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Abstract: Cytomegalovirus (CMV) latent infection and aging contribute to alterations in the function
and phenotype of the T-cell pool. We have demonstrated that CMV-seropositivity is associated with
the expansion of polyfunctional CD57+ T-cells in young and middle-aged individuals in response
to different stimuli. Here, we expand our results on the effects of age and CMV infection on T-cell
functionality in a cohort of healthy middle-aged and older individuals stratified by CMV serostatus.
Specifically, we studied the polyfunctional responses (degranulation, IFN-γ and TNF-α production)
of CD4+, CD8+, CD8+CD56+ (NKT-like), and CD4−CD8− (DN) T-cells according to CD57 expression
in response to Staphylococcal Enterotoxin B (SEB). Our results show that CD57 expression by T-cells
is not only a hallmark of CMV infection in young individuals but also at older ages. CD57+ T-cells are
more polyfunctional than CD57− T-cells regardless of age. CMV-seronegative individuals have no or
a very low percentages of cytotoxic CD4+ T-cells (CD1017a+) and CD4+CD57+ T-cells, supporting
the notion that the expansion of these T-cells only occurs in the context of CMV infection. There
was a functional shift in T-cells associated with CMV seropositivity, except in the NKT-like subset.
Here, we show that the effect of CMV infection and age differ among T-cell subsets and that CMV is
the major driving force for the expansion of highly polyfunctional CD57+ T-cells, emphasizing the
necessity of considering CMV serology in any study of immunosenescence.

Keywords: aging; cytomegalovirus; CD57; T-cell response

1. Introduction

The human immune system evolved to protect and defend the organism against dis-
ease and potentially to protect the symbiotic gut microbiota. T-cells are a major component
of adaptive immunity, with a high degree of specificity in response to a pathogen challenge,
enabling the host to mount a specific immune response and generate immunological mem-
ory [1]. Therefore, for effective immune protection against the primary and subsequent
challenges, these cells must be maintained in a unimpaired state and appropriately regu-
lated [2]. However, on aging, the immune system undergoes profound changes, loosely
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termed immunosenescence, that can affect the outcome of the immune response [3]. The im-
pact of these age-related changes on the immune system has been associated clinically with
decreased efficacy of vaccines, an increase in the frequency and severity of infectious dis-
eases, and an increased incidence of chronic inflammatory disorders [3,4]. These alterations
are associated with phenotypical and functional changes affecting a variety of immune
cells, especially T-cells [5,6]. It has been shown that chronic stimulation of the immune
system, such as by persistent viral infections, associates with age-related alterations in the
peripheral T-cell pool [7]. Chronic infection especially by cytomegalovirus (CMV) has a
dramatic influence on the T-cell compartment, both on CD8+ and CD4+ T-cells [8,9]. CMV
interferes with different aspects of immune responses, and HLA, KIR, and GM genes have
been shown to play a crucial role in CMV control (for review, see [10]). Recent epidemics
of emerging pathogens that have a differential immune response depending on age, such
as SARS-CoV-2, illustrate the crucial importance to understand the basis of an adequate
response to new antigens and the relevance of factors such as age or CMV infection.

The seroprevalence of CMV worldwide has been estimated to reach from 45 to 100% in
the general population, depending on socio-economic status and age [11]. Persistent CMV
infection requires continuous control by the host immune system that is itself altered with
age [12,13]. Studies have revealed that CMV infection associates with an increased risk of
death and cardiovascular diseases [14,15], and CMV-seropositivity was identified as one of
the immune parameters of the “Immune Risk Phenotype” (IRP). The IRP was developed
from the Swedish OCTO/NONA longitudinal studies, which evaluated factors predicting
mortality and morbidity at very old age [16,17]. The negative impact of CMV-seropositivity
is potentially associated with the accumulation of antigen-specific oligoclonally expanded
CD8+CD28−CD57+ T-cells, affecting the T-cell repertoire, and the functional abilities of
other T-cell populations [3,18,19]. Overall, these CD8+CD28−CD57+ T-cells have a limited
proliferative capacity, and some may have lost this ability altogether as a consequence of
the replicative senescence induced by repeated antigenic stimulation, whereas others can
still be stimulated to up-regulate telomerase and proliferate [20]. In light of that, CMV
chronic infection may be viewed as a key driver of some aspects of immunosenescence in
humans with negative clinical consequences [9].

In contrast, in early life, CMV may have a beneficial impact on host immune de-
fenses. In mice, young animals infected with murine CMV (MCMV) exhibit a better
response to influenza virus than uninfected mice [21] as well as better resistance to bac-
terial pathogens [22]. In humans, CMV-seropositivity may associate with better immune
responses toward the influenza vaccination in younger but not older individuals [21], and
there is also some evidence that CMV infection improves immune responses in Gambian
infants. Thus, CMV-seropositive infants exhibited a stronger CD8+ T-cell response to
Staphylococcal Enterotoxin B (SEB) superantigen, and their antibody response to measles
vaccination correlated with the IFN-γ response to CMV [23]. In line with these results, in
our previous studies, we have demonstrated that CMV-seropositivity is associated with
the expansion of highly polyfunctional CD57+ T-cells (CD4+, CD8+, and NKT-like cells)
in young and middle-aged individuals in response to different stimuli [24–26]. Polyfunc-
tionality has generally been considered a sign of good immune response status and is
defined as the ability of one cell to simultaneously produce multiple cytokines [27]. Thus,
this CMV-driven expansion of polyfunctional CD57+ T-cells supports the concept that
herpesvirus latency, such as CMV, might provide cross-protection against other pathogens
under certain circumstances in early life [22,28] but be detrimental in later life, which is a
classic case of antagonistic pleiotropy.

