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Abstract: We investigated whether long-term consumption of two healthy diets (low-fat (LF) or
Mediterranean (Med)) interacts with SIRT1 genotypes to modulate aging-related processes such as
leucocyte telomere length (LTL), oxidative stress (OxS) and inflammation in patients with coronary
heart disease (CHD). LTL, inflammation, OxS markers (at baseline and after 4 years of follow-up)
and SIRT1-Single Nucleotide Polymorphisms (SNPs) (rs7069102 and rs1885472) were determined in
patients from the CORDIOPREV study. We analyzed the genotype-marker interactions and the effect
of diet on these interactions. Regardless of the diet, we observed LTL maintenance in GG-carriers
for the rs7069102, in contrast to carriers of the minor C allele, where it decreased after follow-up
(p = 0.001). The GG-carriers showed an increase in reduced/oxidized glutathione (GSH/GSSG) ratio
(p = 0.003), lower lipid peroxidation products (LPO) levels (p < 0.001) and a greater decrease in tumor
necrosis factor-alpha (TNF-α) levels (p < 0.001) after follow-up. After the LF diet intervention, the GG-
carriers showed stabilization in LTL which was significant compared to the C allele subjects (p = 0.037),
although the protective effects found for inflammation and OxS markers remained significant after
follow-up with the two diets. Patients who are homozygous for the SIRT1-SNP rs7069102 (the most
common genotype) may benefit from healthy diets, as suggested by improvements in OxS and
inflammation in patients with CHD, which may indicate the slowing-down of the aging process and
its related diseases.

Keywords: genetic variants; healthy diets; coronary heart disease; role of sirtuins; aging-related pro-
cesses

1. Introduction

According to the World Health Organization (WHO), there will be a significant increase
over the next decade in the mortality rate from age-related chronic diseases (cardiovascular
disease, diabetes, etc.) [1]. The WHO has stated that the majority of the population will
have a life expectancy of 60 years or more and predicts that between 2015 and 2050, the
percentage of the world’s population aged 60 years old and over will almost double from
12% to 22% [2].

Nutrients 2022, 14, 3789. https://doi.org/10.3390/nu14183789 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14183789
https://doi.org/10.3390/nu14183789
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-3495-5705
https://orcid.org/0000-0002-4572-3611
https://orcid.org/0000-0002-2733-5359
https://orcid.org/0000-0001-8897-5176
https://orcid.org/0000-0002-0415-4184
https://orcid.org/0000-0002-3264-2767
https://orcid.org/0000-0002-8844-0718
https://orcid.org/0000-0002-2982-2716
https://doi.org/10.3390/nu14183789
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14183789?type=check_update&version=1


Nutrients 2022, 14, 3789 2 of 11

Many different factors are involved in cellular aging, such as an increase in oxidative
stress (OxS) and inflammation, which impacts the functionality of molecules or structures
related to aging, such as telomere length, among others. Previous results by our research
group have demonstrated that a low intake of vitamin E accelerates cellular aging in patients
with cardiovascular disease [3]. This suggests the need to focus studies on identifying
patients at risk of unhealthy aging to take more effective and powerful steps aimed at
delaying or slowing the aging process, and thus reducing the probability of developing
aging-related diseases.

A healthy lifestyle, including a healthy diet, improves the maintenance of telomere
length, inflammatory and OxS status, and adherence to an unhealthy lifestyle has the
opposite effect [4]. Among the healthy diets that have been linked to an improvement
in age-related changes are the Mediterranean (Med) diet [5–7] and low-fat (LF) dietary
patterns [8–10].

There is a genetic component in aging and in age-related diseases [11,12] where single
nucleotide polymorphisms (SNPs) have been shown to be associated with processes related
to the development of these diseases [13–15].

