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Abstract 

In this paper, an interactive educational tool designed for the learning of thermal comfort 

concepts is presented. Thermal comfort is one of the fundamental aspects of indoor 

environmental quality and energy savings in buildings. Comfort-based control and energy 

management constitute an important emergent sub-discipline of engineering studies. The 

developed tool allows for the definition of the thermal model of a house. Based on this model, 

thermal comfort is estimated through the predicted mean vote (PMV) and predicted percentage 

dissatisfied (PPD) indices, and energy consumption is also calculated. The tool can 

communicate through Modbus TCP/IP protocol, providing external connectivity and data 

collection from the different sensors available in a building management system (BMS). In this 

way, it is possible to calculate in real-time the aforementioned comfort indices and propose 

corrective control indications to maintain the indoor-air conditions inside the optimal comfort 

range. A simple control strategy that can be applied to conventional HVAC systems is also 

addressed. The tool is available for degree students in control engineering. A survey was 

performed to evaluate the effectiveness of the proposed tool.  

Keywords: Educational tool; thermal comfort; modeling and simulation; comfort-based control 

1. INTRODUCTION 

Nowadays, environmental impacts, industrial activities, urban patterns or the use of air 

conditioning systems have led to an increase of the energy demands in buildings [1]. Currently, 

this area represents more than 40 % of the energy consumption in most countries. European 

Union has promoted new directives to improve the energy performance in buildings to reduce 

the energy consumption [2], [3]. Industrial systems such as heating, ventilation and air 

conditioning (HVAC) systems, are responsible for over 50% of the total energy consumption of 
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a building [4], [5]. Traditionally, HVAC systems accomplish thermal comfort by regulating 

temperature of indoor air at predetermined temperature. However, reaching this temperature 

may not be necessary to make occupants comfortable [6].  

To solve this problem, many researches related to comfort-based control have been studied    

[7]–[9], which could be a possible solution to the problem of energy consumption in buildings. 

Many of these researches were based on the predicted mean vote (PMV) and predicted 

percentage dissatisfied (PPD), which are mostly used as comfort indices [8].  

Considering the above context, there arises a need of training new engineering students with a 

solid background and knowledge in thermal comfort and energy management. These technicians 

could put into practice the obtained advances in research environment-related with thermal 

comfort control. In addition, the dynamic modeling and simulation are considered basic tools to 

strengthen the theoretical aspects in the engineering teaching [10]. Both tools are included 

within the constructivist methodology based on problem-based learning (PBL) paradigm to 

guide the search for knowledge [11], [12]. PBL is a student-centered instructional strategy. This 

approach employs a problem situation to guide the learning activities on a need-to-know basis. 

The aim of this paper is to present a new interactive educational software tool, called CB-GUI 

(Comfort-Building Graphical User Interface) for the calculation, analysis and simulation of 

thermal comfort. The developed tool uses the well-known PMV/PPD model [13] to estimate the 

thermal comfort conditions, and is based on the Matlab/Simulink environment, which is 

currently widespread in the field of engineering education and the most students are familiar 

with it.  

Software tools similar to CB-GUI have been developed. For example, Thermal Comfort Tool 

ASHRAE-55 [14], [15] is a web-based tool that allows designers and other practitioners to 

perform thermal comfort calculations according to the ASHRAE-55 standard [16]. Among its 

main features, this software tool allows to choose between the two comfort models allowed by 

the aforementioned standard, which are the PMV/PPD method and the adaptative method. 

Moreover, an ankle draft risk model, based on the works [17], [18], has been also implemented. 

With this model, the predicted percentage dissatisfied on draft at ankle level as a function of 
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PMV and air speed at can be evaluated. Another interesting tool is Climate Consultant [19], 

which assists in designing buildings that are more energy-efficient and sustainable, by means of 

passive heating and cooling strategies, including fan-forced ventilation. The different heat-

related strategies are analyzed as a function of available climate data for a particular location, 

allowing for the most effective strategy to be selected. The ASHRAE-55 standard is also 

considered.  

There are also complete simulation environments by which models of many different 

engineering domains can be implemented. For example, a complete simulation program for 

modeling energy consumption (for heating, cooling, ventilation, lighting, etc.) in buildings is 

EnergyPlusTM [20]. This is an open-source and cross platform software that was initially 

intended to size appropriate HVAC equipment and optimize energy performance. Considering 

the purposes of this work, the last available version of EnergyPlusTM allows the use of different 

thermal comfort models as well as a large number of built-in HVAC control strategies. Thus, 

this software could be specifically used for the development of a complex building thermal 

analysis with thermal comfort models. This allows to perform an energy analysis and 

simultaneously determine if a specific HVAC control strategy will be sufficient for the 

occupants to be thermally comfortable. Another example is the commercial modeling and 

simulation environment Dymola [21]. This tool is based on the Modelica language [22]. 

Dymola provide access to libraries which enable the mathematical modelling of thermal comfort 

within buildings, ships or aircraft cabins [23], [24]. 

These tools provide valuable information for both students and researchers. However, to the 

authors’ knowledge, there is no developed tool which encompasses specifically energy, thermal 

comfort, and control concepts from an educational point of view. This is one of the main 

contributions of the proposed tool. In addition, CB-GUI adds the possibility of applying control 

strategies based on the PMV and PPD indices either to a thermal model or to a real building 

through Modbus TCP/IP protocol, providing external connectivity and data collection from the 

different sensors available in a BMS system. This feature helps students understand the link 

between energy consumption, human comfort, and control strategies. 
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The paper is structured as follows: Section 2 presents the theoretical framework of thermal 

comfort. Section 3 describes the main features of the software tool. In addition, the set of 

components and equations that describe the implemented house thermal model are detailed. 

