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Abstract: SBA-Pr-Is-TAP was synthesized via functionalization of SBA-15. The synthesized hybrid
nanomaterial was characterized by various techniques including FT-IR, TGA, XRD, SEM, and BET.
SBA-Pr-Is-TAP could precisely bind Fe3+ and Cr2O7

2− ions among a range of different species in
aqueous media, consequently acting as a nanoporous chemosensor of Fe3+ and Cr2O7

2− ions. An
excellent linear relation was observed between the nanoporous chemosensor and ion concentra-
tions, with acceptable detection limits of 2.43 × 10−6 M and 3.96 × 10−7 M for Fe3+ and Cr2O7

2−

ions respectively.

Keywords: SBA-Pr-Is-TAP; functionalized mesoporous silica; chemosensor; fluorescent spectroscopy;
aqueous media; Fe3+ and Cr2O7

2− ions; 2,4,6-triaminoprymidine; isatin

1. Introduction

Ordered mesoporous silica was discovered for the first time in 1992 [1]. Several
mesoporous scaffolds have been classified into three types based on their pore forms: round
cage, cylindrical, and continuous channel [2]. Properties including morphology, pore size,
and applications have been changed and improved by functionalization reactions [3–5].
The most popular form of mesoporous nanosilicas is SBA-15, which has attracted significant
consideration due to its benefits [6–13]. SBA-15 nanoporous silica has excellent properties
including adjustable cavities, large surface area, thick framework walls, complementary
porosity, and thermal stability [14–16].

Functionalized SBA-15 by different organic compounds can provide access to different
chemosensors to detect different ions. For example, a highly ordered mesoporous silica
material (SBA-15) functionalized with 5-(4-carboxy-phenylazo)-8-hydroxyquinoline (CPA-
8-HQL) acts as a fluorescence chemosensor for sensing Pb2+ ions [17]. Furthermore, another
fluorescence nano-chemosensor for Cr2O7

2− anion was synthesized by the assembly of
a fluorescent aluminum complex of 8-hydroxyquinoline (AlQx) within the channels of
modified SBA-15 [18].

Since isatin and its derivatives have excellent properties including biological and
pharmacological activities, these have been used in various organic syntheses [19–21].
Functionalized nanoporous materials by Fe3+ ion can play a vital role in important pro-
cesses including the transformation of an electron in DNA and RNA as well as biological
metabolism [22]. The lack or excess of iron has been reported to lead to a number of
diseases such as skin problems, iron shortage anemia (IDA), low immunity, Alzheimer’s,
Huntington’s, and Parkinson’s [23]. The increase of iron could disturb biological systems
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and cause water contamination [24]. On the other hand, Cr2O7
2− has also been made by

industrial companies as one of the heavy-metal water pollutants. Consequently, low-cost,
sensitive, selective, and fast detection of Fe3+ and Cr2O7

2− will be highly valuable [25]. In
continuation with recent research from our groups [26–35], the design of a nanostructured
chemosensor based on modified SBA-15 (SBA-Pr-Is-TAP) was attempted in this work, with
its chemosensor activities studied in the detection of Fe3+ and Cr2O7

2− in the presence of
other ions.

2. Results and Discussion

The overall process for the preparation of the SBA-Pr-Is-TAP is illustrated in Scheme 1.
Firstly, SBA-15 was functionalized with (3-chlorpropyl) triethoxysilane to provide SBA-
Pr-Cl, which was modified by isatin to give SBA-Pr-Is. In the final step, SBA-Pr-Is were
reacted with 2,4,6-triaminopyrimidine to provide SBA-Pr-Is-TAP, fully characterized by dif-
ferent analysis methods including IR, TGA, XRD, etc. Full information on characterization
equipment and experiments is provided in the experimental section.
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Scheme 1. Schematic preparation of SBA-Pr-Is-TAP.

