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Abstract: Huntington Disease (HD) is a degenerative neurological disease that causes a significant
impact on the quality of life of the patient and eventually death. In this paper we present an approach
to create a biomarker using as an input DNA CpG methylation data to identify HD patients. DNA
CpG methylation is a well-known epigenetic marker for disease state. Technological advances
have made it possible to quickly analyze hundreds of thousands of CpGs. This large amount of
information might introduce noise as potentially not all DNA CpG methylation levels will be related
to the presence of the illness. In this paper, we were able to reduce the number of CpGs considered
from hundreds of thousands to 237 using a non-linear approach. It will be shown that using only these
237 CpGs and non-linear techniques such as artificial neural networks makes it possible to accurately
differentiate between control and HD patients. An underlying assumption in this paper is that there
are no indications suggesting that the process is linear and therefore non-linear techniques, such as
artificial neural networks, are a valid tool to analyze this complex disease. The proposed approach is
able to accurately distinguish between control and HD patients using DNA CpG methylation data
as an input and non-linear forecasting techniques. It should be noted that the dataset analyzed is
relatively small. However, the results seem relatively consistent and the analysis can be repeated
with larger data-sets as they become available.

Keywords: Huntington disease; DNA methylation; neural networks

1. Introduction

Huntington disease (HD) is a neurological progressive disorder [1–4]. The typical
onset of the illness is in mid-adult life [5–7] causing uncontrolled movements as well as
declining cognitive and reasoning skills. The disease is associated with a mutation of a gene
in Chromosome 4 [8–10] related to the gene encoding for the protein huntingtin [11–13].
There are also other proteins associated with the illness. Vonsattel [14] estimates that death
typically occurs approximately 12 to 15 years after the onset of symptoms but some other
authors have mentioned a slightly longer period, approximately 15 to 20 years [15,16].

Ross [17] identified three clinical stages of the disease: (1) early-stage, (2) middle-stage
and (3) late-state. In the early-stage phase the symptoms are relatively minor with some
moderate decrease in motor skills (including some involuntary movements) as well as
increased irritability. In the middle-stage phase typically the symptoms are more apparent
with a visible decrease in motor and cognitive skills. The late-stage is the third and final
stage. In this phase the patient tends to have severe reduction in motor and cognitive skills
with in many cases the patient unable to leave the bed or communicate. Regrettably, there
is no cure for HD.

Currently there is genetic testing available for HD [18–20], which is typically only
carried out when there is significant clinical evidence or family history suggesting the
presence of HD. There are also economic costs to take into account when carrying out
tests. This paper presents a complementary approach for the detection of HD using DNA
methylation data [21–23]. DNA methylation data has been associated with many diseases,
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particularly in illnesses such as different types of cancers. DNA methylation analysis is a
relatively inexpensive and simple technique.

In simple terms, DNA CpG methylation consists of the addition of a methyl group
to a cytosine-phosphate-guanine group as illustrated in Figure 1. DNA methylation is a
well-known epigenetic change [24–26]. Current laboratory equipment can quickly analyze
more than 450,000 CpGs per patient. It should be noted that the resulting data will consist
of a percentage value ranging from 1, meaning that it is fully methylated, to 0, meaning
that it is entirely unmethylated. It should also be noted that there is a new generation of
equipment that can analyze in excess of 800,000 but this equipment is not yet as widely
used as the 450,000 CpGs equipment.

Figure 1. Illustration showing the concept of DNA methylation.

There is a significant amount of literature using DNA CpG methylation data in fields
such as aging [27–29], cancer [30–32], Alzheimer [33–35] and Multiple Sclerosis [36]. A
common approach in the existing literature is trying to identify relevant CpGs using linear
methods. However, in principle there is no indication that the underlying DNA methylation
process of aging or of any these illnesses needs to follow a linear behaviour. There are some
papers using non-linear methods. For instance, Vidaki [37] analyzed DNA methylation
data using neural networks for forensic age purposes. Marchevsky [38] used a similar
approach but in this case applied to the classification of different types of lung cancers.
In fact, one of the most frequent applications is in the classification of different types of
cancers or in differentiating between control and cancer patients [39–44]. This approach has
also been applied in the context of some neurological illnesses, such as Alzheimer [45,46].