In the current study, we have expanded our results to elderly individuals, as we have
been able to recruit both CMV-seronegative and seropositive elderly individuals to assess
for the first time the effects of age and CMV infection on T-cells, using Staphylococcal
enterotoxins, such as SEB, which are the most potent known T-cell mitogens [29,30], to
probe the functionality of T-cell subsets. T-cell challenge with SEB superantigen triggers
massive cytokine release, up-regulation of activation markers, cytotoxicity, and prolifera-
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tion [31]. Therefore, we selected this strong stimulus to study the polyfunctional responses
(degranulation, IFN-γ and TNF-α production) of CD4+, CD8+, CD8+CD56+ (NKT-like),
and CD4-CD8- (DN) T-cells, according to their CD57 expression, in a cohort of healthy
middle-aged and older individuals stratified by CMV serostatus.

2. Results
2.1. Effect of Age and CMV Infection on T-Cell Responses to SEB Stimulation

SEB-induced T-cell responses were evaluated by multicolor flow cytometry measuring
IFN-γ, TNF-α, and CD107a (degranulation) simultaneously (Figure S1). FlowJo’s Boolean
analysis of IFN-γ, TNF-α, and CD107a expression generated eight different possible func-
tional combinations per T-cell subset. However, some of these combinations were not
considered biologically meaningful, given that their cell counts were very low. PI was
evaluated among the four groups (Middle-aged CMV-seropositive, Middle-aged CMV-
seronegative, Old CMV-seropositive, and Old CMV-seronegative) to assess the effect of age
and CMV infection on T-cell responses to SEB.

2.2. CD4+ T-Cells

Analysis of total SEB-responding CD4+ T-cells, considered as those capable of any
kind of response (CD107a, IFN-γ, TNF-α), showed that CMV-seropositive older individ-
uals had a higher response compared with CMV-seronegative (Figure 1A). When each
function was analyzed separately, we observed a gain of all functions studied (CD107a,
IFN-γ, TNF-α) in CMV-seropositive older individuals compared with CMV-seronegative
(Figure 1A). Furthermore, in CMV-seropositive individuals, the percentage of CD4+ T-cells
that were CD107a+ or IFN-γ+ increased with age. In contrast, no significant differences
were observed with age in CMV-seronegative individuals. Finally, TNF-α did not change
with age, regardless of the CMV-serostatus (Figure 1A).

Analysis of CD4+ T-cell polyfunctionality showed that CD107a was always expressed
in combination with IFN-γ and TNF-α production. The percentage of these trifunctional
CD4+ T-cells increased with age, but only in CMV-seropositive individuals. These cells also
accumulate with CMV-seropositivity in the older group (Figure 1B). Additionally, mono-
functional (IFN-γ+) CD4+ T-cells increased with CMV-seropositivity in older individuals.

Comparison of CD4+ T-cell polyfunctional indices (PI) among groups showed an
increase with CMV-seropositivity in the older group but no effect of age alone (Figure 1C).
Thus, our results indicate that in the absence of CMV, age has no effect on the size or
polyfunctionality of the CD4+ T-cell response to SEB.

We further analyzed the expression of CD57 in the CD4+ T-cell subset. No significant
differences of CD57 expression were observed between resting and SEB-stimulated CD4+
T-cells. Expansions of CD4+CD57+ T-cells were only observed in CMV-seropositive indi-
viduals regardless of age (Figure S2). In CMV-seronegative individuals, the expression
of CD57 by CD4+ T-cells was absent or very low. Thus, the accumulation of CD4+CD57+
T-cells only occurs in the context of CMV infection and is independent of age.

