Stability of virulence after plant passage was 
also evaluated. 

2. Materials and methods 

2.1. Biological material: plants, fungal isolate and insect populations 

For experiments, melon (Cucumis melo L. var. Galia Híbrido F1), to
mato (Solanum lycopersicum L. cv. Tres cantos) and cotton (Gossypium 
hirsutum L. cv Elsa) seeds were surface sterilized in 2% NaOCl (Sigma- 
Aldrich, MO, USA) for 2 min, and rinsed twice with sterile Mili-Q water 
under sterile laminar-flow conditions. The substrate in which they were 
to be grown was sterilized twice in an autoclave for 20 min at 121 ◦C 
with a 24-h interval between each sterilization process. Surface- 
sterilized seeds were germinated in 9x9 cm pots in a mixture of equal 
parts of sterilized vermiculite (No. 3, Asfaltex S.A., Barcelona, Spain) 
and soil substrate (Floragard, Oldenburg, Germany) and maintained in 
an environmental chamber under controlled conditions: 25 ± 2 ◦C, 16: 8 
h light: dark regime. Plants were watered three times a week and a 
nutrient complex of 20: 20: 20 (N: P: K) Nutrichem 60 fertilizer (Miller 
Chemical & Fertilizer Corp., Hanover, PA, USA) added to the irrigation 
water at a rate of 1 g/l. 

Beauveria bassiana EABb 04/01-Tip 04/01-Tip was the isolate used in 
this study which originated from a larva of the opium poppy stem gall, 
Iraella luteipes (Thompson) (Hymenoptera: Cynipidae), found in an 
opium poppy crop in Ecija (Sevilla, Spain). The isolate was deposited in 
the University of Córdoba Entomopathogenic Fungi Collection, 
Córdoba, Spain and in the Spanish Collection of Culture Types (CECT), 
University of Valencia (accession n◦ CECT 20744). Nucleotide sequences 
for the ITS of EABb 04/01-Tip can be found in the Gen-Bank database 
(FJ972963). The endophytic activity of this isolate in opium poppy, 
melon and tomato plants had been demonstrated previously as has its 
ability to protect these crops from sap-sucking and chewing pests 
(Garrido-Jurado et al., 2017; González-Mas et al., 2019; Quesada- 
Moraga et al., 2009; Resquín-Romero et al., 2016). For all bioassays, a 
monosporic isolate of B. bassiana EABb 04/01-Tip was grown over cel
lophane film on potato dextrose agar (PDA) (Becton Dickinson Franklin 
Lakes, NJ, USA) in Petri dishes; the cellophane between the agar and the 
fungus was used to prevent nutrients entering the conidial suspensions 
at harvest. Cultures were incubated for 15 days at 25 ◦C in darkness and 
conidial suspensions were prepared by scraping the fungus from the 
cellophane into a sterile aqueous solution of 0.01% Tween 80. The 
resulting suspension was filtered through several layers of sterile 
cheesecloth to remove mycelia and sonicated for 5 min to homogenize 
the inoculum. The concentration of conidia used for inoculation was 
determined using a haemocytometer and appropriate dilutions were 
made in 0.01% Tween 80 to obtain the selected conidial concentration. 
Prior to experimentation, conidial viability was determined on liquid 

N. González-Mas et al.                                                                                                                                                                                                                        



Biological Control 160 (2021) 104687

3

Czapek-Dox broth plus 1% (w/v) yeast extract medium and only sus
pensions with > 97.0% germination after 24 h, were used. 

The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) 
was selected as a model host in these experiments because it has been 
used widely to compare the virulence of entomopathogenic fungi (Fuchs 
et al., 2010). Larvae were obtained from a healthy colony established at 
the Department of Agronomy of the University of Córdoba (Spain) that 
had been reared following the method of Dutky et al., (1962). Briefly, 
larvae were reared on an artificial diet consisting of a mixture of 30.8 g 
of corn flour, 30.8 g of wheat germ, 30.8 g of wheat bran and 10.8 g of 
brewer’s yeast, with 27 ml of glycerol and 48.6 ml of honey per 200 g of 
artificial diet. They were maintained in an environmental chamber 
programmed at 26 ± 2 ◦C and 70 ± 5% RH, with a photoperiod of 16: 8 
(light: dark) h. For each experiment, 4th instar larvae were collected 
from the rearing cages and used immediately. 

