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Abstract: This article shows the preliminary results of a study carried out to determine the technical
feasibility of encapsulating a high percentage of EAFD in cement-based mortars manufactured
with the fine fraction of recycled concrete aggregates (RCA). Two families of mortars, with natural
aggregate as a reference and with RCA, were studied. An incorporation rate by weight of two parts
mortar to one part EAFD was tested. The mechanical strengths (compressive strength and tensile
strength) before and after immersion in water, the rate of delitescence and the leaching behavior were
studied. Mortars made with RCA showed similar mechanical strengths to the reference mortars made
with natural aggregates; however, the incorporation of EAFD decreased the mechanical strengths.
Encapsulation considerably reduced the leaching of heavy metals, although the Pb concentration
remained above the hazardous waste limit. With this preliminary study, two wastes are managed
together, and the results have shown that the use of RCA instead of natural aggregate is a viable
alternative since it does not significantly impair the mechanical or leaching properties of the cement-
based matrices used to encapsulate EAFD.

Keywords: Electric Arc Furnace Dust; recycled concrete aggregates; mechanical behavior mortar;
leaching behavior mortar; encapsulation hazardous waste

1. Introduction

The “Europe 2020” strategy aims to generate smart, sustainable and inclusive growth
by opting for an efficient economy in the use of natural resources. The new paradigm of
the “circular economy” has as its main objective the sustainable use of resources through
the principle of “closing the lifecycle loop” of materials—that is, to reintroduce into the
production process materials classified as “waste” whose destination was the landfill [1].
This practice reduces the volume of waste managed in landfills and reduces the amount of
raw materials consumed [2].

One of the main focuses of action of the “circular economy” is the construction sector,
since it is considered one of the main generators of waste and consumers of natural
resources at the European level [3,4]. Within the construction sector, the mortar and
concrete industry has a high impact due to its high consumption of non-renewable natural
resources [5]. Construction and demolition waste (CDW) is one of the major waste streams
globally; therefore, the use of recycled aggregates from CDW as raw materials in mortars
and concretes is a practice to be promoted and is in line with the new paradigm of the
“circular economy”.

The coarse fraction of recycled aggregates from CDW has been used successfully
in the manufacture of structural and non-structural concrete [3,6,7]. The fine fraction of
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these recycled aggregates (0/4 mm) has also been used successfully in the manufacture of
masonry mortars [8–12] and structural concrete [13,14].

Furthermore, Spain is the third-highest steel producing country in the European
Union [15]. More than 75% of its steel is produced through scrap recycling [16]. The scrap
is melted in an electric arc furnace at temperatures above 1600 ◦C, and in this process
occurs the volatilization of elements such as iron, zinc and lead, which react with oxygen
and generate waste in the form of dust. This waste is known as Electric Arc Furnace
Dust (EAFD), and it is collected and recovered in ventilation filters [17]. Although the
composition of the EAFD depends on the scrap melted in the electric arc furnace, it is
mainly composed of heavy metals such as zinc and lead [18].

From an environmental point of view, the EU Council Decision 2003/33/EC [19]
establishes the criteria for classifying waste according to the concentration of heavy metals
and anions detected in accordance with a conformity test (UNE EN 12457-4:2003). The
levels of classification of waste based on its deposit in a landfill are inert, non-hazardous and
hazardous. EAFDs are classified according to the EU Council Decision 2003/33/EC [19] as
hazardous waste due to the high content of heavy metals that can leach [20–22]. Worldwide,
around 70% of the EAFD produced is destined for landfilling after an encapsulation
treatment, while the remaining 30% is destined for metal recovery [23–25].

Occasionally, scrap metal contains radioactive elements that may not be detected when
entering the steel mill and then contaminate the steel mill dust during the manufacturing
process [26]. Several radioactive incidents have been described in EAF steel mills in Italy,
Mexico, Brazil, Thailand and Estonia [27]. In Spain, during the last decade, six incidents of
this nature occurred in Andalusia (south of Spain) and the Basque Country (north of Spain).
Because of this type of incident, it is necessary to encapsulate the EAFD with cement-
based materials prior to transporting and subsequent depositing in storage installations for
radioactive waste. The maximization of the ratio of EAFD/mortar is crucial to reduce the
volume of storage necessary at this type of installation.

