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Simple Summary: Breed undefinition boosts the risk of irreversible breed loss due to its substitution 

by dominant breeds. Breed loss results detrimental for the fraction of the genetic pool which is 

linked to the value of livestock as perfectly adapted elements of domestic ecosystems among other 

desirable features. In turn, this ensures and maximizes population sustainability. The present study 

aimed to design a biometric characterization tool in autochthonous avian breeds and their varieties 

in Andalusia (south of Spain): Utrerana and Sureña breeds. For this, different quantitative and qual-

itative measurements were collected in 473 females and 135 roosters belonging to these breeds. Even 

though both genotypes belong to a common original trunk, discriminant canonical analysis (DCA) 

revealed clear differences between both breeds and within the varieties that they comprise. In par-

ticular, certain variables such as ocular ratio and phaneroptic characteristics, which may be intrin-

sically related to the capacity of the breeds to adapt to the environmental conditions in which they 

thrive, could allow breeders to develop breeding programs focused on the enhancement productive 

potential of individuals. 

Abstract: This study aimed to develop a tool to perform the morphological characterization of 

Sureña and Utrerana breeds, two endangered autochthonous breeds ascribed to the Mediterranean 

trunk of Spanish autochthonous hens and their varieties (n = 608; 473 females and 135 males). Krus-

kal–Wallis H test reported sex dimorphism pieces of evidence (p < 0.05 at least). Multicollinearity 

analysis reported (variance inflation factor (VIF) >5 variables were discarded) white nails, ocular 

ratio, and back length (Wilks’ lambda values of 0.191, 0.357, and 0.429, respectively) to have the 

highest discriminant power in female morphological characterization. For males, ocular ratio and 

black/corneous and white beak colors (Wilks’ lambda values of 0.180, 0.210, and 0.349, respectively) 

displayed the greatest discriminant potential. The first two functions explained around 90% inter-

group variability. A stepwise discriminant canonical analysis (DCA) was used to determine geno-

type clustering patterns. Interbreed and varieties proximity was evaluated through Mahalanobis 

distances. Despite the adaptability capacity to alternative production systems ascribed to both avian 

breeds, Sureña and Utrerana morphologically differ. Breed dimorphism may evidence differential 

adaptability mechanisms linked to their aptitude (dual purpose/egg production). The present tool 

may serve as a model for the first stages of breed protection to be applicable in other endangered 

avian breeds worldwide. 
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1. Introduction 

In Spain, two hen trunks have historically been differentiated; the Atlantic trunk, 

generally comprising larger-format dual-purpose birds, with red earlobes and brown-

shelled eggs, and the Mediterranean trunk, consisting of lighter individuals, with white 

earlobes and of a white-shelled egg-laying morphotype [1]. The aforementioned features 

have been considered by breeders on a regular basis for breed ascription and animal clas-

sification. This segregation of the Atlantic and Mediterranean trunks would later be sup-

ported from a molecular perspective through the estimation of genetic distances using 

microsatellite markers [2]. 

As a result, natural and human selection led to a high heterogeneity and variability 

of morphological characteristics in avian breeds [3,4]. Such high heterogeneity was pro-

moted when breeding objectives (meat, eggs, or dual-purpose breeds) and, hence, mor-

phological characteristics started to differ and polarize among populations to adapt to 

environment requirements at the minimum biological cost. These differentiation pro-

cesses determined breeds to base their adaptability strategies on their particular enhanced 

body features [5]. 

Andalusia (Southern Spain) is influenced by the Mediterranean climate, with maxi-

mum temperatures rising above 40 °C in summer, as reported by the Spanish State Mete-

orological Agency (AEMET). In this context, very high temperatures are present from late 

spring on and last for the whole summer. Among the breeds in the area, two laying hen 

genotypes have traditionally configured poultry production under backyard and exten-

sive systems: the Utrerana and Sureña avian breeds [6,7]. 

The Utrerana and Sureña avian breeds share a common geographic location, socio-

economic context, and history. In addition, four varieties of plumage color are present in 

both breeds: White, Franciscan, Black, and Partridge in the Utrerana breed; White, Fran-

ciscan, Black, Partridge, Blue, and Splash in the Sureña Breed. However, the Sureña hen 

has a larger format than most Mediterranean hen breeds [8,9]. 

These widely accessible low-capital/input investment birds were historically kept in 

sustainable systems for decades, thus becoming the source of production of high-biologi-

cal-value proteins in rural livelihoods until globalization called for the intensification of 

animal production [10,11]. 

As a direct consequence, the population census of Spanish breeds suffered a regres-

sion due to the introduction of selected commercial strains of birds with a higher produc-

tion during the last half of the 20th century [12,13]. In this way, the Utrerana avian breed 

became classified as an endangered breed, according to Royal Decree 45/2019 of 8 Febru-

ary, while the Sureña avian breed is in the process of being included in the Official Live-

stock Breeds Catalog of the Ministry of Agriculture, Fisheries, and Environment (MAPA) 

of Spain. 

Consumers’ interest in quality food products revolved around market demands as a 

conscious response to the drawbacks implied by intensive production. Food alternatives 

produced through sustainable production systems became popular, provided these sys-

tems were characterized by a low impact on the environment and human health while 

they also considered animal welfare [14]. Increased demands soon translated into com-

mercial chains starting to request differentiated products, whose properties significantly 

differed from products obtained through hybrid commercial strains [15]. 

For local producers to be able to fulfill market demands, products and the elements 

needed to ensure their constant supply must be defined through breed characterization 

zoometrically, genetically, or even productively. Contextually, the characterization of lo-

cal populations, as well as the relationship among already established breeds, can provide 

pieces of evidence on the mechanism and events that contributed to the origin and devel-

opment of native poultry breeds in the south region of Spain, as well as the adaptive 

mechanisms that may have permitted their survival in time [16]. Additionally, breed 

standardization could be an important tool for the evaluation of birds within their flocks 
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and determine certain measurements for the selection of the best animals [17]. In this re-

gard, morphometric and phaneroptic approaches may be fundamental in poultry man-

agement as they are fast and economically profitable [18]. 