Three amine groups on 2,4,6-triaminopyrimidine can potentially react with carbonyl
groups for the formation of a Schiff Base. NH2 groups in positions of 4 and 6 are chemically
equivalent, therefore two types of amine groups present for Schiff base reaction (two amine
groups at positions of 4 and 6, and the other at position 2). On the other hand, the basicity
of the amino group at position 2 is lower than the others, suggesting that the surface adduct
should be formed via reaction at the 4 or 6 positions.

FT-IR spectroscopy shows the organic moieties covalently bonded on the SBA-15 surface.
FT-IR spectra for SBA-15, SBA-Pr-Cl, SBA-Pr-Is, and SBA-Pr-Is-TAP are depicted in Figure 1.
The bands at 800 and 1100 cm−1, respectively, are related to Si-O-Si bonds, while the band
at 960 is related to Si-OH. Then, the band around 3456 cm−1 could be attributed to O–
H stretching of Si-OH functional groups. The peak around 1650 cm−1 is associated with
C=O stretching vibration and the bending vibrations of water molecules (in spectrum c).
The presence of a new band in spectra b and c in at 2881–2990 cm−1 range is due to the
stretching vibrations of methylene in propyl groups. In c, the new band at 1479 and
1754 cm−1 corresponded to C=C and C=O stretching vibrations. The new band at 1706 is
related to C=N groups. In spectra d, the new band at 3400 cm−1 is related to NH2 groups
of triaminopyrimidine. These new bands proved that aliphatic compounds, isatin, and
triaminopyrimidine were successfully immobilized on the surface of SBA-15.
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Figure 1. FT-IR spectra of (a) SBA-15, (b) SBA-Pr-Cl, (c) SBA-Pr-Is, and (d) SBA-Pr-Is-TAP.

X-ray powder diffraction (XRD) of SBA-15 and SBA-Pr-Is-TAP is shown in Figure 2.
According to the obtained results, a strong reflection was observed at around 2θ = 1◦

corresponding to (100) plane, while the other two intense reflections at ca. 2θ = 1.8◦ and
2.0◦ could be assigned to (110) and (200) planes. These reflections demonstrate that the
functionalized products maintained highly ordered mesoporous hexagonal structures.
Comparing the XRD of SBA-15 with SBA-Pr-Is and SBA-Pr-Is-TAP, the same diffraction
lines could be visualized in all three materials (with different intensities). These results
confirmed the successful incorporation of the organic moieties onto SBA-15.

SEM and TEM images also proved the nano-ordered arrays of SBA-15 and SBA-Pr-Is-
TAP hexagonal nanoporous channels, as shown in Figures 3 and 4. The prepared materials’
physical properties and porosity were investigated by nitrogen adsorption-desorption
isotherms (Figure 5). These compounds display type IV isotherms with H1-type hysteresis
loops, which proved the pore walls of SBA-Pr-Is and SBA-Pr-Is-TAP are still open. After
the attachment of organic compounds on SBA-15, certain changes in physical properties
became evident including a reduction in surface area (SBET), average pore diameter (dp),
and pore volume (Vp) as shown in Table 1. The reasons for the reduced surface area, pore
diameter, and pore volume relate to the deterioration of the textural properties of SBA-15
upon the incorporation of the organic moieties (pore diameter and volume) due to partial
pore blocking of such organic moieties and surface area due to the partial covering of the
surface with the anchored organic moieties.
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Table 1. Structural parameters of SBA-15, SBA-Pr-Is, and SBA-Pr-Is-TAP.