EAFD encapsulation techniques aim to create mechanically and chemically stable
monolithic blocks. The use of conventional Portland cement in the encapsulation of EAFD is
usually the most recommended technique due to the extensive knowledge of this material,
its availability and its good long-term physical and chemical stability [28]. The verification
of the adequate encapsulation of the EAFD by means of cement-based matrices must be
carried out through the study of the mechanical properties of the monoliths formed by
the setting of the cement and the leaching behavior of elements that are harmful to the
environment [16]. There are successful studies in which cement-based matrices are used
to encapsulate EAFD [29,30]. Even so, the immobilization of heavy metals from EAFD is
not always chemically possible (adsorption) [31], it being necessary to develop matrices
that allow the encapsulation of heavy metals from a physical point of view—for example,
using denser matrices that do not allow the diffusion of contaminating elements [1,32]. The
cement-based matrices used to date for the encapsulation of EAFD incorporate natural
sand [31], and there are no studies on the feasibility of using recycled aggregates from CDW
for the manufacture of encapsulation matrices. However, mortars made with recycled
aggregates from CDW are more porous than those made with natural aggregates, which
can impair the diffusion leaching phenomena of monolithic mortar blocks, hence the need
to study the feasibility of using recycled aggregates from CDW in the manufacture of
cement-based matrices for the immobilization of EAFD.

The objective of this study is to analyze the possibility of using the fine fraction
of recycled concrete aggregates (RCA) for the encapsulation of EAFD in cement-based
matrices. If the results of this research are favorable, two wastes can be reused together,
reducing the consumption of natural resources and giving a second life to RCA- and
EAFD-type waste, while promoting the new paradigm of the circular economy.
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2. Materials and Methods
2.1. Characterization of Materials

A commercial siliceous sand (Natural aggregate: NA) was used as a reference, and a
fine recycled aggregate from structural concrete waste (RCA) was used as an alternative.
The RCA was collected from the 0/4 mm stockpile of a recycling plant located in Córdoba,
Spain, where structural concrete waste from different sources was previously crushed
and subsequently screened. Figure 1 shows the particle size distribution of NA and RCA
calculated according to the standard UNE-EN 933-1:2006. In RCA, approximately 93% of
the particles are less than 4 mm, while in NA, 100% are less than 4 mm. In RCA, more
than 14% of the particles pass through the 0.063 mm sieve, and in NA, only 1.8% pass
through this sieve. The RCA shows a more continuous particle size distribution, with
higher compaction capacity than the NA, which presents a more uniform particle size
distribution. In order that the results of this research can be applied on a real scale, the
aggregates were used without altering their granulometric curves.

Figure 1. Particle size distribution of NA and RCA.

The NA had a sand equivalent value of 94 calculated according to the UNE-EN 933-
8:2000 standard. The dry particle density and water absorption were calculated according to
the UNE-EN 1097-6:2014 standard, obtaining a value of 2.60 g/cm3 and 0.95%, respectively,
while the RCA had a sand equivalent value of 90, a dry particle density of 2.27 g/cm3 and
5.7% of water absorption. The RCA composition, calculated in accordance with the UNE
EN 933-11:2009 standard, was concrete particles (98%), asphalt particles (1%) and ceramic
particles (1%), so it can be considered a pure recycled concrete aggregate.

To achieve higher compactness of the cement-based matrix, a commercial siliceous
filler (SF) was used. The SF came from crushing siliceous quarry sands and was supplied
by Minas Carmina Palau Saverdera (Gerona, Spain). Portland cement CEMI 42.5 R/SR
was used, which was supplied by the Portland Valderrivas S.A. from Alcalá de Guadaira
(Seville, Spain).

