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Abstract: This research aimed to identify changes in muscle mechanical properties (MMPs) when a 
standardized sequence of movements is performed and to determine the influence of acute low back 
pain (LBP) and age on the MMPs. Socio-demographic, clinical variables and MMPs were collected 
in 33 patients with LBP and 33 healthy controls. A 2 × 2 × 2 (group × age × time) analysis of variance 
(ANOVA) mixed model was used to determine the effect of the study factors on the different MMPs. 
There were no significant triple interactions. After the movements, tone and stiffness increased 0.37 
Hz and 22.75 N/m, respectively, in subjects <35 years, independent of their clinical status. Relaxation 
showed differences by age in healthy subjects and creep in LBP subjects. Furthermore, elasticity was 
higher in <35 years (p < 0.001) without the influence of any other factor. In conclusion, sequenced 
movements can modify tone and stiffness as a function of age, while age-associated changes in vis-
coelastic characteristics depends on pain but not on movements. The MMPs should be assessed, not 
only at the beginning of the physical examination at rest, but also along the patient’s follow-up, 
depending on their pain and age, in a clinical setting. 
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1. Introduction 
Back pain is one of the most common musculoskeletal pain disorders, affecting 80% 

of the population at some point in their lives [1]. The increasing prevalence of low back 
pain (LBP) is extensively detailed in the literature [2,3], which shows the necessity of a 
better understanding of the acute stage of the pathology to improve diagnosis and treat-
ment, as well as to minimize the socio-economic burden [4]. Researchers categorize about 
85% of LBP as non-specific, without structural changes, inflammation, or specific under-
lying disease [5,6]. Nevertheless, LBP has been associated with changes in neuromuscular 
activity [7,8], decreased spinal mobility, limited lumbar muscle flexibility, and altered spi-
nal kinematics [9]. Furthermore, a modification of the mechanical changes associated to 
within and between muscle activity redistribution in subjects with LBP has been de-
scribed [6,7]. These changes determine a reduction in lumbar spine function and alteration 
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of the muscle mechanical properties (MMPs) [9–12], as well as inadequate motor control 
[13]. 

The MMPs play a central role in several physiological and pathophysiological pro-
cesses, suggesting a relationship between pain and muscle stiffness in different spinal pain 
disorders, including LBP [14,15]. However, previous studies have not described predic-
tive models of the anisotropic viscoelastic responses of relaxed muscles under physiolog-
ical conditions. The changes in muscle tissues that determine spinal stiffness are not fully 
understood, requiring further research [15,16]. One of the characteristics of muscle tissue 
that could modify its mechanical properties is thixotropy [17]. Thixotropy refers to the 
property of a tissue to become fluid under certain conditions, such as voluntary move-
ment or passive muscle stretch, and to return to its primary characteristic at rest [18]. Thix-
otropic substances are, therefore, history-dependent and have a “memory time” [19,20]. 
Some researchers described this thixotropic behaviour as a “short-range stiffness”, which 
tends to reduce or disappear after a few repetitions of movement and reappear after rest-
ing in healthy subjects [21]. The influence of such viscoelastic properties on the determi-
nation of MMPs in acute LBP and their modifications associated with the spinal move-
ments performed on the physical evaluation, age or sex are relevant from a clinical point 
of view. 

New technologies, such as elastography, help to study the passive mechanical behav-
iour of skeletal muscles [22]. However, their high cost makes them inaccessible to a clinical 
setting, challenging the determination of the MMPs. Since a decade ago, the device Myo-
tonPRO© emerged as a non-invasive and reliable alternative to assess and monitor MMPs 
with clinical applications Several studies have shown sufficient accuracy and precision to 
determine MMPs in spinal muscles [23–26] and other tissues and regions [23,27–29], alt-
hough efforts to better determine the concurrent validity need further research [30]. Pre-
vious research has associated MMPs alterations, specifically an increase in stiffness and 
tone or a decrease in elasticity, and axial spondyloarthritis [24]. Moreover, aging is asso-
ciated with structural tissue remodelling, which contributes to increased stiffness and 
tone, and decreased elasticity at the cervical spine, and also the extremities [31,32]. Age 
and gender can also influence measures of muscle tone in the orofacial musculature [33]. 
Likewise, changes in cervical and lumbar MMPs concerning position or movement have 
been identified [31,33–36]. However, the behaviour of these patterns in the central stabi-
lizer system, such as the paraspinal muscles [12], remains unknown when the subjects 
develop a standardized sequence of spinal movements, as is performed during physical 
examination, which could improve the diagnosis and treatment processes. 