Section 4 shows the intended use of the tool for students by means of an illustrative example, 

where a control method based on PMV is proposed and compared with conventional fixed 

temperature settings. Section 5 discusses the evaluation methodology and the results obtained. 

The paper ends with some concluding remarks and considerations about future works. 

2. THERMAL COMFORT BACKGROUND 

Thermal comfort is defined by American standard ASHRAE 55 [16] as the condition of mind 

that expresses satisfaction with the thermal environment. Thermal comfort can be influenced by 

different kinds of physical, physiological or psychological processes [25]. 

There are two classical approaches for the thermal comfort modeling that can be used [26]: heat 

balance models based on laboratory studies and adaptive models based on field studies. The first 

one is the classical work of Fanger [13], related with thermal sensation to the existence of heat 

balance by observing a large number of people in laboratory experiments. The second approach 

is based on the findings of surveys of thermal comfort conducted in the field [27]. In this work, 

the thermal comfort model employed is defined by applying Fanger’s studies, which are the 

basis for the two main international standards currently used for assessing thermal comfort in 

buildings [16, 12]. 

Fanger’s method predicts thermal comfort on the basis of a set of parameters and empirical 

equations of the heat transferred between the human body and the environment [29]. This 

analysis results in an index that predicts the thermal sensation scale. The resulting index, named 

the Predicted Mean Vote (PMV), is a well-recognized comfort parameter used for measuring 

comfort levels inside buildings. PMV predicts the mean response regarding thermal sensation of 

a large group of people exposed to certain thermal conditions for a long time [30]. PMV 

depends on six parameters: the metabolic heat rate	, � (met), where 1	��� = 58.2	
 ��� ; the 

clothing insulation, ���� (clo), where 1	��� = 0.155	��	°� 
�  is a unit used to express the 
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thermal insulation provided by garments and clothing ensembles; the indoor air temperature, 

���� (°C); the mean radiant temperature, ���  (°C); the indoor air velocity,  ��� (m/s), and the 

air relative humidity, !" (%), which is the ratio of the partial pressure of the water vapor in the 

air to the saturation pressure of water vapor at the same temperature. PMV is calculated by 

means of equation (1), where # represents the thermal load in the human body (
 ��⁄ ), and � 

the metabolic rate, as mentioned before. The value of PMV index is a seven-point thermal 

sensation scale, as shown in Table 1.  

'�( = (0.303�*+.+,-. + 0.028)#.     (1) 

 
The thermal load in the human body can be estimated using expression (2).  
 
# = (� −
) − 0.0014�(34 − ����) − 3.05 ∙ 10*,35733 − 6.99(� −
) − 7���8 −0.42(� −
 − 58.15) − 1.72 ∙ 10*9�(5867 − 7���) − 39.6 ∙ 10*:;��3(��� + 273)< −(��� + 273)<8 − ;��ℎ�(��� − ����),        

(2) 
   

where 
 

��� = 35.7 − 0.028(� −
) − 0.155���� · 339.6 ∙ 10*:;��3(��� + 273)< − (��� + 273)<8 +;��ℎ�(��� − ����)8       
     (3) 
 

 

ℎ� = ? 2.38(��� − ����)+.�9,			@ ≥ 12.1B ���
			12.1B ��� ,																				@ ≤ 	12.1B ��� 		     (4) 

 

 
@ = 2.38(��� − ����)+.�9      (5) 
 

;�� = D 1.0 + 0.2����,			���� ≤ 0.5	���1.05 + 0.1���� , ���� > 0.5	���.     (6) 

 


 is the external work (
 ��⁄ ), and is normally assumed around zero [15], [16]; 7��� is the 

partial water vapour pressure in the air ('�); ��� is the clothing surface temperature (º�); ℎ� is 

the convective heat transfer coefficient (
 °�	��⁄ ); and ;�� the clothing area factor (-). It is 

recommended that the value of PMV should lie within the range of [-0.5, 0.5] to ensure indoor 

thermal comfort [30]. On the other hand, associated with this parameter is the Predicted 

Percentage Dissatisfied (PPD). This index establishes a quantitative prediction of the 
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percentage of thermally dissatisfied people who feel too cool or too warm. Mathematically, the 

relationship between PMV and PPD is expressed as follows: 

 

''F = 100 − 95�G73−(0.03353'�(< + 0.2197'�(�)8     (7) 
 

For a PMV index inside the thermal comfort range around zero, approximately 5% of the people 

are dissatisfied with the thermal environment. The graphical relationship between PPD and 

PMV is shown in Figure 1. 

<INSERT TABLE I HERE> 

<INSERT FIGURE 1 HERE> 

PMV considers not only indoor air parameters but also physical activity. There are other indices 

that allow the evaluation of thermal sensation and comfort, such as the Givoni diagrams [31], 

the operative temperature [16] and adaptive indices [32]. A detailed review of the most popular 

thermal comfort models and methods for assessing thermal comfort in buildings, as well as the 

future perspectives, is carried out in [29].  