We further analyzed the PI of CD4+ T-cells according to CD57 expression. Our results
showed that the CD4+CD57+ T-cell PI was significantly higher than in CD4+CD57− T-cells
in the four groups studied, despite the low CD4+CD57+ T-cell percentages found in CMV-
seronegative individuals. Furthermore, when comparing the PI of CD4+CD57+ T-cells
among groups, we observed an increase with CMV-seropositivity both in middle-aged
and older individuals. However, no effect of age alone was found. The PI ofCD4+CD57−
T-cells was not affected by CMV infection or age (Figure 1D).
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Figure 1. CD4+ T-cell response to SEB stimulation in healthy individuals stratified by CMV serostatus and age. (A) Per-
centage of CD4+ T-cells that have any studied response to SEB, either total degranulation (CD107a) or the production of 
either of the cytokines, IFN-γ or TNF-α. (B) Graph shows the Boolean analysis result of SEB-induced responses (CD107a, 
IFN-γ and/or TNF-α). Scatter graphs show the magnitude of SEB responses in each functional category expressed as per-
centage of CD4+ T-cells. The combination of functions studied is indicated in the table below the scatter graphs. (C) The 
polyfunctionality index (PI) of CD4+ T-cells in response to SEB. (D) PI of CD4+ T-cells according to CD57 expression. 
Horizontal black lines indicate interquartile ranges, ranging from the 25th to the 75th percentile. The median for SEB-
induced CD4+ T-cell responses is indicated by the bars’ upper limit. Results were considered significant at * p < 0.05, ** p 
< 0.01, and *** p < 0.001. 
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Figure 1. CD4+ T-cell response to SEB stimulation in healthy individuals stratified by CMV serostatus and age.
(A) Percentage of CD4+ T-cells that have any studied response to SEB, either total degranulation (CD107a) or the production
of either of the cytokines, IFN-γ or TNF-α. (B) Graph shows the Boolean analysis result of SEB-induced responses (CD107a,
IFN-γ and/or TNF-α). Scatter graphs show the magnitude of SEB responses in each functional category expressed as
percentage of CD4+ T-cells. The combination of functions studied is indicated in the table below the scatter graphs. (C) The
polyfunctionality index (PI) of CD4+ T-cells in response to SEB. (D) PI of CD4+ T-cells according to CD57 expression. Hori-
zontal black lines indicate interquartile ranges, ranging from the 25th to the 75th percentile. The median for SEB-induced
CD4+ T-cell responses is indicated by the bars’ upper limit. Results were considered significant at * p < 0.05, ** p < 0.01, and
*** p < 0.001.

2.3. CD8+ T-Cells

Similar to CD4+ T-cells, CD8+ T-cells total response to SEB remained unaffected by
age. However, in middle-aged individuals, CMV seropositivity was associated with an
increased percentage of SEB-responding CD8+ T-cells (Figure 2A). In older individuals,
there was a similar trend, but this was not statistically significant. When we analyzed
each function separately, we observed an increase in CD107a+ and IFN-γ+ CD8+ T-cells in
CMV-seropositive individuals independently of age. These cells accumulate also with age,
but only in CMV-seropositive individuals (Figure 2A). Additionally, TNF-α+ CD8+ T-cells
increased with CMV-seropositivity in middle aged individuals, but again, age alone did
not have any effect (Figure 2A).
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Figure 2. CD8+ T-cell response to SEB stimulation in healthy individuals stratified by CMV serostatus and age.
(A) Percentage of CD8+ T-cells with any studied response to SEB, either total degranulation (CD107a) or the produc-
tion of either of the cytokines, IFN-γ or TNF-α. (B) Graph shows the Boolean analysis result of SEB-induced responses
(CD107a, IFN-γ, and/or TNF-α). Scatter graphs show the magnitude of SEB responses within each functional category,
which were expressed as percentage of CD8+ T-cells. The combination of functions studied is indicated in the table below
the scatter graphs. (C) Polyfunctionality index (PI) of CD8+ T-cells in response to SEB. (D) PI of CD8+ T-cells according to
CD57 expression. Horizontal black lines indicate interquartile ranges, ranging from the 25th to the 75th percentile. The
median for CD8+ T-cells SEB-induced responses is indicated by the bars’ upper limit. Results were considered significant at
* p < 0.05, ** p < 0.01, and *** p < 0.001.

Analysis of CD8+ T-cell polyfunctionality showed a significant increase in trifunctional
cells with CMV-seropositivity, independent of age (Figure 2B). CMV-seropositivity was
also associated with higher percentages of bifunctional IFN-γ+ TNF-α+ CD8+ T-cells in
middle-aged individuals and bifunctional IFN-γ+CD107a+ CD+ T-cells in older individuals
(Figure 2B). Additionally, the percentage of CD107a+ monofunctional cells increased with
age but only in CMV-seropositive individuals (Figure 2B).

The analysis of the CD8+ T-cell PI showed that CMV-seropositive individuals had
higher PI than CMV-seronegative in both groups studied (Figure 2C), and no effect of age
per se was observed. Therefore, as in the CD4+ subset, the CD8+ T-cell response to SEB is
not affected by age either with regard to size or polyfunctionality.

Analysis of CD57 expression by CD8+ T-cells showed an association with CMV-
seropositivity and not with age (Figure S2). No significant differences in CD57 expres-
sion were observed between resting and SEB stimulated CD8+ T-cells. Furthermore, the
CD8+CD57+ T-cell PI was significantly higher than in CD57− T-cells in all groups studied.
When comparing the CD8+CD57+ T-cell PI among groups, no effect of age or CMV infec-
tion was observed (Figure 2D). Nevertheless, we did see a significant increase in the PI
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value of CD8+CD57− T-cells with CMV-seropositivity, but only in middle-aged individuals
(Figure 2D).