Sirtuins are a group of proteins involved in the protection and repair of DNA, as they
participate in the deacetylation of histones, molecules that maintain the structure of the
genetic sequence, and their dysfunction may be associated with cell damage, senescence
or cellular aging [16]. They play a role in preventing OxS and inflammation [17] and
are present in various intracellular locations in different tissues (liver, adipose tissue,
endothelium, etc.). Their functionality is regulated by external factors such as diet [18,19],
among others. For this reason, previous studies have focused on the regulation by sirtuins
of the aging process and the development of age-related diseases [20,21]. The SIRT1 gene
encodes for the protein sirtuin 1 (Sirt1), which has a range of molecular functions and has
emerged as an important protein in aging and metabolic regulation [22]. During the past
decade, studies have suggested a correlation between Sirt1 activity and aging-associated
diseases, including diabetes, cardiovascular disease and neurodegenerative disorders [23].
SNPs rs7069102 and rs1885472 are two SNPs in high LD located in the gene sequence. In
a previous study with healthy people, the risk of developing cardiovascular disease was
associated with the rs7069102 genotype, which points to the relationship between that
polymorphism and cardiovascular disease [24]. However, to date, no research has looked
into whether the biological effects of these SNPs are partly related to their association with
age-related features.

Based on the above, we investigated whether long-term consumption of two healthy
dietary patterns (LF diet or Med diet) interact with genetic variability at the SIRT1 gene
locus to modulate aging-related processes such as telomeres length, OxS and inflammation
in patients with coronary heart disease (CHD).

2. Materials and Methods
2.1. Population

The current work was conducted within the framework of the CORDIOPREV study.
The CORDIOPREV study was a prospective, randomized, controlled clinical trial. Dietary
intervention was performed in patients with CHD whose inclusion period began in 2009. It
included a total of 1002 patients between the ages of 20 and 75 years old, who took part in
a dietary intervention with a Med or LF diet for a median of seven years. The details of
the study design have been previously provided on Clinicaltrials.gov (NCT00924937) and
the inclusion and exclusion criteria have been previously described [5]. Written consent
was obtained from all the subjects before recruitment and the study protocol and all
amendments were approved by the Ethics Committee of Hospital Reina Sofia, all of which
follow the Helsinki Declaration and good clinical practices. We carried out our analysis
in those subjects for whom we had complete information on the variables studied in the
baseline situation and after 4 years of follow-up (clinical, biochemical, genetic and telomere
length data (n = 716).

Clinicaltrials.gov
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2.2. Diet, Dietary Assessment and Follow-Up Visits

The patients were randomized into two different healthy dietary patterns: a Med diet
rich in fat from olive oil, with >35% of calories from fat (22% monounsaturated (MUFA),
6% polyunsaturated (PUFA), <10% saturated (SFA)), 15% proteins and a maximum of
50% carbohydrates; and a LF diet, comprising <30% total fat (12–14% MUFA, 6–8% PUFA
and <10% SFA), 15% protein, and a minimum of 55% carbohydrates. Briefing sessions
were held for each type of diet and a regular follow-up was carried out by nutritionists, as
detailed in previous publications of our group [25]. Dietary adherence in the CORDIOPREV
study has previously been reported by Quintana-Navarro et al. [25]. Full study diets, dietary
assessments, and follow-up visits have previously been reported [26].

2.3. Laboratory Measurements

Details of the measurements have been provided in a previous publication [27]. Blood
samples were collected from the participants after a 12 h overnight fast at the beginning
of the study and once a year during the follow-up period. In the present work, we used
the information about biochemical parameters obtained at the beginning of the study
and after 4 years of follow-up. Plasma and serum samples were collected in individual
tubes and centrifuged, then immediately frozen at −80 ◦C. The biochemical measurements
were taken at the Reina Sofia University Hospital by staff who had no knowledge of the
interventions. The main biochemical variables used in the present study were triglycerides,
total cholesterol, high density lipoprotein cholesterol (HDL-c), low density lipoprotein
cholesterol (LDL-c), glucose and C- reactive protein (CRP). The methodologies used to
carry out the measurements have been described previously [27].

