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Abstract: In this paper, we propose a master–slave methodology to address the problem of optimal
integration (location and sizing) of Distributed Generators (DGs) in Direct Current (DC) networks.
This proposed methodology employs a parallel version of the Population-Based Incremental Learning
(PPBIL) optimization method in the master stage to solve the location problem and the Vortex Search
Algorithm (VSA) in the slave stage to solve the sizing problem. In addition, it uses the reduction of
power losses as the objective function, considering all the constraints associated with the technical
conditions specific to DGs and DC networks. To validate its effectiveness and robustness, we use as
comparison methods, different solution methodologies that have been reported in the specialized
literature, as well as two test systems (the 21 and 69-bus test systems). All simulations were performed
in MATLAB. According to the results, the proposed hybrid (PPBIL–VSA) methodology provides
the best trade-off between quality of the solution and processing times and exhibits an adequate
repeatability every time it is executed.

Keywords: direct current grids; distributed generation; direct current networks; metaheuristic
optimization; parallel processing tools; power loss reduction

1. Introduction

In this section, we present a general context of the problem addressed, the litera-
ture review process that was undertaken, explain the proposed methodology and main
contributions, and outline the document organization. The information related to each
sub-section is presented below.

1.1. General Context

In both conventional and current electrical systems, different technical and economic
aspects that directly affect network operators and users must be enhanced, including their
high investment and operating costs, high levels of energy loss associated with energy
transportation, and high levels of pollution due to the implementation of power generation
sources based on fossil fuels [1]. To address these issues, the electrical sector and several
authors have recently focused on developing and promoting various strategies [2]. Some
of these strategies are the reconfiguration of electrical networks [3] and the integration of
new technologies such as reactive compensators (e.g., ultracapacitors and super induc-
tors) [4,5], energy storage elements [6], and Distributed Generation (DG) sources based on
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renewable energy resources [7]. These latter sources are some of the most widely applied
and developed technologies and the focus of this paper.

The development of power electronics in recent decades has allowed for medium-
and large-scale integration of DG sources into both Alternating Current (AC) and Direct
Current (DC) networks [8] using mainly renewable energy resources. This has enabled
countries to diversify their energy matrices and improve the technical, economic, and envi-
ronmental conditions of their electrical energy distribution systems [8,9]. DG integration
in electrical distribution systems can, for instance, help to reduce power losses, the load-
ing capability of lines, investment and operating costs, and CO2 emissions, as well as to
improve voltage profiles [10,11]. Furthermore, it positively impacts the socioeconomic
conditions of the region where the electrical system is installed because a high-quality and
reliable electricity service drives the region’s economic development while improving the
quality of life of its inhabitants [12]. However, it should be noted that the realization of
these benefits depends on the methodology implemented to size and locate the DGs in the
electrical network: there may be positive or negative technical, economic, and environmen-
tal consequences depending on their location and the amount of power injected into the
electrical network [1,13].

1.2. Literature Review

After analyzing the contributions made by different authors to the specialized lit-
erature in the past decade, we observed a growing tendency towards the investigation
and implementation of DC networks given the various benefits they offer over AC net-
works [14,15]. Their main advantages include reduced complexity in the network’s plan-
ning and operation because no reactive analysis is performed, ease of implementation of
the main energy generation and storage sources (solar panels and batteries) in this type
of network, lower power losses due to a reduced number of energy converting elements,
and lower investment costs associated with a reduced number of elements in the electrical
energy distribution systems [13,16]. Because of all the aforementioned advantages and
with the aim of improving the networks’ operating conditions, this paper addresses the
problem of optimal integration of DGs into DC networks.

To solve this problem, various authors have employed specialized software (e.g., opti-
mization software such as the General Algebraic Modeling System (GAMS)) and proposed
mixed-integer quadratic programming models and convex and conical optimization meth-
ods, among others [17–19]. Nonetheless, due to the presence of binary variables within the
location problem, these strategies fail to provide an optimal solution, thus requiring the
use of specialized software for their implementation. As a result, the complexity of their
solution and its implementation costs increase [20].

To reduce the complexity of the solutions to the problem addressed here and promote
the use of free software, recent studies have employed optimization methods based on
sequential programming [1], mainly master–slave strategies. In these strategies, the master
stage deals with the binary problem of optimal location of DGs; the slave stage deals
with their sizing (this latter being a problem of continuous variables) [1,20]. For instance,
the authors of [21] used the Particle Swarm Optimization (PSO) algorithm to size DGs in a
DC network, considering aspects such as costs and power losses, and demonstrated the
effectiveness of their proposed method. However, they did not compare their findings with
those reported in the literature and employed a single-node network, which does not make
it possible to address the problem of location of DGs.