Sample SBET (m2·g−1) V (cm3·g−1) DBJH (nm)

SBA-15 672 0.69 4.6

SBA-Pr-Is 550 0.64 4.1

SBA-Pr-Is-TAP 250 0.37 0.8

Thermogravimetry studies confirmed the presence of loaded organic compounds on
the SBA-15 surface as shown in Figure 6. In two TGA curves, the weight loss (up to 150 ◦C)
was due to physisorbed water from the mesoporous material. The obtained results pointed
out that SBA-Pr-Is-TAP is hydrophilic because of the existence of more nitrogen atoms.
The weight loss at 200 and 650 ◦C was related to the breakdown and removal of organic
compounds while that at 700 ◦C corresponds to the dehydroxylation of silanol groups.
TGA curves indicated, respectively, weight losses of ∼6% (0.76 mmol), ∼16% (0.845 mmol),
and 24% (0.809 mmol) of organic compounds for SBA-Pr-Cl, SBA-Pr-Is, and SBA-Pr-Is-TAP
as expected for materials with increasing loadings of organic content.
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3. Fluorescence Response of SBA-Pr-Is-TAP to Fe3+

Fluorescence studies of SBA-Pr-Is-TAP after adding different cations M(NO3)x (M = Na+,
Al3+, Cu2+, Mg2+, K+, Cd2+, Ca2+, Mn2+, Co2+, Li+, Zn2+, Ni2+, Ba2+, Hg2+, Sr2+, Cs+, Pb2+,
Fe2+, Cr3+, Ag+, and Fe3+) were conducted at 420 nm as shown in Figure 7. Luminescence
intensities were influenced by adding Fe3+ ions as compared to other metal ions, pointing
to SBA-Pr-Is-TAP with potential recognition and sensing of Fe3+ ions. The interaction
between SBA-Pr-Is-TAP and Fe3+ was displayed in Scheme 2, believed to be related to
the interaction of Fe3+ species with nitrogen groups present in the organic moieties of
SBA-Pr-Is-TAP.
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This high selectivity can be interpreted due to the different charge densities of metal
ions and their interaction between guest and host. The charge density (ρ) of a metal ion is
defined as the amount of electric charge/unit volume [36,37]. It is one of the most important
parameters of the relative electrophilicity of a metal ion for interaction between ligand and
ion. The charge densities of metal ions were calculated according to Equation (1):

ρ = q/(4/3 πr3) (1)

where q is the formal charge and r denotes the Shannon ionic radius [38]. The calculated charge
density of the cations increase in the following order: Al3+ (4.67) < Cr3+ (3.08) < Fe3+ (6.45).

The results indicate that the charge density of Fe3+ ion is the largest among all of
competition ions. Therefore, the electrophilic ability (capability of forming a coordination
complex with an electron-rich ligand) of an Fe3+ ion is the strongest among cations. On
the other hand, metal ions (as guest) can diffuse into the functionalized nanochannels of
SBA-15 (as a host) [38]. The host-guest interaction depends on the concentration of ion and
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chelating capability into the channels, with Fe3+ ions having an enhanced interaction with
the strong electrophilicity of amine groups (TAP).

Selectivity studies of SBA-Pr-Is-TAP towards Fe3+ ions were subsequently conducted
in the presence of other cations (Figure 8). Spectra were recorded at λex = 220 nm and
λem = 420 nm after the addition of SBA-Pr-Is-TAP suspension (0.02 g L−1, 3 mL H2O) to
the 100 µL of Fe3+ mixture (1 × 10−4 M) with 100 µL (1 × 10−4 M) of the mentioned metal
cations. Remarkably, results indicated that SBA-Pr-Is-TAP has good selectivity for Fe3+

among a range of different tested cations.
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Figure 8. Selectivity of SBA-Pr-Is-TAP (3 mL H2O suspension, 0.2 g L−1) for Fe3+ (100 µL, 1 × 10−4 M) using equal amounts
of cations (λex = 220 nm and λem = 420 nm).

