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Abstract: Herrin, a simple and eco-friendly method for the synthesis of silver nanowires (Ag-NWs)
has been reported. Silver nanowires were synthesized using Psidium guajava seed extract that acted as
a reducing agent as well as a stabilizing agent for silver nitrate solution. Synthesis was carried out at
50 °C temperature under continuous UV-irradiation. Silver nanowires were initially characterized by
a UV-visible and FTIR spectrophotometer. In addition, morphology and particle size of synthesized
Ag-NWs were determined using Field Emission Scanning Electron Microscopy and X-ray diffraction
(XRD) techniques. Nanowires were found to have 12.8 pm length and 200-500 nm diameter and cubic
phase morphology. Furthermore, the catalytic potential of Ag-NWs for the degradation of methyl
orange dye (MO) was determined. The selected dye was degraded successfully that confirmed the
catalytic potential of Ag-NWs. The authors concluded that Ag-NWs can be synthesized using plant
extract having excellent morphological features as well as impressive catalytic potential.

Keywords: catalytic degradation; methyl orange dye; silver nanowires; degradation kinetics

1. Introduction

Synthetic organic dyes have been reported to cause countless serious threats to the
ecosystem and human health as a huge amount of these chemicals is being used on daily
basis. The tremendous growth of textile industries has increased the use of dyes as well
as pigments [1-3]. The effluents from such industries are usually discharged into the
environment without treatment, which alters the composition of surface and ground water
and risks the health of living beings. With the passage of time, dyes in an aqueous medium
undergo chemical degradation followed by transformation to toxic chemical entities [4].
The degradation products of dyes indirectly or directly enter the food web and originate
unadorned toxic impacts on living beings.

A number of techniques have been reported for the removal of synthetic dyes from efflu-
ents such as catalytic reduction [5], adsorption [6], membrane matrices [7], bio-remediation [8]
and advanced oxidation routes include photolysis and photocatalysis [9]. Among these,
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photocatalytic degradation of dyes using metal nano-catalyst is one of the prime meth-
ods that has been focused on these days due to its efficiency and cost-effectiveness [10,11].
The reduction of such dyes by metal nanoparticles produces biodegradable products [10].
Metal-based nano-catalysts for such reduction are mainly derived from noble metals, like
Ag and Au [12,13] due to their extraordinary stability and high specific area. Several routes
for the synthesis of metal nanoparticles including co-precipitation [14-16], hydrothermal
synthesis [17], sol-gel method [18], inert gas condensation [19], laser ablation [20], sput-
tering [21], template synthesis [22], electron irradiation with heating [23] and biological
synthesis [24] have been developed. However, biological synthesis is the hot choice with
advantages over physical and chemical methods as it is quick, eco-friendly, highly stable and
cost-effective [25].

Catalytic degradation mainly depends upon the morphology [26] and surface area
of the nanostructures [27], that is, nanoparticles [28], nano-rods [29], nano-spheres [30],
nanotubes [31] and nanowires [32]. Among them, nanowires have grabbed the prime
focus of material scientists due to their excellent features like surface area, micro-porous
structural features, the highest contact area with adsorbate surfaces [33]. Lin Bao et al.
have reported the synthesizes of nanowires via green approach by using poly-vinyl acetate
(PVA) polymer back-bone as a stabilizing agent due to the lower stability of Ag-nanowires
(Ag-NWs) [34]. Many serious attempts have been made to enhance the stability of Ag-NW
by using stabilizers like polymer matrices (PVA, PPy EG and glucose) [35], ITO glass
electrode base [36] and electrostatic charge stabilizers [37]. The synthesis of Ag-NW via
a facile, green and eco-friendly routes without any external stabilizers and pro-longed
shelf-life is still a great challenge for scientists [38].

In this manuscript, we are reporting a facile and green approach to synthesize the
Ag-Nanowires (Ag-NW) using Psidium guajava seed extract. In order to stabilize nanowires
no external stabilizers, like ITO-glass electrodes, electrostatic charge, have been used.
Characterization of nanowires was carried out by employing spectroscopic techniques
such as VU-visible, FTIR, SEM and XRD. The catalytic potential of Ag-NWs was evaluated
by studying their ability to remove methyl orange (MO) from an aqueous medium.