2.2. Inoculation of plants with entomopathogenic fungi, verification of 
endophytic colonization, and re-isolation of the fungus 

In order to study possible adaptation to endophytic behaviour, 
B. bassiana EABb 04/01-Tip was successively recovered from tissues of 
crops from different botanical families. For each plant species, melon, 
tomato and cotton, three four-leaf-stage plants were treated (n = 3 per 
treatment). The leaves of each plant were sprayed with 2 ml of fungal 
suspension (108 conidia/ml.) using an aerograph 27,085 (piston 
compressor of 23 l/min, 15–50 PSI and a 0.3 mm nozzle diameter, 
China). After inoculation, all plants were covered by another plastic 
sheet to promote fungal growth for 24 h and incubated at 26 ± 2 ◦C and 
70 ± 5% RH, with a photoperiod of 16: 8 (light: dark) h. Control plants 
were treated in the same way but only sprayed with sterile water with 
0.01% Tween 80. 

Plants were inspected for possible endophytic fungal colonization 72 
h after spraying using methods we have described previously (Quesada- 
Moraga et al., 2009; Resquín-Romero et al., 2016; Garrido-Jurado et al., 
2017; González-Mas et al., 2019). To confirm endophytic colonization 
and re-isolate the fungus, samples of leaves were collected from each 
replicate treatment and control plant (one per plant, n = 3 per treatment 
and plant species), surface-sterilized in 1% NaOCl for 2 min, rinsed twice 
in sterile distilled water and dried on sterile filter paper. Ten sections of 
approximately 2 cm2 were cut from each leaf using a sterile scalpel and 
plated out individually in Petri dishes containing selective culture me
dium to determine the proportion of sections per leaf colonized endo
phytically; the medium contained: 20 g of Agar Sabouraud Glucose 
Chloramphenicol (Cultimed Panreac, Spain), 500 mg l-1 streptomycin 
sulfate (Sigma-Aldrich Chemie, China), 500 mg l-1 ampicillin (Intron 
Biotechnology, China) and 500 mg l-1 dodine 65 WP (Barcelona, Spain). 
We also plated out the last rinse water from each leaf separately to 
confirm the effectiveness of the surface-sterilization procedure as 
demonstrated by the absence of entomopathogenic fungal growth in 
these plates. All plates were incubated at 25 ◦C in darkness until fungal 
growth was observed; the absence of fungal growth in the controls 
confirmed that only the inoculated isolates were involved. After isola
tion, in order to cover the possible existence of different traits in the 
three plants from each plant-treatment combination, a pool including 2 
isolates per plant (per leaf) for each plant species was deployed (there
fore including 6 isolates, 2 each plant). Hence, considering that there 
were three plants per treatment, with one leaf per plant used for re- 
isolation of which ten leaf section were cut, two randomly selected 
isolates from each leaf were pooled with a total of 6 isolates from each 
treatment (two each plant). Recovered isolates were grown on PDA 
medium as described previously and a conidial suspension produced for 
inoculation of new plants (n = 3) of the same crop type. Percentage 
endophytic colonization was estimated from the proportion of sections 
from each leaf from which emerging fungus was observed. This pro
cedure was repeated twice, i.e. growth re-isolation on PDA and coloni
zation of new batches of plants; in total there were three passages for 

each crop type. 

2.3. Virulence of passaged B. Bassiana isolates against fourth instar 
G. Mellonella larvae 

In the present manuscript, use of the term virulence is based on the 
definition of Shapiro-Ilan et al. 2005. After each passage, recovered 
isolates were grown on PDA medium as described previously and a 
conidial suspension of each prepared and adjusted to a final concen
tration of 107 conidia/ml as described in 2.1. Conidial suspensions of all 
recovered isolates were assayed to estimate their virulence against 4th 
instar larvae of the model insect G. mellonella. In summary, nine 
recovered isolates (three successively isolated (one per passage) from 
melon plants, three from tomato and three from cotton) were compared 
with a negative control (sterile water with 0.01% Tween 80) and a 
positive control (conidial suspension of B. bassiana EABb 04/01-Tip 
recovered directly from a G. melonella cadaver). For assay, groups of 
G. mellonella larvae (ten larvae per group; three replicate groups per 
treatment/ control) were immersed directly for 30 s in an aqueous 
suspension of 107 conidia/ml or the control aqueous solution. After 
treatment, each group of larvae were transferred into Petri dishes (90 
mm in diameter) and incubated at 25 ◦C. After 24 h without food, 
artificial diet was provided ad libitum and incubation continued at 25 ◦C 
for 12 further days. Mortality was recorded daily. Dead larvae were 
processed as follows to determine whether mortality was due to fungal 
infection: cadavers were individually surface disinfected in a solution of 
1% sodium hypochlorite (2 min) and rinsed twice in distilled sterile 
water (1 min) to remove sodium hypochlorite residues. Subsequently, 
they were transferred individually to Petri dishes on moistened filter 
paper, sealed with Parafilm, and incubated in complete darkness at 25 ±
2 ◦C to stimulate fungal growth. In total, 330 larvae were used in this 
experiment. 