The chemical composition of NA and RCA was carried out by X-ray fluorescence
(XRF) using 4 kW of power and S4PIONEER, BRUKER equipment. The cement and SF
composition was supplied by their manufacturers. The chemical compositions are shown
in Table 1.
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Table 1. Material chemical composition.

Component (% Mass) SF Cement NA RCA

SiO2 100.00 14.08 91.93 52.38
Al2O3% – 3.20 3.23 7.92
Fe2O3% – 4.56 1.07 2.81
SO3% – 4.23 – –
CaO% – 71.98 0.71 31.2
K2O – 0.96 3.06 1.82

MgO% – 0.99 – 2.82
Na2O – – – 0.83
Cr2O3 – – – 0.22

The EAFD was collected from an electric arc furnace steel mill located in the North of
Spain (Zumárraga).

The specific surface area of EAFD, SF and cement was analyzed by the Brunauer–
Emmett–Teller (BET) method, through the absorption of N2 with Micromeritics ASAP 2010
equipment. The dry particle density was also determined according to standard UNE
80103:2013 (Standards used in the experimental work are shown in Appendix A). The
results obtained are shown in Table 2.

Table 2. Physical properties of EAFD, SF and Cement.

EAFD SF Cement

Specific surface area (m2/g) 4.6 0.25 0.35

Dry particle density (g/cm3) 3.81 2.60 3.14

The chemical composition of EAFD was determined using the EDAX technique using
a Jeol scanning electron microscope with the following characteristics: model JSM-6300
with acceleration potential of 20 kV and working distance of 15 mm. The percentages by
weight of the elements identified in the EAFD are indicated in Table 3.

Table 3. Chemical composition of EAFD.

Element (%) EAFD

Zn 35.45
Fe 23.53
O 18.32
Ca 7.58
Cl 3.58
Pb 3.02
Mn 2.14
K 1.63
S 1.22

Mg 1.17
Si 1.05
Al 0.53
Ti 0.52
Cr 0.26

Total 100.00

The metallic elements that showed a higher proportion in the EAFD were Zn and
Fe, and to a lesser extent Ca, Pb and Mn. These results were in accordance with those
reported by other authors such as López and López-Delgado [33] and Sapiña et al. [34].
The composition of this type of waste varies depending on the quality of the molten scrap.
Sofilic et al. [35] also identified Fe as the main element, and to a lesser extent Zn, Ca and Mn.
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To evaluate the potential contaminating effect of the EAFD, a compliance test was
carried out in accordance with the UNE EN 12457-4:2003 standard. This test is used to
determine the concentration of heavy metals and anions in the leachate of a waste and
allows classifying the waste in accordance with the criteria established by the EU Council
Decision 2003/33/EC [19].

The compliance test procedure is described here: the dry mass to be tested was 0.90 kg.
A quantity of leachate (deionized water) was added so that a liquid/solid ratio (L/S) of
10 L/kg was established. The mixture was stirred in a tumbler for 24 h at a speed between
5 and 10 revolutions per minute, and then the sample was filtered with 0.45 µm filters.

The liquids from the filtration were analyzed in an ICP-MS (Perkin Elmer ELAN
DRC-e) equipped with a system for introducing diluted samples, argon plasma ionization
and quadruple ion detection, which has a DRC cell to eliminate interferences. This analysis
quantified the 12 heavy metals specified by the European Landfill Directive: Ni, Cr, Sb,
Se, Mn, Hg, As, Pb, Cd, Cu, Ba and Zn. In addition, the sulphate, fluoride and chloride
anion contents were obtained by ion chromatography according to the UNE-EN ISO
10304-1:2009 standard.

Table 4 shows the results obtained in the leaching test. Limit values for the environ-
mental classification of waste according to the EU Council Decision 2003/33/EC [19] are
also indicated.

Table 4. Leached concentrations of EAFD (mg/kg) and acceptance criteria (WAC, EU Council
Decision 2003/33/EC).