2. Materials and Methods
2.1. Materials

Silver nitrate (99.9%) was acquired from Merck, Germany, sodium hydroxide (NaOH)
(80%) and sodium borohydride (NaBH,) (97%) was purchased from Sigma Aldrich, Dorset,
UK. The methyl orange dye (87%) was purchased from Pakistan Ltd. (Fisher, Lahore).
All chemicals were used without further purification. Double deionized water was used
throughout the analysis.

2.2. Preparation of Psidium Guajava Seeds Extract

Psidium guajava seeds were collected washed and dried in an oven around 50 °C till
48 h. Psidium guajava seeds were powdered using a grinder and powder of 0.40 micron
was collected using specific sieves. Psidium guajava seeds (0.1 g) were taken in a flask and
100 mL distilled water was added followed by constant stirring at 40 °C temperature for
50 min [39]. After filtration, the plant extract was collected and concentrated using a rotary
evaporator [40].

2.3. Synthesis of Silver Nanowires

In order to prepare Ag-NWs, Psidium guajava seeds extract (5 mL) was added into the
aqueous solution of AgNO3 (1 Mm/10 mL) under standard conditions. The mixture was
constantly stirred at 50 °C with continuous irradiation of UV-light of 265 nm for four hours.
The color change from milky white to yellow and finally orange indicated the formation of
the silver nanowires [41]. Ag-nanowires were collected after filtration followed by oven
drying at 50 °C for 30 min (Figure 1A,B).
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Figure 1. (A). Step-wise representation for the formation of Silver-Nanowires (Ag-NWs) by using

Psidium guajava seeds extract under UV-irradiation. (B). Extract + AgNOj5 solution (a), Orange colored
Ag-NWs (b), Ag-NWs powder (c).

2.4. Characterization of Ag Nanowire

The fabrication of Ag-NWs was preliminarily established by recording the absorbance
in UV/Vis spectra at a range of 300-800 nm. The change in Surface Plasmon Resonance
(SPR) of nanoparticles in the dispersion was recorded using UV /Vis spectrophotometer.
The XRD patterns of Ag-nanowires were collected on Bruker AXS-D8 Advanced X-ray
diffractometer with Cu Ka radiations of A = 1.5406 A and scanning angle 26 over the range
of 10-80°. Crystallite size was calculated by using Scherer Equation CS = KA/f3 cos 6,
where CS is the crystallite size, constant K = 0.94, 3 is the full width at half maximum
(FWHM), (B = FWHM x 7t/180), A = 1.5406 x 10~ 1°.and cos 0 = Bragg’s angle. Fourier
Transformation Infrared Spectroscopy (FTIR) was used to characterize the nanoparticles
using the powder sample by ATR in the range of 400-4000 cm~!. Scanning electron
microscopy (SEM) images were recorded using FEI-NOVA-450 Nano-SEM (FE-SEM) by
the USA (Hillsboro, ORE, USA). The functional group deter-mination was carried out by
utilizing Alpha-II FTIR-ATR by BRUKERS Internationals (Urbandale, IA, USA).

2.5. Catalytic Potential of Ag-NWs

In order to evaluate the catalytic potential of Ag-NWs, degradation of methyl orange
(MO) dye was conducted in the presence of Ag-NWs. Sodium borohydride (0.6 mL of
17.6 mM) along with Ag-NWs as catalyst (0.4 mL of 0.64 to 3.84 mg/mL) was used for dye
degradation (1.6 mL of 0.062 to 0.102 mM). Reaction mixtures with and without Ag-NWs
were monitored using UV /Vis spectra from 300-800 nm every 2 min.
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3. Results and Discussion
3.1. UV-Visible Analysis of Ag-NWs