This information altogether enables the correct development and implementation of 

the administrative structures needed to guarantee the stability and future viability of 

breeds through the development conservation and breeding programs, as well as the sus-

tainable commercialization of their products once censuses are enough. 

In this context, this study aimed to determine the contribution of quantitative and 

qualitative morphological-related traits to the zoometric characterization through the de-

velopment of a discriminant canonical analysis (DCA), as a tool that permits determining 

phenotypic variability in the Andalusian avian breeds and within their varieties, as a strat-

egy to support the standardization of native breeds and implement conservation strate-

gies that ensure the consolidation of local genotypes as recognized breeds. 

2. Materials and Methods 

2.1. Animals, Sample Size, and Distribution 

Biometric data were collected from 608 adult birds (from 1 to 7 years old, 1.94 ± 0.75 

years), 473 hens (77.80%), and 135 roosters (22.20%), belonging to different varieties of 

Utrerana and Sureña breeds, as described in Figure 1. The sample size accounted for at 

least 20 times as many observations as variables. As this assumption was fulfilled, the 

study sample permitted to obtain reliable estimates of the canonical factor loadings for 

interpretation and to draw valid conclusions [19]. 

 

Figure 1. Percentage and number of individuals (n) used in each studied genotype. 

The sample was collected at 16 farms across the seven provinces in Andalusia (Cádiz, 

Córdoba, Granada, Huelva, Jaén, Málaga, and Sevilla). All animals were reared under ex-

tensive backyard conditions. 

National guidelines for the care and the use of laboratory and farm animals, and 

avian-specific codes for good practices were followed during the data collection. For this, 

standards consistent with European Union legislation (2010/63/EU, from 22 September 

2010) as transposed into Spanish law (Royal Decree Law 53/2013, from 1 February 2013). 

The study protocol was submitted to The Ethics Committee of Animal Experimentation 

of the University of Córdoba (Spain) and deemed exempt from review. 
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2.2. Biometric Measurement Collection 

Biometrical analysis was performed in each bird, measuring 27 quantitative and five 

qualitative variables, following the procedure for morphological characterization of na-

tive chicken breeds described in previous studies [20,21]. A summary of the quantitative 

biometric variables and how to measure them is shown in Table 1. All corporal measure-

ments were taken on the right side of the animal. Figure 2 shows details of the head meas-

urements taken. A suspended electronic scale (measurement precision = 5 g; Kern 

CH50K100, Kern & Sohn, Balingen, Germany), a Vernier scale (Electro DH M 60.205, Bar-

celona, Spain), and a tape measure were used for measurement collection. 

Table 1. Biometric variables and measuring procedures used in the present study. 

Corporal  

Region 
Variable Units Measuring Procedure 

General charac-

teristics 

Bodyweight kg With an electronic scale 

Ornithological measurement cm 
Leaning the bird on its back, the distance between the tip of the beak and the tip 

of a central rectrix, in a straight line 

Wingspan cm Distance between the ends of the longest primaries with outstretched wings 

Head 

Skull length mm Taken between the most protruding point of the occipital and the tip of the beak 

Skull width mm Taken at eye level 

Comb length mm 
Measured between the insertion of the comb in the beak and the end of the 

comb’s lobe 

Comb width mm 
Measured from the tip of the central spike until the insertion of the comb in the 

skull; when the number of spikes was even, the highest was chosen 

Number of spikes in the comb n By manual counting 

Ocular length mm Measured between eyelid corners 

Ocular width mm Measured including the folds of the eyelid, perpendicular to the ocular length 

Beak length mm Measured from the tip of the beak until the insertion of the beak in the head 

Beak width mm Measured at level of insertion of the beak in the head 

Earlobe length mm Maximum length, keeping the bird’s head perpendicular to the neck 

Earlobe width mm As in the previous measure, measured the second-largest dimension 

Wattle length mm 
Measured from the insertion of wattle in the beak until the end of the wattle, in a 

straight line 

Wattle width mm As in the previous measure, measured the second-largest dimension 

Neck Neck length cm Distance from the base of the neck to the chest 

Body 

Back length cm Distance from the insertion of the neck into the body to the tail insertion 

Keel of sternum length cm Leaning the bird on its back, the distance between the two vertices of the sternum 

Breast circumference cm 
Measured at the level of the tip of the keel, passing the tape measure through the 

back of the wing insert 

Longitudinal diameter cm 
Measured from the cranial end of the coracoid to the most caudal portion of the 

pubis 

Tail length cm Distance from the tip of a central rectrix to the insertion of the tail 

Extremities 

Folding wing length cm Distance from the carpal joint until the end of the longest primary 

Thigh length cm Distance from the middle region of the coxal bone to the knee joint 

Tarsus length cm 
Distance from the notch of the shinbone tarsus until the tip of the nail of the mid-

dle finger 

Anteroposterior tarsus diameter mm 
Diameter of the tarsus in an anteroposterior direction in the middle part of the 

metatarsus bone 

Lateromedial tarsus diameter mm 
Diameter of the tarsus in a lateromedial direction in the middle part of the meta-

tarsus bone 
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Figure 2. Detailed views of a hen and a rooster head with their corresponding measures. CL: comb 

length, CW: comb width, OL: ocular length: OW: ocular width, SL: skull length, SW: skull width, 

BL: beak length, BW: beak width, ELL: earlobe length, ELW: earlobe width, WL: wattle length, WW: 

wattle width. 

The following qualitative traits were evaluated in the present study: eye color, beak 

color, presence or absence of spurs, tarsus color, and nail color. Moreover, skull ratio, oc-

ular ratio, beak ratio, and tarsus ratio were computed, as shown in Table 2. 

Table 2. Mathematical description of biometric indices. 