3. MATERIAL AND METHODS 

3.1 House thermal model  

A simple house thermal model with a heating subsystem is used to facilitate the students the 

understanding of thermal comfort and energy performance in buildings. This section describes 

the thermal model used in the developed application. Control based on thermal comfort indices 

is also addressed. The implemented model is based on [33], [34]. The house model exchanges 

heat with the environment through its walls, roof, and windows. Each path is simulated as a 

combination of thermal conduction, thermal convection, and thermal mass. Regarding the 

heating subsystem, a constant air flow rate �H  (kg/s) is considered, which is commanded by a 

thermostat. The thermostat models a hysteresis and allows fluctuations around a desired room 

temperature. If the air temperature drops below a specified lower set-point, the thermostat turns 

on the heater. The heat flow rate into the room,	IH"J�KJ� , is expressed by equation (8).  
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IH"J�KJ� = (�"J�KJ� − ��LL�) ∙ �H ∙ � ,     (8) 
 
where �"J�KJ� (ºC) represents the hot air temperature from the heater, �H  (kg/s) the air flow rate, 

� (J/kgK) the specific heat capacity of air and ��LL� (ºC) the room air temperature. In addition, 

the heater subsystem can be operated considering the PMV index as the reference. The scheme 

depicted in Figure 2 shows a simple control strategy where the PMV is used as the control 

reference. By setting the PMV reference to zero, thermal comfort is maintained in the air-

conditioned room. In this case, the thermostat hysteresis is set to ±0.5 [16]. Of course, the 

comfort variables explained in the previous section need to be measured or estimated. Based on 

this measured data, the PMV index can be calculated. An illustrative example of this strategy is 

described in detail in section 4. 

<INSERT FIGURE 2 HERE> 

The house model takes into consideration two heat flows: the heat flow from the heater, 

I"J�KJ�, and the heat losses to the environment through the walls, windows and roof, I�LMMJMM. 

The temperature time derivative in the house model is expressed by equation (9).  

 

�H�LL� = N
.OPQ∙� ∙ RIH"J�KJ� − IH �LMMJMS ,      (9) 

 

where IH �LMMJM   is the sum of the heat flow rates IHT��� , IHT��ULT and IH�LLV. These heat flow rates 

depend on several parameters such as the outdoor temperature, the total area of the walls, the 

total area of the windows (which is based on the number of windows), the total air mass inside 

the house and the heat capacity of the walls, windows and roof. These parameters can be 

specified in CB-GUI. In addition, the model incorporates a cost calculator that integrates the 

heat flow over the time and multiplies it by a specified energy cost. In this way it is possible to 

check the effect of the different model parameters with respect the energy consumption. 

3.2 Graphical user interface 

 

This section describes the functionalities of the developed interactive tool for the simulation, 

estimation and real-time monitoring of thermal comfort indices. CB-GUI can be downloaded 

from http://www.uco.es/grupos/prinia/marioruz/. The main window of CB-GUI is shown in 
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Figure 3. It is divided into several differentiated parts (a-f), which can be summarized as 

follows: 

<INSERT FIGURE 3 HERE WITH DOUBLE COLUMN WIDTH> 

1. External mode (a). In this section, the TCP/IP Modbus connection parameters are 

specified. When defining the IP address, the connection port and the sampling period, CB-GUI 

automatically collects data from available sensors through the TCP/IP Modbus protocol. Thus, 

PMV and PPD indices are calculated and updated according to a defined sampling period.  

2. Simulation mode (b). In this section, the user can choose between two modes: House 

model and No model. When House model is selected, CB-GUI allows analyzing the temporal 

evolution of the PMV and PPD thermal comfort indices using the house thermal model 

described above. The user can introduce all the parameters needed to configure the physical 

model and the simulation (Fig. 4). In this mode, energy consumption of the heating subsystem is 

also calculated. By clicking on the Simulate button, the simulation is instantly performed. 

<INSERT FIGURE 4 HERE> 

Conversely, when No model is selected, PMV and PPD indices are calculated directly. With this 

mode, the user can manually change the different comfort parameters and observe how PMV 

and PPD indices are affected.  

3. Estimation of the mean radiant temperature (c). This section allows the user to adjust 

the value of the mean radiant temperature by means of the globe temperature (ºC), the globe 

diameter (m), the air temperature (ºC), the emissivity and the air speed (m/s). On the other hand, 

it is possible to make the mean radiant temperature equal to the air temperature. Due to the 

difficulty to measure the mean radiant temperature, this approximation is suggested by some 

researchers [35][36].  

4. Comfort parameters (d). This section enables the user setting the input data for the 

calculus of PMV and PPD indices. As mentioned before, when CB-GUI is connected to a BMS 

system, available data from a real installation will be collected, and this section will be 

unavailable. However, in the simulation mode (with or without thermal model of the house) or 
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in the absence of some sensors, (e.g. air speed), the user can manually introduce the values. 

Moreover, the tool allows choosing between different types of clothing and different physical 

actions. It is important to note that the clothing level should be calculated based on actual 

clothing items. Clothing level is probably one of the most important variables in terms of 

adaptation to a thermal environment. Acting on the clothing level may be very effective to 

reduce energy consumption [15]. The ASHRAE-55 standard [16] provides a variety of common 

clothing ensembles and the corresponding clothing level. If the ensemble matches well with one 

of the ensembles, then the indicated clothing level is used. The developed tool allows to 

introduce the clothing level numerically or based on common clothing. Note that there might 

situations with occupants with significantly different garments, and even different metabolic 

rates. For example, this situation (as referred in the ASHRAE-55 standard [16]) may happen in 

a restaurant. Customers may have a metabolic rate of 1.0 met, while the servers may have a 

metabolic rate closer to 2.0 met. Clothing level of course can also vary. Thus, each of these 

groups of occupants should be considered separately in determining the conditions required for 

comfort. In these situations, it will not be possible to provide an acceptable level or the same 

level of comfort to all disparate groups of occupants [16].  

Finally, upper and lower thresholds of PMV can be set to define the comfort band. According to 

these values, two horizontal lines are plotted in the “Real-time PMV estimation” plot (section f), 

defining the comfort band. The relationship between the defined comfort band and the 

calculated PMV value will determine possible actions of control. 