The entire experiment (i.e. evaluating leaf colonization and isolate 
virulence) was done on two occasions, each time using fresh fungal 
inoculum and larvae. However, on the second experiment, two leaves on 
each replicate treatment plant were covered with a transparent plastic 
sheet prior to spraying to prevent them from being inoculated. Endo
phytic colonization of these leaves (one per plant) was evaluated in the 
same way as sprayed leaves to determine whether there had been 
within-plant movement of the fungus from sprayed leaves. 

2.4. Statistical analysis 

Data on the percentages of leaf fragments endophytically colonized 
by B. bassiana EABb 04/01-Tip were analyzed using Shapiro–Wilk and 
Levene’s tests to calculate linear model assumptions (normality and 
homogeneity of variance). If the distribution was not normal data were 
transformed using an angular transformation (Steel and Torrie, 1985) 
prior to analysis. Comparisons amongst treatments were made using 
analysis of variance (ANOVA) (for Gaussian variables) or the Krus
kal–Wallis nonparametric test (for non-Gaussian variables). Average 
survival times (ASTs) and cumulative survival ratios were obtained via 
Kaplan–Meier survivorship analysis (Kaplan and Meier, 1958) and 
compared via the log-rank test calculated. All analyses were done using 
IBM SPSS 25.0 software. 

3. Results 

3.1. Endophytic behaviour of B. Bassiana EABb 04/01-Tip after 
successive passage through melon, tomato or cotton 

Microbiological techniques confirmed that B. bassiana EABb 04/01- 
Tip was recovered from all passages through the three selected crop 
species, i.e. endophytic behaviour was observed in all the replicate 
plants from all plant species 72 h after spraying. Despite that, amongst 
the different host plant species on each passage, there were differences 
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in the percentage of fragments of sprayed leaves from which the fungus 
was recovered: F2,8 = 19.91, P = 0.002 and H2,8 = 7.62, P = 0.0001 for 
the first passage on the experiment 1 and 2, respectively; F2,8 = 21.00, P 
= 0.002 and H2,8 = 3.23, P = 0.211 for the second passage on the 
experiment 1 and 2, respectively; F2,8 = 3.20, P = 0.113 for the third 
passage on the experiment 1. For the third passage on the experiment 2, 
all leaves were colonized at 100%. (Fig. 1). Overall, the percentage of 
leaves colonized was lower in cotton plants than in tomato and melon 
plants; on the first and second experiments, respectively, percentage 
colonization was 73.0 ± 8.8% and 100.0 ± 0.0% in tomato, 97.0 ± 3.3% 

and 100.0 ± 0.0% in melon and 40.0 ± 5.8% and 53.3 ± 8.8% in cotton 
after the first passage. However, these differences were less noticeable 
after the second passage through each plant, with a substantial increase 
in the percentage of colonized leaves in cotton plants, which increased 
to 76.7 ± 3.3% after the second passage and 100.0 ± 0.0% in the third 
passage. Passage also had a significant overall effect on the percentage of 
leaves colonized (F2,8 = 8.38, P = 0.018 and H2,8 = 2, P = 0.422 for 
tomato on the experiment 1 and 2, respectively; F2,8 = 14.00, P = 0.006 
for melon on the experiment 1 with 100% of the leaves colonized on the 
experiment 2; F2,8 = 12.54, P = 0.007 and F2,8 = 2.64, P = 0.150 for 

Fig. 1. Percentage of sprayed tomato, melon and cotton leaves endophytically colonized following foliar application of B. bassiana EABb 04/01-Tip that had been 
reisolated after different numbers of passages through each crop type and the virulence of each re-isolation to Galleria mellonella. Leaf colonization data (black bars) 
are presented as percentage means ± SE of fungus-positive fragments from sprayed leaves. Concentration of conidia applied was 1.0 × 108 conidia/ml on both 
experiments. Leaves were collected 72 h after inoculation. Means with the same uppercase letter are not significantly different to each other according to the LSD test 
(p < 0.05). Susceptibility data (white bars) were determined against 4th instar larvae at a concentration of 1.0 × 107 conidia/ml and presented as the average 
survival time (AST) ± SE. Means with the same lowercase letter in each crop are not significantly different to each other according to the log rank test (p < 0.05). 
Average survival time was limited at 12 days. 
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cotton on the experiment 1 and 2, respectively). Beauveria bassiana EABb 
04/01-Tip achieved the highest percentage colonization of leaves in all 
crop plants when using inoculum from the second passage (Fig. 1). 

