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Abstract

Several uniqueness results on compact maximal hypersurfaces in a wide class of globally
hyperbolic spacetimes are provided. They are obtained from the study of a distinguished
function on the maximal hypersurface and under suitable natural first order conditions of
the spacetime. As a consequence, several applications to Geometric Analysis are given.
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1 Introduction

On a spacetime, a continuos function which is strictly increasing on any future directed causal
curve, is called a time function. In 1968, Hawking proved that any stably causal spacetime
admits a time function [18]. Recall that a causal spacetime is said stably causal, if there is a
fine C0 neighborhood of the original metric of the spacetime such that any of its Lorentzian
metrics is causal [7]. Conversely, Hawking also proved that a spacetime is stably causal if
it admits a smooth function with an everywhere timelike gradient. More recently, Bernal
and Sánchez [8] defined a temporal function as a smooth function on the spacetime with
(past-directed) timelike gradient on all the spacetime, and proved that any spacetime which
admits a time function also admits a temporal function (see also [29]). Thus, as the authors
highlighted, this result combined with Hawking’s ones, ensures, on one hand, that any stably
causal spacetime admits a temporal function and, on the other hand, that any spacetime
which admits a time function is stably causal.

There exist a serie of folk questions referred to differentiability of time functions and
Cauchy hypersurfaces, and smooth orthogonal splitting of globally hyperbolic spacetimes.
The main theorem in [8] assures that an (n + 1)-dimensional globally hyperbolic spacetime



M is isometric to a smooth product manifold

R× S , g = −βdT 2 + ĝ,

where S is a smooth spacelike Cauchy hypersurface, T : R × S → R the natural projection,
β : R× S → (0,∞) a smooth function, and ĝ a 2-covariant symmetric tensor field on R× S,
satisfying:

i) ∇T is timelike and past-pointing on all M .
ii) Each hypersurface ST at constant T is a Cauchy hypersurface, and the restriction ĝT

of ĝ to ST is a Riemannian metric.
iii) The radical of ĝ at each w ∈ R× S is Span∇T at w.

If we denote by πS the canonical projection on S, which is a diffeomorphism restricted
to each level hypersurface ST , via πS we can give an one-parameter family of Riemannian
metrics gT on the differentiable manifold S.

Inspired in all these facts, we consider a natural family of globally hyperbolic spacetimes
which provides a kind setting for studying maximal hypersurfaces.

Consider a differentiable manifold F , an open interval I ⊂ R and an one-parametric family
{gt}t∈I of Riemannian metrics on F , i.e., a smooth map Λ : I × F → T0,2(F ), where T0,2(F )
denotes the fiber bundle of 2-covariant tensors on F , such that Λt : F → T0,2(F ) is a positive
definite metric tensor for all t ∈ I. The product manifold M = I × F can be endowed with
the Lorentzian metric given at each point (t, p) ∈ I × F by

g = βπ∗
I
(−dt2) + π∗

F
(gt) (g = −βdt2 + gt in short), (1)

where πI and πF denote the canonical projections onto I and F , respectively, and β ∈
C∞(I × F ) is a positive function.

We will say that a spacetime is orthogonal-splitted, if it is isometric to a spacetime (M, g =
−βdt2 + gt). Observe that every orthogonal-splitted spacetime is stably causal.

Maximal hypersurfaces play a relevant role in General Relativity and Lorentzian Geometry
by several reasons. Among them, it should be emphasized that this class of hypersurfaces are
important tools in the analysis of the Cauchy problem with the purpose of dealing with simpler
constraint equations or solve them (see [13], [14] and [15, Chap. VI]). Also, in the proof of
positivity of gravitational mass, maximal hypersurfaces appear as useful geometric objects (see
[31]). Furthermore, they describe the transition between expanding and contracting phases
of the universe, in some relevant cases [9]. A complete summary of reasons justifying the
importance of maximal (and constant mean curvature) hypersurfaces in General Relativity
can be found in [21].