UV-visible spectroscopy is a convenient and preliminary method for the characteriza-
tion of nanomaterials [42]. The Ag-nanowires bands show a strong absorption band and
produce certain colors due to the surface plasma resonance appearing at 435.0 nm with a
progressive increase in absorbance for 30 min (Figure 2) [43]. The characteristic absorption
peak for Ag-nanowires synthesized by any method is reported from 300-440 nm ranges
which is due to the oscillation of electrons in the conduction band [44,45]. Moreover, the
trapped electron can also be involved in intra-center transitions between Ag’/Ag*, due
to which the absorption band could appear in the 440-550 nm range [46]. It is clear from
spectra that there is no peak in Psidium guajava seed extract solution which illustrates the ab-
sence of Ag-NWs. But after mixing AgNOj3 solution with Guajava extract, a change in color
to yellowish-brown represented the reduction of silver ion and a peak appeared at around
435.0 nm due to surface plasma resonance that confirmed the synthesis of nanowires [47].

Psidium Guajava
1.2- —— AgNWs

—_
oo ()
1 1

Absorbance (a.u.)

S e
(e [\ EAN
1 1

300 400 500 600 700 800
Wavelength (nm)

Figure 2. UV /Vis spectra of P. guajava extract and Ag-NWs.

The increase in absorption from 300 nm (Figure 2) corresponded to the development
of different sizes of silver nanowires.

3.2. FTIR Studies of Ag NWs

FTIR analysis of P. guajava extract and Ag-NWs was conducted to find out the func-
tional groups accountable for the reduction and capping of silver ions (Figure 3). The
existence of peaks at 3400-3300 cm~! and 1600 cm ! may perhaps be due to ~OH stretch-
ing of the alcohol and carboxylic acids, respectively [48,49]. The peak 3400-3300 cm~! was
shifted towards a shorter wavelength after reacting with silver, maybe due to the interaction
of Ag with the carboxylic acid -OH group present in the extract [50,51]. The peaks around
2197 cm~! and 1619 cm ™! affirm the presence of «, B-substituted unsaturated carbonyl
group-containing entities. Two peaks observed at 2161 cm~! and 2009 cm~! confirm the
iso-cyanate and thio-cyanate functionalities, respectively [52,53]. The peaks at 1735 cm ™!
and 1647 cm~! confirm the presence of ortho-substituted six-membered lactone. The -OH
bending of &, B-unsaturated carboxylic was recorded at 1430~1400 cm ! and it becomes
stronger in the case of Ag-NWs [53-55]. The hydrogen bonding between -OH group of
nanostructures and «, 3-unsaturated carboxylic acts to reduce silver nitrate to silver ions
and also works as a capping agent and stabilizes the Ag-NWs [49] (Table 1).
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Figure 3. FTIR analysis of Psidium guajava extract and Ag-NWs.

Table 1. Functional group identifications with adsorption peaks of FTIR spectra.

Sr. No. Absorption Peaks Functional Groups References

—OH stretching of the alcohol
and carboxylic acids

1 3400-3300 cm ! and 1600 cm ™1

5 2197 em-1 and 1619 cm-1 «, B-substituted unsaturated

carbonyl
3 2161 cm ™! iso-cyanate
49
4 2009 cm ! thio-cyanate 1
5 1735 cm~! and 1647 cm ™ _ortho-substituted
six-membered lactone
—OH bending of o
— -1 g ,
6 1430-1400 cm [-unsaturated carboxylic
7 1435 cm ! -C=C linkages

3.3. SEM Analysis of Ag-NWs

The morphology and surface properties of the product were determined by field emis-
sion scanning electron microscopy (FE-SEM) (Figure 4a—d). It is evident that the product
has a wire-like morphology mainly formed and stabilized due to the action of unsaturated
linear ketones. The well-separated wires have ~12.8 um length and ~200-500 nm diame-
ter. This unique morphology results in an excellent surface area expansion, resulting in
brilliant catalytic removal of the organic dyes. The performance of a catalyst is chiefly
dependent on the surface area, stability, surface charge and shape of the molecules of a
catalyst. Amongst them, surface area and shape have been shown to have a more powerful
role in the adsorption and reduction of the adsorbed entities in photocatalysis phenomena
as mentioned in previous works [56].
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Figure 4. FE-SEM images of Ag-NWs stabilized Psidium guajava seeds at different resolution (a) 5 um
(b) 2 um (c) 1 um (d) 500 nm.