5. Real time results (e). This section shows the calculated values of the PMV and PPD 

indices, as well as statistical information, such as the maximum and minimum values, standard 

deviations and means. In addition, a text message is shown when the calculated PMV is outside 

the comfort band. Data can also be recorded by activating the radio button Log Data. In this 

case, a file in .csv format is created, and comfort indices are saved with the defined sampling 

period. 
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6. PMV and PPD plots (f). This section shows the evolution of the PPD and PMV indices.  

When CB-GUI is connected through the Modbus TCP/IP protocol the plots are updated in real 

time with the sample period defined in section (a). 

As mentioned in the introduction section, there are similar software tools to CB-GUI. 

Nevertheless, the proposed tool adds the possibility of applying the PMV and PPD indices 

either to a thermal model or to a real building by means of a control strategy. In situ 

experimentation with real systems cannot be replaced with simulations, and the practical 

teaching needs to be also based on real aspects. Experience has shown that students are more 

motivated to learn new concepts if they are faced with real-life applications [37]. In this sense, 

from a practical point of view, the connectivity capacity of CB-GUI with a BMS system is also 

used in the designed course. Students also configure a BMS connection with an installed 

Modbus TCP/IP gateway and PMV-PPD indices are estimated from a real building [38]. 

3.3 Objectives of CB-GUI within the course design 

The course has been designed to achieve specific outcomes that fall into two domains [12]: 1) 

Planning and definition of the learning objectives; 2) Instruction method to deliver the specific 

content.  

The desired outcomes that students are expected to acquire by applying PBL can be resumed as 

the ability to carry out the following outcomes [11]: 

• Apply knowledge of mathematics, science and engineering. 

• Conduct experiments, analyze and interpret data. 

• Design systems that match specific needs. 

• Function on multidisciplinary teams. 

• Identify, formulate, and solve engineering problems. 

• Communicate effectively. 

• Use the techniques, skills, and modern engineering tools necessary for engineering 

practice. 
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• Recognize the need to engage in lifelong learning. 

1) Course learning objectives 

At the end of the course, with respect to the use of CB-GUI, students are expected to have done 

the following: 

• Understand the importance of thermal comfort in buildings and how it affects to the 

occupants. 

• Understand the importance of energy consumption in HVAC systems and how it 

influences the economic spending. 

• Ability to design simple simulations with the Matlab/Simulink environment. 

• Learn the stages of team functioning and be able to outline the responsibilities of a 

team. 

• Thermal comfort analysis with CB-GUI and reported results of an office building. 

2) Instruction method 

The presented educational tool is part of the practical sessions planned for the Control 

Technologies and Laboratory of Process Control subjects, which are taught to enrolled students 

in the Industrial Engineering Master’s degree and the Industrial Electronics Bachelor’s degree, 

respectively, at the University of Cordoba. The PBL tasks for the elaborated practical session 

are listed in Table II and are directly related to the aforementioned desired outcomes. 

<INSERT TABLE 2 HERE> 

A good practical session should demonstrate the important theoretical ideas and to reflect 

important real-life problems with a suitable time scale [39]. In addition, a good visual sensation, 

easiness to learn and use are desirable features for a software tool. This pedagogical guideline 

was considered so that the educational tool addresses these requirements in several ways: 

• Theoretical ideas: The context of the tool is based on comfort-based control. With this tool, 

students in control engineering subjects can learn about different scopes of control beyond 

classical processes. 
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• Real-life problem: The students are confronted with an actual real problem. Energy 

efficiency and sustainable comfort in buildings is one of the main challenges nowadays.   

• Visual sensation: The graphical user interface is structured coherently. The information 

displayed in the main window was reduced as much as possible to facilitate the navigation. 

• Suitable time scale: The simulations are immediate so that the students can analyze many 

possible scenarios in a traditional practical session (2 hours).   

• Easy to understand and use: The graphical user interface has been designed to be user-

friendly. However, the students should be guided in using the tool by the teacher. 

4. ILLUSTRATIVE EXAMPLE 

4.1 Simulation example 

In this simulation example, a comfort-based control strategy is compared with a typical standard 

ON-OFF strategy. The aim of this example is to emphasize students how energy consumption of 

HVAC systems can be significantly decreased with the use of a simple comfort-based strategy. 

Table 3 summarizes the established model parameters used in the simulation. It is also 

considered that the occupants wear typical winter clothes (1 clo) and carry out a relaxed 

physical activity (1.2 met). The external temperature is modeled with a sinusoidal form with an 

average temperature of 9 ºC and 6 ºC of amplitude, which corresponds to a typical winter day in 

the city of Cordoba.  

<INSERT TABLE 3 HERE> 

Simulation results are summarized in Table 4, where the house model was simulated for 48 

hours. For the ON-OFF control strategy, two temperature set-points are considered: 24 ºC and 

25 ºC, both with a hysteresis range of ±2.5 ºC. With respect to the comfort-strategy, a dead band 

of ±0.5 is set as recommended by the ASHRAE-55 standard [16]. 

The simulation results reveal important aspects related with the energy consumption and 

thermal comfort levels. As can be noted from Table 4, for the ON-OFF control strategy with a 

set of 25 ºC, dissatisfaction levels above 30 % are reached, with an average PPD value of 21.96 
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%. In addition, in this case the PMV index is located outside the upper limit, which indicates a 

thermal sensation that defined as “slightly warm”. The energy consumption is 37.0156 kWh, 

which is approximately 39 % greater than the total energy consumption for the PMV control 

strategy. Another interesting conclusion is the energy increase for an increment of 1ºC in the 

average indoor temperature. For the modeled room, it is 10 % greater when the ON-OFF control 

strategies are compared with sets of 24 ºC and 25 ºC. To achieve PMV values within the ±0.5 

band, the average indoor temperature obtained is 21.6738 ºC, which is lower than the other 

commented cases. It is important to note the reason of showing ON-OFF strategies with 24 and 

25 ºC. This is due that, in many occasions, the temperature reference is set too high for adequate 

thermal comfort, but it is common practice to select temperature set points that quickly rectify 

the sensation of cold that the occupants perceive. This situation is also highlighted with this 

example. 