From a mathematical point of view, the maximal hypersurfaces arise naturally as criti-
cal points of the n-dimensional area functional for compactly supported normal variations.
A global and motivating result concerning maximal hypersurfaces is the Calabi-Bernstein
theorem. This theorem asserts that the only complete maximal hypersurfaces in the Lorentz-
Minkowski spacetime, Ln, are the spacelike hyperplanes. This fact was proved by Calabi [11]
for n ≤ 4, and extended to arbitrary dimension by Cheng and Yau [12]. In another space-
times, the problem of characterizing maximal hypersurfaces has become a research topic of a
great interest. For instance, in [10] Brill and Flaherty replaced the Minkowski spacetime with
a spatial closed universe, and proved uniqueness at large by assuming Ric(z, z) > 0 for all
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timelike vectors z (ubiquitous energy condition). In [21], this energy condition was relaxed
by Marsden and Tipler to include, for instance, non-flat vacuum spacetimes. On the other
hand, Bartnik [6] proved very general existence theorems and, consequently, he claimed that
it would be useful to find new satisfactory uniqueness results. More recently, in [5] Aĺıas,
Romero and Sánchez proved new uniqueness results in the class of spatially closed gener-
alized Robertson-Walker spacetimes (which includes the spatially closed Robertson-Walker
spacetimes), under the Temporal Convergence Condition. Moreover, in [4] Aĺıas and Mon-
tiel improved some of these results and, employing a generalized maximum principle due to
Omori [22] and Yau [33], gave a general uniqueness result for the case of complete constant
mean curvature spacelike hypersurfaces under certain boundedness of the Ricci curvature.
Finally, in [26] Romero, Rubio and Salamanca obtained uniqueness results in the maximal
case for spatially parabolic generalized Robertson-Walker spacetimes, which are open models
whose fiber have a parabolic universal Riemannian covering (see [26] and [27]). Recall that a
generalized Robertson-Walker (GRW) spacetimes, introduced in [5], is given by the product
manifold of an interval of the real line, I, and a Riemannian manifold (F, gF ) furnished with
the Lorentzian metric g = −dt2 +f2gF , where f : I −→ (0,∞) is a smooth function. Another
rencent results about uniqueness of constant mean curvature spacelike complete (maximal
and of constant mean curvature) hypersurfaces in GRW spacetimes can be found in [1], [2],
[24] and [28].

The main aim of this work is to study uniqueness of compact maximal hypersurfaces in
orthogonal-splitted spacetimes which satisfy certain natural first order conditions, in particu-
lar avoiding curvature assumptions. Thus, in Proposition 1 a characterization of orthogonal-
splitted spacetimes which admit a compact spacelike hypersurface (i.e., the spacetime is spa-
tially closed) is provided. We also prove that, under certain natural hypotheses, the compact
maximal hypersurfaces must be level hypersurfaces of the time function.

In Section 3, we assume certain homogeneity in the expansive or contractive behavior
of the orthogonal-splitted spacetime. More specifically, for each v ∈ TqF , q ∈ F , denote
by ṽ the lift of v on the integral curve αq(s) = (s, q) ∈ I × F . We say that the spacetime
(M, g) is non-contracting in all directions if ∂tβ ≤ 0 and ∂tg(ṽ, ṽ) ≥ 0, for all q ∈ F and
v ∈ TqF . Analogously, we say that the spacetime is non-expanding in all directions if the
previous inequalities are reversed. Observe that the spacetime is non-contracting (resp. non-
expanding) if and only if L∂tg is semi-definite positive (resp. semi-definite negative), where
L denotes the Lie derivative.

If we consider the observer field U = 1√
β
∂t, the proper time τ of the observers in U is

given by dτ =
√
β dt. As a consequence, the assumption ∂tβ ≤ 0 (resp. ∂tβ ≥ 0) assures

that the rate of change (acceleration) of the proper time with respect to the time function t is
non-increasing (resp. non-decreasing). Observe also that the Lorentzian length | ∂t |= −

√
β

is non-decreasing (resp. non-increasing) along the integral curves of ∂t. All these physical
interpretations can be considered locally.

On the other hand, the spacelike assumption ∂tg(ṽ, ṽ) ≥ 0 (resp. ∂tg(ṽ, ṽ) ≤ 0), guarantees
that an observer in U measures non-contraction (resp. non-expansion) in all directions of its
physical space.

There are many important examples of orthogonal-splitted spacetimes satisfying these
conditions. For instance, any standard static spacetime M = I × F , g = −βdt2 + g, being
β : F −→ (0,∞) a smooth function, clearly obeys our assumptions. Also a GRW spacetime
satisfies the imposed conditions whenever the derivative f ′ of the warping function is signed.

3



As a last example, let us consider the differentiable manifold M = I × F endowed with
Lorentzian metric g = −β(t)dt2 + f(t) gF , where gF is a Riemannian metric on F . We can
rewrite this metric as g = −dτ2 + f(t(τ))gF . If we assume f ′(t) ≥ 0, f ′′(t) ≥ 0 and β′(t) ≤ 0,
then the spacetime M favors to model an accelerated expanding universe.