2.4. NKT-Like (CD8+CD56+) T-Cells

Our results indicate that NKT-like cells are expanded in CMV-seropositive individuals
in both age groups but not with age alone (Figure S3). However, NKT-like cell responses to
SEB, including their PI, were not affected either by age or CMV infection (Figure 3A–C).
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CMV infection independently of age, and age per se had no effect (Figure S2). Of note, 
CD57 expression was much higher in the NKT-like subset than in the other T-cell subpop-
ulations. The PI of NKT-like CD57+ T-cells was higher than that of the CD57− counterpart 
but only in middle-aged individuals (Figure 3D). No significant effect of age or CMV in-
fection was observed on the NKT-like cell PI regardless of CD57 expression. 

2.5. CD4-CD8- T-Cells (DN T-Cells) 
In contrast to CD4+ and CD8+ subsets, the DN T-cell total SEB-response was not al-

tered with CMV-seropositivity. However, the percentage of responding cells was higher 
in older individuals than in middle-aged subjects, independent of CMV-serostatus (Figure 
4A). When we analyzed each function separately, we observed the same increase with age 
of CD107a+ DN T-cells as in other subsets. CMV-seropositivity was only associated with 
an increase in the percentage of TNF-α-producing DN T-cells and again only in middle-
aged individuals (Figure 4A). 

Figure 3. NKT-like (CD8+CD56+) T-cell response to SEB stimulation in healthy individuals stratified by CMV serostatus
and age. (A) Percentage of NKT-like cells that have any studied response to SEB, either total degranulation (CD107a) or
the production of either of the cytokines, IFN-γ or TNF-α. (B) Graph shows the Boolean analysis result of SEB-induced
responses (CD107a, IFN-γ, and/or TNF-α). Scatter graphs show the magnitude of SEB responses in each functional category,
which were expressed as percentage of NKT-like cells. The combination of functions studied is indicated in the table
below the scatter graphs. (C) The polyfunctionality index (PI) of NKT-like cells in response to SEB. (D) PI of NKT-like
cells according to CD57 expression. Horizontal black lines indicate interquartile ranges, ranging from the 25th to the 75th
percentile. The median for NKT-like SEB-induced responses is indicated by the bars´ upper limit. Results were considered
significant at ** p < 0.01.

As in CD4+ and CD8+ subsets, CD57 expression by NKT-like cells increased with CMV
infection independently of age, and age per se had no effect (Figure S2). Of note, CD57
expression was much higher in the NKT-like subset than in the other T-cell subpopulations.
The PI of NKT-like CD57+ T-cells was higher than that of the CD57− counterpart but only
in middle-aged individuals (Figure 3D). No significant effect of age or CMV infection was
observed on the NKT-like cell PI regardless of CD57 expression.
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2.5. CD4-CD8- T-Cells (DN T-Cells)

In contrast to CD4+ and CD8+ subsets, the DN T-cell total SEB-response was not al-
tered with CMV-seropositivity. However, the percentage of responding cells was higher in
older individuals than in middle-aged subjects, independent of CMV-serostatus (Figure 4A).
When we analyzed each function separately, we observed the same increase with age of
CD107a+ DN T-cells as in other subsets. CMV-seropositivity was only associated with an
increase in the percentage of TNF-α-producing DN T-cells and again only in middle-aged
individuals (Figure 4A).
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Figure 4. DN (CD4-CD8-)T-cell response to SEB stimulation in healthy individuals stratified by CMV serostatus and age.
(A) Percentage of DN T-cells that have any studied response to SEB, either total degranulation (CD107a) or the production
of either of the cytokines, IFN-γ or TNF-α. (B) Graph shows the Boolean analysis result of SEB-induced responses (CD107a,
IFN-γ, and/or TNF-α). Scatter graphs show the magnitude of SEB responses within each functional category, expressed
as percentage of DN T-cells. The combination of functions studied is indicated in the table below the scatter graphs.
(C) Polyfunctionality index (PI) of DN T-cells in all groups in response to SEB. (D) PI of DN T-cells according to CD57
expression. Horizontal black lines indicate interquartile ranges, ranging from the 25th to the 75th percentile. The median for
DN T-cells SEB-induced responses is indicated by the bars´ upper limit. Results were considered significant at * p < 0.05,
** p < 0.01, and *** p < 0.001.

Analysis of DN T-cell polyfunctionality showed that CMV-seropositivity was asso-
ciated with an increase in trifunctional cells, regardless of age. Additionally, in middle-
aged individuals, CMV-seropositivity was also associated with an increase in bifunctional
IFN-γ+TNF-α+ cells (Figure 4B). However, age was associated with an increase in bi-
functional CD107a+IFN-γ+, monofunctional CD107a+, and monofunctional IFN-γ+ DN
T-cells, independently of CMV serostatus. Of note, in older individuals, regardless of
CMV-seropositivity, the most frequent functional category was CD107a+ monofunctional
cells that are present only at very low frequencies in middle-aged individuals.
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The DN T-cell PI increased with age independently of CMV infection and with CMV-
seropositivity, again only in middle-aged individuals (Figure 4C). Therefore, the response
to SEB of DN T-cells increased with age but not very much with CMV infection, and this
was mainly due to an increase in their degranulation capacity (CD107a expression).