Therefore, this study aimed to identify changes in paraspinal MMPs when submitted 
to a standardized sequence of lumbar movements and to determine the influence of lum-
bar pain and age in those changes. 

2. Methods 
An observational, test-retest study including subjects with LBP and healthy controls 

was performed. Participants were recruited with a non-probabilistic sampling of two cen-
tres, Physiobalance (private physiotherapy centre) and the Biosanitary campus of the Uni-
versity of Córdoba, Spain, from November 2018 to January 2021. Assessments were con-
ducted between April 2019 and March 2021. The Córdoba Research Ethics Committee ap-
proved this project (reference number 4016/2018). All participants signed written in-
formed consent. 

2.1. Participants 
Sixty-six subjects of both sexes participated in this study. Thirty-three of them pre-

sented acute LBP with less than four weeks of evolution [37] and a pain score of ≥3 on the 
visual analogue scale (VAS) [38]. The control group consisted of 33 healthy subjects, 
matched by sex, age (±3 years), and body mass index (BMI) (±3 kg/m2), without spinal 
pain in the last six months or any neurological or musculoskeletal pain disorder. 



Diagnostics 2022, 12, 302 3 of 11 
 

 

The exclusion criteria for both groups were history of traumatic lesions at the spine, 
scoliosis, spinal surgery, congenital deformity, inflammatory disease, pregnancy, and re-
ceiving spinal physiotherapy treatment in the last six months. 

2.2. Sample Size 
A moderate difference size (Cohen d = 0.7) [39], considered clinically relevant in mus-

culoskeletal pathology and physiotherapy field [40], was estimated for between-group 
comparisons of MMPs. With an alpha level of 0.05 and power of 0.8, 33 subjects per group 
were needed (GPower 3.1 software, Düsseldorf, Germany). 

2.3. Assessments and Procedures 
After signing the informed consent form, researchers collected socio-demographic 

(age, sex, weight, height, and BMI) and clinical (severity of back pain and disability using 
a VAS scale and the Oswestry Disability Questionnaire (ODI) data, respectively [41]). Sub-
sequently, the MMPs, using a MyotonPRO® (Myoton AS, Tallinn, Estonia) device, were 
assessed before and after a standardized sequence of movements. The MyotonPRO© pro-
vides measurements of five MMPs: tone or state of tension, determined by the frequency 
(Hz); biomechanical properties such as dynamic stiffness (N/m) and decrement, that char-
acterizes elasticity; and viscoelastic properties such as relaxation or mechanical stress re-
laxation time (ms) and creep (Deborah number), which corresponds to the gradual elon-
gation in the tissue when subjected to constant tension [42]. The device induces a natural 
damped oscillation of the tissue following the application of a controlled load through a 
cannula. To the initial 0.18 N of compression of the subcutaneous tissue, the MyotonPRO® 
added a pulse of 15 ms and 0.40 N of mechanical force. The accelerometer at the sensor’s 
tip provides the data that characterizes the tissue [43]. 

A clinician with more than fifteen years of clinical experience, identified the spinous 
process of L5 by palpatory testing and performed the tonometric test on the erector spinae, 
located 2.5 cm to the right and left of the spinous process. The assessment was performed 
with the patient in a prone position with both arms alongside the body. Muscle measure-
ments were taken first on the left side, then on the right side, and the process was repeated. 
The measurement was taken during a five-second apnoea after the normal expiratory 
phase [24,44] (Figure 1). 