On the second experiment, the endophytic colonization of unsprayed 
leaves was also evaluated and there was a significant effect of passage on 
fungal recovery rates from each plant species: F = 3.43, P = 0.1015 and 
F = 9.71, P = 0.0132 for passages 1 and 2 respectively, with 100% of the 
leaves being colonized following the third passage. The effect of passage 
on movement of fungal inoculum though the plant resulting in recovery 
from non-sprayed leaves was even more evident than for recovery from 
sprayed leaves; there was a steady increase across the three successive 
passages (H2,8 = 7.72, P = 0.000; F2,8 = 3.91, P = 0.082 and F2,8 =

9.98P = 0.012 for tomato, melon and cotton, respectively). For un
sprayed leaves 73.3 ± 3.3%, 56.7 ± 0.0% and 23.3 ± 14.5% of leaves 
were colonized after the first passage, in tomato, melon and cotton 
plants, respectively; colonization rates reached 100.0 ± 0.0% in all plant 
types following the third passage. As for sprayed leaves, the endophytic 
capacity of the fungus improved after the second passage through cotton 
plants. However, in unsprayed leaves this increase was also observed in 
tomato and melon plants (Fig. 2). Thus, endophytic capability is 
dependent not only on the host plant species, but also on the number of 
passages through that plant type. 

3.2. Effect of successive re-isolation from different plant species on 
virulence of B. Bassiana EABb 04/01-Tip 

All the re-isolates of B. bassiana EABb 04/01-Tip were virulent 
against fourth instar larvae of G. mellonella. Signs of fungal penetration 
through the larval cuticle and natural insect openings were observed 
2–3 days after treatment. When the larvae died, their colour changed 
from sandy to dark brown and this was followed by outgrowth of 
B. bassiana on the insect surface. This effect was enhanced by incubation 
of dead larvae for 7–10 days under optimal temperature and relative 
humidity conditions, which promoted fungal growth. It should be noted 
that all dead larvae that had been treated with B. bassiana conidial 
suspensions developed fungal outgrowth, while it was not detected in 
those dead larvae from the control treatment. 

All isolates were highly virulent against G. mellonella larvae, result
ing in significant mortality and a reduction in the AST. Total mortality of 
B. bassiana-treated larvae ranged from 73.3 to 100.0%, on the first 
experiment while on the second experiment it was 100.0 ± 0.0% in all 
treatments. No significant differences amongst isolates from the three 
successive passages were detected either in total mortality (all cadavers 
showing fungal outgrowth) nor in AST (Fig. 1). In contrast, significant 
differences were detected when comparing these isolates with the one 
obtained from passage through G. mellonella, which had the shortest AST 
values (3.7 ± 0.3 and 5.5 ± 0.2 on the first and second experiment, 
respectively. Thus, virulence of B. bassiana EABb 04/01-Tip did not 

change following repeated passage through each crop species. 