3.4. XRD Analysis of Ag-NWs

Silver nanowires were also characterized using the X-ray diffraction method to eluci-
date the structure (Figure 5). The fingerprint pattern has four typical diffraction features
corresponding to (111), (200), (020), (220) and (131) planes, and all the four peaks might be
indexed to the phase-centered cubic structure of silver (JCPDS-04-0783) [57,58]. The final
product owes 100% purity as there was no peak detected for reflection, which mainly corre-
sponds to nitrate ions of precursor solution and other impurities. The peak intensity profile
was individual of the face-centered cuboidal structure of Ag-nanowires. The crystallite
size is not entirely clear in FESEM due to the large nanowire diameter [59]. However, the
particle size is calculated by the Debye-Sherrer Equation.

KA

Davg (nm) = IBCOSG

)
where Dgy, is the average crystallite size, constant K is the shape factor (0.9), A is the
wavelength (0.154 nm), B corresponds to the peak width at half maximum intensity while
6 is the peak position. The Dype Ag-NWs is 24.83 nm, which is quite close to the reported
one (30-35 nm) [59,60].
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Figure 5. XRD pattern of Ag-NWs.

3.5. Catalytic Potential of Ag-NWs

Methyl Orange (MO) is extensively used as a textile dye (azo-dye) for the dying of
textile fabrics [61]. The reduction of MO was achieved by using freshly prepared Ag-NWs
with excessive NaBHy. The rate of reduction of methyl orange without catalyst in the
presence of NaBH, is very slow (Figure 6a). This poor performance is due to the presence
of a high energy barrier of mutually repulsive interactions between the borohydride anion
and methyl orange ion, which should be overcome only by a catalyst [62]. Moreover, in the
presence of a catalyst only no reduction occurs due to the same interactions as mentioned
above (Figure 6b). However, in the presence of a catalyst and NaBHy,, reduction of azo-dye
takes place (Model reaction). Initially, NaBH, and catalyst will adsorb on the surface of
the dye and then a reduction reaction will proceed at a faster rate. The characteristic peak
of MO solution was recorded ~458 nm and catalytic reduction was observed by a sharp
decline in intensity merely in 25 min (Figure 6¢).

3.6. Kinetic Studies of Dye Degradation Reactions
3.6.1. Effect of Catalyst Dosage

The effect of concentration of catalyst-dosage was determined by changing the amount
of Ag-NWs from 0.60-3.84 mg/mL added to the reaction mixture. It is evident from
Figure 7a, that from 0 to 5 min, the reaction started with a very slow speed as there are
molecules moving towards the surface of Ag-NWs and speed up from 6 to 20 min due
to their interaction at the surface of the catalyst, then ultimately reaches to completion
after 20-25 min. The inset graph shows the negative slopes used for the determination of
Kobs [63].
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Figure 6. In the absence of catalyst (a), in the absence of NaBHy (b) Degradation reaction having NaBHy = [17.6 mM],
MO = [0.082 mM], Ag-NW (catalyst) = [1.84 mg/mL] (c).

It is evident from Figure 7b, the rate of reaction increases fasts from 0.60-1.28 mg/mL
because the degradation takes place exponentially at the start of the reaction due to the
presence of active sites. Later on, the reaction rate becomes slow from 2.56-3.84 mg/mL
due to occupied active sites [64]. The most effective degradation out of all the adsorbents’
concentrations was monitored at 1.28 mg/mL with the help of ks graph plotted between
kopbs Vs concentration of Ag-NWs while keeping the NaBH, concentration (17.6 mM) and
MO-dye (0.082 mM) constant. The half-life (min) of the observed rate constant (min~!)
calculated for these pseudo-first-order reactions is mentioned in Table 1.
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Figure 7. Effect of Ag-NWs-Catalyst dosage on extent of dye degradation reaction and inset shows
degradation reaction kinetics (a) and ks determination (b).