Our first uniqueness result is enunciated as follow (see Section 3).

Let (Mn, g), n ≥ 3, be an orthogonal-splitted spacetime. Suppose that (M, g) is
non-contracting (or non-expanding) in all directions. Then each compact maximal
hypersurface in M must be a leaf of the foliation orthogonal to the vector field ∂t,
that is, a level spacelike hypersurface of the temporal function t.

Some nice consequences are analized, and several applications to relevant class of space-
times are provided.

In Section 4, we consider a change on the expansive (or contractive) behavior of the
spacetime. In particular, we assume that there exists an instant t0 of the temporal function
such that the region of the spacetime t < t0 is non-contracting in all directions, while the
region t > t0 is non-expanding in all directions. The level hypersurface t = t0 will be called a
level transition spacelike hypersurface. Then, we prove the following:

Let (Mn, g), n ≥ 3, be an orthogonal-splitted spacetime which has a level spacelike
transition hypersurface. Then every compact maximal hypersurface in M must be
a level spacelike hipersurface.

Finally, Section 5 is devoted to present some applications to Geometric Analysis.

2 Preliminaries

Let (M, g) be an n + 1-dimensional orthogonal-splitted spacetime (n ≥ 2). An immersion
x : S → M of an n-dimensional connected manifold S into M is said to be spacelike if
the induced metric g on S is Riemannian. In this case, we will refer to S as a spacelike
hypersurface. For each spacelike hypersurface S in M we can take N ∈ X⊥(S) as the only
globally unitary timelike vector field normal to S in the same time-orientation of the vector
field −∂t (i.e., such that g(N,−∂t) < 0). From the Lorentzian metric (1), it follows that
g(N, ∂t) =

√
β cosh θ, where θ is the hyperbolic angle between S and −∂t at any point of S

(see, for instance, [23, Prop. 5.30]). We will denote by t̃ the function πI ◦ x on S, where πI

is the projection of M onto the time-coordinate factor.
Along this paper, the leaves of the foliation orthogonal to the vector field ∂t are also

called level spacelike hypersurfaces. Note that a spacelike hypersurface S is contained in a
level spacelike hypersurface if and only if the function time t is constant on S.

Let ∂>t := ∂t+g(N, ∂t)N be the tangential component of ∂t along S. It is easy to see that

∇t̃ = − 1

β
∂>t , (2)

where ∇ denotes the gradient on S.
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From the Gauss and Weingarten formulas associated with the immersion x, we have

∇XY = ∇XY − g(AX,Y )N ,

for all X,Y ∈ X(S), where ∇ and ∇ are the Levi-Civita connections of S and M , respectively,
and A is the shape operator associated to N ,

AX := −∇XN .

Recall that the mean curvature function relative to N is given by H := −(1/n)tr(A). A
spacelike hypersurface is called maximal provided that H = 0. It is easy to check that a level
spacelike hypersurface has mean curvature

nH =
1√
β

div(∂t)−
1

2β3/2
∂tβ. (3)

Thus, a a level spacelike hypersurface {t = t0}, will be maximal if it satisfies the equation

1√
β

div(∂t)−
1

2β3/2
∂tβ = 0, (4)

at t0.
On the other hand, a maximal hypersurface is a critical point of the volume variation of

a certain family of hypersurfaces (see [20]). Indeed, let x : S −→M be an isometric compact
spacelike hypersurface immersed into the spacetime M . We shall indistinctly speak of S and
its image if no confusion arises. Let ωS be the canonical volume element of S with respect to
the induced metric g. The n-volume of S is given by

VS =

∫
S
ωS .

Next, let us calculate the variation of VS and ωS when we perform a deformation of the
hypersurface S. Let ξ be a differentiable vector field defined on a neighbourhood of x(S).
Then, ξ generates a one-parameter group {ϕs}s∈J of local transformations, where s is the
canonical parameter and J ⊂ R an open interval containing s = 0. We can define a one-
parameter family of isometric immersions of hypersurfaces xs : S −→M given by xs = ϕs ◦x.
Observe that, in particular, x0 = x. Let us also denote by ωs the corresponding canonical
n-volume element for each xs, being ω0 ≡ ωS . Then, a standard calculation leads to

dVxs
ds

(0) =

∫
S

(divξ + g(ξ, ~H))ω0,

where div stands for the divergence operator of (M, g). In particular, if S is maximal then

from the Gauss theorem it follows that dVxs
ds (0) = 0.