Trait Mathematical Expression 

Skull ratio �� = ��/�� SI: skull ratio; SL: skull length; SW: skull width 

Ocular ratio �� = ��/�� 
OI: ocular ratio; OL: ocular length; OW: ocular 

width 

Beak ratio �� = ��/�� BI: beak ratio; BL: beak length; BW: beak width 

Tarsus ratio �� = ����/���� 
TI: tarsus ratio; APTD: anteroposterior tarsus dia-

meter; LMTD: lateromedial tarsus diameter 

2.3. Normality and Kruskall–Wallis Tests 

The Shapiro–Francia W’ test (for 50 < n < 2500 samples) was used to discard gross 

violations of the normality assumption. The Shapiro–Francia W’ test was performed using 

the Shapiro–Francia normality routine of the test and distribution graphics package of the 

Stata Version 16.0 software (College Station, TX, USA). The normality test suggested nor-

mality assumption was not met. Hence, a nonparametric approach was followed. The 

Kruskal–Wallis H test was performed to detect differences in the median across sexes and 

genotypes. The Kruskal–Wallis H Test reported medians to significantly differ across all 

possibilities for sex and breed/variety combinations. Consequently, a separate DCA was 

performed for males and females. 
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2.4. Discriminant Canonical Analysis (DCA) 

In the present research, 36 explanatory variables were used to perform the DCA: 

body weight, ornithological measurement, wingspan, skull length, skull width, ocular 

length, ocular width, beak length, beak width, comb length, comb width, number of spikes 

in the comb, earlobe length, earlobe width, wattle length, wattle width, neck length, back 

sternum length, tail length, thigh length, folding wing length, tarsus length, anteroposte-

rior tarsus diameter, lateromedial tarsus diameter, eye color, beak color, presence or ab-

sence of spurs, tarsus color, nail color, skull ratio, ocular ratio, beak ratio, and tarsus ratio. 

In each sex, the breed and variety of the bird were used as classification criteria to measure 

the variability in morphological traits between and within the used classification groups 

and establish and outline population clusters [22,23]. 

The statistical analysis issued a set of discriminant functions that could be used as a 

tool to determine the clustering patterns described by the population sample through a 

linear combination of morphological-related traits. Furthermore, this canonical tool was 

used to plot pairs of canonical variables and graphically depict the group differences into 

an easily interpretable territorial map. Regularized forward stepwise multinomial logistic 

regression algorithms were used to perform the variable selection. Priors were regularized 

following the group sizes computed from the prior probability option in SPSS v26.0 soft-

ware (IBM, Armonk, NY, USA), instead of considering them to be equal, thus preventing 

groups with different sample sizes from affecting the quality of the classification [24]. 

Previous studies have reported DCA to be robust and its outputs to be consistent 

when sample sizes among groups were highly unequal. Potential distortion effects de-

rived from unequal sample sizing can be palliated using at least 20 samples for every four 

or five predictors. Additionally, the maximum number of independent variables must be 

n − 2 (where n = simple size). The present design was developed aiming at meeting these 

requirements sufficiently, to ensure the validity of the conclusions drawn. 

Before discriminant analysis, independence of regressors was ensured by multicol-

linearity analysis. The same variables were chosen by the forward and the backward step-

wise selection methods. Hence, the progressive selection method was chosen as preferable 

since it is less time-consuming than the backward selection method. 

The discriminant routine of the Classify package of SPSS v26.0 software (IBM, Ar-

monk, NY, USA) and the discriminant analysis routine of the analyzing data package of 

XLSTAT 2014 (Pearson Edition) (Addinsoft, Paris, France) were used to perform the DCA. 

2.4.1. Multicollinearity Preliminary Testing 

Redundancies in the variables used were identified after performing the multicollin-

earity assumption before running the DCA. Multicollinearity analysis seeks to avoid the 

overinflation of the explanatory potential of variance due to the inclusion of an unneces-

sarily large number of variables. As an indicator of multicollinearity, the variance inflation 

factor was calculated using the following formula: 

��� = 1/(1 − ��) (1)

where R2 is the coefficient of determination of the regression equation. 

A recommended maximum VIF value of 5 was used in the study, as suggested by 

Rogerson [25]. Tolerance (1 − R2) is the amount of variability in a certain independent var-

iable that is not explained by the rest [26]. When tolerance values are lower than 0 and, 

simultaneously, VIF values ≥10, multicollinearity must be considered troublesome. VIF 

was computed using the discriminant analysis routine of the analyzing data package of 

XLSTAT 2014 (Pearson Edition). 
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2.4.2. Canonical Correlation Dimension Determination 

Pearson’s ρ was used to interpret canonical correlations. The maximum number of 

canonical correlations between two sets of variables is the number of variables in the 

smaller set. Although most of the relationships between different sets are explained by 

the first canonical correlation, all canonical correlations must be considered. Dimensions 

with canonical correlation values of ≥0.30 may be statistically significant. 

2.4.3. Discriminant Canonical Analysis Efficiency 

Wilks’ lambda test was used to evaluate variables that significantly contribute to the 

discriminant function. When Wilks’ lambda approximates to 0, the contribution of the 

variable to a discriminant function increases. The chi-square statistic was considered to 

test the significance of Wilks’ lambda. If the significance is below 0.05, the function can be 

concluded to adequately explain the group adscription [27]. 

2.4.4. Discriminant Canonical Analysis Model Reliability 

Pillai’s trace criterion was used in the discriminant function analysis to test the as-

sumption of equal covariance matrices. This is the only acceptable test that must be used 

in cases of unequal sample sizes [28]. Pillai’s trace criterion was calculated using the dis-

criminant analysis routine of the analyzing data package of XLSTAT 2014 (Pearson Edi-

tion). A significance below 0.05 indicates significant statistical differences in the depend-

ent variables across the levels of independence; hence, application of DCA is feasible. 

2.4.5. Variable Dimensionality Reduction 

A preliminary principal component analysis (PCA) was computed to minimize over-

all variables into few meaningful variables that contributed to the morphological charac-

terization of males and females in different genotypes. PCA was performed automatically 

using the discriminant analysis routine of the analyzing data package XLSTAT 2014 (Pear-

son Edition) (Addinsoft, Paris, France). 