As in the other T-cell subsets, DN CD57+ T-cells were expanded only in CMV-
seropositive individuals, and no effect of age was observed (Figure S2). No significant
differences in CD57 expression were observed between resting and SEB stimulated DN
T-cells. Interestingly, the DN T-cell PI did not change with CD57 expression, except in
middle-aged CMV-seronegative individuals where the CD57+ cell PI was almost absent.
Moreover, the PI of both CD57+ and CD57− DN T-cells increased with age independently
of CMV-seropositivity (Figure 4D). The only change observed with CMV was an increase in
CD57+ DN T-cells PI in middle-aged individuals. In older individuals, there was a similar
trend, but this was not statistically significant, which was probably due to the increase in
these cells’ PI with age.

3. Discussion

In humans, repetitive replication of T-cells is associated with the loss of CD28 and
the acquisition of CD57. Thus, CD28− and CD57+ T-cells are considered to be late- or
terminally differentiated T-cells characterized by low telomerase activity and shorter telom-
eres compared with CD28+CD57− T-cells. At least some of these CD28-CD57+ T-cells
may be senescent [32,33]. It has been shown that besides age, persistent CMV infection
is also associated with the accumulation of these highly differentiated T-cells [34,35]. Ac-
cumulating evidence supports a detrimental role of senescent T-cells in several chronic
inflammatory clinical conditions, including cardiovascular diseases such as atherosclerosis
and myocardial infarction (for a review, see [36,37]).

Our results show that in middle-aged and older overtly healthy individuals, the
main factor driving the expansion of CD57+ T-cells is CMV infection. However, from the
fourth decade onwards, these cells do not accumulate further with age. In previous work,
we showed that the percentage of CD8+CD57+ T-cells was similar between young and
middle-aged CMV-seropositive individuals [25]. Therefore, here, we extend our previous
findings [24–26,38] to show that CD57 expression by T-cells is not only a hallmark of CMV
infection in young individuals but also at older ages. Accordingly, once CMV infection
takes place, CD57+ T-cells will expand, and after that, their percentage will remain rather
stable over time. Thus, our results argue against the consensus that the expansion of these
cells is a sign of chronological aging.

Regarding CD57+ T-cell functional capacities, our data also indicate that CD57+ T-cells
are more polyfunctional than CD57− T-cells at any age, with one exception, namely the
DN T-cell subset, where the PI does not change with CD57 expression. Nonetheless, we
did observe an increase in trifunctional DN T-cells with CMV seropositivity, and the total
PI of DN T-cells increased with CMV infection in middle-aged individuals. In this subset,
CD57+ T-cells also accumulate in CMV-seropositive individuals.

Our results regarding CD4+CD57+ T-cell expansions with CMV infection are also
in agreement with the observation that CMV, but not aging, has a significant effect on
the expansion of pro-atherogenic CD4+CD28− T-cells [39]. These cells (that also express
CD57) are cytotoxic, capable of causing vascular damage, and their expansion is associated
with autoimmune and cardiovascular disease (for a review, see [36,37]). Here, we show
that similar to young individuals [24], at older ages, CD4+CD57+ T-cells are also more
polyfunctional (CD107a, IFN-γ, and TNF-α) than their CD57− counterparts. Addition-
ally, the percentage of these polyfunctional cells correlated with the percentage of total
CD4+CD107a+ (i.e., cytotoxic) T-cells (Spearman correlation p-value = 0.03, Figure S4).
Notably, CMV-seronegative individuals had very low or no percentages of both cytotoxic
CD4+ T-cells (CD1017a+) and CD4+CD57+ T-cells, supporting the conclusion that the
expansion of cytotoxic CD4+ T-cells only occurs with CMV infection.
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Higher frequencies of CD4+CD57+ T-cells have been associated with poorer prognosis
in several diseases. In acute heart failure patients, high percentages of these cells are associ-
ated with the development of cardiovascular events (defined as heart failure-associated
mortality, transplantation, or rehospitalization) [40]. In end-stage renal disease patients,
the frequency of CD4+CD57+ T-cells is associated with atherosclerotic changes [41], and in
multiple sclerosis, their frequency is associated with disease severity and poorer progno-
sis [42]. In addition, in acute heart failure patients, percentages of IFN-γ+ and TNF-α+cells
are higher within the CD4+CD57+ than the CD57− T-cell subset, and CD4+CD57+IFN-
γ+T-cells were increased in patients compared with healthy individuals in response to
anti-CD3 stimulation [40]. In our hands, the PI of CD4+ T-cells overall and the CD4+CD57+
T-cell fraction increased with CMV-seropositivity, but not age, supporting a significant role
of CMV in the development of cardiovascular disease that can be explained, at least in
part, through the expansion of these proinflammatory and cytotoxic CD4+CD57+ T-cells.
Consistent with this, a link between CMV infection, CD4+CD28− T-cell expansions, and
autoimmune and cardiovascular disorders has been previously suggested [36,43].