 
Figure 1. Procedure for measuring MMPs at lumbar level with MyotonPRO©. 
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The standardized sequence of movements involved the maximum range of motion 
in frontal flexion, extension, lateral flexion, and rotation of the spine in a standing position, 
all routinely used in the conventional evaluation of the amount of movement of patients 
in a clinical setting [45]. Each movement lasted four seconds, with two seconds to achieve 
the maximum range of motion and two seconds to return to the neutral position, con-
trolled with a metronome (view Supplementary Material, Figures S1–S6). A total of three 
repetitions per movement were performed, supervised by a second clinician with more 
than ten years of clinical experience. The whole procedure did not take more than ten 
minutes. 

2.4. Statistical Analysis 
Descriptive results for qualitative variables were expressed as frequencies and per-

centages. Quantitative variables were expressed as means, standard deviations, and 95% 
confidence interval (CI). The Kolmogorov–Smirnov test was used to assess the normality 
of the data distribution, with p > 0.05 in all cases. 

In a preliminary analysis of the data, no side-to-side differences were identified when 
applying Student’s t-test between measurements on each group (p > 0.05). Consequently, 
pooled (mean) data from both sides were used in the main analysis. 

A 2 × 2 × 2 mixed model (group × age × time) of analysis of variance (ANOVA) was 
used to determine the effect of the study factors on the different MMPs. The first factor 
was clinical status (LBP patients vs. healthy subjects). The second factor was the age, with 
two levels (subjects <35 vs. >35 years) as previous studies with similar objectives has de-
fined [1,46–48]. Finally, the third factor analysed was time of assessment, with before and 
after movement measure as the levels of this repeated measures factor. The first hypothe-
sis of interest was the triple interaction. In the absence of triple interaction, double inter-
actions (group-by-time, group-by-age, time-by-age) were those of interest. If no interac-
tions were observed, the main effect of each factor was finally studied. Pairwise compari-
sons were conducted by post hoc Bonferroni tests when necessary. 

In all cases, the confidence level was established at 95%, and the statistical signifi-
cance level for the tests was p < 0.05. The analyses were carried out by IBM SPSS® Statistics 
version 25 (SPSS Inc., Chicago, IL, USA). 

3. Results 
A total of 66 subjects were analysed, 33 with acute LBP (<35 years n = 19, >35 years n 

= 14) and 33 healthy controls (<35 years n = 18, >35 years n = 15), with a mean age of 33.3 ± 
11.8 years and a BMI of 23.9 ± 2.6 kg/m2 (Table 1). 

Table 1. Demographic characteristics of the sample. 

 LBP Group (N = 33) Healthy Group (N = 33) p-Value 
Age (years) 33.05 ± 11.8 33.6 ± 12.0 NS 

Sex (female/male) 14/19 14/19 NS 
BMI (kg/m2) 24.2 ± 2.45 23.6 ± 2.8 NS 

Pain intensity (VAS) 4.7 ± 1.7 - - 
ODI 7.8 ± 5.4 - - 

Results are expressed as: mean ± standard deviation, frequencies. Abbreviations: BMI: Body mass 
index, VAS: Visual analogic scale, ODI: Oswestry disability questionnaire, NS: not significant dif-
ferences. 

There was no triple interaction when analysing the pooled effect of movement, clin-
ical status, and age on the behaviour of the MMPs (frequency: F = 0.169, p = 0.682; stiffness: 
F = 0.623, p = 0.433; decrement: F = 0.947, p = 0.334; relaxation: F = 0.003, p = 0.982; creep: F 
= 0.632, p = 0.430). 
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With borderline statistical significance found in the double interactions, frequency (F 
= 3.342, p = 0.045) and stiffness (F = 3.145, p = 0.048) increased 0.37 Hz (95%CI 0.06–0.70) 
and 22.75 N/m (95%CI 5.83–39.67), respectively, in the younger subjects after the move-
ments, independent of their clinical status. Only the baseline measure showed significant 
differences (p < 0.05) between both age groups in both MMPs. No other time-by-age inter-
action was identified neither for decrement (F = 0.060, p = 0.808), relaxation (F = 1.599, p = 
0.211), and creep (F = 0.007, p = 0.934) outcomes. 