2.4. OxS- and Inflammation-Related Parameters

As a sample of the total population of the study, oxidative-stress and inflammation-
related data from 353 participants from the CORDIOPREV Study were acquired in the set
of the PI13-00185 Grant (see acknowledgments), as previously published by our group [28].
Lipid peroxidation products (LPO), total glutathione, reduced (GSH) and oxidized glu-
tathione (GSSG) and the GSH/GSSG ratio were determined, as previously defined [28].
GSH and GSSG content were measured in the plasma samples using the BIOXYTECH®

GSH-400 Kit (OXIS International Inc., Portland, OR, USA) and the GSH-412 Kit (OXIS
International Inc., Portland, OR, USA), respectively. Tumor necrosis factor-alpha (TNF-α)
was measured using commercially available enzyme-linked immunosorbent assay ELISA
kits (R & D Systems, Minneapolis, MN, USA).

2.5. DNA Isolation from Blood Samples

DNA was obtained from the blood cells of the buffy coat fraction from blood contained
in EDTA tubes. The DNA was isolated through the salting-out method, and the DNA was
then resuspended in 500 µL of 1 × TE buffer [29].

2.6. Genotyping

Genotyping was performed using the OpenArray™ platform provided by Thermo
Fisher Scientific Inc. (Waltham, MA, USA), using TaqMan assays C___1340389_10 (assay
name: hCV1340389) for rs7069102 and C___11642237_10 (assay name: hCV11642237) for
rs1885472 provided by Thermo Fisher Scientific Inc. (Database: https://www.thermofisher.
com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/snp-genotyping-
taqman-assays.html) (accessed on 13 September 2020). The procedure was carried out
according to the manufacturer’s instructions using an AccuFill™ robot for array loading, a
9700 thermal cycler for polymerase chain reaction (PCR) and an NT cycler for fluorescence
reading (all provided by Thermo Fisher Scientific Inc.). The Hardy–Weinberg equilibrium
was measured using the gene calc bioinformatic tool [30]. TaqMan™ Genotyper software
V 1.3 (Life Technologies, Carlsbad, CA, USA) was used for genotype calling. We used
1000 GENOMES phase_3:IBS (http://www.ensembl.org/Homo_sapiens/Info/Index) (ac-

https://www.thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays/snp-genotyping-taqman-assays.html
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Nutrients 2022, 14, 3789 4 of 11

cessed on 13 September 2020), as the reference population. The Pairwise LD level among
SIRT1 SNPs was validated by analyzing the D′ and r2 values using Ensembl (Human
GRCh38.p13) in the same population group.

2.7. Quantitative PCR Analysis of Leucocyte Telomere Length (LTL)

We analyzed LTL at the beginning and after four years of follow-up, as per the study
protocol. We used the Cawthon method with quantitative PCR [31], as in the previous
papers from our group [27,32,33]. PCR reactions were carried out on an iQ5 thermal
cycler using a SensiFAST™ SYBR Lo-ROX kit, where for all samples the ratio of telomere to
constitutive gene RPL13a was estimated. The sequence of primers used and PCR conditions
have previously been published [27].

2.8. Statistics

We used SPSS Statistics for Windows (version 28.0) (IBM, Chicago, IL, USA) and
data are presented as mean ± standard error of the mean (SEM). The differences in mean
biochemical and anthropometric parameters and the interaction with the genotype were
evaluated by One-Way ANOVA analysis (Supplementary Table S1). The comparison of
clinical and anthropometric parameters according to diet and genotype was carried out
using One-Way ANOVA analysis, separately and independently for each diet, with the SNP
rs7069102 genotype as a factor. Comparisons of frequencies between qualitative variables
were carried out using the Chi-Square test. ANOVA for repeated measures was used
to analyze the changes during the study. The Greenhouse-Geisser contrast statistic was
used when the sphericity assumption was not satisfied. In this analysis, we studied the
overall genotype influence (global ANOVA, p for genotype influence), the kinetics of the
intervention (p for time), and the interaction of the two factors (genotype vs. time). When
post hoc test analyses were pertinent, we used multiple comparison tests with the Sidak
correction. p < 0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics according to the SIRT1 SNPs Genotype