2.4.6. Canonical Coefficient and Loading Interpretation and Spatial Representation 

The percentage of allocation of an individual within its group (defined by its geno-

type) was calculated using a discriminant function analysis. Values ≥|0.40| in the discri-

minant loading of a variable were considered to be significantly discriminant. Thus, non-

significant variables were excluded from the function using stepwise procedures. Higher 

values for absolute coefficients for each particular variable determine better discriminat-

ing power. Afterward, data were standardized following the premises reported by Manly 

and Alberto [29], and Mahalanobis distances were calculated using the following formula: 

 ���
� = (Ῡ� − Ῡ�) �����(Ῡ� − Ῡ�) (2)

where D2ij is the distance between population i and j, Υi and Υj are the means of variable 

x in the i-th and j-th populations, respectively, and COV−1 is the inverse of the covariance 

matrix of measured variable x. The squared Mahalanobis distance matrix was converted 

into a Euclidean distance matrix. 

Afterward, dendrograms were built using the underweighted paired-group method 

arithmetic averages (UPGMA) from the Rovira i Virgili University, Tarragona, Spain, and 

the Phylogeny procedure of MEGA X 10.0.5 from the Institute of Molecular Evolutionary 

Genetics, The Pennsylvania State University, State College, PA, USA. 

2.4.7. Discriminant Function Cross-Validation 

The percentage of correctly classified cases can be defined as the hit ratio. The leave-

one-out cross-validation procedure was used to consider if the discriminant functions can 

be validated. Classification accuracy is achieved when the classification rate is at least 25% 

higher than obtained by chance. 
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Press’s Q statistic can support these results since it can be used to compare the dis-

criminating power of the cross-validated function, as follows: 

�����′� � =
[� − (�′�)]�

�(� − 1)
 (3)

where n is the number of observations in the sample; n’ is the number of observations 

correctly classified, and K is the number of groups. 

The value of the Press’s Q statistic must be compared with the critical value of 6.63 

for χ2 with a degree of freedom in a significance of 0.01. When Press’s Q exceeds the critical 

value of χ2 = 6.63, the cross-validated classification can be regarded as significantly better 

than chance. 

2.5. Data Mining CHAID Decision Tree 

The chi-squared automatic interaction detection (CHAID) decision tree (DT) data 

mining method was used for classification, prediction, interpretation, and discrete cate-

gorized data manipulation. The tree routine of the Classify package of SPSS v26.0 software 

(IBM, Armonk, NY, USA) was used. Each internal node was built in the tree around a 

zoometric or phaneroptic trait (input variables), while a chi-squared test significance split 

criterion (p < 0.05 at least) was fulfilled in the so-called pre-pruning process. 

Breiman, et al. [30] suggested that pre- or post-pruning methods prevent over-dimen-

sion of trees to prevent the failure to pursue the addition of traits (branches) which add 

significantly to the overall fit. As a result, a tree that exhaustively depicts the significant 

relationships across independent variables is one from which those nodes that do not con-

tribute to the overall prediction have been discarded. Furthermore, CHAID additionally 

penalizes model complexity. In this regard, the Bonferroni inequality significant adjust-

ment for significance levels was used. 

Breiman’s method uses chi-squared tests to determine to configure the tree building 

process. Each branch represents an outcome of the test (in a number of two or more), and 

each leaf node (or terminal node) represents a category level of the target variable 

(breed/variety). The root node in the tree is the one that is located at the top. The decisions 

are made at each node, and each record of data continues through the tree along a path 

until the record reaches a leaf or terminal node of the tree [31]. 

Afterward, cross-validation was performed to validate the set of predictors consid-

ered measuring the differences between the prediction error for a tree applied to a new 

sample and a training sample. Cross-validation of the decision tree was performed using 

the “complexity parameter” and cross-validated error to estimate how accurately the 

model performs data prediction. Tenfold cross-validation [32] was performed using every 

sample record in the training sample and study data. The resubstitution error rate 

measures the proportion of original observations that were misclassified by various sub-

sets of the original tree. 

Tenfold cross-validation was used to obtain a cross-validated error rate, from which 

the optimal tree was selected to prevent bias and outlier overfitting. Tenfold cross-valida-

tion involves creating 10 random subsets of the original data, setting one portion aside as 

a test set, constructing a tree for the remaining (10 − 1) portions, and evaluating the tree 

using the test portion. This was repeated for all portions, and an estimate of the error was 

evaluated. Adding up the error across the 10 portions represented the cross-validated er-

ror rate. Afterward, the tree yielding the lowest cross-validated error rate was selected as 

the tree that best fit the data. 
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3. Results 

3.1. Discriminant Canonical Analysis Reliability 

Values of ρ < 0.05 obtained for Pillai’s trace criterion suggested the appropriateness 

of data to perform the DCA (Table 3). The contribution of canonical functions to the mean-

ing of each discriminating function was assessed by Wilks’ lambda statistic (Table 4). 

Table 3. Summary of the results of Pillai’s trace of equality of covariance matrices of canonical dis-

criminant functions. 

Females 

Pillai’s trace criterion 2.8664 

F (Observed value) 7.1227 

F (Critical value) 1.1540 

df1 261 

df2 3978 

p-value <0.0001 

alpha 0.05 

Males 

Pillai’s trace criterion 3.8256 

F (Observed value) 2.7989 

F (Critical value) 1.1740 

df1 252 

df2 954 

p-value <0.0001 

alpha 0.05 

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, 

denominator degrees of freedom for the F-approximation (observations minus 1). 

Table 4. Canonical discriminant analysis efficiency parameters to determine the significance of each 

canonical discriminant function. 

 Test of Function(s) Wilks’ Lambda Chi-Square df Sig. 