In [22,23], the authors proposed a Continuous Genetic Algorithm (CGA) and an
optimization method based on the Black Hole (BH) algorithm to solve the problem of sizing
of DGs in DC networks, without considering the problem of their location. Their results
showed the effectiveness of the proposed methodologies in terms of reduced processing
times and power losses. In [24], three hybrid methodologies were presented and evaluated.
The authors used the Genetic Algorithm (GA) and three different continuous techniques
(CGA, BH optimization method, and PSO) to solve the master and slave stages, respectively.
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The three methodologies were validated in the 10- and 21-bus test systems. According
to their results, the GA–BH methodology achieved the best trade-off between processing
time and power losses, regardless of the total power provided by the DGs and the size of
the network. In [20], a hybrid approach based on Population-Based Incremental Learning
(PPBIL) and PSO was introduced to solve the problem of optimal integration of DGs into
DC networks. After being compared with another nine approaches (including the three
presented in a previous study), the proposed approach achieved the best results in terms of
processing times and quality of the solution for different network sizes.

As observed in this literature review, DC networks are quite important and there is a
need to integrate DG sources into them in order to improve their operating conditions and
reduce their processing times. In addition, we identified the reduction of power losses as
the most common objective function. To address these issues, hybrid methodologies that
combine different highly-efficient optimization algorithms based on sequential program-
ming must be developed, as they eliminate the need for specialized software and deliver
good quality solutions with minimal processing requirements.

1.3. Proposed Methodology and Main Contributions

In this paper, we present a methodology based on a master–slave strategy between
the PPBIL algorithm and the Vortex Search Algorithm (VSA) for the optimal integration of
DGs into DC networks. This methodology makes it possible to reduce processing times
and improve the technical conditions of the network, thus minimizing power losses and
ensuring compliance with technical constraints. The PPBIL algorithm uses binary variables
in the slave stage to solve the location problem, while the VSA works with continuous
variables to solve the sizing problem. All this is done while keeping in mind the minimum
and maximum power values of the DGs, restricting DG injection, and guaranteeing that
the operating constraints of DC networks reported in the literature are met at all times [20].
To validate the effectiveness of the proposed methodology, we employ two test systems
(the 21- and 69-bus test systems) and ten hybrid approaches taken from the literature as
comparison methods. The following are the main contributions of this study:

• Development of a new hybrid (PPBIL–VSA) methodology to solve problems of binary
and continuous variables.

• Improved results in terms of quality of the solution and processing times for the
problem of integration of DGs into DC networks.

• Creation of a comparison scenario by selecting and implementing the most efficient
techniques to solve the problem of integration of DGs into DC networks.

1.4. Paper’s Organization

The rest of this paper is structured as follows. Section 2 introduces the mathematical
formulation of the problem of integration of DGs into DC networks using, as the objec-
tive function, the reduction of power losses associated with energy transportation and
considering the entire set of technical constraints of DC networks under a DG environ-
ment. Section 3 describes the proposed master–slave methodology to solve the problem
addressed in this study. Sections 4 and 5 present the test systems, considerations, and com-
parison methods employed here to validate the effectiveness, repeatability, and robustness
of the proposed methodology. Section 6 details the simulations and analyzes the obtained
results. Finally, Section 7 draws the conclusions and outlines possible future lines of work
derived from this research.

2. Mathematical Formulation

The mathematical model that represents the problem addressed here (a mixed-integer
nonlinear programming problem due to the binary and continuous variables that represent
it [20]) consists of: (i) an objective function in charge of reducing power losses in the
network and (ii) the mathematical functions that make up the set of constraints of DC
networks under a DG environment. We selected this model because it has been widely used
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to validate different methodologies proposed for the optimal integration of distributed
energy resources in DC networks [17,20,23]. The mathematical model employed here is
described below.

2.1. Objective Function

We used, as the objective function, the reduction of power losses associated with
energy transportation (Ploss) (see Equation (1)). In Equation (1), N denotes the set of nodes
that make up the system; vi and vj, the voltages at nodes i and j, which interconnect line
ij; Gij, the conductance associated with the line that interconnects nodes i and j; and Gi0,
the conductance of the resistive loads connected at the ith node of the system.

minPLoss = min ∑
i∈N

[(
∑

j∈N
Gijvivj

)
− Gi0v2

i

]
(1)

2.2. Set of Constraints

The problem of optimal integration of DGs in DC networks to reduce Ploss comprises
Equations (2)–(8), which are described below.

pg
i − pd

i = ∑
j∈N

Gijvivj {∀i ∈ N} (2)

Vmin ≤ vi ≤ Vmax {∀i ∈ N} (3)

Iij ≤ Imax
ij {∀ij ∈ B} (4)

Pmin
dg xdg

i ≤ pdg
i ≤ Pmax

dg xdg
i {∀i ∈ D} (5)

∑
i∈N

xdg
i ≤ NDGmax (6)

∑
i∈N

pdg
i xdg

i ≤ Pmax
DG (7)

xdg
i ∈ {0, 1} {∀i ∈ N} (8)

Equation (2) represents the active global power balance at each node of the DC
system, where pg

i and pd
i denote the power generated and the power demanded at node

i, respectively. Equation (3) determines the maximum (Vmax) and minimum voltage
(Vmin) allowed for the voltage profiles. Equation (4) establishes the maximum current
value for each line that makes up the system, where iij is the current in line ij; imax

ij ,
the maximum current allowed in line ij; and (B), the set of lines that comprise the DC
network. Equation (5) represents the minimum and maximum power that can be injected
by the DG connected to node i, where xdg

i is a binary variable that takes a value of 1 or 0
depending on whether node i has a DG installed or not. In this equation, D denotes the set
of nodes that have DGs installed. It should be noted that the binary nature of variable xdg

i is
defined in Equation (8). In order to limit the number of DGs (NDGmax) within the system,
we proposed Equation (6). Finally, Equation (7) restricts the amount of power injected by
the DGs to the network, where Pmax

DG denotes the maximum power injection.

