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Abstract: Pure TiO2 and barium (0.5 wt%) doped TiO2 (Ba/TiO2) nanostructures have been synthe-
sized via facile microwave irradiation method. The pure anatase phase of synthesized photoactive
material was confirmed by X-ray diffraction. Ba doping in the TiO2 host structure influenced the
optical band gap as confirmed by UV-visible spectroscopy. The optical band gap increased from
3.21 eV for the TiO2 to 3.26 eV for Ba/TiO2. Morphological analysis of synthesized TiO2 and Ba/TiO2

was conducted using scanning electron microscopy. Energy dispersive X-ray spectroscopy confirmed
the formation of Ba/TiO2 and no impurities were observed. Electrochemical impedance spectroscopy
showed that the charge transfer resistance increased for Ba/TiO2, which reduced dark current creation
in a dye-sensitized solar cell. The highest power conversion efficiency (3.24%) was achieved for
Ba/TiO2 photoanode compared to 2.1% for a pure TiO2 photoanode-based device.

Keywords: photoanode; dye-sensitized solar cell; nanoparticles; microwave synthesis

1. Introduction

Society needs green and cost-effective technologies for the energy sector owing to
the global greenhouse effect and depletion of fossil fuels in recent years. Among all
existing green energy technologies such as wind turbines, fuel cells, hydropower, tidal
power, solar thermal and biomass, solar cells are considered among the most promising
and prominent energy sources [1–5]. Dye-sensitized solar cells (DSSCs) constitute an
advanced generation of solar cells that mimic natural photosynthesis. With fabrication
techniques including solution processable methods, the use of cheap materials and decent
power conversion efficiency (PCE), DSSCs are promising candidates for the conversion of
solar light into electricity [6–8]. The highest PCE of 13% has been achieved in DSSCs by
employing ruthenium as a light-absorbing material [9]. Techniques employed to improve
the performance of DSSCs aim to minimize recombination of the photoinduced electron
hole pair while improving the charge transfer rate of photo-generated electrons in the
transparent conducting substrate [10]. Reducing the charge recombination and enhancing
charge transfer can be achieved by optimizing the band gap of the semiconducting metal
oxide (MOS). The MOS in a DSSC serves as a substrate for dye uplifting as well as provides
a path for photoinduced charge generation [11,12].

TiO2 nanostructures are one of the significant photoanode materials owing to their
superior properties, including wide band gap, large surface area, non-toxicity, low cost
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and high stability [13,14]. The morphology of MOS plays a significant role in DSSCs;
therefore, a fine-tuned morphology is required to deliver improved PCE in the device [15].
The photocatalytic efficiency of TiO2 is affected by its ability to respond to radiation (UV
along with visible light), and thus could be improved by shifting its optical absorption
from UV to the visible region. It has been observed that the photocatalytic efficiency
of TiO2 is enhanced by modifying its band gap with different dopants [16]. A variety
of TiO2 nano-compositions involving nanoparticles, carbon spheres, TiO2 nanoparticle
composites, TiO2 micro tablets, hollow spheres, nanotube composites, and nano-fiber
nanoparticle composites have been successfully synthesized and used as DSSC photoanode
materials [17–20]. Doping with transition metals [21,22], rare-earth elements [23,24] and
noble metals [25] into TiO2 has been widely investigated to reduce TiO2 particle size and
improve its (photo)(electro)catalytic performance. Co-doping along with different doping
agents including metal–nonmetal, nonmetal–nonmetal, and metal—metal synergistically
improves the optical absorption towards the visible region and reduces the recombination
process [26]. Cu-N, B-N, Fe-C, Fe-N, Ni-N, and V-N have been studied as co-dopants
with TiO2 [27–33]. Co-doping of TiO2 with N-C has been reported to modify its band
gap, enhancing its photocatalytic activity towards the visible spectrum [34]. Co-doping of
titania nanowires with tungsten carbon improves their electrochemical activity towards the
oxygen-evolution reaction (OER) [35]. Ag/V-TiO2 was also studied to photo-catalyze the
degradation of rhodamine B dye in aqueous solutions. These co-doped materials exhibited
the highest photocatalytic activity in the UV-visible region [36], Similarly, it has also been
previously reported that barium doping in TiO2 nanoparticles using microwave irradiation
increases the optical band gap and reduces the particle size of TiO2 nanoparticles for
microbiological activity [37]. Several studies have reported co-doping of TiO2 to enhance
its optoelectrical properties.