4. Discussion 

Overall, B. bassiana EABb 04/01-Tip achieved successful endophytic 
colonization of the three crop species evaluated (melon, tomato, and 
cotton), with high percentages of leaf fragments colonized 72 h after 
being sprayed. Previous studies have reported similar levels of endo
phytic colonization of these host plants by B. bassiana (Gurulingappa 
et al., 2010; Lopez and Sword, 2015; Resquín-Romero et al., 2016). 
However, of the three species compared, cotton plants were the least 
suitable for endophytic colonization compared with the other two spe
cies. This could be due to the presence of secondary plant compounds 
commonly produced by cotton plants, which are known to have anti
fungal properties, e.g. the terpenoid, gossypol, which is produced by 
many cotton cultivars (Benbouza et al., 2009; Egbuta et al., 2017; 
Mellon et al., 2012; Przybylski et al., 2009). This is in accordance with 
previous studies showing that several pest populations reared on cotton 
were significantly less susceptible to infection by the entomopathogenic 
fungi Isaria fumosorosea Wize (formerly Paecilomyces fumosoroseus) and 
B. bassiana than when reared on other host plants (Poprawski and Jones, 
2000; Santiago-Álvarez et al., 2006). Such studies demonstrated that 
mortality caused by entomopathogenic fungi, and subsequent sporula
tion, was significantly influenced by the host plant on which the insects 
were feeding. In cotton, mean mortality of whitefly nymphs was reduced 
and ASTs lengthened compared with those reared on other plant species 
(Santiago-Álvarez et al., 2006). Furthermore, conidia production was 
reduced in nymphs reared on cotton compared with nymphs reared on 
other host plants. Conidia production was also significantly reduced in 
cadavers of hosts reared on host plants less favorable for the fungus 
(Santiago-Álvarez et al., 2006). These authors hypothesized that the 
cotton plant produced a fungal inhibitor that conferred protection 
against entomopathogenic fungi in insects feeding upon it (Poprawski 
and Jones, 2000; Santiago-Álvarez et al., 2006). Indeed, in vitro studies 
demonstrated that gossypol was likely to be involved in this antibiosis 
(Poprawski and Jones, 2000). Thus, a possibility is that some fungal 
inhibitors could infer in the endophytic colonzation of the plant, how
ever further research is necessary to determinate that. 

Although cotton was the poorer host plant, we observed that 
B. bassiana re-isolation rate from cotton plants increased after the first 
passage. Thus, it seems that passage through a less suitable host plant 
could improve endophytic activity in that plant and achieve higher 
colonization rates. This is the first time that evidence for improvement of 
endophytic capacity by passaging has been reported. The current 
research has two key outcomes. Firstly, when sprayed leaves were 
inspected for fungal colonization, prior passage improved endophytic 
behaviour in cotton, an apparently suboptimal plant for fungal coloni
zation; this suggests an evolutionary adaptation to localized or transient 

Fig. 2. Percentage of unsprayed tomato, melon and 
cotton leaves endophytically colonized following 
foliar application of B. bassiana EABb 04/01-Tip that 
had been reisolated after different numbers of pas
sages through each crop type. Leaf colonization data 
are presented as means ± SE of fungus-positive 
fragments from unsprayed leaves. Concentration of 
conidia applied was 1.0 × 108 conidia/ml on both 
experiments. Leaves were collected 72 h after inoc
ulation. Means with the same lowercase letter are not 
significantly different to each other according to the 
LSD test (p < 0.05).   
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endophytic colonization. Furthermore, when unsprayed leaves were 
inspected for fungal colonization, endophytic behaviour (as measured 
by within-plant movement) of isolates was also improved by passage in 
all three crops suggesting that passage through a plant host could 
improve the extend of endophytic colonization from transient to sys
temic, and thus achieve higher colonization rates. 

This research is the first report of stability in virulence of entomo
pathogenic fungi after successive passage through a host plant. All iso
lates achieved similar mortality and ASTs after three passages through 
the plant; as expected, passage through an insect host improved viru
lence (Aizawa, 1971; Butt and Goettel, 2000; Quesada-Moraga and Vey, 
2003). As passage through the plant neither increased nor decreased 
fungal virulence we suggest that endophytic colonization stabilized 
virulence; this is a key result for the development of IPM strategies 
incorporating endophytic entomopathogenic fungi. However, virulence 
stability during passage could be isolate dependent, with some isolates 
conserving virulence while others become attenuated after serial pas
sage, as occurs after multiple subcultures on artificial medium (Butt 
et al., 2006; Loesch et al., 2010; Shah and Butt, 2005). Thus, identifi
cation of an isolate that retains stable virulence after a period of endo
phytic growth is an important selection criterion for IPM. Nonetheless, 
the reported occurrence of natural in planta insect infection cycles could 
enable continuous virulence restoration (Garrido-Jurado et al., 2017; 
Keyser et al., 2014; Resquín-Romero et al., 2016; Rivas-Franco et al., 
2020). 

In summary, our results support the hypothesis that passage through 
a host plant can improve endophytic activity and achieve higher colo
nization rates. Future research on the genes involved in endophytic 
activity may help identify the mechanisms of this adaptation. This 
finding could improve fungal host plant specificity for use in IPM. This 
research also demonstrated virulence stability in isolates following 
repeated passage through three different plant species. Thus, the use of 
endophytic entomopathogenic fungi for control of insect pests can be 
tailored to melon, tomato and cotton, with no loss of virulence. 
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