Huntington disease has attracted less interest in the existing literature than other
neurological diseases such as Alzheimer. However, there are some interesting articles
exploring the disease in the context of DNA methylation [47–49]. To the best of the
knowledge of the authors of this article, the existing literature covering Huntington in the
context of DNA methylation follows a linear approach.

2. Aims

One of the main aims of this article is to provide alternative approaches to detect
Huntington Disease using available and relatively straightforward techniques based on
DNA methylation. Currently there are no treatments for HD but we are relatively optimistic
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that eventually there will be some treatment break through. It is acknowledged that there
remains significant technical hurdles but when treatments are developed it would be useful
to have techniques for screening.

3. Materials and Methods

A classification variable Yi was defined for each case as follows.

yi =

{
0 i f Control
1 i f Huntington

(1)

Therefore for m cases analyzed there is a vector Y

Y = {y1, . . . ., ym} (2)

There is also an associated vector for each variable yi containing the methylation levels
for n CpGs.

Xp =



X1
p

X2
p

.

.

.
Xn

p


(3)

Hence, the dataset can be visualized as follows:

y1 y2 . . . ym

X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . X2
m

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

m


(4)

The dimensionality of the problem can be defined as n.

3.1. Algorithm

First, the dimensionality of the dataset is reduced. Each CpG is used (individually) as
an input for a classification algorithm. The steps are as follows:

1. Select a classification algorithm ϕ using each CpG (individually) as an input and
the classification variable as output ϕ(Xi, y). In this notation Xi refers to the vector
containing the methylation data for all the cases analyzed for a single CpG.

xi = {Xi
1, Xi

2, . . . , Xi
m} (5)

2. Separate the data into a training and a testing dataset. For clarity purposes the training
and testing datasets are labeled A and B respectively.
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A =



y1 y2 . . . yk

X1
1 X1

2 . . . X1
k

X2
1 X2

2 . . . X2
k

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

k


(6)

B =



yk+1 yk+2 . . . ym

X1
k+1 X1

k+2 . . . X1
m

X2
k+1 X2

k+2 . . . X2
m

. . .

. . .

. . .
Xn

k+1 Xn
k+2 . . . Xn

m


(7)

3. Train the non-linear algorithm with the training dataset (ϕ(A)).
4. Estimate classification forecasts

YP = {YPk+1, . . . , YPm} (8)

using the testing dataset and the trained algorithm (ϕ(B))
5. Estimate the accuracy of the forecast (YP) comparing it with the actual values

{yk+1, yk+2, . . . , ym}
(a) For l = k + 1 to m

i f

{
YPl = Yl then al = 1

else al = 0
(9)

(b) Estimate the accuracy

Fi =

{
m

∑
l=k+1

al

}
1

(m− k)
(10)

6. Repeat steps 2 to 5, k times.
7. Estimate the average of the accuracy {Fi

1, . . . , Fi
k}.

MFi =
1
k ∑ Fi (11)

8. Repeat steps 1 to 8 (estimating forecasting accuracy individually for each CpG).

MF = {MF1, . . . , MFn} (12)

9. Define a cut off level (MFc).
10. Exclude from the analysis all MFi < MFc.
11. Create a new list of CpGs according to the condition shown in the previous step.

MFnew = {MF1
∗ , . . . , MFnn

∗ } with nn ≤ n. (13)

Note: the dimensionality has been reduced from n to nn.
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In the second part of the algorithm a combinatorial approach was followed. The start-
ing point of this second part is the already filtered CpG list with the previously mentioned
dimensionality reduction from n to nn. The steps of the second part are as follows:

1. Starting with the reduced list of CpGs. As an example, patient p will now have
associated the following CpGs. 

X∗1p

X∗2p

.

.