Our data may be of some practical clinical importance because CMV infection can be
treated, and the expansion of these cytotoxic proinflammatory cells could potentially be
prevented. In this respect, the use of Valacyclovir as anti-CMV treatment in patients with
Antineutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitis was shown not only
to suppress CMV reactivation but was also associated with a reduction of the CD4+CD28−
T-cell frequency. Moreover, in a different context, a lower frequency of these cells correlated
with improved responses to pneumococcal vaccination [44]. These results strongly suggest
that the CMV-driven expansion of CD4+CD28−T-cells, and by extension CD4+CD57+
T-cells, might have a detrimental effect on the immune response to vaccination. These
results, together with the proof of principle of the potential benefit of using anti-CMV
treatments in ANCA-Associated Vasculitis, support the possible application of anti-CMV
therapy in any clinical situation where CD4+CD57+ T-cells are implicated, including
impaired responses to infection and vaccination.

Our results show that CD8+CD57+ T-cells are also expanded in CMV-seropositive
individuals, both middle-aged and older. As in CD4+ T-cells, the expression of CD57 was
associated with higher polyfunctionality determined by the PI value, this increase in the
polyfunctionality of CD4+ and CD8+ T-cells being a hallmark of CMV infection. Indeed, it
has been shown that CMV-specific CD8+ T-cells that produce IFN-γ and TNF-α as well as
express CD107a play an important role in controlling this viral infection in the context of
allogeneic stem cell transplantation [45]. Similarly, CMV-specific CD107a+IFN-γ+CD8+
T-cells are important for controlling CMV infection in rhesus macaques [46].

The expansion of CD8+CD57+ T lymphocytes is associated with CMV viremia in
solid organ transplantation. These cells were characterized by IFN-γ and granzyme B
production, and their expansion was associated with CMV-specific immune responses
in pediatric cardiac transplantation [47]. Moreover, in renal transplant recipients, CMV
induced the expansion of highly functional memory CD57+ T-cells [48], and during active
CMV replication, highly differentiated CD8+CD57+ T-cells acquire cytotoxic activity [48].
Additionally, the frequency of total CD8+CD28− T-cells has been related to the specific
immune response to CMV one year after solid organ transplantation [49].

As has been pointed out before, the effects of CMV infection and age differ among T-
cell subsets. As reported here, CD4+ and CD8+ T-cells display a functional shift associated
with CMV seropositivity, while NKT-like and DN T-cell subsets do not. Specifically, NKT-
like cell functionality was not affected either by age or CMV, while DN T-cells’ response to
SEB and PI was mainly altered by age. In individuals over 65 years of age, the impact of
CMV infection on DN T-cell functionality seems to be diluted by the effect of aging.

The increased PI of DN T-cells with age seems to be due to a gain in cytotoxicity
(CD107a marker of degranulation) rather than to higher cytokine production. DN T-cells
are mainly gamma-delta T lymphocytes, and studies on the effect of its aging have yielded
disparate results [50–53]. CMV does not stimulate Vdelta2+ cells, but it does stimulate
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Vdelta2− T-cells. These are characterized by the accumulation of highly differentiated
Vδ2− subsets with time, in contrast to Vδ2+ T-cells, which are decreased in old individuals
independently of CMV serostatus and maintain a less differentiated phenotype [50]. Al-
though a limitation of our study is that we have not characterized the different gamma-delta
subsets within the DN T-cells, our results clearly show a higher capacity of degranulation
of these cells in older adults, independent of CMV serostatus.

It has been reported that NKT-like cells expand with age and in certain disease states.
Our previous work [26,38] showed that in CMV-seropositive individuals of up to 60 years of
age, there was no effect of age on the expansion of these cells. We only observed an increase
in NKT-like cell percentages when comparing young CMV-seronegative individuals and
middle-aged CMV-seropositive individuals, indicating that CMV is an important factor for
their expansion. However, there was no increase in NKT-like cell frequency with CMV in
young individuals. To shed light on whether their accumulation is due to CMV infection
alone or a combined effect with chronological aging, we analyzed the percentage of this
cell subset at older age. Our results demonstrate that NKT-like cells expand in CMV-
seropositive individuals over the age of 40 and onwards, and that age per se had no effect
on their accumulation. Furthermore, we have also observed a significant expansion of
NKT-like CD57+ cells in CMV-seropositive individuals, which is unrelated to aging. Earlier
reports have shown heterogeneous results regarding the possible effect of aging on the
number and function of NKT-like cells [54]. In the present study, we show that NKT-like
cells accumulate from middle age onwards with CMV infection but not age alone, although
no functional alterations were observed in this subset. These results are in contrast to other
studies showing a higher functionality of CD56+ T-cells (determined by levels of CD107a
and proinflammatory cytokines) in CMV-seropositive individuals [55]. These differences
could be due to the fact that the age of the young group ranged from 23 to 60 years old in
that study.