Females 

1 through 7 0.045 1436.63 63 0 

2 through 7 0.411 410.85 48 0 

3 through 7 0.814 95.218 35 0 

Males 

1 through 4 0.017 515.527 36 0 

2 through 4 0.242 180.18 24 0 

3 through 4 0.813 26.252 14 0.024 

Supplementary Tables S1 and S2 show a summary of the values of tolerance and VIF 

for those variables for which VIF < 5 was reported and, thus, those which were included 

in the analysis across sexes. VIF values > 5 were discarded from further analyses; skull 

width, anteroposterior tarsus diameter, eye color, beak ratio, tarsus color, tarsus length, 

skull length, lateromedial tarsus diameter, and wingspan were the variables discarded for 

females, while lateromedial tarsus diameter, ocular width, skull width, beak ratio, nail 

color, tail length, eye color, tarsus color, wattle width, tarsus length, and skull length were 

the traits discarded before DCA in male individuals. 

3.2. Canonical Coefficients, Loading Interpretation, and Spatial Representation 

DCA determined three discriminating canonical functions for both sexes (Tables 4 

and 5). Lower Wilks’ lambda values and respective higher eigenvalues were indicative of 

higher discriminating power. In females, 90.37% of the total variance was explained by 

functions F1 and F2 (eigenvalues of 9.66 and 5.17 for F1 and F2, respectively). In males, 

functions F1 and F2 (eigenvalues of 26.91 and 7.34 for F1 and F2, respectively) explained 

88.49% of the total variance. 
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Table 5. Canonical variable functions and percentage of self-explained and cumulative variance. 

Sex Function Eigenvalue Discrimination (%) Cumulative % 

Females 

F1 9.6611 58.8681 58.8681 

F2 5.1701 31.5034 90.3716 

F3 0.7705 4.6950 95.0665 

Males 

F1 26.9110 69.5353 69.5353 

F2 7.3362 18.9561 88.4914 

F3 2.7997 7.2342 95.7256 

After discarding redundant variables, variables were ranked by the test of equality 

of group means across groups depending on their discriminating properties (Tables 6 and 

7). Lower values of Wilks’ lambda and greater values of F indicated a better discriminat-

ing power, which translated into a better position in the rank. 

Figure 3 presents a graph of standardized discriminant coefficients across discrimi-

nant functions. These analyses not only allowed us to easily identify those variables ac-

counting for higher repercussions on the discriminant power of functions overall, but also 

the possibility of a reduction in the discriminant power of individual variables as a result 

of multicollinearity between pairs. 
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Figure 3. Discriminant loadings for biometric quality-related traits determining the relative weight of each trait on each 

canonical discriminant function. Each bar represents the relative weights (coefficients) of each variable across the three 

discriminant functions revealed by CDA. 
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Table 6. Results for the tests of equality of females group means to test for difference in the means across groups once 

redundant variables were removed in the female population. 

Variables Lambda F df1 df2 ρ-Value Rank 

Nail color (white) 0.1911 217.2864 9 462 <0.0001 1 

Ocular ratio 0.3571 92.3999 9 462 <0.0001 2 

Back length 0.4291 68.3067 9 462 <0.0001 3 

Body weight 0.4318 67.5522 9 462 <0.0001 4 

Ocular length 0.4982 51.6983 9 462 <0.0001 5 

Longitudinal diameter 0.5184 47.6874 9 462 <0.0001 6 

Keel of esternum length 0.5262 46.2222 9 462 <0.0001 7 

Wattle length 0.5381 44.0615 9 462 <0.0001 8 

Folding wing length 0.5691 38.8630 9 462 <0.0001 9 

Comb length 0.5828 36.7513 9 462 <0.0001 10 

Wattle width 0.5986 34.4272 9 462 <0.0001 11 

Breast circumference 0.6052 33.4926 9 462 <0.0001 12 

Thigh length 0.6358 29.4067 9 462 <0.0001 13 

Nail color (black/corneous) 0.6736 24.8741 9 462 <0.0001 14 

Ornithological measurement 0.6831 23.8125 9 462 <0.0001 15 

Comb width 0.6868 23.4102 9 462 <0.0001 16 

Beak width 0.6935 22.6921 9 462 <0.0001 17 

Earlobe width 0.7001 21.9939 9 462 <0.0001 18 

Tail length 0.7660 15.6822 9 462 <0.0001 19 

Beak length 0.7855 14.0167 9 462 <0.0001 20 

Earlobe length 0.8005 12.7947 9 462 <0.0001 21 

Nail color (slate/corneous) 0.8156 11.6036 9 462 <0.0001 22 

Nail color (slate) 0.8426 9.5928 9 462 <0.0001 23 

Skull length 0.8629 8.1568 9 462 <0.0001 24 

Number of beaks in comb 0.9095 5.1094 9 462 <0.0001 25 

Tarsus ratio 0.9416 3.1857 9 462 0.0009 26 

Skull ratio 0.9703 1.5692 9 462 0.1217 27 

Nail color (black/white) 0.9869 0.6793 9 462 0.7279 28 

Presence or absence of spurs 0.9903 0.5005 9 462 0.8743 29 

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, denominator degrees 

of freedom for the F-approximation (observations minus 1). 
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Table 7. Results for the tests of equality of group means test for difference in the means across 

groups once redundant variables were removed in the male population. 