A fluorescence titration experiment was also carried out with the addition of various
amounts of Fe3+ ions (1 × 10−4 to 100 × 10−4 M) into the aqueous suspension of SBA-Pr-
Is-TAP. The relation between fluorescence intensity and different concentrations of Fe3+ is
shown in Figure 9. Fluorescence intensity was enhanced by increasing Fe3+ concentrations.
A linear relation between fluorescence intensity and concentration of Fe3+ was observed,
with R2 of 0.9991 as shown in Figure 10. The detection limit was calculated according to
the following equation: DL = KSd/m. DL was calculated to be 2.43 × 10−6, where Sd is the
standard deviation of the blank solution measured five times, m is the slope of fluorescence
intensity of SBA-Pr-Is-TAP versus [Fe3+], and K is 3 as a confidence level. It showed good
detection of limit in comparison with the other fluorescent compounds in Table 2.

Fluorescence studies of SBA-Pr-Is-TAP after adding different anions An−, including = I−,
CN−, Cl−, F−, Br−, CO3

2−, SO4
2−, HCO3

−, H2PO4
−, NO2

−, NO3
−, CH3COO−, SCN−,

S2O3
2−, OH−, and Cr2O7

2−, was obtained at λex = 220 nm, λem = 420 nm as shown in
Figure 11 and Scheme 3. Luminescence intensities were influenced by adding Cr2O7

2− ions
as compared to other anions. Therefore, SBA-Pr-Is-TAP also showed a potential recognition
and sensing for Cr2O7

2− ions.
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Figure 10. Stern-Volmer plot for titration of SBA-Pr-Is-TAP with different concentrations of Fe3+.

Table 2. Comparison of Detection Limits of different fluorescent compounds.

Compound Ion DL

Carbon quantum dot [39] Fe3+ 2.78 × 10−6 M

SBA-15-DNPH [40] Fe3+ 29 × 10−6 M

1,4-Dihydropyridine Colorimetric [41] Fe3+ 8.3 × 10−6 M

A pyrene-based dual chemosensor [42] Fe3+ 2.0 × 10−6 M
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Scheme 3. The suggested bonding mode of SBA-Pr-Is-TAP with Cr2O7
2−.

The selectivity of SBA-Pr-Is-TAP towards Cr2O7
2− ions was subsequently investi-

gated in the presence of other anions (Figure 12). In this regard, spectra were recorded at
λex = 255 nm and λem = 420 nm after the addition of SBA-Pr-Is-TAP suspension (0.02 g L−1,
3 mL H2O) to the mixture of Cr2O7

2− (100 µL, 1 × 10−4 M) and the mentioned anions
(100 µL, 1 × 10−4 M). The obtained results showed that the SBA-Pr-Is-TAP has good
selectivity for Cr2O7

2−.
A fluorescence titration experiment was next carried out with the addition of various

amounts of Cr2O7
2− ions (1 × 10−5 to 100 × 10−5 M) into the aqueous suspension of SBA-

Pr-Is-TAP (3 mL H2O suspension, 0.2 g L−1). The relation between fluorescence intensity
and different concentrations of Cr2O7

2− is shown in Figure 13. Fluorescence intensity
decreased while the concentration of Cr2O7

2− ions gradually increased. A linear relation
between fluorescence intensity and concentration of Cr2O7

2− was found, with R2 of 0.9941
as shown in Figure 14. The detection limit was calculated (similarly to that for Fe3+) to be
3.96 × 10−7 M and compared with the other chemosensor compounds in Table 3.
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Table 3. Comparison of Detection Limits of different fluorescent compounds.

Compound Ion DL

Mitochondria-targeted acridine-based [43] Cr2O7
2− 1.6 × 10−7 M

{[Cd(TCPA)(L)]·H2O}n [44] Cr2O7
2− 4 × 10−7 M

ZnII-MOF [45] Cr2O7
2− 3 × 10−7 M

GSH@CDs-Cu NCs [46] Cr2O7
2− 9 × 10−7 M

The quenching mechanism of SBA-Pr-Is-TAP with Cr2O7
2− was subsequently inves-

tigated using the Stern-Volmer equation. Figure 14 shows a linear plot of I0/I against
the concentration of Cr2O7