Element (mg/kg)
L/S = 10

EAFD
Criteria EU Landfill Directive 2003/33/EC

Inert Non-Hazardous Hazardous

Cr (Chromium) 1.970 (a) 0.5 10 70
Ni (Nickel) 0.053 0.4 10 40

Cu (Copper) 2.157 (a) 2 50 100
Zn (Zinc) 24.047 (a) 4 50 200

As (Arsenic) <0.05 0.5 2 25
Se (Selenium) 2.762 (b) 0.1 0.5 7

Mo (Molybdenum) 20.494 (b) 0.5 10 30
Cd (Cadmium) 0.138 (a) 0.04 1 5
Sb (Antimony) 0.001 0.06 0.7 5

Ba (Barium) 6.935 20 100 300
Hg (Mercury) 0.180 (a) 0.01 0.2 2

Pb (Lead) 5483.866 (c) 0.5 10 50
Fluoride 65.8 (a) 10 150 500
Chloride 24,100 (b) 800 15,000 25,000
Sulphate 16,300 (a) 1000 20,000 50,000

Conditions of the Test Sample

Conductivity (µS/cm) 8560
Temperature (◦C) 19.8

pH 13.28
(a) Exceeds the inert waste limit; (b) Exceeds the non-hazardous waste limit; (c) Exceeds the hazardous waste limit.

In Table 4, it is necessary to highlight the high leaching of Pb in the EAFD sample,
since with a pH higher than 12, the Pb is easily mobilized [36–39]. The EAFD showed
a pH value of 13.28 during the UNE-EN 12457-4:2003 compliance test. The pH value of
the EAFD depends on the raw material and the additives used in the production of steel;
therefore, the pH values of EAFD are highly variable.

Leclerc et al. [40] found slightly lower pH values in five different types of EAFD: 8.2,
9.3, 10.4, 11.0 and 11.4. Ledesma et al. [16] studied the influence of pH on the leaching
of metals from two EAFD. The pH dependence test confirmed minimal Pb release for
pH values of 9-11, although when the pH was increased to values higher than 12 the
concentration of Pb in the leachate increased significantly.
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2.2. Experimental Design

Two families of mortars were tested using NA as a reference aggregate and RCA as
an alternative aggregate. The reference mortar was dosed by weight with the following
percentages of its components: 30% cement, 40% aggregates (natural or recycled depending
on the family in each case) and 30% siliceous filler.

EAFD was incorporated into the two families of mortars in a mortar/EAFD weight
ratio of 2:1. A previous study carried out by Ledesma et al. [31] was taken as a reference
to choose the amount of waste to be incorporated into the mix, which determined the
maximum amount of EAFD that could be mechanically encapsulated with cement-based
mortars and limestone aggregates. The amount of water was added experimentally to
achieve a liquid consistency of the mortar equal to 230 ± 10 mm on a shaking table
(UNE-EN 1015-3:2000).

Table 5 shows the dosages used in each batch, as well as the nomenclature adopted
for the different types of mortars tested.

Table 5. Mortar mix proportions.

Mortar Type CEM (g) NA (g) RCA (g) SF (g) EAFD (g) Water (g) w/c Consistency (mm)

NA-REF 1200 1600 - 1200 - 1050 0.88 236
NA-EAFD/2:1 800 1067 - 800 1333 1194 1.49 224

RCA-REF 1200 - 1600 1200 - 1233 1.03 234
RCA-EAFD/2:1 800 - 1067 800 1333 1628 2.04 236

2.3. Methodology

To evaluate the mechanical properties of the manufactured mortars, the compressive
strength and tensile strength were measured before and after immersion, following the
procedure described in the XP X31-212:2011 standard.