Likewise, the relaxation and creep showed interactions between age and clinical sta-
tus of the subjects (F = 3.202, p = 0.047; F = 3.345, p = 0.045, respectively), with relaxation 
being 2.98 ms (95%CI 0.36–6.01) higher in young healthy subjects. In contrast, creep was 
0.10 (95%CI 0.06–0.15) greater in subjects with LBP over 35 years. Differences between 
patients and controls in those over 35 were also found (mean difference 0.12, 95%CI 0.01–
0.27, p = 0.04). Frequency (F = 1.391, p = 0.243), stiffness (F = 0.675, p = 0.414), and decrement 
(F = 0.013, p = 0.908) did not show group-by-age interaction. 

The group-by-time interaction did not reveal any statistical significance (frequency: 
F = 0.244, p = 0.623; stiffness: F = 0.028, p = 0.868; decrement: F = 0.212, p = 0.647; relaxation: 
F = 0.135, p = 0.714; creep: F = 0.111, p = 0.740). 

Finally, the evaluation of the main factors showed that the decrement was different 
depending on age. Thus, older subjects presented higher decrement than the younger 
ones (mean difference 0.337, 95%CI 0.21–0.46, F = 29.176, p < 0.001) (Table 2). 

Table 2. Results of MMPs according to the clinical status (LBP group, N = 33; healthy group, N = 
33), age, (under 35 years, n = 37; over 35 years, n = 29), and time of assessment. 

 Group Age Baseline Evaluation 
After Movement 

Evaluation 
Between Evaluation 

Differences 

Frequency 
(Hz) 

LBP 
<35 years 

14.26 ± 1.50 14.64 ± 2.07 0.38 (0.83, −0.06) 
Healthy 13.94 ± 1.40 14.30 ± 1.87 0.36 (0.82, −0.09) 
Between clinical status differences 0.31 (−0.98, 1.61) 0.33 (−1.09, 1.77)  

LBP 
>35 years 

14.91 ± 2.51 14.98 ± 2.50 0.07 (0.59, −0.44) 
Healthy 15 87 ± 2,46 15.73 ± 2.33 −0.14 (0.35, −0.64) 
Between clinical status differences −0.96 (−2.43, 0.50) 0.74 (−2.36, 0.87)  

Stiffness (N/m) 

LBP 
<35 years 

250.26 ± 59.63 269.03 ± 89.23 18.77 (42.37, −4.82) 
Healthy 235.23 ± 55.73 261.95 ± 110.83 26.72 (50.97, 2.47) 
Between clinical status differences 15.02 (−30.99, 61.05) 7.08 (−53.09, 67.26)  

LBP 
>35 years 

283.36 ± 80.95 295.48 ± 76.09 12.12 (39.61, −15.37) 
Healthy 309.95 ± 85.27 309.85 ± 81.04 −0.10 (26.46, −26.66) 
Between clinical status differences −26.58 (−78.58, 25.41) 14.36 (−82.35, 53.62)  

Decrement 

LBP 
<35 years 

1.05 ± 0.23 1.08 ± 0.31 0.02 (0.10, −0.05) 
Healthy 1.08 ± 0.22 1.04 ± 0.17 −0.03 (0.04, −0.11) 
Between clinical status differences −0.02 (−0.19, 0.15) 0.04 (−0.13, 0.21)  

LBP 
>35 years 

1.41 ± 0.24 1.41 ± 0.21 −0.00 (0.09, −0.09) 
Healthy 1.38 ± 0.34 1.40 ± 0.33 0.01 (0.10, −0.07) 
Between clinical status differences 0.03 (−0.16, 0.22) 0.01 (−0.18, 0.21)  

Relaxation 
(ms) 

LBP 
<35 years 

19.35 ± 5.89 19.05 ± 5.96 −0.29 (0.38, −0.98) 
Healthy 20.79 ± 4.05 20.35 ± 4.61 −0.44 (0.28, −1.17) 
Between clinical status differences −1.44 (−4.56, 1.66) −1.30 (−4.54, 1.94)  

LBP 
>35 years 

19.26 ± 4.20 19.43 ± 4.54 −0.16 (0.96, −0.63) 
Healthy 17.58 ± 3.86 17.61 ± 3.70 0.03 (0.80, −0.73) 
Between clinical status differences 1.68 (−1.77, 5.15) 1.81 (−1.79, 5.43)  