The genotype distributions of both SNPs did not deviate from the Hardy–Weinberg
expectations. We compared the allelic frequencies observed for both SIRT1 SNPs with the
1000 genomes database. The minor allele frequency for the SNP rs7069102 was C = 0.305
(1000 genomes: C = 0.355) and for the SNP rs1885472 was G = 0.317 (1000 genomes:
G = 0.355). The genotypic frequencies observed for the SNP rs7069102 were G/G = 47.78%;
G/C = 43.43%; C/C = 8.79%, and for the SNP rs1885472 were C/C = 47.02%; C/G = 42.45%;
G/G = 10.53%. The LD analysis showed that the SNPs rs1885472 and rs7069102 were
D′ = 1.000 and r2 = 1.000, suggesting that the loci are in complete LD and coinherited in
most cases. Therefore, given its association, and the existence of previous literature with
SNP rs7069102, but not with rs1885472, we decided to continue showing the analysis with
rs7069102 in this article. Since our analyses did not support a recessive mode of action for
this SNP and given the low frequencies of the genotype CC in rs7069102, we conducted
our subsequent analyses using a dominant model for the minor allele.

The demographic, anthropometric and biochemical characteristics according to the
SIRT1 SNP rs7069102 and diet are presented in Table 1. At baseline, we observed a signifi-
cant difference in weight in patients randomized to the Med diet who were also carriers of
the C allele compared to carriers of the GG genotype (p = 0.043). No significant differences
were observed in the other parameters analyzed, nor in the patients who followed the LF
dietary pattern (Table 1). No significant differences according to genotype for baseline
anthropometrics, cholesterol, glucose or CRP values were observed for the SIRT1 SNP
rs7069102 (Supplementary Table S1).
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Table 1. Characteristics of patients according to genotype for SIRT1 polymorphism rs7069102 and diet.

Parameters LF Diet Med Diet

GG CG + CC p Value GG CG + CC p Value

N 162 171 189 194
Men/Women (n) 134/28 145/26 0.607 164/25 151/43 0.022 *

Age (years) 58.7 ± 8.7 59.6 ± 8.1 0.329 59.3 ± 8.9 59.8 ± 9.2 0.629
Weight (kg) 85.3 ± 12.8 84.5 ± 12.2 0.547 86.6 ± 14.2 83.7 ± 14 0.043 *

Waist circumference (cm) 104.5 ± 10.4 105.1 ± 10.2 0.628 105.2 ± 11.5 104.1 ± 11 0.311
BMI (kg/m2) 31.2 ± 4.3 30.7 ± 4 0.289 31.4 ± 4.4 30.9 ± 4.4 0.315

Total cholesterol (mg/dL) 157.2± 29.8 160.1 ± 28.2 0.359 158.5 ± 33.1 159.6 ± 31.5 0.723
HDL-C (mg/dL) 42.1 ± 10 42.9 ± 10.1 0.452 42.2 ± 10.3 42.1 ± 10.3 0.931
LDL-C (mg/dL) 86.8 ± 23.9 89.7± 23.5 0.281 88.2 ± 26.6 90.1 ± 25.4 0.486

TG (mg/dL) 128 ± 64.4 142.2 ± 73.4 0.063 137.1 ± 71 130.1 ± 64.5 0.315
Glucose (mg/dL) 108.8 ± 29.5 113.4 ± 38.3 0.219 115.4 ± 40.8 111.4 ± 36.3 0.316

CRP (mg/dL) 3.6 ± 4.3 2.8 ± 3.2 0.073 2.7 ± 3.7 2.8 ± 3.1 0.945

Values are expressed as mean ± SEM. LF, low fat; Med, Mediterranean; BMI, Body mass index; HDL-C, high-
density lipoprotein; LDL-C, low-density lipoprotein; TG, triglycerides; CRP, C-reactive protein. Variables were
calculated using One-Way ANOVA analysis. * p values < 0.05.

3.2. Relationship between the SNP rs7069102 and LTL

In the whole population, we observed a maintenance of LTL in patients carrying the
GG genotype, in contrast to carriers of the mutant C allele, in whom LTL decreased after
4 years of follow-up compared with baseline (p = 0.001) (Figure 1).
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rs7069102 genotype located on the SIRT1 gene after the follow-up period. Data are represented as 

Figure 1. Leucocyte telomere length according to the single nucleotide polymorphism (SNP)
rs7069102 genotype located on the SIRT1 gene after the follow-up period. Data are represented
as the mean ± SEM and correspond to ANOVA for repeated measures; where p1: time follow-up,
p2: genotype influence and p3: the interaction of the two factors (time vs. genotype). When post hoc
tests were pertinent, we used multiple comparisons with the Sidak correction. * p < 0.05 4 years vs.
baseline, β p < 0.05 genotypes in the same time. The data correspond to the population included in
the study where 351 subjects are carriers of the GG genotype (49%) and 365 of the CG + CC genotype
(51%) (combined both LF and Med diets).