2− ions which indicates a static quench. UV-Vis spectrum of
Cr2O7

2− ions exhibits two maximum absorption wavelengths at 257 and 350 nm in UV
range and another at 440 nm in the visible domain which has good spectral overlap with the
fluorescence emission peak of SBA-Pr-Is-TAP [47]. Therefore, the strong inner filter effect
(IFE) possibly occurs after the addition of Cr2O7

2− in the dispersed SBA-Pr-Is-TAP [48,49].
In several reports, IFE has been proposed as a fluorescence quenching mechanism in
optical dichromate sensors [18,50]. This quenching mechanism was proposed based on
the formation of hydrogen bonding between the oxygen group of Cr2O7

2− and hydrogen
atoms belong to the amine or carboxyl group of functionalized TAP into the nanochannel
of SBA-15 [51]. This hydrogen bonding may change the electronic distribution of TAP;
thereby, the fluorescence emissions can be quenched and intensity changed. Therefore,
besides IFE, hydrogen bonding is suggested as fluorescence quenching mechanism of
SBA-Pr-Is-TAP with Cr2O7

2−.

4. Conclusions

SBA-Pr-Is-TAP as organic-inorganic nanohybrid via SBA-15 modification with isatin
and 2,4,6-triaminopyrimidine was synthesized and characterized. Textural and physico-
chemical properties confirmed the successful incorporation of organic groups on SBA-15.
Fluorescence studies demonstrated the hybrid or an organic material can be a selective
sensor for Fe3+ and Cr2O7

2− recognition in H2O, with detection limits of 2.43 × 10−6 and
3.96 × 10−7 M, respectively.
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5. Experimental Section
5.1. Synthesis of SBA-15, SBA-Pr-Cl, and SBA-Pr-Is

Materials were prepared based on our previous reported contributions [27,31,33].

5.2. Synthesis of SBA-Pr-Is-TAP

SBA-15-Pr-Is (1 g) was dispersed in dry EtOH. 2,4,6-triaminopyrimidine (0.62 g,
5 mmol) was added to the mixture of reactions. It was refluxed for 24 h, and then filtered
to obtain the dark brown powder, which was soxhlated with dried EtOH to obtain pure
SBA-15-Pr-Is.

Low-angle X-ray scattering measurements were performed using an X’Pert Pro MPD
diffractometer using Cu Kα radiation (λ = 1.5418 Ǻ).

N2 adsorption-desorption isotherms were obtained using a BELSORP-miniII instru-
ment at liquid nitrogen temperature (−196 ◦C). Degassing process for all samples was
performed at 100 ◦C before the measurements. The Brunauer-Emmett-Teller (BET) and
Barrett-Joyner-Halenda (BJH) equations were applied on sorption data using BELSORP
analysis software to calculate the physical properties of materials such as the specific
surface area, pore diameter, pore-volume, and pore size distribution.

Thermogravimetric analyses (TGA) were carried out by a TGA Q50 V6.3 Build 189
instrument from ambient temperature to 1000 ◦C with a ramp rate of 10 °C min−1 in the
air. SEM analysis was performed on a Hitachi S-4160 operated at 30 kV.

FT-IR spectra were obtained in KBr disks on a RAYLEIGH WQF-510A FT-IR spectrom-
eter in the 600–4000 cm−1 region. Fluorescence measurements were collected on a Cary
Eclipse Fluorescent Spectrophotometer.

Additional information can be found in the Supplementary Materials submitted with
this article.

6. Calculation of Detection Limit (DL)

DLs can be calculated based on the standard deviation of the response (Sd) of the
curve and the slope of the calibration curve (m) at levels approximating the DL according
to the formula: DL = 3 (Sd/m). The standard deviation of the response can be determined
based on the standard deviation of y-intercepts of regression lines. The slope and Sd can be
obtained with one order of magnitude of the calibration curve.
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