Cylindrical specimens of 80mm in height and 40 mm in diameter were used, following
the methodology proposed by Ledesma et al. [31]. The mechanical strength data before
immersion were determined after 28 days of mixing, and those corresponding to after
immersion at 32 days, after the specimens had been immersed in deionized water for
96 ± 4 h at a temperature of 20 ± 5 ◦C, with L/S ratio = 10, as described in the XP X31-
212:2011 standard.

The water in contact with the submerged specimens was passed through a 0.45 µm
filter to determine the delitescence rate (XP X31-212:2011). The material retained on the
filter was dried in an oven at a temperature of 105 ± 5 ◦C. The delitescence rate was
obtained by the following expression (1):

td = 100 × md
m0s

(1)

where:
td: delitescence rate (%)
md: dry mass of solid particles retained on the 0.45 µm filter (g)
m0s: dry mass of the specimen (g)
A total of 3 repetitions were carried out for the tests of compressive and tensile strength

before and after immersion. To determine the delitescence rate, 3 of the 6 specimens that
were submerged in deionized water were randomly taken, after which the eluate was
filtered and the delitescence rate was calculated. Once the specimens were broken in
the compressive strength test, before and after immersion, their dry bulk density was
calculated according to the UNE-EN 1015-10:2000 standard.

To evaluate the concentration of heavy metals and anions that can leach from the
encapsulated EAFD in the cement-based matrices, the method described in the XP X31-
211:2012 standard was followed.
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Two cylindrical samples of each type of mortar were immersed for 24 h in deionized
water (L/S = 10) in continuous movement by means of a magnetic stirrer. The water in
contact with the samples was passed through 0.45 µm filters, and the eluate from the
filtering process was analyzed on an ICP-MS following the procedure described in the
previous section. This method has been used in a previous study [31].

3. Results
3.1. Dry Bulk Density of Hardened Mortar

The dry bulk density of the hardened mortar was obtained after 28 days, and the
results obtained are shown in Table 6.

Table 6. Dry bulk density of the hardened mortar: mean values and standard deviation.

Mortar Dry Bulk Density (kg/m3)

NA-REF 1563 ± 0.006
NA-EAFD/2:1 1413 ± 0.008

RCA-REF 1537 ± 0.007
RCA-EAFD/2:1 1335 ± 0.003

The dry bulk density decreased slightly when NA was replaced by RCA, attributed to
the lower density of the RCA particles and the higher w/c ratio used [9]. The lower density
of RCA was compensated by its more continuous particle size distributions, which gave
the mortar specimens higher compactness [9,12].

The dry bulk density decreased when the EAFD content increased, attributed to the
higher w/c ratio. The incorporation of EAFD causes a higher porosity of cement-based
mortars [32] due to the interaction of the heavy metals contained in the EAFD with the
cement hydration products, which also explains the lower dry bulk density of this type of
EAFD mortar.

3.2. Mechanical Properties of Hardened Mortar

Figure 2 shows the results of compressive strength, tensile strength and rate of delites-
cence tests. The specifications that were taken into account to consider the mortar specimen
a monolithic block were the same as previously considered by Ledesma et al. [31]: at 28
days of age, the compressive strength must be greater than 1 MPa, the tensile strength
greater than 0.1 MPa, and the delitescence rate after immersion less than 10%. Lampris
et al. [41] and Fernández et al. [42] also considered that a mortar reaches the monolithic
block state when the compressive strength at 28 days is higher than 1 MPa, which is in
accordance with what is indicated by the English Environmental Agency (EEA) [43].

All the analyzed samples showed a delitescence rate below the 10% established as
the limit. A slight increase in the delitescence rate was observed with the incorporation
of EAFD in the mix and with the use of RCA, which may be related to the lower dry bulk
density and higher porosity of these specimens.

The loss of mechanical strength in cement-based materials with the incorporation of
EAFD is common, mainly due to the high presence of heavy metals in the EAFD that affect
the microstructure and hydration reactions of the cement [16,44].