3. Proposed Master–Slave Methodology

To address the problem of optimal integration of DGs into DC networks, we propose
a hybrid methodology based on the PPBIL algorithm [1] and the VSA [25]. In this method-
ology, the PPBIL algorithm is in charge of locating the DGs, and the VSA is in charge
of sizing them. Additionally, since the power flow problem in the sizing of the DGs must be
solved to evaluate the objective function and the set of constraints, we used a method based
on successive approximations as the power flow method [26]. We selected this method
based on the excellent results reported by various authors in terms of convergence and
processing times.
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The flowchart in Figure 1 summarizes the proposed master–slave (PPBIL–VSA)
methodology. It is important to understand that the master stage is the one that gov-
erns the problem, while the slave stage is only employed to evaluate the objective function
of the individuals generated by it. The main steps of the proposed methodology are
described below.

START

1. Read data of the DC network

2. Initialize probability matrix

3. Generate the population

4. Evaluate the objective function using
parallel processing: Sizing of the DGs

5. Select the best individual in the population

6. Update the probability matrix and the learning rate

7. Calculate the entropy

E ≤ Etol?

8. Extract the solution of the probability matrix
to obtain the location and sizing of the DGs and

identify their impact on the objective function

9. Return the optimal location and sizing of the DGs

STOP

Yes

No

PPBIL(Master)

VSA (Slave) Parallel processingVSA (Slave)

Figure 1. Proposed master–slave (PPBIL–VSA) methodology.

3.1. Reading the Data of the Electrical System

In this first step, all data of the DC electrical network (e.g., number of nodes and lines,
power demanded at each node, and location of the slack node) are read.

3.2. Initializing the Probability Matrix

In this step, since the PPBIL algorithm used in the master stage evolves on the basis
of a Probability Matrix (PM), a codification must be developed to evaluate the effect of
installing (option 1) or not (option 2) DGs in the DC network. Therefore, we propose the
codification presented in Figure 2, which yields a matrix of 2×|N | − 1, where the rows
indicate the probabilities of the two aforementioned options and the columns are the nodes
of the system (excluding the slack node).
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Figure 2. Probability matrix used by the PPBIL algorithm (Adapted from [1]).

In the PM, P(1, j) denotes the probability of installing a DG at node j and P(2, j) is
the probability of not installing it. Said matrix is updated, iteration by iteration, based on
the options for the DGs present in the incumbent solution to the problem: the probability
of the options that appear within the configuration of the DGs to be installed and proposed
by the incumbent solution is increased, while that of the options that do not appear in said
configuration is reduced. The sum of the probabilities of installing or not a DG at a specific
node must always be 1, as described by the following equation:

2

∑
i=1

P(i, j) = 1 ∀j = 1, 2, ..., |N | − 1 (9)

When starting the algorithm, a 50% probability is assigned to all the options in the
PM to guarantee the same possibility of installing or not a DG in all the system’s nodes.

3.3. Generating the Population

In this third step, a population of individuals is generated based on the information
contained in the PM: different configurations for the location of DGs in the system are
generated based on the installation probability set in the PM for each node. Figure 3
presents the codification used for the population (P), where the columns indicate the
candidate nodes for DG location (excluding the slack node); and the rows, the individuals
or possible configurations proposed in the master stage as solutions to the location problem.

Figure 3. Codification proposed for the matrix population(Adapted from [1]).

For instance, Individual 1 in the population presented in Figure 3 proposes locating
DGs at nodes 1 and 2 by assigning them a value of 1 in the PM and leaving nodes |N | − 1
and |N | − 2 with no DGs by assigning them a value of 0. It should be noted that, since
the objective function of each individual in P is evaluated (slave stage) using parallel
processing, the size of the population must match the number of workers available in the
computer because computation time is directly linked to the number of processes that
parallel processing must carry out to evaluate all the assigned processes [1].

3.4. Evaluating the Objective Function (Slave Stage)

In this step, the aim is to assess the impact of the PPBIL algorithm’s proposed con-
figurations for DG location on the objective function. To that end, DGs are optimally
sized with the purpose of reducing power losses in the DC network. This reduction is,
thus, the objective function with which the PPBIL algorithm evolves, an evolution that is
achieved by implementing the VSA and the SA. The methodology presented in this paper
proposes the use of parallel processing to simultaneously evaluate all the individuals in the
population and, thus, reduce the processing time required by the solution methodology.
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This is possible by partitioning the computer’s workers and assigning each the evaluation
of an individual using MATLAB’s parallel pool tool [20].