Variables Lambda F df1 df2 ρ-Value Rank 

Ocular ratio 0.1797 63.4040 9 125 <0.0001 1 

Beak color (black/corneous) 0.2102 52.1922 9 125 <0.0001 2 

Beak color (white) 0.3489 25.9192 9 125 <0.0001 3 

Wingspan 0.3765 22.9996 9 125 <0.0001 4 

Beak color (black) 0.4526 16.7993 9 125 <0.0001 5 

Back length 0.4547 16.6534 9 125 <0.0001 6 

Ocular length 0.5279 12.4222 9 125 <0.0001 7 

Longitudinal diameter 0.5536 11.1984 9 125 <0.0001 8 

Anteroposterior tarsus diameter 0.5576 11.0173 9 125 <0.0001 9 

Body weight 0.6399 7.8142 9 125 <0.0001 10 

Breast circumference 0.6511 7.4427 9 125 <0.0001 11 

Folding wing length 0.6653 6.9859 9 125 <0.0001 12 

Earlobe width 0.7245 5.2821 9 125 <0.0001 13 

Beak color (corneous) 0.7272 5.2092 9 125 <0.0001 14 

Keel of sternum length 0.7424 4.8184 9 125 <0.0001 15 

Wattle length 0.7819 3.8731 9 125 0.0002 16 

Comb length 0.7899 3.6936 9 125 0.0004 17 

Beak width 0.7903 3.6848 9 125 0.0004 18 

Beak length 0.8000 3.4712 9 125 0.0007 19 

Earlobe length 0.8194 3.0609 9 125 0.0024 20 

Number of beaks in comb 0.8225 2.9981 9 125 0.0029 21 

Thigh length 0.8296 2.8519 9 125 0.0043 22 

Neck length 0.8707 2.0623 9 125 0.0378 23 

Ornithological measurement 0.8798 1.8980 9 125 0.0580 24 

Comb width 0.9029 1.4932 9 125 0.1574 25 

Tarsus ratio 0.9072 1.4215 9 125 0.1858 26 

Skull ratio 0.9254 1.1189 9 125 0.3544 27 

Beak color (caramel/corneous) 0.9300 1.0460 9 125 0.4077 28 

F, Snedecor’s F; df1, numerator degrees of freedom for the F-approximation (groups minus 1); df2, 

denominator degrees of freedom for the F-approximation (observations minus 1). 

The substitution of the values for biometric-related traits into the first three discrim-

inating functions was performed to obtain x-, y-, and z-axis coordinates, for the first, sec-

ond, and third dimensions, respectively. In these coordinates, each observation was sorted 

and classified across the different groups. A territorial map was depicted for each sex 

(Figure 4). 

Mahalanobis distance represents the probability that an observation presenting an 

unknown background belongs to a particular group (breed/variety). It can be computed 

through the relative distance of the problem observation to the centroid of its closest 

group. Then, the hit ratio was calculated. The hit ratio is the rate of successfully classified 

cases across breed/varieties (which was performed across sexes) (Supplementary Tables 

S3 and S4). Mahalanobis distances obtained after the evaluation of the discriminant anal-

ysis matrix were transformed into squared Euclidean distances, and the results are repre-

sented in Figures 5 and 6, following Hair et al. [33]. 
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Figure 4. Territorial map depicting the observations considered in the canonical discriminant analysis sorted across gen-

otypes. 

 

Figure 5. Cladogram constructed from Mahalanobis distances across different genotypes (breed/va-

rieties) in female population. 

 

Figure 6. Cladogram constructed from Mahalanobis distances across different genotypes (breed/va-

rieties) in male population. 

Supplementary Tables S3–S6 report the results obtained in the classification and 

leave-one-out cross-validation for the observations in the present study. Here, 71.82% and 

81.48% of original grouped cases were correctly classified for females and males, respec-

tively. From these results, 59.96% and 49.63% of clustered observations were cross-vali-

dated. Press’s Q values of 2004.41 and 1060.27 were obtained from females and males, 

respectively; hence, it can be considered that predictions were significantly better than 

chance at 95% [34]. 
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3.3. Data Mining CHAID Decision Tree 

The underlying basis for these classification patterns was found after the evaluation 

of the data mining CHAID decision tree obtained for the chi-square dissimilarity matrix. 

Classification trees of groups by genotypes produced simple trees with terminal nodes 

(Supplementary Figures S3 and S4). Chi-squared-based branch and node distribution sug-

gested females significantly (p < 0.001) differed depending on their values of nail color 

and, thus, were classified into four subgroups (black corneous/slate corneous, slate, cor-

neous, and white). Nail color was the best discriminant phaneroptic trait and helped to 

distinguish among black Utrerana, black Sureña, Partridge Utrerana, and Franciscan 

Utrerana). Afterward, ocular ratio helped to discriminate across the varieties of Utrerana 

and Sureña hens (p < 0.001), with the Utrerana animals presenting ocular indices over 

0.986, while Sureña ocular indices were equal to or below 0.986 (Supplementary Figure 

S1). 

By contrast, chi-squared-based branch and node distribution suggested males only 

significantly (p < 0.001) differed depending on their values of ocular ratio. Ocular ratio 

helped to discriminate between varieties of Utrerana and Sureña roosters (p < 0.001), with 

the Utrerana animals presenting ocular indices over 1.015, while Sureña ocular ratios were 

equal to or below 1.015 (Supplementary Figure S2). 

Female data mining decision tree tenfold cross-validation reported closely similar 

resubstitution (probability of misclassifying an unseen instance) and cross-validation er-

ror rate estimates of 0.484 and 0.510, for which the standard error was 0.023, respectively. 

For the male tree, 0.726 and 0.867 values of resubstitution and cross-validation error rate 

estimates were obtained with standard errors of 0.038 and 0.029, respectively. Although 

data resubstitution can underestimate the classifier error, it has less variability than other 

methods, such as cross-validation, especially for small sample sizes. As cross-validation 

error rate estimates were close to resubstitution ones, albeit lower, trees were not overfit-

ted, confirming the robustness of the results obtained and the validity of the conclusions 

drawn. 

4. Discussion 

Differential sex-linked hormonal and genetic regulation patterns of the expression of 

growth have been reported to occur in local poultry breeds [35,36]. Dimorphism and di-

chromatism could be a consequence of sexual selection and might provide an adaptative 

advantage of one population over others. For instance, in the context of the conditions 

found in rustic backyard environments, even if there is a lower selective pressure focused 

toward production, male-to-male competition has induced roosters to increase the size, 

giving an advantage against the opponent [37]. 