The present work deals with the preparation of TiO2 and Ba/TiO2 composites using
a simple microwave irradiation method. Microwave-assisted swift heating has achieved
substantial significance as an emerging and favorable method for one-pot preparation of
different metal nanostructures. Structural, optical, morphological, elemental, and elec-
trochemical behaviors of synthesized photoanodes materials are investigated by X-ray
diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy
dispersive spectroscopy (EDS), and electrochemical-impedance spectroscopy (EIS). More-
over, the photovoltaic performance of synthesized TiO2 and Ba/TiO2 photoanodes has
been studied. Increasing the optical band gap and surface area of Ba/TiO2 photoanodes
led to a reduction of dark current and increased dye loading capacity [38]. DSSCs prepared
using Ba/TiO2 composite photoanode delivered a PCE of 2.34%.

2. Materials and Methods
2.1. Materials

Titanium (IV) isopropoxide TTIP (95% purity), ruthenium dye (N3 dye), polyethylene
glycol (PEG), barium chloride and Triton X- 100 were purchased from Alfa Aesar Company
India. Ethanol was purchased from Merck Company India. Chloroplatinic acid (99.9%) was
purchased from Himedia Company India. All of these chemicals were utilized as received,
without any further treatments. All of the solutions were prepared using deionized water (DI).

2.2. Preparation of TiO2 and Ba/TiO2 Photoanode

A facile microwave irradiation method was employed to prepare Ba (0.5)TiO2 photoan-
ode materials. An initial solution was prepared using 2 g of TTIP added with 60 mL of
deionized water and stirred for 1 h at 100 ◦C. A separate solution was prepared using bar-
ium chloride dissolved in DI water. After that, both solutions were mixed and kept under
stirring for 1 h at room temperature. The solution was kept under microwave irradiation
for 5 min at 450 W. The advantage of using a microwave oven relates to a reduced synthesis
time and energy consumption as compared to conventional heating. Microwaves provide
homogeneous and rapid heating [39]. Afterwards, the obtained photoanode materials were
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calcined at 500 ◦C for 1 h to enhance the crystalline nature of the photoanode material. The
same procedure was adopted for the preparation of TiO2 photoanode.

2.3. Photoanode Preparation

Fluorine-doped tin oxide (FTO) glass substrates were cleaned in a soap solution
followed by distilled water and ethanol. Hereafter, the synthesized photoanode material
was prepared using binder solutions of PEG and Triton X100. As prepared, Ba/TiO2 was
deposited onto FTO using the doctor blade technique. The coated substrate was sintered
at 300◦C for 1 h to evaporate the binder as well as to generate porosity in the materials.
The sintered substrate was immersed into 0.5 mM of ruthenium dye solution for 24 h to
absorb the dye molecule. A thin layer of platinum was deposited onto the FTO glass using
5 mM chloroplatinic acid via doctor blade technique. The photo-electrode was clamped
(using binder clips) with the counter-electrode to produce a sandwich-type formation. The
liquid redox electrolyte composed of 0.5M potassium iodide (KI) and 0.02 M iodine (I2)
dissolved in acetonitrile was filled between the photoelectrode and counter-electrode. The
active surface area of the as-prepared DSSC was about 0.25 cm2 and the cross-sectional
area of TiO2 and Ba/TiO2, approx. 10 µm.

2.4. Characterization

X-Ray diffraction (PANalytical-X’pert Pro powder diffractometer λ = 1.54 Å using Cu
Kα radiation) analysis was conducted to determine the crystal structure of the MOS with 2θ
range values from 10◦ to 80◦. The measurement was carried out by step size of 0.0170◦ up
to four decimal accuracies. SEM (ZEIS EVO 18 instrument with 20 kV acceleration voltage
and 1.30 K magnification) was used for the morphological studies of the of photoanode
materials. UV-visible spectrophotometry (Perkin-Elmer-Lambda-35 spectrophotometer)
was used to investigate the optical properties. EIS was conducted by VSP300 biological
instrument with a 10 mV voltage amplitude in the frequency range of 1 MHz–1 Hz. The
current voltage (I-V) measurement was observed by means of an electrochemical computer-
controlled workstation as well as a SAN-EI solar-stimulator. A 150-watt xenon lamp was
used as a light source with an AM 1.5 G filter and an intensity of 100 mW cm−2.