PPT = CEIL(n/W) ·MTRP (10)

Equation (10) represents the parallel processing time (PPT) necessary to evaluate the
objective function of all the individuals in the population. In this equation, MTRP is the
longest time required by the individuals when evaluating the objective function in parallel
processing, and CEIL() returns the integer (greater than or equal to a real number) of
the quotient of population size or number of individuals (n) and number of workers (W).
The MTRP may be required as many times as n exceeds W; therefore, the size assigned to
the population should not exceed the number of workers to be used [1].

To size the DGs (a process specific to the slave stage), we employed the VSA approach
proposed in [25]. This optimization tool uses the behavior of the vortex formed in stirred
fluids to solve nonlinear problems with continuous variables. We selected this technique
based on the excellent results reported by the authors to solve the problem of sizing of
DGs in DC networks. Its pseudo-code to solve such problem is presented and described in
Algorithm 1.

Algorithm 1: Pseudo-code of the VSA

Data: Parameter initialization;
if t = 1 then

Define µ0 and r0 for the vortex;
Generate each potential solution candidate, st

i ;
Evaluate the objective function of each st

i → SA;
Find the incumbent solution, st

best;
end
for t = 2 : tmax do

Update the center, µt = st
best;

Calculate the new radius, rt;
Generate new solution candidates, st

i ;
Evaluate the objective function of each st

i → SA;
Find the incumbent solution, st

best;
if t ≥ tmax then

Select µt as the solution to the problem;
Return the solution and FF to the master problem;
Break;

end
end

To size the DGs, the VSA first loads the data of the electrical system and the algorithm
parameters (which are specified in the Results section). Then, in the first iteration, the initial
center of the vortex (µ0) is defined based on the mean values of the power limits set for the
DGs (see Equation (11)). Furthermore, in step 1 of the first iteration, the initial diameter of
the vortex (r0), which is given by Equation (12), is established. With these values, the aim
is to generate an initial population of individuals that considers the entire solution space.

µ0 =
(Pmax

dg − Pmin
dg )

2
∗ [xdg

1 , xdg
2 , , , xdg

i ] {∀i ∈ D} (11)

r0 =
(Pmax

dg + Pmin
dg )

2
∗ [xdg

1 , xdg
2 , , , xdg

i ] {∀i ∈ D} (12)

Subsequently, in step 2 of the first iteration, the candidate solutions to the problem of
sizing the DGs proposed by the master stage are generated by means of a random process
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that uses Gaussian distributions (see Equation (13)). Equation (13) yields a vector of size
|D|×1 and depends on ζt

i , which, besides being a vector of random variables, is the one
that adds this random factor to the VSA, thus improving its exploration. In this equation,
µt is the center of the vortex in iteration t (t = 1 for the first iteration), and rt is the radius of
the vortex in iteration t, which is reduced iteration by iteration by means of Equation (14),
where I denotes an identity matrix of size |D|×1; a, a constant with a value of [0–1] that
controls the reduction of the speed of the vortex radius; and tmax, the maximum number of
iterations. It should be noted that the size of the vortex is reduced iteration by iteration
until it converges to the solution of the problem.

st
i = p(ζt

i , µt, rt) = ((2π)|D|rt)
(1/2)e

(
− 1

2
(ζt

i−µt)
T (ζt

i−µt)
rt

)
(13)

rt = r0(1−
t

tmax
)ε(−a t

tmax ) I (14)

In step 3 of the first iteration, the objective function of the algorithm (i.e., assessing
the impact of each candidate solution delivered by the VSA to size the DGs proposed
by the master stage on the reduction of power losses in the DC network) is evaluated.
For this purpose, we used the power flow method based on successive approximations
because the authors of [27,28] demonstrated that, when compared to the best-performance
techniques reported in the literature for DC networks, it provides the best results in terms
of convergence and processing times for any type of network. For further information on
this power flow method, please refer to the original paper [27,28]. Finally, after evaluating
all the candidate solutions proposed by the VSA, the one with the lowest objective function
value is selected as the incumbent solution to the problem (st

best).
Subsequently, from t = 2 until reaching the tmax (convergence criterion), the VSA

updates the center of the vortex with the values that make up the incumbent solution,
calculates a new value for rt, generates a new population, and evaluates the objective
function of all the individuals and the set of constraints to finally update the incumbent
solution in the event that it is outperformed by some other solution in the population.
Hence, the incumbent solution in the tmax iteration of the VSA is the solution to the problem
of sizing of the DGs. It should be noted that the VSA is applied to each individual proposed
by the master stage; thus, the incumbent solution delivered by the VSA becomes the
objective function of each individual proposed by the PPBIL algorithm.

3.5. Selecting the Best Individual in the Population

After sizing all the DGs proposed within the individuals in P and evaluating the
objective function, the individual with the lowest power losses is selected as the incumbent
solution of the master stage. This individual will be later used to update the PM.