3.6.2. Effect of MO Dye

MO dye’s concentrations were taken, ranging from 0.072 to 0.102 mM with 0.010 mM
difference. Figure 8a shows the induction, reaction and completion times of the catalytic
reaction between MO-dye and NaBH4 on the surface of Ag-NWs. As the concentration of
the MO-dye increases, while keeping the concentrations of Ag-NWs and NaBH, constant,
the time of degradation increases [65]. The reason behind this factor is the constant con-
centration of Ag-NWs, which illustrates the limitation of surface-active sites for incoming
reactants [66]. The figure inset (6) shows the negative slopes for finding the apparent rate
constant for Pseudo first-order reaction following the Langmuir-Hinshelwood mechanism
(LHM) [67,68].
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Figure 8. Effect of MO dye concentration on degradation reaction and inset shows degradation reaction kinetics (a) and

observed-rate constant determination (b).

Figure 8b, illustrates the graph between ks on ordinate and concentration of MO-dye
on abscissa while keeping catalyst dosage (1.28 mg/mL) and NaBH4 (17.6 mM) constant.

This graph explains that initially, the ks value remains constant while, at 0.082 mM
its concentration increases to the maximum ks value. This is due to the maximum
adsorption of the incoming MO-dye molecules on the surface catalytically enhanced by
Ag-NWs. This point is fruitful in the optimization of reaction. After this concentration, the
decrease in kg value is due to the excessive amount of MO-dye molecules on the surface
of limited Ag-NWs. Here, the double-layer adsorption occurs on the surface of Ag-NWs,
which restricts the effective adsorption. Half-life (min) and ks values were calculated and
incorporated in Table 2.

Table 2. Values of Observed rate constant (k,s) for MO degradation using different catalysts dose, concentrations of NaBHy

and MO dye at 27 °C.
. . 2

Factor 25;;2{? NaBH4 (mM) MO Dye (mM) (nl:i‘;:’fl) Half-Llfnt:f ;i()lc)l () R
Ag-NWs 0.60 17.6 0.082 0.1723 2.1032 0.98
1.28 17.6 0.082 0.1977 3.5053 0.98
2.56 17.6 0.082 0.2003 3.4598 0.99
3.84 17.6 0.082 0.2059 3.3657 0.99
MO dye 0.062 17.6 0.062 0.1825 3.7972 0.97
0.072 17.6 0.072 0.1872 3.7019 0.98
0.082 17.6 0.082 0.1955 3.5447 0.99
0.092 17.6 0.092 0.1592 4.3530 0.98
0.102 17.6 0.102 0.1537 4.5087 0.97

4. Conclusions

The Ag-NWs were successfully fabricated using AgNQOj as a precursor and Psidium
guajava seed extract under continuous irradiation of UV light. The extract strongly acted
as a reducing as well as a stabilizing agent. UV-visible spectra confirm the formation of
the Ag-NWs. The average crystallite size of Ag-NWs was 196.4 nm, and the morphology
was cubic face having 12.8 um length and internal diameter of 200-500 nm. Synthesized
Ag-NWs was then used for the catalytic degradation MO-dye, NaBH4 and Ag-NWs. This
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study proposed reaction completion merely in 25 min and kinetic studies of the data
confirmed pseudo-first-order reaction. Hence, Psidium guajava seed extract can be used for
the synthesis of Ag-NWs. The authors recommended that Ag-NWs can be exploited for
the degradation of azo-dyes that can be a good tool for the treatment of water from the
textile industry.

5. Highlights

UV-light-mediated green synthesis of Ag-NWs using Psidium guajava seed extract.
Dimensions of Ag-NWs were 12-8 um length and 200-500 nm diameter.
Morphology of Ag-NWs was confirmed by SEM and XRD.

Methyl orange dye degradation was achieved using Ag-NWs.

Kinetics of degradation reaction was studied.
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