3 Spacetimes with homogeneity in its expanding-contracting
behavior

First of all, we study conditions under which an orthogonal-splitted spacetime (M = I×F, g)
admits a compact spacelike hypersurface. Observe that if F is compact, then the spacetime
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is spatially closed. Moreover, the converse also holds, as the following reasoning shows. Let S
be a (connected) compact hypersurface in the spacetime M and [t0, t

0] ⊂ I a closed interval
such that πI (S) = [t0, t

0]. Consider the canonical projection πF : S −→ F .
Let TU be the fibre bundle of unitary tangent vectors on S. Then, for all u ∈ TU we have

g(u, u) ≤ gπ
I
(u)(dπF (u), dπF (u)) = B(t, u)gt0(dπF (u), dπF (u)),

where B(t, u) is a smooth function defined on the compact interval [t0, t
0]×TU . If we denote

by B the maximum of B(t, u), we have

g(v, v) ≤ Bgt0(dπF (v), dπF (v)).

As a direct consequence the map dπF is a local dipheomorfism and, making use of [16,
Lemma 3.3, Chap. 7], we conclude that πF is a covering map.

Proposition 1 i) If an orthogonal-splitted spacetime (I × F, g) admits a compact spacelike
hypersurface, then F is compact.

ii) Moreover, if the universal Riemannian covering of F is compact and S is a complete
spacelike hypersurface such that the function B(t, u), with t ∈ πI(S) and u ∈ TU , is bounded,
then S is compact.

This result properly extends [5, Prop. 3.2] to a wider family of spacetimes. Obviously, an
orthogonal-splitted spacetime admitting a compact spacelike hypersurface is globally hyper-
bolic.

In order to obtain our results, next we develop a formula based on the computation of the
Laplacian of the function t̃ on a maximal hypersurface S immersed in a orthogonal-splitted
spacetime (M, g). From (2), a straightforward computation leads to

∆t̃ =
1

β2
∂>t (β)− 1

β
div(∂>t ) , (5)

where ∆ and div denote the Laplacian and divergence operators of the (S, g). Now, we can
write

div(∂>t ) = div(∂t) + div(g(N, ∂t)N) + g(∇N∂t, N) ,

where div denote the divergence operator of the spacetime. Since the hypersurface is maximal,
we obtain

div(∂>t ) = div(∂t) + g(∇N∂t, N) . (6)

The term div(∂t) has a geometrical interpretation and, in fact, it can be written in terms
of a certain volume function. To see that, let us take Ω the canonical Lorentzian volume
element of the spacetime ([23], [3]). Then, making use of the Cartan’s theorem it follows

d ◦ i
∂t

Ω = div(∂t)Ω .

Consider the level spacelike hypersurface {t = t0}, t0 ∈ I, and let ω0 be the canonical
Riemannian volume element on (F, gt0 ). Since the spacetime M is orthogonal-splitted, then

Ω =
√
βdt ∧ Volslice(t)ω0, where the function Volslice(t) satisfies that Volslice(t)ω0 = ωt, ωt
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being the canonical Riemannian volume element of the (Riemannian) manifold (F, gt). Hence,
we have

div(∂t) = ∂t log Volslice +
1

2

∂tβ

β
. (7)

On the other hand, if we write the normal vector N as

N = −cosh θ√
β
∂t +NF ,

where g(NF , ∂t) = 0, then

g(∇N∂t, ∂t) =
cosh2 θ

β
g(∇∂t∂t, ∂t) +

cosh θ

β
{g(∇∂t∂t, NF ) + g(∇NF ∂t, ∂t)}+ g(∇NF ∂t, N

F ).

Let p ∈ S be such that NF (p) 6= 0 and take coordinates (U , (t ≡ x0, x1, . . . , xn)) around p
in the product manifold I ×F , such that NF = ∂x1 on S ∩U . Then, from the equality which
determines the Christoffel symbols for a coordinate system, we have

g(∇∂t∂t, NF ) = −1

2
∂x1g(∂t, ∂t)

and

g(∇NF ∂t, ∂t) =
1

2
∂x1g(∂t, ∂t).

Furthermore,

g(∇NF ∂t, N
F ) =

1

2
∂tg(∂x1 , ∂x1).

Now, using (6) and (7) we get

g(∇N∂t, N) = −cosh2 θ

2β
∂tβ +

1

2
∂tg(∂x1 , ∂x1) .