<INSERT TABLE 4 HERE> 

4.2 PMV parameters’ influence 

Thermal comfort is influenced by six factors and the accuracy of each one will influence the 

overall accuracy of the calculated PMV [16], [40]. Students were asked to analyze the PMV 

sensitivity by modifying some of the input parameters while leaving the others fixed. To carry 

out this task, CB-GUI is executed in No Model mode. In this mode, PPD and PMV values are 

calculated instantaneously. Special attention is taken to the metabolic rate and clothing level 

parameters, given the fact there are no direct methods for their calculation. 

An error in the metabolic rate estimation can have a significant difference in the estimated PMV 

value [40]. Given a typical office climate (���� = ��� = 22	°�,  = 0.15	�	�*N, Wℎ = 50%), 

Figure 5 shows the sensitivity of the PMV-PPD indexes for a typical business suit (1.0 clo) and 

for light clothing (0.6 clo). As can be seen from the figure, an error in the metabolic rate 

assessment can easily led to significant errors in the PMV estimation. For example, on the basis 

of Figure 5 and considering the 1.0 clo curve, a change on the metabolic rate from 1.2 (standing, 
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relaxed [15]) to 1.8 (cooking [15],  changes the PMV index from -0.0025  to 0.7536. This PMV 

value is considered as “slightly warm”. Considering the previously described PMV-based 

control strategy, a temperature set-point below 22 ºC would be reached with the additional 

energy consumption of the HVAC system. In addition, this new temperature setpoint would 

cause discomfort in the occupants due to a mistake in the metabolic rate evaluation. Thus, this 

example highlights the need of an adequate evaluation of the parameters that define the PMV 

index. 

<INSERT HERE FIGURE 5> 

Figure 6 shows the partial correlation of each parameter needed to obtain the PMV index. 

Students were asked to generate this figure by means of Matlab software. These statistical data 

were obtained by generating 1000 different combinations from the comfort variables (ranges in 

parenthesis) ����(15, 30), ���(1, 7.8), ���(0.36, 1), Wℎ(25, 60),  (0.1, 2). As can be seen 

from the figure, the metabolic rate and temperature are the most influential parameters, i.e., a 

positive increment in one of them have a significant increment in the PMV value. These results 

are intuitive, since the perceived thermal sensation also varies depending on the activity level 

and the temperature. On the other hand, the only variable with a negative partial correlation is 

the air velocity. 

<INSERT HERE FIGURE 6>  

4.3 BMS connectivity with a real office building 

In this last part of the case study, CB-GUI was employed as a platform for obtaining 

experimental data. Thermal comfort of an office building at the University of Córdoba was 

estimated by means of CB-GUI. The first floor of the office building is air-conditioned with a 

solar system. Fundamentally, the HVAC system consists of two air-cooled single-effect 

ammonia/lithium nitrate absorption chillers and 50 m2 of solar thermal collectors. Each 

absorption machine has its own control system. They communicate each other through a 

proprietary protocol and through building management system (BMS) with the software tool to 
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provide measurement data of temperature sensors. Student were asked to implement the BMS 

connection between the implemented HVAC system and CB-GUI. The air velocity, humidity 

and indoor temperature variables were collected from the BMS network for the PMV index 

estimation. The control information provided in CB-GUI (Fig. 3., part e.) indicated the HVAC 

on-off cycle to maintain the indoor-air conditions inside the optimal comfort range. The main 

point of this part was to show the students the main components of a BMS system, i.e, the 

communication network, the hardware (in this case the HVAC controllers, the solar system and 

sensors) and the software (CB-GUI working as an upper layer in the control system and the 

HVAC control programs running in the controllers).  The results of these experimental tests 

with the tool can be consulted in [38]. 

5. ASSESMENT AND EVALUATION 

5.1 Evaluation 

Enrolled students were required to submit an electronic questionnaire. Through the described 

practical session, the students were asked to express their anonymous opinion of the tool. The 

main purpose was to analyze the contribution of the tool for the study of human thermal comfort 

and the application of control strategies. The assessment and evaluation carried out is based on 

[10], [41], [42], [43].  

Questionnaire items are combined in three subscales: “Learning value”, “Value added” and 

“Design usability and easy understanding of the tool”. In the following, the purpose of each 

item is described:  

1) Learning value includes questions that try to reflect student’s perceptions of how 

effectively the software tool is designed to learn about thermal comfort concepts and its 

applicability in buildings. 

2) Value added tries to evaluate the use of the tool and the external connection with a BMS 

system in the sense of a lecture complement. 
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3) Design usability and easy understanding of the tool focuses on student’s perceptions of 

the ease and clarity to navigate through the graphical interface. 

<INSERT TABLE 5 HERE> 

5.2 Results 

The questionnaire is summarized in Table 4. Learning value subscale encompasses the first 

three items. The next four items are related with Value added. The last three items evaluate the 

Design usability and easy understanding of the tool. In Table 5, the responses of the students are 

collected. These responses were rated as strongly agree, agree, neutral, disagree or strongly 

disagree. 