3.6. Updating the Probability Matrix and the Learning Rate

Based on the information provided by the individual selected as the incumbent
solution to the problem, the probability of all the options in the PM is updated: that
of the options that appear within the incumbent solution is increased and that of the
options that do not appear within it is reduced. To that end, we used Equation (15),
where P(i, j)old is the current probability value of the different options in the PM and
P(i, j)New is the new probability value, which is updated based on the values contained in
the incumbent solution.

P(i, j)New =

{
P(i, j)Act if i = k

(1− P(i, j)Act) ·
P(i,j)Old

1−P(i,j)Old
if i 6= k

(15)

In Equation (15), P(i, j)New increases the probability of option i at node j only for
the option selected by the individual that represents the incumbent solution (i = k), thus
reducing the probability of the other option when i 6= k. The probability of the option
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assigned by the incumbent solution is increased by means of P(i, j)Act, which is given by
Equation (16), where the increase is multiplied by a learning rate (LR) that controls the
convergence and exploration of the algorithm.

P(i, j)Act = P(i, j)Old + (1− P(i, j)Old) · LR (16)

LR = LRmax −
LRmax − LRmin

1 + e−10·(En−0.5)
(17)

In Equation (17), LRmax and LRmin denote the maximum and minimum values as-
signed to the LR, respectively and En is the entropy of the PM, which takes a value of 1 in
the first iteration. The value of En can range from 0 to 1. Its importance and calculation
within the algorithm are described in the next step.

3.7. Calculating the Entropy

Within the PPBIL algorithm, the entropy indicates whether the PM converges to a so-
lution or not and how dispersed the probabilities are within said matrix (see Equation (18)).
This may occur naturally when the entropy reaches a value of 0, or the programmer can
assign a tolerance value to it (Etol). When this tolerance value is reached, it means that the
algorithm converges to a solution; otherwise, a new population is generated based on the
current state of the PM, and the algorithm continues.

En =

−
2
∑

i=1

N−1
∑

j=1
P(i,j) · log

[
P(i,j)

]
N − 1

(18)

3.8. Extracting the Solution of the Probability Matrix and the Sizing of the DGs

Since the PPBIL algorithm evolves with a PM, once it meets the convergence criterion,
the generators to which a DG will be assigned must be extracted from the PM considering
the options with the highest probability for each node. Then, the VSA is applied to this
configuration of DGs in order to obtain their sizing and, thus, provide a solution to the
problem of location and sizing of DGs in DC networks. Subsequently, the PPBIL–VSA
methodology returns the solution found for the problem addressed here.

4. Test Systems

To verify the effectiveness of the proposed hybrid (PPBIL–VSA) methodology, we
employed the 21- and 69-bus test systems. Both systems have been widely used in the
specialized literature to validate different methodologies for the integration of distributed
energy resources into DC networks [12,20,24,29]. The electrical diagrams of each system
and their technical characteristics are described below.

4.1. 21-Bus Test System

Figure 4 presents the electrical diagram of the 21-bus test system, which consists of
20 lines and 20 nodes, with constant power loads located at its various nodes. The initial
configuration of this system does not include DGs. In addition, it has a single slack node
that operates at a nominal voltage of 1 kV and has a power demand of 554 kW and a total
power loss of 27.6 kW. In this study, we used a base voltage equal to the nominal voltage
and a base power of 100 kW for this system.
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1
2

3

45

6

7

8

9

10
11

12

13
14

15
16

17

18

19

20

21

- + slack bus

Figure 4. Electrical configuration of the 21-bus test system [30].

4.2. 69-Bus Test System

Figure 5 illustrates the electrical diagram of the 69-bus test system, which has a total of
69 nodes and 68 lines and a single slack node that operates at a nominal voltage of 12.66 kV.
Moreover, its initial configuration has no DGs installed. This system presents a total energy
loss of 153 kW, for a total power demand of 3889 kW. In this study, we used a base voltage
and power of 12.66 kV and 100 kW, respectively, for this system.

slack

- +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51
52

28 29 30 31 32 33 34 35

Figure 5. Electrical configuration of the 69-bus test system [29].

5. Comparison Methods, Parameters, and Technical Considerations

In this section, of the manuscript are described all comparison methods, the parameters
used for these, and all technical consideration used inside the test systems and scenarios
implemented inside this manuscript.

5.1. Comparison Methods

We employed, as comparison methods, nine master–slave methodologies based on
sequential programming and reported in the specialized literature [20,24]. In the master
stage, these methodologies propose the implementation of two optimization algorithms
for binary variables (PPBIL and GA) and a Parallel Monte-Carlo (PMC) solution, and,
in the slave stage, they use the PSO, CGA, and BH algorithms to solve the problem of
sizing of DGs, thus leading to the following hybrid methodologies: PPBIL–PSO, PPBIL–
GCA, PPBIL–BH, GA–PSO, GA–GCA , GA–BH, PMC–PSO, PMC–GCA, and PMC–BH.
In this paper, we propose combining the GA and PMC algorithms with the VSA, which
gives rise to two additional hybrid techniques: GA–VSA and PMC–VSA. Due to the poor
results obtained when evaluating the PMC–VSA methodology, its results were not included
in our analysis. Hence, we obtained a total of ten comparison methods to evaluate the
effectiveness and robustness of the proposed PPBIL–VSA methodology.