3.3. Relationship between the SNP rs7069102 and Inflammation and OxS-Related Parameters

Subjects with the GG genotype showed an increase in GSH/GSSG ratio values com-
pared to their baseline levels (p = 0.003) (Figure 2A). Additionally, the LPO levels decreases
in both genotypes (GG and CG + CC) (both p < 0.001), however it decreases more in GG
carriers after the intervention period compared to baseline (Figure 2B). Moreover, a signifi-
cant decrease in TNF-α levels was observed in both the GG and CG + CC genotypes (both
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p < 0.001, respectively), although this profile was significantly greater in GG homozygotes
after 4 years of follow-up (p = 0.022) (Figure 2C).
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Figure 2. Changes in variables associated with oxidative stress (OxS) and inflammation according to
SNP rs7069102 genotype located in SIRT1 gene (Panel A, reduced/oxidized glutathione (GSH/GSSG);
B, lipid peroxidation products (LPO); C, tumor necrosis factor-alpha TNF-α). Data are represented as
the mean ± SEM and correspond to ANOVA for repeated measures; where p1: time of follow-up,
p2: genotype influence and p3: the interaction of the two factors (time vs. genotype). When post hoc
tests were pertinent, we used multiple comparisons with the Sidak correction. * p < 0.05 4 years vs.
baseline, β p < 0.05 genotypes in the same time. The data correspond to the population included
in the study selected to the OxS and inflammation analyses where the where 49% carried the GG
genotype and 51% carried the C allele.

3.4. Effect of Diet on LTL and Inflammation-Related Parameters According to SIRT1 Gene Variants

3.4.1. Patients Randomized to the LF Diet

For the SNP rs7069102, after dietary intervention with the LF diet, a stabilization in
LTL was observed in subjects with the GG genotype, which decreased significantly in
subjects carrying the CG + CC genotypes (p = 0.012) (Figure 3B).

TNF-α levels decreased after 4 years in subjects carrying both genotypes (GG p < 0.001
and CG + CC p = 0.020). However, this decrease was significantly greater in subjects
carrying the GG genotype (p = 0.007) (Figure 3D). These GG patients also showed a
significant decrease in CRP levels when compared with carriers of the C allele (p time vs.
genotype = 0.025) (Figure 3F).

3.4.2. Patients Randomized to Med Diet

Telomere length decreased in GG and GC+CC patients after 4 years of follow-up. No
significant differences were observed between GG and GC+CC patients in terms of TNF-α
levels and CRP levels (Figure 3A,C,E).
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4. Discussion

Our results demonstrate the interaction between diet and rs7069102 gene variation of
the SIRT1 gene in the modulation of aging-associated markers. We observed that subjects
homozygous for the common allele who followed a LF dietary pattern for 4 years showed,
over time, benefits in telomere length evolution, which is a marker of cellular aging.
Additionally, in these patients, we also observed a decrease in TNF-α and CRP, which are
markers of OxS and inflammation and factors previously associated with telomere length.
In parallel, and as an internal control study, we performed the same data analysis with the
high LD association rs1885472 that replicated all the findings for rs7069102.

The WHO estimates that deaths from chronic diseases associated with aging will
double in the next 10 years. This is because the percentage of the world’s population aged
60 years old and over will increase almost two-fold from 12% to 22% [2]. The development
of diseases associated with aging is directly related to cellular senescence, where cells are
unable to carry out certain biological processes. In various metabolic diseases such as
diabetes mellitus and cardiovascular diseases, the adoption of healthy eating habits has
been proven to be useful to slow down the aging process and cellular dysfunction. Previous
studies have demonstrated the beneficial effect of adherence to diets such as the Med diet
or LF diet on markers associated with aging [10,32]. However, nutritional habits may have
a different effect on the aging process, partly due to the genetic diversity of the population.
In fact, during the aging process, these genetic characteristics also determine changes at the
cellular level such as apoptosis, telomeric shortening and mitochondrial activity [32,34,35].
This directly impacts on markers associated with OxS (GSH and GSSG, LPO), inflammation
(TNF-α and CRP) and telomere length.