In the context of multizoometric and phaneroptic analyses, it has been suggested that 

it is necessary to check for the different relationships across explanatory variables and 

select independent variables that do not overlap when deciding on the factors which de-

termine the efficiency of predictive models [23]. High correlations between skull length 

and skull width (i.e., skull ratio) were revealed by the multicollinearity analysis since the 

formula for skull ratio calculation comprises the aforementioned measurements. The 

same happened with anteroposterior (in both sexes) and lateromedial (only in hens) tarsus 

diameters as the elements which determine the tarsus ratio. The calculation formula of 

beak ratio, which includes the remaining beak measurements, was eliminated from fur-

ther analysis due to multicollinearity problems (VIF > 5). 

Lastly, the ocular width variable was discarded from the analysis of male individuals 

since this variable is contained within the formula of ocular ratio (VIF > 5). These results 

are supported by those in Ning et al. [38], who found multicollinearity problems when 

formulae were developed after the inclusion of explanatory variables which were already 

included. 
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Phaneroptic variables have been reported to be highly significantly interrelated [39]. 

Even if most qualitative variables were discarded after the multicollinearity analysis, nail 

color in hen and beak color in roosters were the only qualitative variables that remained 

in the DCA. Thus, results suggest that multicollinearity problems between different qual-

itative measurements in birds may have occurred. 

White nails was reported to be the best discriminating feature in hens (Table 6). Only 

seven individuals of White, Splash, and Franciscan Sureña showed dark nails, while no 

hen of White and Franciscan varieties showed nails of a different color than white. In 

roosters, black/corneous and white colors in the beak were also reported to have high 

discriminant power. 

Previous studies have reported that phaneroptic features are somehow correlated in 

native chicken breeds, provided they may derive from the expression of the same gene 

background across the body parts [40]. Additionally, it has been suggested that these qual-

itative traits have significant effects on other quantitative traits such as body weight and 

daily gain in chicken [40,41]. 

Our results are indicative of the fact that qualitative variables, with high discriminant 

ability to discern among local hen genotypes, must be considered as efficient selection 

criteria in breeding programs, as an effective method to identify the individuals present-

ing the most desirable production-related characteristics at the most convenient earlier 

age. 

Furthermore, certain phaneroptic variables may be associated with consumers’ 

trends and their cultural preferences. For instance, while North American consumers have 

strong preferences for white-skin meat [42], meat from dark-skin poultry is preferred by 

producers and consumers in South America [14]. Hence, multivariety breeds accounting 

for a wide variety of feather and skin color patterns such as Utrerana and Sureña could 

satisfy the needs of a wider scope of targets in different market niches. 

Feather coloration strongly conditions the camouflage abilities of birds. In this re-

gard, Dohner [43] suggested that the less aggressive strains developed for confinement 

may be less self-sufficient and may not be as alert to predators. In hens, this has been 

ascribed to the association of specific quantitative trait loci with behavioral traits [44]. As 

an example, birds carrying the ancestral junglefowl allele (i) of the PMEL17 locus are 

black, while White Leghorn (I) birds are white (with heterozygotes frequently being less 

pigmented). 

Contextually, i/i alleles carriers have been reported to be more vocal, less prone to 

develop fearful attitudes toward humans, and more aggressive, social, and explorative 

(enhanced foraging behavior) [44]. These enhanced behavioral features may make these 

dark-colored breeds less susceptible to predation by hawks [43]. The PMEL17 locus has 

simultaneously been associated with feather-pecking and bullying behavior toward coun-

terparts [45], with darker birds tending to be rather affected by feather-pecking than their 

white counterparts [46]. It is still unknown whether feather-pecking may exclusively be 

attributed to plumage color or to the behavior of i/i carrier individuals to become targets 

of pecking attacks. 

Alternatively, Tickell [47] stated that coloration-related costs in higher rates of bird 

predation may also translate into the enhancement of other tactics for evading capture [6]. 

This was reflected in our study (Figures 5 and 6) with Sureña presenting smaller ocular 

indices in comparison to Utrerana hens, albeit with darker Sureña individuals being closer 

to white Utrerana animals and white-feathered Sureña located further away when mor-

phological traits were considered. 

Ocular ratio was ranked second and first regarding its discriminant ability in hens 

and roosters, respectively. The relevance of ocular ratio may be ascribed to higher adapt-

ability to the environment and improved capacity to seek food as a result of improved 

vision skills. Indeed, except for certain occasions, birds have a highly developed vision. 

In relationship to the size of the skull, the avian eye is very large. While humans have 

an eye relative size of 5% with respect the skull, in hens, 50% of the cranial volume is 
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occupied by the orbit [48]. High visual acuity is advantageous for hens relying heavily on 

their ability to navigate surroundings to find and acquire food, to identify potential mates, 

and to quickly escape from predators [49,50]. Hall and Ross [51] reported that the light 

level, which is highly correlated with bird activity pattern, has a more significant influence 

on eye shape and body size than other factors, such as phylogeny. 

Birds with a higher adaptation to darkness habits, such as brooding and nesting abil-

ities, exhibit larger axial and corneal lengths and, therefore, a higher eye size diameter 

than the rest of the birds [52,53]. On the other hand, larger individuals with larger eyes 

have the potential for more sensitive and acute vision than smaller individuals with 

smaller eyes. This could suggest that the Sureña breed, with a significantly larger eye size, 

has a sharper vision. However, each breed has developed an ideal eye design for condi-

tions in which it is produced. Larger eyes need more brain space for information pro-

cessing. Therefore, evaluation of ocular size in each breed must be performed taking into 

account body size [54]. Thus, the higher size of Sureña eyes could be mainly ascribed to a 

proportionally larger body shape. 