Finally, from (5) we arrive to

∆t̃ =
1

β2
∂>t β −

1

β

[
∂t log volslice −

1

2

sinh2 θ

β
∂tβ +

1

2
∂tg(∂x1 , ∂x1)

]
. (8)

Now, assuming that the spacetime has dimension greater or equal than 4, we can consider,
on S, the metric g̃ = β2/(n−2)g pointwise conformal to the induced one g. In terms of this
new metric, the equation (8) changes to

∆̃t̃ = −β−n/(n−2)
[
∂t log volslice −

1

2

sinh2 θ

β
∂tβ +

1

2
∂tg(∂x1 , ∂x1)

]
. (9)

Therefore, if the spacetime is non-contracting or non-expanding in all directions, then for
each point q ∈ S such that NF 6= 0 there exists an open neighborhood where ∆̃t̃ have the
same sign. Observe that the term ∂t log volslice can be physically interpreted as the increase
or decrease of the local volume of the physical space for an observer in U .

On the other hand, let q′ ∈ S be a point where NF (q′) = 0 and assume that there is no
an open set V ∈ S, with q′ ∈ V, such that NF (p) = 0 for all p ∈ V. As a consequence, we can
take a sequence {qn}∞n=1 in V such that limn→∞ qn = q′, NF (qn) 6= 0 for all n, and ∆̃t̃(qn)
has equal sign for all n. Thus, by continuity, ∆̃t̃(q′) has the same sign. Finally, if there exists
an open set V ⊂ S such that NF (p) = 0 for all p ∈ V, then ∆̃t̃ = 0 on V.
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Remark 2 Although this conformal change does not apply when the manifold F is 2-
dimensional, we can build a 1-dimensional extension in order to increase the dimension of
the Riemannian factor and the spacetime. Indeed, suppose that dim(F ) = 2 and let S be
a maximal surface in the spacetime (I × F, g). We consider the Lorentzian manifold man-
ifold

(
(I × F )× S1, g + ds2

)
, being ds2 the standard metric of S1 and the following natural

3-dimensional isometric immersion, x̂ : S×S1 → (I × F )×S1, with x̂(p, s) = (x(p), s), for all
p ∈ S and s ∈ S1.

Let us consider the natural identifications

T(p,s)(S × S1) ≡ TpS ⊕ TsS1, p ∈ S, s ∈ S1

and
T(q,s)(M × S1) ≡ TqM ⊕ TsS1, q ∈M, s ∈ S1.

Then, for each tangent vector v ∈ TpS (resp. normal vector w ∈ TpS⊥) there is a canonical
tangent vector v̂ = (v, 0) ∈ T(p,s)(S × S1) (resp. ŵ = (w, 0) ∈ T(p,s)(S × S1)⊥). Moreover, it

is clear that if the surface S is maximal in M , then the hypersurface S × S1 is maximal in
M × S1.

We are now in position to state the following result,

Theorem 3 Let (Mn, g), n ≥ 3, be an orthogonal-splitted spacetime. Assume that (M, g) is
non-contracting or non-expanding in all directions. Then every compact maximal hypersurface
in M must be a level spacelike hypersurface satisfying equation (4).

Proof. Under the assumptions in the statement above, we get from equation (9) that t̃ is a
superharmonic or subharmonic function on a compact Riemannian manifold. Then, t̃ must
be constant. �

Remark 4

a) As equation (9) shows, if such a hypersurface {t = t0} exists, then ∂t log volslice(t0) = 0.

b) A simply calculation shows that

dωs
ds

(0) =
1

2
traceS [x∗(Lξg)]ω0,

where L stands for the Lie derivative. Assuming that the level hypersurface {t = t0} is
maximal and taking ξ = ∂t, we obtain that

1

2
traceS [x∗(L∂tg)] = 0.

Moreover, if ∂t is a conformal vector field, i.e., L∂tg = 2ρg, then ρ|t=t0
= 0, where ρ

denotes the conformal factor.

Corollary 5 Let (I × F,−dt2 + gt) be an orthogonal-splitted spacetime, with β ≡ 1, such
that the physical space of the observer in ∂t does not expand (resp. contract) in all directions.
Then every compact maximal hypersurface must be a level spacelike hypersurface.
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Remark 6 Note that, when β ≡ 1, the vector field ∂t is an observer field with proper time
t, and such that the observers in ∂t are proper time synchronizables.

Moreover, each level spacelike hypersuperface F (t) := {t}×F at t constant is a restspace
of ∂t, being each event in F (t) simultaneous for all the observers in ∂t.