Ledesma et al. [31] and Lozano-Lunar et al. [2] also found a notable decrease in the
mechanical strengths of conventional and self-compacting mortars with the incorporation
of EAFD. In this case, the decrease in compressive and tensile strength was higher than
50% in most of the mixtures. However, the compressive strengths obtained with EAFD
were above 7 MPa and 0.5 MPa in tensile strength, which allowed classifying the mortar as
a monolith block.

The substitution of natural sand for RCA showed good results in the manufacture
of mortars, reaching replacement rates of up to 40% without being significantly affected
by mechanical strength [9]. In the present study, a similar behavior of mortar with EAFD
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was observed with NA and RCA, which contributes positively to jointly treat a hazardous
waste (EAFD) and a recycled aggregate from CDW.

Figure 2. Results (mean values and standard deviation) of the mechanical properties.

3.3. Environmental Risk from Heavy Metal Leaching

Table 7 shows the release levels of elements obtained in the tank leaching test XP
X31-211:2012 of the hardened mortars. The conditions during the test are also indicated
conductivity, temperature and pH.

Table 7. Leaching behavior of monolithic samples of mortar (XP X31-211:2012).

Element (mg/kg)
L/S = 10 NA-REF NA-EAFD/2:1 RCA-REF RCA-EAFD/2:1

Cr 0.013 0.029 0.110 0.131
Ni 0.010 0.009 0.023 0.022
Cu 0.003 0.012 0.013 0.029
Zn 0.070 7.630 (a) 0.167 10.035 (a)

As <0.05 <0.05 0.012 <0.05
Se 0.003 <0.1 0.027 0.353 (a)

Mo 0.022 <0.5 0.020 <0.5
Cd 0.000 0.001 0.001 0.003
Sb 0.001 0.003 0.010 0.016
Ba 2.010 2.829 2.240 5.284
Hg 0.001 0.001 0.000 0.004
Pb 0.023 14.745 (b) 0.073 35.993 (b)

Fluoride <10 <10 <10 <10
Chloride 7.463 3250 (a) <10 4072.700 (a)

Sulphate 19.790 754.525 <50 105.650

Conditions of the Test Sample

C (µS/cm) 711 2865 1284 2850
Tª 20.7 19.2 30.5 28.9
pH 11.5 11.67 11.74 11.96

(a) Exceeds the inert waste limit; (b) Exceeds the non-hazardous waste limit.

All elements were kept below the inert limit in the reference mortar of each family:
NA-REF and RCA-REF. In the case of RCA-REF, this is of special interest since it is an
inert waste.
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Mortars made with EAFD, NA-EAFD/2:1 and RCA-EAFD/2:1, show similar element
release results, which shows that the substitution of NA for RCA does not significantly
impair leaching. In the case of NA-EAFD/2:1, Zn and chlorides exceeded the inert waste
limit; however, Pb exceeded the limit of 10 mg/kg (14,745 mg/kg) established to classify
the material as hazardous. In the RCA-EAFD mortar, in addition to Zn and chlorides,
the inert limit was exceeded. Pb also exceeded the limit of 10 mg/kg (35,993 mg/kg). To
reduce the amount of Pb in the leachate, further studies with less EAFD should be carried
out until the optimal ratio of EAFD:mortar is achieved.

The leaching of Pb in the starting EAFD (Table 3) was 5483.866 mg/kg, an amount that
exceeds the limits of the EU Council Decisión 2003/33/EC [19] for its deposit in landfill.
With the encapsulation of the EAFD in cement-based mortars, using both NA and RCA it
is possible to reduce this amount by 99.73% and 99.34%, keeping the release of Pb within
the limits of the EU Council Decisión 2003/33/EC [19]. With the incorporation of EAFD,
the resulting matrix is more porous, which favors the mobility of Pb [16,45]. The higher
conductivity obtained in mortars with EAFD is in accordance with the higher presence of
metals in the leachate.

4. Conclusions

In this preliminary study, the possibility of using recycled concrete aggregates (RCA) to
encapsulate Electric Arc Furnace Dust (EAFD) in cement-based matrices was investigated.
The following partial conclusions were drawn:

(1) The EAFD showed a release of Pb that exceeds the limit for its classification as
hazardous waste, favored by the high pH obtained in the leaching test.