CMV infection induces the expansion of CD57+ T-cells, but whether this has a ben-
eficial or detrimental or neutral role for immunity and long-term effects on health and
its direct effect on response to pathogens and vaccines is still under debate. Neverthe-
less, there is mounting evidence that CMV-seropositivity is associated with a reduced
response to both invasion with a novel pathogen and to vaccination Some studies have
reported a beneficial effect of CMV infection in both young and older adults in response
to vaccination [21,23], while other studies suggest that it can be detrimental [12,13]. The
increased functionality of CD57+CD4+ and CD57+CD8+ T-cells shown can be considered
beneficial, but under certain pathological conditions, CD57+ T-cells have immunosup-
pressive activity [56,57]. Thus, it is essential to further investigate the effects of CMV on
the immune response at older ages. In this regard, our present study complements our
previous investigations allowing us to dissect the effect of age and CMV in older individ-
uals. This is especially important for vaccine development, as it has been shown for the
influenza vaccines Fluad® or Intanza®, especially designed for elderly individuals [58,59].
A poor response to Intanza® was associated with CMV seropositivity, but only in older
individuals [58,60]. In addition, it has been shown that older CMV-seropositive individuals
have lower frequencies of influenza specific memory T-cells than CMV-seronegative, but
this was not observed in younger individuals [61]. However, despite the lower frequencies
of influenza-specific T-cells found in CMV-seropositive older individuals, they exhibited a
significantly higher IFNγ T-cell response to influenza virus in the acute phase of the disease
compared to CMV-seronegative older individuals [61]. These results agree with our results
showing an increased polyfunctionality of CD4 and CD8 T-cells with CMV-seropositivity
in older donors.

Our results regarding CD57+ T-cells expansion in CMV-seropositive older donors are
also of interest in the study of CMV infection in transplant recipients where CMV infection
represents a significant complication. CD8+CD57+ TEMRA cells increased over time after
transplant specifically in CMV-seropositive but not CMV-seronegative recipients, and
changes in CD8+ T-cells compatible with accelerated immune aging have been observed
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in CMV-seropositive transplant recipients [62]. Our results showing that CD57+ T-cells
are mainly expanded in CMV-seropositive individuals, and maintain cytokine production
and polyfunctionality independently of age, suggest that CD57+ T-cells may contribute to
the promotion of adverse inflammatory outcomes, such as late graft dysfunction, chronic
kidney rejection, cancer, and atherosclerosis observed after kidney transplant associated
with CMV infection.

The results presented also highlight the relevance of considering the heterogeneity of
CMV seropositivity and aging in the design of clinical trials or new vaccines in some clinical
conditions such in HIV patients. Thus, CMV-induced chronic immune activation and
premature immunosenescence in people living with HIV must be taken into consideration
not only when comparing trial outcomes between various populations exhibiting diverse
CMV positivity rates but also for HIV vaccine development [63].

Therefore, immunological treatments should consider both age and CMV infection as
a major factor. This strengthens the need for validation studies with not only the aim to
present something novel but also to confirm findings in different populations.

Our results support the view that CMV is a major driving force for the expansion
of CD57+ T-cells, and that these cells are more polyfunctional than their CD57-negative
counterparts within the CD4+ and CD8+ subsets (including NKT-like cells). Age has no
significant effect on either the frequencies of CD57+ T-cells or their polyfunctionality when
only CMV seronegative individuals are considered. Thus, our results indicate that the
CD57+ T-cell population might play an important role for antiviral control, which is in
line with their high cytotoxic and polyfunctional activity. The association of these T-cell
expansions with CMV infection and disease underlines the necessity of considering CMV
serology in any study regarding immunosenescence and emphasizes that the price of
immune protection is always some degree of immunopathology.

4. Materials and Methods
4.1. Subjects

A total of 119 individuals from the Leiden Longevity Study (LLS) cohort was included
in the present study. The Medical Ethics Committee of Leiden University Medical Center
approved the study (Biomarkers of the rate of ageing CME protocol P06.059), and informed
consent was obtained from all subjects. Details of the LLS study have been published
previously [64–66]. Of these individuals, 62 were middle-aged and 57 were older individ-
uals. Subjects were stratified according to CMV serology (CMV-seropositive and CMV-
seronegative) (Table 1). Differences in the F/M ratio were a result of convenient sampling.

Table 1. Demographics of studied individuals (n = 119).

CMV Age (Mean ± SD) Sex
(Male/Female) No. Group Name

Negative 45–64 (60 ± 3) 13/21 34 Middle-aged CMV-seronegative
Positive 46–63 (60 ± 3) 10/18 28 Middle-aged CMV-seropositive

Negative 65–78 (69 ± 3) 16/8 24 Older CMV-seronegative
Positive 65–73 (68 ± 2) 18/15 33 Older CMV-seropositive

4.2. CMV Serology

Details of CMV serology of the LLS study have been published previously [64–66].