Given p, q ∈ F , the distance between pt := (t, p) and qt := (t, q) measured by an observer
at the instant t is given by dt(pt, qt), where dt is the Riemannian distance in F (t). Therefore,
the spacetime is non-contracting (resp. non-expanding) in all directions if and only if dt(pt, qt)
is non-decreasing (resp. non-increasing) for all p, q ∈ F .

We can derive some consequences from the previous results for certain relevant spacetimes.
The first application is relative to multiply warped product spacetimes. Consider I an interval
of the real line, m (m ≥ 2) Riemannian manifolds (Fi , gi) and m positive functions fi ∈
C∞(I), and let us endow the product manifold I × F1 × · · · × Fm with the Lorentzian metric
−dt2 + f2

1
g1 + · · ·+ f2

m
gm .

Multiply warped products are interesting in Cosmology. For instance, it is well-known
that the Kasner spacetime can be regarded as a multiply warped product [17]. Also, in the
study of the (2 + 1) BTZ Black Hole, the multiply warped products are considered [19].

Observe that, if fi = f for all i, then the spacetime is a generalized Robertson-Walker
spacetime.

Corollary 7 Let (I × F1 × · · · × Fm ,−dt2 +
∑m

i=1 f
2
i (t)gFi

) be a multiply warped product
spacetime, such that the functions f ′i(t) have a common sign for all i = 1, ..., n. Then, every
compact maximal hypersurface in M must be a level spacelike hypersurface.

In particular, in every Lorentzian product (R× F,−dt2 + gF ), the only compact maximal
hypersurfaces are the spacelike level hypersurfaces.

It can also be treated the case of standard static spacetimes (compare with [30, Prop. 2]),

Corollary 8 In an n-dimensional (n ≥ 3) standard static spacetime (I × F,−h2dt2 + gF ),
the only compact maximal hypersurfaces are the level spacelike hypersurfaces.

Observe that, in this case, every level spacelike hypersurface {t = t0} is totally geodesic.

Finally, we can also consider the case of certain Lorentzian twisted products. Recall that
a Lorentzian twisted product is a product manifold of an open interval I of the real line and
a Riemannian manifold (F, gF ), endowed with the Lorentzian metric g = −dt2 + λgF , where
λ ∈ C∞(I×F ) is a positive function. In this case, it is well-known that the level hypersurfaces
at t constant are totally umbilical (see [25]).

Corollary 9 In a Lorentzian twisted product spacetime (I × F,−dt2 + λgF ) such that ∂tλ ≥
0 (resp. ≤ 0), every compact maximal hypersurface is a level spacelike hypersurface at t
constant.

4 Behavior of the volume function

In this section, we consider spacetimes whose expanding or contracting behaviour changes
its monotonicity. With this aim, we introduce the following notion. We say that in an
orthogonal-splitted spacetime, (I × F,−βdt2 + gt), a level spacelike hypersurface t = t0 is a
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level transition hypersurface, if the spacetime is non-contracting in the region of spacetime
with t ≤ t0 and non-expanding in the region of spacetime with t ≥ t0.

Note that if there exist two different spacelike level transition hypersurfaces, then the
portion of the spacetime contained between them has a geometrical and physical meaning. In
geometrical terms, in this region the -metric of the- spacetime has no dependance with the
t-coordinate; in physical terms, the spacetime does not evolve here (it is standard static in
this region).

Observe that this change of behavior is similar to the one of the spatially closed Friedmann
model present (see, for instance, [23, Ch. 12]).

Taking into account the formula (3), it is clear that any level transition hypersurface must
be maximal.

Next, we present our second main result:

Theorem 10 Let (Mn, g), n ≥ 3, be an orthogonal-splitted spacetime which has a level space-
like transition hypersurface. Then every compact maximal hypersurface in M must be also a
level spacelike hypersurface.

Proof. Let {t = t0} be the level spacelike transition hypersurface. Consider the function t̃− t0
on a compact maximal hypersurface. From (9), it follows that

(t̃− t0)∆̃(t̃− t0) ≥ 0 .

This fact implies that t̃ − t0 is constant, and so the hypersurface must be a level spacelike
hypersurface.