(2) The total substitution of NA for RCA reduced the dry bulk density of the hard-
ened mortar and slightly decreased the compressive strength (8%) and the tensile
strength (7%).

(3) The incorporation of EAFD in a 2:1 weight ratio (EAFD: mortar) reduced the mechan-
ical strength by around 50% both in mortars made with NA and with RCA, which
may be due to the high presence of heavy metals in the EAFD and the highest w/c
ratio necessary for its manufacture.

(4) The weight ratio (EAFD: mortar) 2:1 used for the encapsulation of EAFD did not
enable immobilizing the Pb below the hazardous waste limits, either in the mortars
made with NA or in the mortars made with EAFD, which will require future studies
to optimize the EAFD: mortar ratio.

In conclusion, the use of RCA instead of NA for the manufacture of encapsulation
mortars for hazardous waste is a viable alternative since it does not significantly impair the
mechanical or leaching properties of cement-based matrices. Pb has been identified as the
most limiting element to encapsulate EAFD, with new studies being necessary to optimize
the EAFD: mortar ratio and the leaching of Pb.
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Appendix A

Standards Used in the Experimental Work
UNE-80103:2013. Test methods of cements. Physical analysis. Actual density determi-

nation.
UNE-EN 1015-10:1999. Methods of test for mortar for masonry. Part 10: Determination

of dry bulk density of hardened mortar.
UNE-EN 1097-6:2014. Test for mechanical and physical properties of aggregates. Part

6: Determination of particle density and water absorption.
UNE-EN 12457-4:2003. Characterization of waste. Leaching. Compliance test for

leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid
to solid ratio of 10 L/kg for materials with particle size below 10 mm (without or with
size reduction).

UNE-EN 933-1:2006. Test for geometrical properties of aggregates Part 1: Determina-
tion of particle size distribution. Sieving method.

UNE-EN 933-11:2009. Test for geometrical properties of aggregates. Part 11: Classifi-
cation test for the constituents of coarse recycled aggregate.

UNE-EN ISO 10304-1: 2009. Water quality—Determination of dissolved anions by
liquid chromatography of ions—Part 1: Determination of bromide, chloride, fluoride,
nitrate, nitrite, phosphate and sulphate (ISO 10304-1:2007).

XP X31-211:2012. Waste—test for the determination of the leachability of a solid waste
material initially massive or generated by a solidification process.

XP X31-212:2011. Characterization of waste—determination of the massive solid
characteristic.
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furnace dust. J. Hazard. Mater. 2004, 109, 59–70. [CrossRef]
36. Van der Sloot, H.; Dijkstra, J. Development of Horizontally Standardized Leaching Tests for Construction Materials: A Material

Based or Release Based Approach? Identical Leaching Mechanisms for Different Materials. ECN-C–04-060 ed. 2004. Available
online: https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--04-060 (accessed on 3 September 2021).

37. Mitrakas, M.G.; Sikalidis, C.A.; Karamanli, T.P. Immobilization of EAFD heavy metals using acidic materials. J. Environ. Sci.
Health Part A Toxic Hazard. 2007, 42, 535–541. [CrossRef] [PubMed]

38. Sebag, M.G.; Korzenowski, C.; Bernardes, A.M.; Vilela, A.C. Evaluation of environmental compatibility of EAFD using different
leaching standards. J. Hazard Mater. 2009, 166, 670–675. [CrossRef]

39. Navarro, A.; Cardellach, E.; Corbella, M. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials. J.
Hazard Mater. 2011, 186, 1576–1585. [CrossRef] [PubMed]

40. Leclerc, N.; Meux, E.; Lecuire, J.M. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilo-
triacetate anion and hexahydrated ferric chloride. J. Hazard Mater. 2002, 91, 257–270. [CrossRef]