5.2. Parameterizing the Hybrid Methodologies

In this study, we used the parameters reported by the authors for the different com-
parison methods taken from the specialized literature [20,24]. The aim was to respect
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their proposed parametrization because they focused on the same problem, test systems,
and considerations that we addressed here. We employed a PSO algorithm to parameterize
the PPBIL and VSA optimization techniques used in the proposed hybrid methodology.
This allowed us to obtain the best results in terms of quality of the solution and processing
times. The parameters of both optimization methods are reported in Table 1.

Table 1. Parameters of the PPBIL and VSA techniques.

Method PPBIL VSA

Population size 12 10

Parameters

Initial
probability = 0.5
LR = Sigmoidal
LRmin = 0.25
LRmax = 0.50

a = 0.67
Pmax

dg
Pmin

dg

Stopping criterion Entropy = 0.1 tmax = 200

5.3. Technical Considerations

To generate the test scenarios and validate the effectiveness of the methodologies
proposed for solving the problem of integration of DGs into DC networks, we incorporated
all the technical considerations reported in the specialized literature [20,24]. The most
relevant ones are outlined below.

Regarding the technical conditions of the DGs, the integration of maximum three
DGs was allowed for both test systems. Likewise, a minimum power of 0 kW was set for
both systems; and a maximum power of 150 kW and 1200 kW, for the 21- and 69-bus test
systems, respectively. Additionally, the maximum DG injection level was set at 40% of the
power supplied by the slack node in the scenarios with no DG.

As for the test systems, the maximum and minimum voltages were set at +/−10%
of the nominal voltage of each test system. With respect to the current limits on the lines,
homogeneous (non-telescopic) networks were considered for both systems. A wire gauge
of 900 kcmils and 400 kcmils was set for the 21-bus test system (Imax

ij = 520 A) and the
69-bus test system (Imax

ij = 335 A), respectively.

6. Simulation Results

This section analyzes the simulation results obtained by the different hybrid method-
ologies when applied to the 21- and 69-bus test systems. It should be noted that all
simulations were performed in MATLAB using a Dell Precision T7600 Workstation with
the following characteristics: an Intel (R) Xeon (R) ES-2670 CPU that operates at 2.50 GHz
with 32 GB of RAM. Since the processor of this workstation can be partitioned into twelve
workers, the population of the PPBIL algorithm was set at 12. All the methodologies were
executed 1000 times to evaluate the repeatability of the solutions using the mean values
of the objective function, the processing times, and the standard deviations. The results
obtained in each test system and their analysis are presented below.

6.1. 21-Bus Test System

In this section, we will analyze the results of applying the methodologies selected
from the literature and that proposed in this study in the 21-bus test system. Table 2 reports
the effect of each methodology on the objective function and processing times after being
executed 1000 times. From left to right, it shows the solution methodology, the nodes
where the DGs were located and their power levels, the minimum power losses (Ploss)
found (kW) and their reduction (%) with respect to the base case, the average Ploss and
their average reduction (%) after running the algorithm 1000 times, the average processing
time (s), the standard deviation of the obtained solutions (%), the worst node voltage of the
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system and the node where this occurs, and the maximum current that circulates through
the DC network under a DG environment.

It is worth noting that the base case considered in this study is a DC network with no
DGs. Furthermore, the average response is more important than the best solution when
analyzing the effect of the optimization methods applied to a particular problem because
it helps to estimate the average impact of each methodology in terms of the objective
function. This, together with the standard deviation, makes it possible to evaluate the
repeatability and effectiveness of each implemented solution methodology. Therefore,
since these indicators, along with processing time, help to identify the methods with the
best performance, their analysis will be the basis to demonstrate the effectiveness of the
methodology proposed in this paper.

Table 2. Simulation results obtained by the different methodologies in the 21-bus test system.

Methodology Bus/Power (kW) Ploss (kW)/Reduction (%) Aver. Ploss (kW)/Reduction (%) Time (s) STD (%) Vworst (p.u)/Bus Imax (A)