.
X∗nn

p


(14)

Notice again the reduction in the dimensionality from n to nn (nn < n).
2. The data, as in the first part of the algorithm, was divided into a training and a testing

datasets denoted this time as A∗ and B∗.

A∗ =



y1 y2 . . . yk

X∗11 X∗12 . . . X∗1k

X∗21 X∗22 . . . X∗2k

. . .

. . .

. . .
X∗nn

1 X∗nn
2 . . . X∗nn

k


(15)

B∗ =



yk+1 yk+2 . . . ym

X∗1k+1 X∗1k+2 . . . X∗1m

X∗2k+1 X∗2k+2 . . . X∗2m

. . .

. . .

. . .
X∗nn

k+1 X∗nn
k+2 . . . X∗nn

m


(16)

3. Train the non-linear algorithm with the training dataset (ϕ(A∗)).
4. Estimate classification forecasts

YP∗ = {YP∗k+1, . . . , YP∗m} (17)

using the reduced testing dataset and the trained algorithm (ϕ(B∗)).
5. Estimate the accuracy of the forecast (YP∗) comparing it with the actual values

{Yk+1, Yk+2, . . . , Ym}
(a) For l = k + 1 to m

i f

{
YP∗l = Yl then al = 1

else al = 0
(18)

(b) Estimate the accuracy

F∗ =

{
m

∑
l=k+1

al

}
1

(m− k)
(19)
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6. Repeat steps 2 to 5, k times.
7. Estimate the average of the accuracy {F∗1 , . . . , F∗k }.

MF∗ =
1
k ∑ F∗ (20)

8. Reduce the number of of CpGs considered by one (randomly selected). Hence, the
dimensionality is reduced from nn to nn-1. As an example, the initial reduced CpG
list for patient p was: 

X∗1p

X∗2p

.

.

.
X∗nn

p


(21)

After this step the new CpG list is:

X∗∗1p

X∗∗2p

.

.

.
X∗∗(nn−1)

p


(22)

9. Repeat steps 2 to 5 with the new CpG list (of dimensionality nn−1).
10. Estimate the average (MF∗∗) of the accuracy {F∗1 , . . . , F∗k }.
11. Choose between the previous and the current configuration

(a) If MF∗∗ > MF∗, then accept the CpG list used to obtain MF∗∗ as the current
best list. MFCurrent = MF∗∗.

(b) If MF∗∗ ≤ MF∗, then reject the CpG list used to obtain MF∗∗ and continue
using the previous list. MFCurrent = MF∗.

12. Repeat steps 8 to 11 until:

(a) The number of iterations reaches a predetermined level (itermax)
or

(b) MFcurrent ≤ MFp, where MFp is a predetermined acceptable value for the
accuracy level.

3.2. Data

DNA methylation data was obtained from the GEO database with the accession code
GSE 147004 [49]. The dataset contains DNA methylation data for 76 samples, including
24 control (healthy), 19 HD pre-manifest and 33 HD manifest. The manifest and the pre-
manifest sets were grouped together. The dataset contains 485,512 CpG DNA methylation
data per patient. The samples were obtained from blood (buffy coat). Age and body fat
index data are also available. As previously mentioned the methylation data is expressed
as a percentage value (from 0 to 1) with a value of 1 suggesting full methylation. Healthy
(control) cases were assigned the categorical variable 0 while HD patients were assigned the
categorical variable 1. For clarity purposes some potential values for “A” are shown below.
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A =



0 0 . . . 1
0.651094 0.650451 . . . 0.634303
0.960434 0.954877 . . . 0.957124

. . .

. . .

. . .
0.077337 0.063247 . . . 0.090948


(23)

where the values in the first row identify healthy cases (with a “0” categorical value) and
HD patients (with a “1” categorical value). All the other rows represent the methylation
level of different CpGs expressed as a percentage value. For instance, the second row is
associated with one CpG (cg00000029), the third row with a different one (cg00001108) and
so on. Some DNA methylation values from an illustrative patient can be seen below.

cg00000029 0.651094
cg00000108 0.960434
cg00000109 0.899284

. .