4.3. Stimulation, Intracellular Staining, and Detection of CD107a Expression

Cryopreserved PBMCs were thawed, cells were washed and resuspended in X-
Vivo 15 Medium (Lonza, Cologne, Germany) and placed in a 96-well U-bottom plate
at 2 × 106 cells/mL concentration (250 µL final volume). They were allowed to rest for 1 h
at 37 ◦C in a standard incubator (humidified CO2 atmosphere). Following this, costimula-
tory antibodies (anti-CD28 and anti-CD49d; 1 µL/mL each; BD Biosciences, Franklin Lakes,
NJ, USA) and anti-CD107a-APC-H7 (BD Biosciences), for degranulation detection [67],
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were added to all wells. Staphylococcal Enterotoxin B superantigen (SEB, Sigma-Aldrich,
Burlington, MA, USA) was added at a final concentration of 1 µg/mL to the corresponding
wells. For each individual, a negative control containing only anti-CD28 and anti-CD49d
was included to measure antigen-independent stimulation. The plate was placed in a
standard incubator (37 ◦C, humidified CO2 atmosphere) and, after 1 h, each well received
the addition of monesin (Golgistop, 0.67 µL/mL; BD Biosciences) and brefeldin A (Golgi
Plug 1 µL/mL; BD Biosciences). Then, cells were incubated for an additional 4 h.

Following incubation, cells were washed twice with PFEA buffer (PBS, 2% FCS, 2 mM
EDTA, and 0.01% sodium azide) and were treated with human Ig, GAMUNEX (Bayer,
Leverkusen, Germany), and ethidium monoazide bromide (EMA) (Invitrogen, Karlsruhe,
Germany) for 10 min on ice to block FcRs and label nonviable cells. Then, cells were stained
with antibodies to surface molecules (CD57-Pacific Blue, Biolegend, and CD56-brilliant
violet 605, BD Biosciences) and were incubated for 20 min at 4 ◦C in the dark. Then, cells
were washed, fixed, and permeabilized with Cytofix/Cytoperm solution according to the
manufacturer’s instructions (BD Biosciences) and stained intracellularly with CD3-APC,
CD4-Briliant Violet 711 (Biolegend, San Diego, CA, USA), CD8-PerCP, IFN-γ-PE-Cy7 (BD
Biosciences), and TNF-α-Alexa Fluor 700 (e-Biosciences, Waltham, MA, USA) antibodies.
All antibodies were titrated before use. Stained cells were analyzed by flow cytometry the
following day, and Comp Beads BD were used prior to measurement as a reference control
to compensate for the potential LSRII performance variation between samples.

4.4. Flow Cytometry and Data Analysis

Flow cytometric analysis was performed on an LSR II cytometer with FACSDiva
software (BD Biosciences). The spectral overlap between all channels was calculated
automatically by the BD FACSDiva software after measuring negative and single-color
controls. Data were analyzed using FlowJo v10 software (Tree Star, Portland, OR, USA).

For data analysis, the first gate was time gate vs. side scatter (SSC-A) to detect
differences in the flow; then, lymphocytes were gated in a forward scatter (FSC-A) vs.
side scatter (SSC-A) according to their size and granularity. After singlet gating, the EMA-
negative population was selected to exclude dead cells in an EMA vs. CD3 plot, and
EMA-CD3+ cells were characterized as living T-cells. T-cell subsets including CD4+, CD8+,
CD8+CD56+ (NKT-like), and CD4-CD8- (DN) were gated subsequently as illustrated in
(Figure S1A). The average number of events acquired for each subset was 151,049 cells for
CD4+ subset, 53,292 cells for CD8+, 3583 cells for NKT-like, and 13,588 cells for DN. Within
each T-cell subset, individual gates were made for the detection of CD57 expression and
to identify positive responses (CD107a, IFN-γ, TNF-α) (Figure S1B). Boolean gating was
performed to create a full array of possible combinations of response patterns from the
T-cell subsets or from each of the CD57+/- subpopulations; however, some of the possible
combinations of the Boolean analysis of IFN-γ, TNF-α, and CD107a expression were not
considered biologically meaningful, given that their cell counts were very low. Positive
responses were reported after background subtraction. Gates for CD107a, IFN-γ, and
TNF-α were set based on the unstimulated control. Fluorescence minus one (FMO) control
was used for phenotype gates.

The polyfunctional index (PI) was calculated as described by Larsen et al. (Funky
Cells Toolbox; http://www.funkycells.com/main/) [68]. The PI enables comparative and
correlative parametric and non-parametric statistical tests by numerically evaluating the
degree and variation of polyfunctionality.

4.5. Statistical Analysis

For statistical analysis, to test normality, a Shapiro–Wilk test was performed. No
normality was found. According to this, a Kruskal–Wallis H test (non-parametric test) with
correction for multiple comparisons was used for direct comparison of the four groups.
Then, those variables in which we found a statistical significant difference were analyzed
using the Mann–Whitney U non-parametric test for comparing data among the specific

http://www.funkycells.com/main/
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sample pairs. All graphs reflect only the Mann–Whitney derived p-values, and graphs
were done using GraphPad Prism (version 8.1). For comparison between CD4+CD107a+
T-cells and CD4+CD57+ T-cells expression, a Spearman correlation test was used. All
statistical analyses were performed with GraphPad Prism (version 8.1). p-values < 0.05
were considered significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22189973/s1.
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