Creep (Deborah 
Number) 

LBP 
<35 years 

1.15 ± 0.14 1.13 ± 0.19 −0.02 (0.05, −0.09) 
Healthy 1.20 ± 0.22 1.16 ± 0.28 −0.04 (0.035, −0.11) 
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Between clinical status differences −0.04 (−0.19, 0.09) 0.03 (−0.19, 0.12)  
LBP 

>35 years 
1.27 ± 0.28 1.22 ± 0.28 −0.05 (0.02, −0.14) 

Healthy 1.14 ± 0.21 1.12 ± 0.18 −0.01 (0.07, −0.09) 
Between clinical status differences 0.13 (−0.25, 0.30) 0.09 (−0.08, 0.27)  

Results are expressed as mean ± standard deviation, mean difference (95% confidence interval). 

4. Discussion 
The results showed that paraspinal lumbar MMPs have different behaviour under 

specific conditions of lumbar movements, clinical status or age. Thus, the sequenced lum-
bar movements protocol influenced tone and stiffness depending on age, with lower val-
ues for the MMPs in younger subjects, which were more susceptible to be influenced by 
movement. However, the presence of LBP did not influence MMPs. On the other hand, 
although with almost statistical significance, the viscoelastic state of paraspinal muscles, 
expressed as relaxation and creep, depends on the combination of pain and age. While 
healthy subjects showed a reduction in relaxation with age, these differences did not occur 
in individuals with LBP. The presence of pain determined the differences in creep con-
cerning age. In this case, the performance of sequenced lumbar movements did not influ-
ence the MMPs. Furthermore, the elasticity, as the inverse of the decrement, was higher 
in younger subjects, without the influence of any other factor. 

Curiously, when the presence or absence of LBP was analysed separately, no signifi-
cant differences were detected, despite the higher values of tone, stiffness, and lower val-
ues of decrement, relaxation, and creep found in LBP subjects. This was an unexpected 
result, since acute LBP is commonly associated to muscle spasm throughout the 
paraspinal muscles [13,49,50]. However, it could be explained by the mild disability that 
showed the current sample. Finally, it is relevant to note that there was no interdepend-
ence among the execution of the movements, the age, and the clinical condition of the 
subjects, showing that the three factors were independent. In summary, the influence of 
movements, pain, and age is different depending on each specific MMP, which means that 
MMPs should be assessed, not only at the beginning of the physical examination, but also 
along the follow-up of the patient, with emphasis on elder subjects and those with pain. 

This study determined the interaction between the effect of sequenced movements 
and the advancing of age on tone and stiffness at the lumbar level, where the first measure 
reports a difference between age groups of 1.29 Hz that decreases to 0.88 Hz after move-
ment. This difference indicates that younger subjects experienced a change in their muscle 
tone that did not occur in older subjects. Regarding stiffness, from a difference between 
age groups of more than 50 N/m, younger subjects increased their stiffness more than 8% 
after the movements, while older subjects showed a rise of only 2%. Apparently, our re-
sults would contradict the behaviour of thixotropic properties of specific tissues, which 
establishes the reduction of viscosity and, therefore, of muscle stiffness, during and, for 
some time, after movement [19,21,51]. However, the procedures to perform the move-
ments associated to physical evaluation may explain the results. In fact, Altman et al. [18] 
reported that the frequencies of movements that allow observing both thixotropic and 
rheopectic reactions, this one being opposite phenomenon to thixotropy, in muscle fibres 
are in the range of 1 to 20 Hz [20]. Specifically, in those movements below 1 Hz, a rheo-
pectic behaviour is observed in activated fibres in rabbits [18]. Likewise, although some 
authors report thixotropic behaviours, even in short-range movements or with just two 
repetitions [21,51], the recovery of rigidity could occur after only 15 s of rest [21]. This 
could explain our observations, because the lumbar movements associated with physical 
evaluation have a low frequency and are followed by rest periods. 