. .

. .

 (24)

3.3. Artificial Neural Networks

The classification technique used was an artificial neural network. Neural networks
are a flexible approach that have been used successfully in multiple disciplines, including
illness identification using DNA methylation data. One of the advantages is that neural
networks do not require previous knowledge of the process to be model.It should be
noted that the algorithm was constructed in a generic way to allow for the use of other
classification techniques. An artificial neural network (ANN) is a well-known technique,
inspired by the human brain. The basic component of an ANN is an artificial neuron which
in basic terms is a mathematical function translating some input signal into an output signal.
The artificial neuron has a related weight associated with it. This weight is a value that it
is calibrated during a training phase. There are many training algorithms. The objective
of these training algorithms is to minimize the classification error when comparing the
actual output value with the output generated by the neural network. Artificial neurons
are typically arranged in layers. One critical factor when deciding the architecture of the
neural network is to decide the number of layers. In this paper we tested several ANN
configurations with the number of layers ranging from 1 to 10. There is no clear definition
of the concept of deep learning but it is typically assumed that a neural network with
several layers can be considered deep learning. The analysis was carried out, using the
standard approach, dividing the dataset in a training dataset and a testing dataset. The
training data set contained approximately two thirds of the cases (66.6%) and the testing
data set one third (33.3%). Unless otherwise stated the forecasting accuracy refers to than
in the testing dataset. Each hidden layer contained 100 sigmoid neurons and the maximum
number of iterations was 1000. The analysis was also repeated using only the pre-manifest
and control cases (excluding the manifest cases). In this second approach the number of
cases is lower. In order to focus on out-of-sample precision the training and the testing data
set were divided into two data sets of roughly equal dimensions.

3.4. Similarities and Differences with Previously Published Research

Although they differ quite a bit from our field of application, some authors have also
carried out a methodological approach similar to that of our study, having used computer-
assisted diagnostic strategies for the detection of neurodegenerative diseases. For this
purpose, they have used, for example, the pooled analysis of information from clinical
information, such as Lones et al. who designed an algorithm based on the collection of
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information related to movement disorders in patients with Parkinson’s disease (PD). To
this end, they performed continuous monitoring of dyskinesia in six patients with PD
using a device that comprised a tri-axial accelerometer and tri-axial gryoscope [50]. Other
authors have also carried out machine-learning approaches based on diagnostic imaging
information, such as Elahifasaee et al., who designed an algorithm for the classification of
diagnostic images compatible with Alzheimer’s disease (AD). To do this, they used a feature
decomposition and kernel discriminant analysis (KDA) applying it to information from
MR brain images from 830 subjects comprising 198 AD patients [51]. Other more recent
studies have also carried out a methodological approach more similar to ours, having used
strategies based on artificial intelligence for the detection of neurodegenerative diseases,
although also based on clinical or neuroimaging information [52,53]. However, very few
investigations use this methodology for the design of diagnostic algorithms based on
information from molecular studies. Bahado-Singh et al. devised a predictive model for the
diagnosis of cerebral palsy using information about DNA epigenetic profiles. These authors
are the first to mention the concept of deep learning that we have discussed previously [54].
Something more similar to our research would be the work published a few months ago
by Sh et al. because like us, these authors use information from the GEO database. Using
a machine-learning model, they have identified the role of natural killer T cells (NKT)
and granulocyte macrophage progenitor (GMP) in the aetiology of AD. To do so, they
relied on information from mRNA data from blood from 711 subjects, including the control
group (238 patients), mild cognitive impairment (189 patients), and AD (284 patients) [55].
Nevertheless, there are no studies with these methodological approaches that are based on
epigenetic information and are focused on Huntington’s disease (HD), so the present study
would be a first in this regard. In accordance with what we have commented on previously,
there are studies that use artificial intelligence formulas as a diagnostic resource, but they
are based on information from neuroimaging tests [56,57]. Perhaps the closest thing are
studies based of genomic information. Lovrecic et al devised a diagnostic algorithm based
on the expression of 12 candidate genes [58]. A decade later, the same research group
used machine learning techniques to study these genes and discovered that two of them
(ARFGEF2 and GOLGA8G) were significantly up-regulated [59]. All the same, as we
initially stated, the use of artificial intelligence strategies based on epigenetic information
for the diagnosis of HD was an unprecedented topic until nowadays.