Without DGs [0–150] 27.6034 - - - - - - - - - [0.9–1.1] 520

PPBIL–VSA
12/72.97

16/110.09
19/49.57

5.9606/78.40 6.0191/78.19 3.57 1.21 0.97/9 257

GA–VSA
12/72.46

16/114.04
19/46.13

5.9635/78.38 6.2472/77.36 5.90 4.02 0.97/9 257

GA–PSO
3/31.61
8/55.46

17/145.56
8.6873/68.52 6.2936/77.19 42.20 4.25 0.96/12 259

GA–GA
9/59.30

11/134.55
13/38.77

11.1495/59.60 6.2501/77.35 83.08 4.59 0.94/17 262

GA–BH
12/25.62
14/78.41
18/64.83

9.7973/64.50 7.9495/71.20 18.83 6.78 0.96/17 324

PBIL–PSO
12/73.79

16/118.34
20/40.50

5.9697/78.37 6.0209/78.18 126.52 1.42 0.97/9 257

PBIL–GA
12/81.14

16/110.27
21/40.46

6.0040/78.24 6.0616/78.04 222.48 2.38 0.97/9 257

PBIL–BH
12/86.84
16/91.90
19/50.46

6.1819/77.57 10.0972/63.42 203.03 13.67 0.97/17 260

PMC–PSO
8/32.38

14/111.37
17/88.88

7.2063/73.89 9.1029/67.02 124.38 26.32 0.97/12 258

PMC–GA
7/52.63

11/147.70
13/32.09

11.5531/58.14 9.9199/67.68 240.65 23.75 0.97/17 262

PMC–BH
4/19.28
9/118.77
12/76.08

13.1477/52.36 11.8167/57.19 51.13 18.83 0.93/17 283

Figure 6 shows the reductions and improvements obtained by the PPBIL–VSA method-
ology with respect to the other methods. According to this figure, its maximum Ploss
reduction exceeds those obtained by the other techniques. For instance, it achieved an
average improvement in maximum Ploss reduction of 9.44%, a maximum Ploss reduction of
26.04% with respect to the PMC–BH methodology, and a minimum Ploss reduction of 0.01%
with respect to the GA–VSA technique.

Regarding average power loss reduction, Figure 6b shows that the PPBIL–VSA
methodology obtained the best results, with an average reduction of 6.72%. Moreover,
Figure 6c illustrates the effect of each method on processing time. As observed in this
figure, the proposed methodology was the fastest in the 21-bus test system, with an average
processing time of 3.57 s. In addition, it achieved a reduction of 89.02% compared to the
other methods. Additionally, Figure 6d compares the Standard Deviation (STD) obtained
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by the PPBIL–VSA methodology with that of the other techniques. As can be seen in said
figure, the proposed methodology achieves an average STD reduction of 10.11%, having
the largest (25.11%) and smallest difference (0.21%) with the PMC–PSO and PPBIL–PSO
methods, respectively.

Finally, after analyzing Table 2, particularly columns 7 and 8, we observe that all
the proposed solution methodologies meet the technical limits established for the 21-bus
system regarding node voltages and currents in the lines. This indicates that all solutions
are feasible.
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Figure 6. Reductions obtained by the PPBIL–VSA methodology with respect to the comparison methods in the 21-bus
test system.

Based on these results, we may conclude that the proposed methodology has the best
performance in terms of quality of the solution and processing times in the 21-bus test
system. Figure 7 shows the methodology with the best ratio of average power losses to
required processing times. In this figure, the y-axis indicates the average processing times
required by the solution methodologies; and the x-axis, the average power losses. The best
solution to the problem of location and sizing of DGs is the one that is closest to the origin,
where the average processing time and average power losses are 0 s and 0 kW, respectively.
Based on this premise and after analyzing Figure 7, the solution with the best average
processing time–power loss ratio is the PPBIL–VSA methodology, and that with the worst
ratio is the PMC–GA method.
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Figure 7. Trade-off between average power losses and required processing time provided by the hybrid methodologies in
the 21-bus test system.

6.2. 69-Bus Test System

Table 3 presents the results obtained after evaluating the different solution method-
ologies in the 69-bus test system. This table has the same structure and includes the same
parameters as Table 2. Its information is analyzed below.

Table 3. Simulation results obtained by the different methodologies in the 69-bus test system.

Methodology Bus/Power (kW) Ploss (kW)/Reduction (%) Aver. Ploss (kW)/Reduction (% ) Time (s) STD (%) Vworst (p.u)/Bus Imax (A)