To clarify the last reasoning, consider any function h ∈ C∞(P ) on a compact Riemannian
manifold P , such that h∆h ≥ 0. Then, by considering ∆h2 and the divergence theorem, it
is no difficult to see that h must be constant. This, applied to the function t̃ − t0 , ends the
proof. �

Example 11 The previous theorem can be applied to a wide family of spacetimes. For in-
stance, let (Fi , gi), 1 ≤ i ≤ m, be a finite set of compact Riemannian manifolds. Consider the
Lorentzian multiply warped product spacetime (R×F1 ×· · ·×Fm ,−dt2 +

∑
i a

2
i

exp(−b2
i
t2)gi),

where ai , bi, are non-zero constants. As a consequence of Theorem 10, in this spacetime the
only compact maximal hypersurface is given by the spacelike slice {t = 0}.

Remark 12 The concept of transition hypersurface can be given, in a similar way, for a
spacelike hypersurface (non-necessarily for a spacelike level hypersurface). Nevertheless, such
a transition hypersurface may not be maximal, as the following example shows. Consider the
spacetime (I × S1,−dt2 + (−t2 + 2t sin s+ 3)ds2), where I ⊂ R is the maximal domain of the
t coordinate where the spacetime can be defined. Here, the transition hypersurface is given
by t = sin s and it is not maximal.

Remark 13 If the inequalities are reversed in the definition of transition hypersurface, coun-
terexamples to uniqueness results can be provided. For example, consider the de Sitter space-
time, (R × Sn,−dt2 + cosh2(t)gSn ). Every rigid motion of the level spacelike hypersurface
{t = 0} is a maximal hypersurface. Observe that, in this case, {t = 0} constitutes the level
spacelike transition hypersurface with reversed behavior.
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5 Applications to Geometric Analysis

We will begin this section showing that every compact spacelike hypersurface in an orthogonal-
splitted spacetime is a maximal hypersurface in a suitable pointwise conformal spacetime.
Later, our previous uniqueness parametric results will be applied to study several Geometric
Analysis problems, which arise naturally from Lorentzian Geometry.

Let S be a spacelike hypersurface isometrically immersed in an orthogonal-splitted space-
time (M, g). It can be considered the hypersurface S isometrically immersed in the pointwise
conformal spacetime (M, g̃ = e2αg), where α ∈ C∞(I × F ). The unitary normal vector field
N of S in (M, g), is related with the unitary normal vector field Ñ of S in (M, g̃ = e2αg) by
Ñ = e−αN . Observe that since S is spacelike in (M, g), then S is also spacelike in (M, g̃). If
we take {Ei}ni=1 a local frame field on S in (M, g), then {e−αEi}ni=1, denoted by {Ẽi}ni=1, is a
local frame field on S in (M, g̃) . Denoting by H and H̃ the mean curvatures of S in (M, g)
and (M, g̃), respectively, we have

nH̃ =

n∑
i=1

g̃(∇̃Ẽi
Ñ , Ẽi) =

n∑
i=1

g(∇̃Eie
−αN,Ei) =

n∑
i=1

e−αg(∇̃EiN,Ei) ,

where ∇̃ is the Levi-Civita connection of g̃. Then, from the previous equation it follows

eαH̃ = H + g(∇α,N) . (10)

We need the following technical result:

Lemma 14 Let S be a compact spacelike hypersurface immersed in an orthogonal-splitted
spacetime (M, g) and N its unitary normal vector field. Then, for every function h ∈ C∞(S),
there exists a function α ∈ C∞(M) such that

(∇α)⊥|S = −hN .

Proof. The compactness of S allows to take an open interval J such that the geodesics
γp(s) starting at p ∈ S satisfying γ′p(s) = N(p) are defined for all p ∈ S and for all s ∈ J .
On the other hand, the function h can be extended to a tubular neighborhood U = {γp(s) :
s ∈ J, p ∈ S} of S, being h constant along each geodesic γp(s), with value h(p). Moreover,
the vector field defined in each point of U by γ′p(s), also extends to the normal vector field
N . Obviously, its flow on I × S is given by ϕ(s, p) = γp(s), being ϕ bijective. Consider the

smooth function πJ ◦ ϕ−1. Then, the normal component of the gradient ∇
(
h · (πJ ◦ ϕ−1)

)
|S

is equal to hN , since g(N,∇h) = 0.
Now, let us take φ a function on M such that 0 ≤ φ(p) ≤ 1, for all p ∈M , satisfying (see

Corollary in Section 1.11 of [32]) that
i) φ(p) = 1 if p ∈ {γp(s) : s ∈ J ′, p ∈ S}, being J ′ ⊂ J a closed interval with 0 ∈ J ′.
ii) suppφ ⊂ U .
Therefore, the function φ allows to extend the function πJ ◦ ϕ−1 to all M and obtain α.