<INSERT TABLE 6 HERE> 

<INSERT FIGURE 7 HERE> 

Figure 7 details the survey responses of 30 students. The percentage of strongly agree and agree 

answers was higher compared to the rest. This indicates that the students emphasize the use of 

the tool to learn and consolidate new concepts of control engineering. Most of them found the 

graphical user interface user-friendly. Nevertheless, the interactivity level was penalized. The 

survey results have helped to consider new future enhancements of the tool, some of them are 

implemented in the downloadable version of CB-GUI. 

Although 30 students might not be statistically representative, the results show a certain 

evidence that the proposed tool helps students in their learning process in control engineering 

and thermal comfort concepts. A possible bias affecting the results might be that students who 

made use of the tool are those who attended to class regularly and took lessons seriously. 

Nevertheless, we received a general positive feedback from the students. They showed a high 

degree of interest for the use of the tool as complement for lectures and understanding of 

practical problems related with thermal comfort and the application of control strategies. Future 

work will be mainly focused on adding new functionalities to the tool, extending the external 

connection capabilities. 
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 6. CONCLUSIONS AND FUTURE WORK 

An educational software tool specifically focused on the learning of thermal comfort has been 

presented in this paper. The developed tool provides different simulation modes, being also 

possible the connection with a real system through Modbus TCP/IP. This makes it ideal for 

using in pedagogy, especially for control engineering practical laboratories. Student feedback 

and assessment data indicate that the learning objectives were achieved. The student response 

was satisfactory, showing a high degree of interest for the use of the tool in understanding 

human thermal comfort indices. 

Future work will be mainly focused in the implementation of advanced control strategies with 

the tool that automatically balance the energy consumption and thermal comfort. Furthermore, it 

is intended to extend the connectivity capabilities of the tool and consider more advanced 

comfort models. 

ACKNOWLEDGEMENTS 

This work was supported by the Spanish Ministry of Economy and Competitiveness (grant 

DPI2012-37580-C02-01). This support is gratefully acknowledged. 

REFERENCES 

[1] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption 
information ´,” Energy a, vol. 40, pp. 394–398, 2008. 

[2] S. Soutullo, R. Enríquez, M. J. Jiménez, and M. R. Heras, “Thermal comfort evaluation 
in a mechanically ventilated office building located in a continental climate,” Energy 
Build., vol. 81, pp. 424–429, Jul. 2014. 

[3] E. Union, Directive 2012/27/EU, Official Journal of the Euopean Union L15 55. 2012, 
p. 56. 

[4] M. Aftab, C. Chau, and P. Armstrong, “Smart Air-Conditioning Control by Wireless 
Sensors : An Online Optimization Approach,” in e-Energy’13 4th International 
Conference on Future Energy Systems, 2013, pp. 225–236. 

[5] M. L. Ruz, J. Garrido, F. Vázquez, and F. Morilla, “A hybrid modeling approach for 
steady-state optimal operation of vapor compression refrigeration cycles,” Appl. Therm. 
Eng., vol. 120, pp. 74–87, Jun. 2017. 

[6] S. Atthajariyakul and T. Leephakpreeda, “Real-time determination of optimal indoor-air 
condition for thermal comfort, air quality and efficient energy usage,” Energy Build., 
vol. 36, no. 7, pp. 720–733, Jul. 2004. 

[7] K. H. Yang and C. H. Su, “An Approach to Building Energy Savings Using the PMV 
Index,” Build. Environ., vol. 32, no. 1, pp. 25–30, 1997. 

Page 17 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[8] M. M. Gouda, S. Danaher, and C. P. Underwood, “Thermal comfort based fuzzy logic 
controller,” Build. Serv. Eng. Res. Technol., vol. 22, no. 4, pp. 237–253, 2001. 

[9] W. L. Tse and A. T. P. So, “Implementation of comfort-based air-handling unit control 
algorithms,” in 2000 ASHRAE Winter Meeting, 2000. 

[10] J. Sánchez, S. Dormido, R. Pastor, and F. Morilla, “A Java/Matlab-Based Environment 
for Remote Control System Laboratories: Illustrated With an Inverted Pendulum,” IEEE 
Trans. Educ., vol. 47, no. 3, pp. 321–329, 2004. 

[11] R. M. Felder and R. Brent, “Designing and teaching courses to satisfy the ABET 
engineering criteria,” vol. 92, no. 1, pp. 7–25, Jan. 2003. 

[12] D. Santos-Martin, J. Alonso-Martinez, J. Eloy-Garcia Carrasco, and S. Arnaltes, 
“Problem-Based Learning in Wind Energy Using Virtual and Real Setups,” IEEE Trans. 
Educ., vol. 55, no. 1, pp. 126–134, 2012. 

[13] P. O. Fanger, Thermal Comfort: Analysis and Applications in Environmental 
Engineering. McGraw-Hill, 1970. 

[14] S. Schiavon, T. Hoyt, and A. Piccioli, “Web application for thermal comfort 
visualization and calculation according to ASHRAE Standard 55,” Build. Simul., vol. 7, 
pp. 321–334, 2014. 

[15] ASHRAE, “ASHRAE Thermal Comfort Tool,” 2011. [Online]. Available: 
http://comfort.cbe.berkeley.edu/. 

[16] ASHRAE, “ANSI/ASHRAE Standard 55-2017 , Thermal Environmental Conditions for 
Human Occupancy.” American Society of Heating, Refrigerating and Air-Conditioning 
Engineers, Atlanta. GA., 2017. 

[17] S. Liu, S. Schiavon, A. Kabanshi, and W. W. Nazaroff, “Predicted percentage 
dissatisfied with ankle draft,” Indoor Air, vol. 27, no. 4, pp. 852–862, Jul. 2017. 