In this context, the proteins known as sirtuins, due to their involvement in apoptosis,
inflammation and mitochondrial activity, are related to the protection against arterial calci-
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fication, the regulation of mitochondrial function and the antioxidant defense system [36].
Although the rs7069102 genotype was previously associated with an increase in the risk of
developing cardiovascular disease in healthy subjects [24], it was not previously associated
with changes in cellular age-related features, such as telomere length. Regarding the other
SNP chosen for investigation, rs1885472, there is little previous evidence available about
its relationship with aging, disease and how environmental factors such as diet affect it,
but its high LD with rs7069102 enabled us to confirm the data obtained. Due to the high
co-inheritability, we only showed the results for rs7069102, selecting it as an SNP tag. How-
ever, we also performed all the analyses with rs1885472 (data not shown), which replicated
the results obtained for rs7069102. The consistency of these results with rs1885472 provides
an internal control which helps to corroborate the main body of evidence.

In our study, when we analyzed the whole population, not splitting the sample by diet
type, subjects carrying the mutated alleles showed a decrease, after 4 years, in telomere
length, in contrast to the maintenance in the telomere length found in the homozygotes for
the common allele. Although concomitant improvements in OxS (LPO) and inflammation
parameters (TNF-α) were found in all participants, these changes were more favorable in
the common allele homozygotes.

One interesting finding of our study was that telomere length did not differ at the
beginning of the study between C-carriers and GG patients. We believe that this is a clear
case of Nutrigenomics, rather than a genetic effect, as we were not able to see differences in
the telomeres in subjects who were not distributed to different dietary patterns, and that
it was precisely the dietary intervention that allowed us to find this association between
nutrition and genotype. In this context, in relation to diet, a previous study analyzed the
association between SIRT1 SNPs (rs7069102, rs2273773, rs3818292), suggesting that the
combination of genetic variants of the SIRT1 gene and dietary n-6 and/or n-3 PUFA intake
influences the serum levels of LDL-C and HDL-C [37]. In our study, we observed that
carriers of the mutated alleles at SNPs rs7069102 (and rs1885472), after a 4-year follow-up
of a LF diet, showed some changes in parameters associated with ageing (telomere length)
and inflammation, which were not found in carriers of the ancestral alleles.

As mentioned above, when we analyzed the data from the whole population (without
splitting the population into dietary arms), we saw beneficial differences in variables related
to aging in the subjects homozygous for the common allele. This could be interpreted as a
favorable association following the intervention with either diet. Specific evaluation of the
results by diet showed that these effects were only statistically evident in the subgroup of
the LF diet, which may indicate that the LF diet performed better, or that we were not able
to identify those specific beneficial effects in the Med diet group due to a lack of statistical
power for the results obtained. Nevertheless, to provide an explanation underlying our
results, we should remember that, although the Med Diet and the LF diet show some
common features, there are differences, such as the fat content, that could act as drivers of
the associations found.

Our study has certain limitations. It was conducted in a population with CHD, which
suggests that our results should not be extrapolated to the general population. Additionally,
in our study, we analyzed telomere length over a certain time period, which does not allow
us to infer either the total length of the telomere or the changes that this length had in the
years before of the study started, when the subjects were on an ad libitum diet. Finally,
larger-scale studies would be needed to replicate our findings.

5. Conclusions

In conclusion, the genetic variants located in the SIRT1 gene will enable us to offer our
patients a personalized diet tailored to their genetic characteristics, which allows us to slow
down the aging process and its related diseases by improving the OxS and inflammation-
related parameters. In our case, homozygotes for the rs7069102 SNP would benefit from a
LF diet to slow telomere shortening.
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