�

Lemma 15 In an orthogonal-splitted spacetime, every compact spacelike hypersurface is a
maximal hypersurface in a suitable pointwise conformal spacetime.

11



Proof. It follows from equation (10) and the previous lemma. �

Let (M, g) be an orthogonal-splitted spacetime and α ∈ C∞(F ) a smooth function. Con-
sider the natural extension α = α ◦ πF on M . Let S be a compact maximal hypersurface
in (M, g). Then, from (10), the mean curvature function of S isometrically immersed in the
conformal spacetime (M, e2αg) is given by

H̃ = e−αg(∇α,N) .

Note that the uniqueness of S as maximal hypersurface in (M, g), is equivalent to the
uniqueness of S as compact spacelike hypersurface in (M, e2αg), whose mean curvature is
H̃ = e−αg(∇α,N). Making use of this fact, we can obtain some Geometric Analysis results.

Let F be a compact differentiable manifold and (I × F, g) an n-dimensional ((≥ 4))
orthogonal-splitted spacetime. Let u : F −→ I be a smooth function, such that the entire
graph Σu = {(u(p), p) : p ∈ F} is spacelike. Consider α ∈ C∞(F ) and denote by N the
unitary normal vector field on Σu. If H̃(u) stands for the mean curvature function on the
graph Σu isometrically immersed in the conformal spacetime (I × F, e2αg), with α = α ◦ πF ,
and we assume that either the spacetime (I × F, g) is non-contracting or non-expanding in
all directions, or it has a level spacelike transition hypersurface, then every solution to the
equation

H̃(u) = e−αgu(dπF (N), Duα),

being Du the gradient operator in (F, gu), must be constant.

This last fact can be particularized to the case in which the Lorentzian ambient manifold
is a generalized Robertson-Walker spacetime.

Let (F, gF ) be a n-dimensional compact Riemannian manifold and f : I −→ R a positive
smooth function. For each u ∈ C∞(F ) such that u(F ) ⊆ I, we can consider its graph
Σu = {(u(p), p) : p ∈ F} in the Lorentzian warped product (M = I ×f F, g). The graph
inherits from M a metric, represented on F by

gu = −du2 + f(u)2gF .

This metric is Riemannian (i.e. positive definite) if and only if u satisfies |Du| < f(u)
everywhere on F , where Du denotes the gradient of u in (F, gF ) and |Du|2 = gF (Du,Du).
Note that t̃(u(p), p) = u(p) for any p ∈ F , and so t̃ and u may be naturally identified on Σu.

When Σu is spacelike, the unitary normal vector field on Σu satisfying g(N, ∂t) < 0 is

N =
1

f(u)
√
f(u)2− | Du |2

(
f(u)2∂t +Du

)
.

Theorem 16 Let (F, gF ) be a compact Riemannian manifold, and α : F −→ R, f : I −→
(0,∞) smooth functions, where I = (a, b) is an open interval, satisfying:

i) either f ′ is signed,
ii) or f is non-decreasing in the interval (a, t0) and non-increasing in the interval (t0, b),

for some t0 ∈ (a, b).

Then, the only entire spacelike graphs Σu = {(u(p), p) : p ∈ F} in the spacetime (I ×
F,−e2αdt2 + e2αgF ) whose mean curvature H̃ is prescribed by

12



H̃(u) =
e−α

f(u)
√
f(u)2− | Du |2

gF (Dα,Du)

are the constant graphs u = u0 such that f ′(u0) = 0.

Note that the graph Σu is spacelike in (I × F,−e2αdt2 + e2αgF ) if and only if so is in
(I × F,−dt2 + f(t)2 gF ). On the other hand, if we conceive the mean curvature function of a
graph Σu as a known operator H̃(u) on C∞(F ), Theorem 16 can be rewritten in the following
equivalent form:

Theorem 17 Let (F, gF ) be a compact Riemannian manifold, and α : F −→ R, f : I −→
(0,∞) smooth functions, where I = (a, b) is an open interval, satisfying:

i) either f ′ is signed,
ii) or f is non-decreasing in the interval (a, t0) and non-increasing in the interval (t0, b),

for some t0 ∈ (a, b).

Then, the only solutions to the differential equation

H̃(u) =
e−α

f(u)
√
f(u)2− | Du |2

gF (Dα,Du),

with the restriction | Du |< f(u) are the constant functions u = u0, with f ′(u0) = 0.
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