[18] S. Schiavon, D. Rim, W. Pasut, and W. W. Nazaroff, “Sensation of draft at uncovered 
ankles for women exposed to displacement ventilation and underfloor air distribution 
systems,” Build. Environ., vol. 96, pp. 228–236, Feb. 2016. 

[19] M. Milne, R. Liggett, A. Benson, and Y. Bhattacharya, “Climate Consultant 4 . 0 
Develops Design Guidelines for Each Unique Climate,” in American Solar Energy 
Society Meeting, 2009. 

[20] “EnergyPlus. U.S. Department of Energy’s (DOE) Building Technologies Office (BTO), 
and managed by the National Renewable Energy Laboratory (NREL).” [Online]. 
Available: https://energyplus.net/. [Accessed: 10-Feb-2018]. 

[21] “Dassault Systèmes. Dymola Systems Engineering,” 2018. [Online]. Available: 
https://www.3ds.com/products-services/catia/products/dymola. [Accessed: 12-Feb-
2018]. 

[22] “Modelica official website.” [Online]. Available: https://www.modelica.org. [Accessed: 
14-Feb-2018]. 

[23] B. Michaelsen and J. Eiden, “Human Comfort Modelica-Library Thermal Comfort in 
Buildings and Mobile Applications,” Proc. 7th Model. Conf. Como, Italy, Sep. 20-22, 

2009. 

[24] S. Wischhusen, “Modelling and Calibration of a Thermal Model for an Automotive 
Cabin using HumanComfort Library,” Proc. 9th Int. Model. Conf. Sept. 3-5, 2012, 
Munich, Ger. 

[25] U.-E. I. 7730:2006, Ergonomics of the thermal environment - Analytical determination 

Page 18 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

and interpretation of thermal comfort using calculation of the PMV and PPD indices 

and local thermal comfort criteria. 2006. 

[26] R. Yao, B. Li, and J. Liu, “A theoretical adaptive model of thermal comfort – Adaptive 
Predicted Mean Vote ( aPMV ),” Build. Environ., vol. 44, no. 10, pp. 2089–2096, 2009. 

[27] M. Humphreys, “Outdoor temperatures and comfort indoors,” Build. Res. Pract., vol. 6, 
no. 2, pp. 92–105, 1978. 

[28] AENOR, ISO 7730:2005, Ergonomics of the Thermal Environment— Analytical 

Determination and Interpretation of Thermal Comfort Using Calculation of the PMV 

and PPD Indices and Local Thermal Comfort Criteria. Geneva: International 
Organization for Standardization. 2005. 

[29] C. Croitoru, I. Nastase, F. Bode, A. Meslem, and A. Dogeanu, “Thermal comfort models 
for indoor spaces and vehicles - Current capabilities and future perspectives,” Renew. 
Sustain. Energy Rev., vol. 44, 2015. 

[30] M. Castilla, J. Domingo Álvarez, F. Rodríguez, and M. Berenguel, Comfort Control in 
Buildings. Springer-Verlag, 2014. 

[31] B. Givoni, Passive and low energy cooling of buildings. New York, New York, USA: 
Wiley-Blackwell, 1994. 

[32] J. A. Orosa, “Research on the Origins of Thermal Comfort,” Eur. J. Sci. Res., vol. 34, 
no. 4, pp. 561–567, 2009. 

[33] L. Möller and L. Sörensen, “Thermodynamical Modeling of a Car Cabin.” 2011. 

[34] MathWorks, “House heating system.” [Online]. Available: 
https://es.mathworks.com/help/physmod/simscape/examples/house-heating-system.html. 

[35] Y. Farzaneh and A. a. Tootoonchi, “Controlling automobile thermal comfort using 
optimized fuzzy controller,” Appl. Therm. Eng., vol. 28, no. 14–15, pp. 1906–1917, Oct. 
2008. 

[36] K. L. Ku, J. S. Liaw, M. Y. Tsai, and T. S. Liu, “Automatic Control System for Thermal 
Comfort Based on Predicted Mean Vote and Energy Saving,” IEEE Trans. Autom. Sci. 
Eng., pp. 1–6, 2014. 

[37] D. Cooper and D. Fina, “Training simulators enhance process control education,” in 
Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, 
vol. 2, no. June, pp. 997–1001. 

[38] M. L. Ruz, S. Fragoso, D. Rodríguez, and F. Vázquez, “Real-time estimation of thermal 
comfort indices in an office building with a solar powered HVAC system,” in 23rd 
Mediterranean Conference on Control and Automation, 2015, pp. 803–808. 

[39] J. G. Balchen, M. Handlykken, and A. Tysso, “The need for better laboratory 
experiments in control engineering education,” in 8th IFAC World Congress, 1981, pp. 
3363–3368. 

[40] G. Havenith, I. Holmér, and K. Parsons, “Personal factors in thermal comfort 
assessment: Clothing properties and metabolic heat production,” Energy Build., vol. 34, 
no. 6, 2002. 

[41] R. Dormido et al., “Development of a web-based control laboratory for automation 
technicians: The three-tank system,” IEEE Trans. Educ., vol. 51, no. 1, pp. 35–44, 2008. 

[42] S. Fragoso, M. L. Ruz, J. Garrido, F. Vázquez, and F. Morilla, “Educational software 
tool for decoupling control in wind turbines applied to a lab-scale system,” Comput. 
Appl. Eng. Educ., vol. 24, no. 3, pp. 400–411, 2016. 

Page 19 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[43] D. C. Morales, J. E. Jiménez-Hornero, F. Vázquez, and F. Morilla, “Educational tool for 
optimal controller tuning using evolutionary strategies,” IEEE Trans. Educ., vol. 55, no. 
1, pp. 48–57, 2012. 