Without DGs [0–1200] 153.8476 - - - - - - - - - [0.9–1.1] 335

PPBIL–VSA
12/228.43
61/1094.59
62/294.20

13.8295/91.01 14.8624/90.33 11.95 6.92 0.98/64 181

GA–VSA
22/177.56
61/1054.04
64/385.12

13.7932/91.03 15.8993/89.66 29.69 12.70 0.98/69 181

GA–PSO
14/179.33
58/237.90
62/1200

17.4946/88.62 15.9443/89.63 240.64 15.74 0.98/69 181

GA–GA 59/446.07
63/1170.76 19.0251/87.63 15.7352/89.77 468.67 10.74 0.97/27 181

GA–BH
8/60.85

14/406.04
67/673.68

55.8518/63.69 34.8153/77.37 86.49 8.74 0.95/61 222

PBIL–PSO
23/169.58
61/1200

67/247.65
13.8469/90.99 14.9848/90.26 111.53 5.25 0.98/64 181

PBIL–GA
27/148.99
62/1167.96
65/294.86

14.8686/90.33 15.0260/90.23 220.82 5.37 0.98/21 182

PBIL–BH
60/448.52
62/395.63
65/296.11

36.1161/76.52 33.3437/78.32 197.063 5.97 0.97/64 220

PMC–PSO 10/417.23
63/1200 15.7545/89.75 76.2875/50.41 138.68 63.00 0.97/69 182

PMC–GA
14/942.14
37/222.53
46/157.29

126.4519/17.80 139.4567/9.3539 140.30 64.75 0.93/69 214

PMC–BH
2/189.23

10/1042.66
33/51.63

122.7144/20.63 129.0728/16.1034 61.25 36.48 0.93/69 231
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Figure 8 illustrates the performance of the proposed methodology in terms of quality
of the solution and processing time with respect to the comparison methods. Figure
8a shows the improvements obtained by the PPBIL–VSA methodology with respect to
the best solution found by each of the other methods (higher power loss reduction in
its 1000 executions). After analyzing the values reported in this figure, the proposed
methodology achieved an average improvement of 41.29% and is only outperformed by
the GA–VSA technique by just 0.02%.

Figure 8b presents the percentages by which the PPBIL–VSA methodology outper-
formed the other methods in terms of average power loss reduction, having the largest
(74.24%) and smallest difference (0.08%) with the PMC–BH and PPBIL–PSO methods,
respectively, and obtaining an improvement in the average power loss reduction of 24.62%.
Additionally, the PPBIL–VSA technique reported the shortest processing time when com-
pared to the other methods, with an average reduction of 91.09%. Regarding the standard
deviation, the proposed methodology achieved an average reduction of 17.05% and was
only outperformed by around 1.39% by the methodologies that use the PPBIL algorithm
in the master stage. This small value, however, is compensated by its excellent results in
terms of average power loss reduction and required processing times.
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Figure 8. Reductions obtained by the PPBIL–VSA methodology with respect to the comparison methods in the 69-bus
test system.

As in the 21-bus test system, we analyzed the ratio of power losses to required
processing times of each hybrid methodology in the 69-bus test system to identify the most
efficient method to solve the problem of integration of DGs into DC networks (see Figure 9).
As observed in this figure, the methodology with the best average power losses–processing
time ratio is the PPBIL–VSA technique. Thus, when compared to the most efficient methods
that have been reported in the specialized literature so far, the methodology proposed
in this paper is the most efficient and the one with the best reproducibility to solve the
problem of integration of DGs in DC networks for any network size.
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Figure 9. Trade-off between average power losses and required processing time provided by the hybrid methodologies in
the 69-bus test system.

7. Conclusions and Future Work

In this paper, we proposed a new hybrid methodology based on the PPBIL algorithm
and the VSA to solve the problem of optimal integration of DGs into DC networks using a
master–slave strategy. In addition, the reduction of power losses associated with energy
transmission was employed as the objective function. The proposed methodology is
based on sequential programming with aim of eliminating the need to use specialized
software and, thus, reduce costs and the complexity of the solution. In order to evaluate its
effectiveness, robustness, and repeatability, we used the 21- and 69-bus test systems (widely
employed in the literature) and ten comparison methods. Likewise, each methodology
was executed 1000 times to assess their power loss reduction, average processing times,
and standard deviation.

After evaluating the PPBIL–VSA methodology in the 21-bus test system, we observed
that it achieved the highest power loss reduction, as well as the best average results in
terms of quality of the solution and processing times. Additionally, it reported the lowest
standard deviation percentage. Since it yielded the best average responses and lowest levels
of standard deviation, the proposed methodology proves to have the best performance and
repeatability of the solution for small DC networks.

Regarding the 69-bus test system, the proposed methodology obtained the second
highest power loss reduction and was only outperformed by the GA–VSA method by just
0.02% (an almost negligible difference). The PPBIL–VSA methodology, however, obtained
the best average results in terms power loss reduction and required processing times, with a
low standard deviation (around 1%). This suggests its high effectiveness and repeatability
in solving the problem addressed here. It should be noted that, despite the fact that,
in terms of standard deviation, the PPBIL–VSA method is outperformed by the other
methodologies that use the PPBIL algorithm in the master stage, this small difference is
compensated by its average values in terms of quality of the solution and processing times.

Finally, in order to identify the most effective technique in terms of power loss reduc-
tion and average required processing times, we designed a graph that included these two
indicators in the x- and y-axes. According to the information in this graph, the PPBIL–VSA
methodology yielded the best ratio between these two indicators: its solution was the
closest to the origin (which represents the best possible solution to the problem, i.e., an av-
erage power loss of O kW and a required processing time of 0 s). This result was observed
both in the 21- and 69-bus test system. Therefore, we may conclude that the PPBIL–VSA
methodology is the best alternative to solve the problem of optimal integration of DGs into
DC networks of any size.
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As future work, we recommend analyzing 24-h scenarios that vary the generation and
demand of power in order to evaluate the operation of the DGs installed in the network.
This will require the VSA methodology to be modified so that it operates in a time horizon
of 24 h and uses different technical, economic, and environmental aspects as the objective
function. Additionally, we propose the integration of energy storage elements along with
the DGs. To that end, the mathematical model and the proposed solution strategy must
be redesigned.
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