3. Results and Discussions
3.1. Structural Analysis

XRD patterns of single TiO2 as well as Ba/TiO2 nanomaterials are displayed in Figure 1.
The diffraction peaks of TiO2 and Ba/TiO2 nanomaterials at 2θ values were 25.09◦, 37.65◦,
47.89◦, 53.89◦, 55.07◦, 62.40◦, 70.04◦ and 75.00◦, matching well with JCPDS data (21-1272)
having (101), (004), (200), (105), (211), (204) crystal planes, respectively [26]. No other
characteristic peaks were reflected in the XRD pattern. Hence, both samples exhibited
tetragonal structure, and corresponding lattice constant values are shown in Table 1. In
the case of Ba/TiO2 nanomaterials, an increase in intensity was evidenced due to the
incorporation of Ba2+ (1.42 nm) into the TiO2 host lattice because the ionic radius of Ba2+

is greater than that of Ti4+ (0.74 nm), which resulted in an increase in crystallinity. This
substitution caused lattice distortion, inflation of the TiO2 nanocrystal, and internal stress
due to Ba doping [40], which reduced nucleation growth (particle size controller) [41].
Another study showed that doping of substrates with Ba caused shrinkage of the crystallite
size of modified nanomaterials [42].

Table 1. Structural parameters derived from XRD patterns of the synthesized TiO2 and Ba/TiO2 photoanode.

Photoactive
Material FWHM (2θ) d-Spacing (Å) Crystallite

Size(D) (nm)
Lattice Constant (Å) Unit Cell

Volume V
(Å)3

Density (ρ)
(g/cm3)

Specific Surface
Area (m2/g)a = b C

TiO2 0.568 ± 0.026 3.494 25 3.778 ± 0.005 9.480 ± 0.012 135.31 3.9 61

Ba/TiO2 0.876 ± 0.038 3.504 16 3.781 ± 0.002 9.470 ± 0.004 135.38 3.9 95
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Figure 1. XRD patterns of Ba/TiO2, TiO2 photoanodes along with the reference JCPDS data 21-1272. 
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Figure 1. XRD patterns of Ba/TiO2, TiO2 photoanodes along with the reference JCPDS data 21-1272.

The structural constraints of synthesized TiO2 and Ba/TiO2 nanomaterials were calcu-
lated using the following formulas [43]:

1
d2 =

h2 + k2

a2 +
l2

c2 (1)

t =
0.9λ

β cos θ
(2)

where d is the d-spacing between two consecutive lattices observed from XRD, (h,k,l)
indicate the miller indices, t is the crystallite size, β is the full with half maximum, a, b, and
c display as lattice constant for a = b in tetragonal structure, λ indicates the wavelength of
the X-ray radiation used, and θ refers to the diffraction angle;

ρ =
nM
NV

(3)

Sa =
6

D.ρ
(4)

where, ρ is the density of the prepared sample, n is 4 for anatase phase TiO2 and 2 for
rutile phase TiO2, M is the molecular weight of the prepared nanomaterials, N corresponds
to Avogadro’s constant value, V is the volume of the prepared nanomaterials, and Sa
states the specific surface of the prepared sample. Table 1 shows the calculated structural
values derived from the XRD patterns of TiO2 and Ba/TiO2 nanomaterials. The average
crystallite sizes estimated were 25 nm for single TiO2 and 16 nm for Ba/TiO2 nanomaterials,
respectively. When Ba ions were doped into the TiO2 lattice, a decrease in nucleation
(and subsequent growth rate) was observed for TiO2 nanomaterials, leading to a reduc-
tion in particle size of Ba/TiO2. The reduction in particle size increases the surface area
of TiO2. The specific surface area of TiO2 (61 m2/g) was smaller than that of Ba/TiO2
(95 m2/g). This favored dye adsorption in the photo electrode, thereby improving photo-
voltaic performance in the DSSC.