 

Page 20 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

PPD as function of PMV  

 

77x57mm (300 x 300 DPI)  

 

 

Page 21 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

PMV-based control strategy  

 

198x81mm (300 x 300 DPI)  

 

 

Page 22 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

CB-GUI main window  

 

315x200mm (300 x 300 DPI)  

 

 

Page 23 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Simulation window  

 

106x66mm (300 x 300 DPI)  

 

 

Page 24 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Relationship between metabolic rate and PMV and PPD values for typical office climates. Sensitivity of PMV-
PPD indexes for the clothing insulation parameter (Clo)  

 
110x43mm (300 x 300 DPI)  

 

 

Page 25 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Partial correlation between PMV and each input parameter  

 

100x58mm (300 x 300 DPI)  

 

 

Page 26 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Student survey answers  

 

91x50mm (300 x 300 DPI)  

 

 

Page 27 of 33

John Wiley & Sons

Computer Applications in Engineering Education

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

TABLE 1. THERMAL SENSATION SCALE 

PMV Sensation 

+3 Hot 

+2 Warm 

+1 Slightly warm 

0 Neutral 

-1 Slightly cool 

-2 Cool 

-3 Cold 
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TABLE 2. INSTRUCTION METHOD 

Lecture Thermal comfort concepts Outcome 1,2,4,5 

PBL.task 1 
Learning the use of CB-GUI in a 

guided way 
Outcome 7 

PBL.task 2 
Solve the proposed problem for 

the instructor 
Outcome 1,2,3,4,7 

PBL.task 3 
Analyzing a real situation with 

the BMS connection 
Outcomes 1,7,8 

PBL.task 4 
Present the problem and solution 

in a final report 
Outcome 4,6 
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TABLE 3. PARAMETERS OF THE HOUSE MODEL 

Parameter Value 

House length (�) 6 m 

House width (�) 3 m 

House height (ℎ) 2.5 m 

Wall thickness (���		) 0.15 m 

Wall density (
��		) 1920 kg/m3 

Wall specific heat (���		) 835 J/(kg K) 

Wall thermal conductivity (�
) 0.038 W/(m K) 

Number of windows (�������) 3 

Window height (ℎ������) 1 m 

Window width (�������) 1 m 

Window thickness (�������) 0.01 m 

Window density (
������) 2700 kg/m3 

Window specific heat (�������) 840 J/(kg K) 

Window thermal conductivity (��) 0.78 W/(m K) 

Roof pitch (�) 0 deg 

Roof thickness (�����) 0.2 m 

Roof density (
����) 32 kg/m3 

Roof thermal conductivity (��) 0.038 W/(m K) 

Roof specific heat (�����) 835 J/(kg K) 

Air-wall convective heat transfer coefficient 

(ℎ
) 

24 W/(m2 K) 

Wall-atmosphere convective heat transfer 

coefficient (ℎ�) 

34 W/(m2 K) 

Air-window convective heat transfer 

coefficient (ℎ�) 

25 W/(m2 K) 

Window-atmosphere convective heat 

transfer coefficient (ℎ�) 

32 W/(m2 K) 

Air-roof convective heat transfer coefficient 

(ℎ�) 

12 W/(m2 K) 

Roof-atmosphere convective heat transfer 

coefficient (ℎ�) 

38 W/(m2 K) 

Air density (�) 1.2250 kg/m3 

Air specific heat (����) 1005.4 J/(kg K) 
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TABLE 4. SIMULATION RESULTS 

Control strategy Avg. Indoor 

Temp. (ºC) 

Total energy 

consumption 

(kWh) 

Avg. Heating 

power (kW) 

PPD (mean, 

max) 

Avg. 

PMV 

Total 

electrical cost 

(EUR) 

ON-OFF 25.1127 37.0156 0.7711 (21.96, 43.36) 0.79 3.3314 

ON-OFF 23.9463 33.6063 0.7001 (14.28, 28.24) 0.53 3.0246 

PMV-based 21.6738 26.6371 0.5549 (8.25, 11.33) 0.03 2.3973 
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TABLE 5. STUDENT QUESTIONNAIRE 

Learning value 

Q1 Did the tool enhance your ability to understand the theoretical material in a new way? 

Q2 Did the tool help you to visualize the new concepts of thermal comfort? 
Q3 Did you think that you have gained as much information as you would from a lecture explanation? 

Value added 

Q4 Did the tool help you to improve your theoretical knowledge of comfort-based control? 

Q5 Were you able to work through experiences in a way that could not have been possible by attending a traditional 
lab? 

Q6 Were you able to understand the possibility of application of different control strategies over HVAC systems to 

improve the thermal comfort? 
Q7 Was the level of interactivity in the tool adequate? 

Design usability and easy understanding of the tool 

Q8 Was the CB-GUI easy to understand and use? 

Q9 Did you think that the graphical interface user is user-friendly? 
Q10 The ideas and concepts within the tool were clearly presented and easy to follow? 
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TABLE 6. STUDENT RESPONSES OF THE TOOL SURVEY PER SUBSCALE (NUMBER OF STUDENTS = 30) 

Group items Strongly 

agree 

Agree Neutral Disagree Strongly disagree 

Learning value (Q1,Q2,Q3) 42.66 % 31.33 % 23.66 % 2.33 % 0 % 

Value added (Q4, Q5, Q6, Q7) 30.25 % 48 % 15.75% 6.25 % 0 % 

Design usability and easy 
understanding of the tool (Q8, 

Q9, Q10) 

21.66 % 60 % 13.33% 5 % 0 % 
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