It has also been suggested that lower values for ocular ratio may act as an adaptation 

to optimal antipredator behavior since larger ocular width could suppose an advantage 

in the lateral visual field [55,56]. Thus, results obtained in the present study may suggest 

that Utrerana eyes make it more adapted to survival in free-range systems. Furthermore, 

smaller birds have developed rather improved adaptative qualities such as hardiness, 

agility, scavenging ability, and less time needed for flight [57]. The Utrerana breed, with 

lower body weight and ocular ratio, may be better adapted to free-range systems through 

its enhanced rusticity, even if the literature indicates that both breeds can easily thrive and 

are well adapted to the environmental conditions present in these alternative production 

systems [9,58]. 

Back length was the third best discriminant variable in hens. These results agree with 

those presented by previous research [59,60]. In this sense, back length has been reported 

to be highly correlated with other important traits. As a consequence, it plays an important 

role as a linear body measurement when the aim is to predict for body weight, as well as 

to develop and to implement productive selection strategies during breeding in laying 

hens. 

Size-related parameters such as body weight (in hens) and wingspan (in roosters) 

play a pivotal role in the classification of individuals (Tables 6 and 7). These traits allow 

us to delimitate those animals belonging to the Sureña breed. Sureña individuals typically 

account for larger body sizes than Utrerana individuals. 

Lighter hens have been reported to present higher egg productions and lower feed 

conversion rates and, therefore, a better laying ability [61]. On the other hand, breeds char-

acterized by larger individuals may be prone to become dual-purpose genotypes in alter-

native production systems, in which both sexes are reared together, to later, at an ad-

vanced age, separate males for final fattening and slaughtering, while females are kept 

during several laying cycles [62,63]. Bearing this in mind, focusing efforts on the selection 

of the Utrerana breed toward an egg production aptitude and Sureña as a dual-purpose 

breed may be the most effective and profitable productive alternative. 

Although Sureña and Utrerana breeds were presumably selected from a common 

origin [8], the graphic representation of the observations assessed in the present study 

(Figure 4) reports a clear differentiation of morphological characteristics between the two 

breeds. While three clear clusters are shown in Utrerana breed (Partridge, Black, and Fran-

ciscan/White varieties), the closeness of the six varieties of the Sureña avian breed suggests 

a likely lack of reproductive management and crossbreeding among the different varieties 

of this breed. 

This proves that, once official breed recognition occurs, an incorrect application of a 

breeding program in local breeds can lead to a deterioration of the phenotypic and geno-

typic identity of the individuals, which directly results in the partial or total loss of the 

genetic pool of these local resources [64,65]. 
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Contextually, Partridge Utrerana was reported to be the most differentiated variety 

from all studied varieties. These results are supported by those in Macrì et al. [6], who 

reported Partridge Utrerana individuals to be placed the farthest away from the rest of 

Utrerana varieties. 

More than 75% of hens in each Utrerana variety were correctly classified (Supple-

mentary Table S3), except for the individuals of the White variety, whereby 50% of hens 

were notably classified as Franciscan Utrerana hens. This Utrerana White/Franciscan mis-

classification is supported by the results in Figures 5 and 6. Franciscan and White Utrerana 

varieties were closely clustered (Figures 5 and 6). This finding may indirectly indicate 

reminiscences of hybridization between White and Franciscan Utrerana varieties, with 

both presenting white legs and beak, which may be the result of the attempts of breeders 

to decrease the consanguinity within the White Utrerana variety, given that this variety 

has historically been the subpopulation accounting for the smallest census and that which 

faces the highest endangerment risk [22]. 

Blue Sureña variety females were those for which a rather frequent misclassification 

rate occurred (Supplementary Table S3). This finding may stem from the fact that breed-

ing practices performed in the area may seek the obtention of individuals presenting blue 

plumage patterns through a cross between other varieties, such as Black or Splash [66]. 

Biometric studies have been performed worldwide to make breed characterization 

feasible and to be considered during the implementation of conservation strategies and 

policies [16]. This suggests that the preservation of the breed diversity may be one of the 

motor elements ensuring the future survival of a breed. This future survival may rely on 

the enhancement of a breed’s ability to cover a wider scope of market demands, thereby 

reaching a broader audience [67]. The present methodological proposal is framed in the 

context of opportunity and resurgence of a potential production industry that intends to 

lay the base for a sustainable selective breeding program in avian breeds. Certain easily 

measurable traits, such as phaneroptic variables and ocular ratio, can efficiently play a 

pivotal role in the classification of birds. In this context, the discriminant tool designed in 

the present research allows efficiently classifying individuals considering biometric and 

phaneroptic traits. This is supported by the 71.82% and 81.48% of individuals correctly 

ascribed to their prior hen breed/variety cluster. 

5. Conclusions 

Sexual selection of larger males in backyard production systems may evidence clear 

sexual dimorphism in Utrerana and Sureña breeds. The use of these multivariate breeds 

is productively advantageous since a broader scope of market demands could be satisfied 

in terms of carcass organoleptic characteristics. This research confirms that native breeds 

in the south of Spain may be well adapted to extensive and backyard systems, but also 

that their differential zoometric adaptation may make them more suited for the aptitude 

that they were selected to perform. Nevertheless, the Utrerana breed showed a better mor-

phological adaptation to optimal antipredator behavior and rusticity. In any case, both 

breeds should follow different breeding programs considering alternative routes; the 

Sureña breed has greater potential as a dual-purpose breed, while morphometric traits of 

the Utrerana breed may be indicative of higher profitability in egg-producing farms. The 

present research validates the efficiency of the discriminant tool designed while perform-

ing individual selection and breed ascription considering easily measurables traits such 

as ocular ratio and phaneroptic variables, which may simultaneously ensure the survival 

of these local genetic resources. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ani11082211/s1: Figure S1. Illustration of classification trees in females populations; Fig-

ure S2. Illustration of classification trees in males populations; Table S1. Multicollinearity analysis 

of biometric-related traits in females; Table S2. Multicollinearity analysis of biometric-related traits 
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in males; Table S3. Appropriately classified females into their groups; Table S4. Appropriately clas-

sified males into their groups; Table S5. Leave-one-out cross-validation of females into their geno-

types; Table S6. Leave-one-out cross-validation of males into their genotypes. 
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