4. Results

The results for the first part of the algorithm can be seen in Figure 2. The most
accurate classifications were obtained when using a four layers ANN. Further increases
in the number of layers did not appear to increase the accuracy of the forecasts. It can be
seen that the initial increase in the number of layers did improve the accuracy but after
reaching four layers the process seems to have reached a plateau. It should be noted that
the computational time required to carry out this analysis was rather substantial. For
instance, it required 3.45 days to obtain the results for a one-layer ANN architecture and
10.38 days for a 10-layer architecture. The training process, as shown in Table 1, required
significant time. However after training, the application to data from a new patient requires
negligible time (a few seconds). The scaled conjugate gradient training algorithm generated
better forecasts than other training algorithms such as one-step secant backpropagation
or resilient backpropagation. All the calculations were done with an Intel(R) Core(TM)
i5-4590 3.3 GHz computer. There are some options to reduce the computational type. For
instance, the algorithm was designed in order to make it easily parallelizable, particularly
the dimensionality reduction part. This algorithm can be distributed in several computers
in a cluster with each computer analyzing a different group of CpGs.
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Figure 2. Forecasting accuracy and required computational time using different ANN architectures.

The second part of the algorithm further increased the accuracy of the forecasts. The
best results are, similar to the previous case, obtained when using an artificial neural
network with four layers (Table 1). Deeper artificial neural networks, such as the one using
ten hidden layers, did not improve the results obtained using four layers. The sensitivity
and specificity (Table 2) were 0.95 and 0.80 respectively with a final list of 237 CpGs,
representing a very substantial reduction from the initial 485,512 available CpGs. The
complete 237 CpG list can be found in the supplementary material. Controlling for age and
body mass index did not impact the classifications obtained.

Table 1. Forecasting precision obtained with the different neural network configurations (after the
second part of the algorithm). The second column shows the results using control, pre-manifest
and manifest cases while the third column includes only control and pre-manifest cases. The fourth
column shows the computational time required for training the neural network.

N. Layers Max Precision Max Precision Training Time
(Control & Manifest &

Pre-Manifest)
(Control &

Pre-Manifest) (Days)

1 0.80 0.76 3.45
2 0.84 0.81 3.78
3 0.88 0.86 4.12
4 0.92 0.81 4.61
5 0.88 0.76 5.82
6 0.88 0.71 6.17
7 0.84 0.71 7.56
8 0.80 0.67 8.43
9 0.80 0.67 9.62
10 0.84 0.62 10.38

Table 2. Forecasting accuracy results.The second column shows the results using control, pre-manifest
and manifest cases while the third column includes only control and pre-manifest cases.

Field Control & Manifest Control
& Pre-Manifest (%) & Pre-Manifest (%)

Correct classification 0.92 0.86
Sensitivity 0.95 0.88
Specificity 0.80 0.80
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5. Discussion

Huntington disease is a degenerative illness currently without a cure. However, it
is an area of very active research and it is possible that in the future there will be some
treatments. Currently there are some specific genetic tests that can identify the illness
however they are typically only prescribed when there are clear indications of the illness
such as clinical evidences or family history. When treatments become available it is likely
that early detection becomes crucially important. In this regard it would be interesting to be
able to detect the illness in general blood tests as early as possible. Blood DNA methylation
data can be obtained through an inexpensive a relatively quick test that can be carried out
and used to test for indications of multiple different illness, such as cancer, and it is likely
that in the future this type of test will become more widespread. Using the same basic
blood DNA methylation data when testing for other illnesses it may be possible to test for
indications of HD as well.