On the other hand, the fact that only subjects under 35 years presented a significant 
change in muscle tone and stiffness after movement supports the relationship between 
age and MMPs changes [14,31,32,44]. Supporting this approach, Ayapong-Badu et al. [32] 
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identified an 30% decrease in elasticity between age groups for biceps brachialis and be-
tween 20% and 30% for rectus femoris, as was detected in our sample in the lumbar mus-
cles, and changes in tone of 10%. With similar aims, Kocur et al. [31] showed that aging 
provokes an increase in the tone and stiffness of 11–17% for sternocleidomastoid and tra-
pezius muscles in healthy subjects. These changes in MMPs could be due to the muscle 
composition and architecture alterations that occur with advancing age [31,33,52] and 
begin in the young adulthood [53,54]. For example, some authors have suggested that 
increased intramuscular adipose tissue in older adults is the cause of increased muscle 
stiffness [52,55], as well as the qualitative change in muscle fibres, with an increase in the 
proportion of type I muscle fibres, characterized by greater stiffness than type II ones [31]. 
Curiously, the tendon tissue shows a decrease in tone and stiffness in elderly subjects 
[56,57], which means that different tissues show specific physiological adaptations to age. 
In summary, for evaluation purposes, the significant changes in tone and post-movement 
stiffness in subjects under 35 years suggest that the baseline measure represents the best 
approach to characterize the MMPs in this population. 

Our study also reported the relationship between LBP and age with relaxation, and 
creep, as viscoelastic characteristics, of paraspinal muscles. Relaxation was different in 
healthy subjects depending on age. In fact, advanced age established differences in creep 
between healthy subjects and patients. However, the presence of LBP inhibited this be-
haviour in the creep. Although there is no previous research on viscoelastic properties in 
acute LPB, previous studies have determined changes in MMPs in subjects with chronic 
mechanical and inflammatory LBP and neck pain [24,36,43,58]. In these studies, the dif-
ferences for MMPs between subjects with spinal pain and healthy subjects were explained 
by the response of muscle spasm to pain, which decreases circulation and increases stiff-
ness [50], disuse as a cause of muscle atrophy, that also increases stiffness [33], or disease 
of long duration, that alters elasticity and stiffness [43]. It is possible that the acute LBP 
and, consequently, the short period of evolution of our sample, prevented the changes in 
the MMPs. Future studies are required to confirm these findings as well as determine 
these effects on a longer follow-up. 

Strengths and Limitations 
To date, no previous study has attempted to establish the adequate moment to eval-

uate MMPs in clinical practice based on the physical evaluation, clinical status and age. 
Consequently, these results will allow us to determine the effect of the therapy on the 
MMPs with greater precision. 

However, several limitations must be recognized. First, the raters were not blinded, 
although the assessment of the MMPs has shown high reliability and low rater depend-
ence, which limits a negative influence on the results [25,59]. Second, the evaluation of the 
MMPs was only determined in paraspinal muscles at the L5 level, making it impossible 
to know if other muscles and tissues exhibit similar behaviour. Third, although 35 years 
has been used to distinguish younger than older adults [32,46,47], other age classifications 
could provide different results and interpretations. Additionally, the study of other fac-
tors, such as the level of physical activity, work or leisure-time activity [60–62], among 
others, could have afforded other relationship patterns to the results. Furthermore, adding 
other techniques to analyse muscle characteristics, such as surface electromyography, 
could provide information on normal or unusual activity, such as muscle spasm during 
the evaluation. Finally, our sample showed mild disability according to ODI, which could 
limit the external validity of the results for higher levels of disability. 

5. Conclusions 
A sequenced spinal movement protocol can modify lumbar paraspinal tone and stiff-

ness according to the patient’s age but not according to the presence of LBP. The changes 
in viscoelastic characteristics of lumbar muscles depend on age and the presence or ab-
sence of pain, but not on the performance of the sequenced movements. Older subjects 
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showed less elasticity than younger ones at the L5 spinal level, independent of their con-
dition. 

The MMPs should be assessed in a clinical setting, not only at the beginning of the 
physical evaluation during rest, but also during the patient’s follow-up, with special at-
tention to elder subjects and those with pain. 
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