41. Lampris, C.; Stegemann, J.A.; Cheeseman, C.R. Solidification/stabilisation of air pollution control residues using Portland cement:
Physical properties and chloride leaching. Waste Manag. 2009, 29, 1067–1075. [CrossRef] [PubMed]

42. Fernández, J.M.; Navarro-Blasco, I.; Duran, A.; Sirera, R.; Alvarez, J.I. Treatment of toxic metal aqueous solutions: Encapsulation
in a phosphate-calcium aluminate matrix. J. Environ. Manag. 2014, 140, 1–13. [CrossRef]

43. Environment Agency. Waste Acceptance at Landfills (Bristol). 2010. Available online: https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/862051/geho1110btew-e-e.pdf (accessed on 28 September 2021).

44. Lasheras-Zubiate, M.; Navarro-Blasco, I.; Alvarez, J.I.; Fernández, J.M. Interaction of carboxymethylchitosan and heavy metals in
cement media. J. Hazard Mater. 2011, 194, 223–231. [CrossRef] [PubMed]

45. Lozano-Lunar, A.; Fernández Ledesma, E.; Romero Esquinas, Á.; Jiménez Romero, J.R.; Fernández Rodríguez, J.M. A double
barrier technique with hydrotalcites for Pb immobilisation from electric arc furnace dust. Materials 2019, 12, 633. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2018.06.175
http://doi.org/10.1016/j.jhazmat.2007.10.041
http://www.ncbi.nlm.nih.gov/pubmed/18037237
https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=celex:32003D0033
https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=celex:32003D0033
https://www.sustainabilityexchange.ac.uk/the_european_waste_catalogue_ewc
https://www.sustainabilityexchange.ac.uk/the_european_waste_catalogue_ewc
https://www.epa.gov/
http://doi.org/10.1515/aep-2015-0040
http://doi.org/10.1016/j.conbuildmat.2010.06.024
http://doi.org/10.1016/j.jhazmat.2010.01.059
http://doi.org/10.2320/matertrans.46.323
http://doi.org/10.1016/j.radmeas.2004.05.007
http://doi.org/10.1016/j.jenvrad.2011.10.020
http://doi.org/10.3989/mc.1999.v49.i254.446
http://doi.org/10.1016/j.cemconres.2006.05.012
http://doi.org/10.1016/j.jhazmat.2007.09.066
http://doi.org/10.1016/j.jhazmat.2016.11.051
http://www.ncbi.nlm.nih.gov/pubmed/27987447
http://doi.org/10.1016/j.jclepro.2019.02.145
http://doi.org/10.1061/(ASCE)0733-9372(2002)128:12(1169)
http://doi.org/10.1007/s11356-014-3167-2
http://doi.org/10.1016/j.jhazmat.2004.02.032
https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--04-060
http://doi.org/10.1080/10934520701189794
http://www.ncbi.nlm.nih.gov/pubmed/17365324
http://doi.org/10.1016/j.jhazmat.2008.11.125
http://doi.org/10.1016/j.jhazmat.2010.12.039
http://www.ncbi.nlm.nih.gov/pubmed/21190796
http://doi.org/10.1016/S0304-3894(01)00394-6
http://doi.org/10.1016/j.wasman.2008.08.006
http://www.ncbi.nlm.nih.gov/pubmed/18849156
http://doi.org/10.1016/j.jenvman.2014.01.044
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/862051/geho1110btew-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/862051/geho1110btew-e-e.pdf
http://doi.org/10.1016/j.jhazmat.2011.07.085
http://www.ncbi.nlm.nih.gov/pubmed/21872984
http://doi.org/10.3390/ma12040633

	Introduction 
	Materials and Methods 
	Characterization of Materials 
	Experimental Design 
	Methodology 

	Results 
	Dry Bulk Density of Hardened Mortar 
	Mechanical Properties of Hardened Mortar 
	Environmental Risk from Heavy Metal Leaching 

	Conclusions 
	
	References