Increasing our understanding of the DNA methylation dynamics in the context of
Huntington, such as for instance identifying relevant CpGs as well as improving our search
algorithms, can encourage other researchers to obtain more DNA methylation data which
in turn can be used to develop more accurate models, in this way creating a positive
feedback loop. This is particularly important because while there is a significant existing
body of research covering the topic there is much less research than in other degenerative
neurological diseases, such as Alzheimer.

From a computational point of view the results show that increasing the complexity
of the models beyond a certain point did not translate into an increase in the forecasting
accuracy. The best results were obtained using four layers. It is however possible that,
using larger datasets, the complexity of the models i.e., the number of layers, might need
to be further increased but there is clearly an upper limit. There is also a clear trade-off
between the complexity of the model and the required computational time, with some of
the models tested requiring in excess of ten days of computing power. Controlling for age
and body mass composition did not appear to change the forecasts. However, this might
be due to a relatively small data set.

The case of pre-manifest cases was also analyzed independently. It was shown that
the accuracy of the classification was relatively high when using only pre-manifest and
control cases (excluding HD manifest cases). It should be noted that the accuracy when
using this approach (pre-manifest and control only) was high, but lower than that obtained
using all cases (control, pre-manifest and manifest), which might be due to a relatively
small sample size.

6. Future Research and Limitations

As a line of future research it will be interesting to have access to large data sets that
will likely help further improving the accuracy of the model. The relatively small size of the
data pool is one of the limitations of this paper. It would be interesting to have reasonably
large sets of data at different stages of the illness (not only pre-manifest and manifest) in
order to identify the progressions. This systematic, machine-learning driven approach,
may prove to be important when comparing different types of potential future medications
and their impact on the progression of the illness with quantifiable changes in the level of
DNA methylation.

It might be possible to carry out the same type of analysis using some non-invasive
biomarkers such as saliva or urine, rather than blood. This will have certain advantages
with less discomfort for patients and easier collection. So far we have not found data linking
DNA methylation in saliva or urine to HD but it is possible that it can be successfully used
to determine the presence of the illness. Based on the experience with other illnesses it is
likely that there is a different DNA methylation pattern. This would be another interesting
line of future research.

The presented approach to identify relevant combinations of CpGs can be used for
other diseases, as long as there is existing DNA methylation data. Similarly, the algorithm
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was designed to allow for other training techniques besides artificial neural networks. This
is potentially an interesting area of future research.

Another very interesting area of future research is longitudinal analysis. Analyzing
DNA methylation changes as the illness progress could be used to quantitatively map the
progression of the illness. Another important application of longitudinal analysis, after the
above mentioned mapping is created, is as a quantitative measure of the impact of potential
treatments in the progression of the illness. This is a very promising field of research but
unfortunately there is currently not enough data available to be carried out and would
ideally require the monitor of patients over extended periods of time. Longitudinal analysis
could potentially greatly help enhancing the knowledge of the progression of the illness.
Artificial intelligence techniques, such as neural networks, could be a very interesting tool
for analyzing this type of complex and data driven analysis.

7. Conclusions

Huntington disease is a devastating illness. There are several research groups working
on potential treatments for this illness but as of now there is no cure. We are cautiously
confident that eventually there will be a treatment. As previously mentioned, we do not
suggest carry out mass screening at the moment, but when a treatment is developed it will
likely be important to have ways to detect the illness, particularly when using general test
in patients that might be asymptomatic. It is likely that when such treatment arises early
detection will be important. In this scenario, of a treatment available, such a tool could be
used as pre-screening with the healthcare professional taking care of the patient to decide
if it is appropriate to refer the patient to a specialist or to carry out further testing such
as DNA sequencing. In this scenario extreme care should be taken when communicating
with the patient, explaining clearly that the test has a degree of uncertainty and that the
diagnosis is not yet confirmed. This is, once more, in the context of a potential treatment
developed for the illness. The objective is to try to detect the illness as soon as possible
(to increase the chances of a successful treatment) while at the same time minimizing the
potential physiological impact on the patient.
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