3.2. Optical Properties

Figure 2 represents the UV-visible spectra of TiO2 and Ba/TiO2 photoanode materials.
Ba/TiO2 exhibited a significant visible absorption above 400 nm, which was an indication
of changes occurring in the optical absorption of TiO2 photoanode material due to metal
doping. Peak edges of Ba/TiO2 photoanode showed some regular and trivial blue shifts
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comparative to TiO2 photoanode. The blue shift was attributable to the Burstein–Moss
effect, leading to the movement of Fermi level towards the conduction band due to an
increase in electron concentration because of Ba doping [44,45]. It is very useful to increase
the photocurrent density and also the charge transfer resistance of synthesized photoanodes.
The absorption of TiO2 and Ba/TiO2 were at 415 nm and 400 nm, respectively.
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Optical band gap values were determined by using Tauc plots as presented in Figure 3a.
Ba/TiO2 photoanode (3.26 eV) ha a higher band gap value compared to TiO2 photoanode
(3.21 eV) because of quantum confinement effects observed due to the smaller size of as-
synthesized samples. According to the theory of quantum efficiency, the holes of valence band
and conduction band electrons are confined by the potential barrier of the surface. As a result,
the band gap energy is increased with decreasing size of synthesized particles [46,47]. The
increase in band gap of doped TiO2 can be interpreted in terms of Mott’s transition effect and
Burstein–Moss (BM) effects. According to Mott’ criteria, the band gap of the donor combines
with the conduction band of the host material [48], while BM effects present a relationship
between the band gap and concentration of carriers [49,50], as given below:

EBM
g =

(
h2

2λme

)(
3π2Ne

)
(5)

where λ, h, and me are the effective reduced mass of TiO2, Planck’s constant and the electron
free mass, respectively. According to the BM effect, the carrier density of semiconductors
increases with Ba doping, which causes the Fermi level to shift into the conduction band [51].
Due to this doping, the low energy transition is clogged, and broadening in the band gap
takes place [52]. This novel effect of Ba doping on optical properties can pave the way to its
extended use in optoelectronic and photovoltaic applications.

The value of n coefficient is determined by the Tauc relationship (Equation (6)). The n
coefficient is related to the possible transition of electrons. For indirect allowed electronic
transition, its value is 2 and 3 for indirect forbidden transitions.

αhθ = A (hθ − Eg)n (6)

n =
ln (αhθ)

ln
(
hθ – Eg

) (7)
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where α is the absorption coefficient, h is Plank’s constant, and A is absorption constant [53].
From the slope of ln F® vs. ln (−ν − Eg), the value of n is determined. The result listed
in Table 2 represents the approximated value of n = 2 for TiO2 and Ba/TiO2, which is in
agreement with values in the literature for TiO2, which is an indirect semiconductor [54]
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Table 2. n coefficient determination and band gap.

Sample Eg (eV) n Coefficient

TiO2 3.21 1.72 ± 0.003
Ba/TiO2 3.26 1.61 ± 0.003

Figure 4 presents the UV-visible absorption spectrum of dye molecule-adsorbed TiO2
and Ba/TiO2 photoanodes. The Ba/TiO2 photoanode had high absorption compared to
the TiO2 photoanode. The increased absorption was due to the increasing surface area
of the Ba/TiO2 photoanode, which was also confirmed by XRD results. This behavior
enhances photocurrent density in DSSCs. Moreover, the shift in wavelength in the visible
region further supported our findings as productive in DSSCs, because the photocatalytic
efficiency of TiO2 is affected by its ability to respond to UV radiation along with visible
light, which could be improved by shifting its optical absorption from UV to the visible
region. Ba doping increased the absorption in the visible region.

Appl. Sci. 2022, 12, x  7 of 12 
 

further supported our findings as productive in DSSCs, because the photocatalytic effi-
ciency of TiO2 is affected by its ability to respond to UV radiation along with visible light, 
which could be improved by shifting its optical absorption from UV to the visible region. 
Ba doping increased the absorption in the visible region. 

 
Figure 4. UV-visible absorption spectra of synthesized TiO2 and Ba/TiO2 photoanodes with N3 dye 
molecule. 

3.3. Morphological Studies 
The surface morphologies of the TiO2 and Ba/TiO2 nanostructures were subsequently 

examined by SEM as shown in Figure 5. Both TiO2 (5a) and Ba/TiO2 (5b) exhibited similar 
agglomerated spherical shape particles. In terms of chemical composition, TiO2 nanostruc-
tures contained Ti and O, only, which confirmed that the material was free from impuri-
ties, as observed from Figure 5c. The presence of Ba was confirmed in the Ba/TiO2 
nanostructures from Figure 5d. 

 

Figure 4. UV-visible absorption spectra of synthesized TiO2 and Ba/TiO2 photoanodes with N3
dye molecule.



Appl. Sci. 2022, 12, 9280 7 of 11

3.3. Morphological Studies

The surface morphologies of the TiO2 and Ba/TiO2 nanostructures were subsequently
examined by SEM as shown in Figure 5. Both TiO2 (5a) and Ba/TiO2 (5b) exhibited
similar agglomerated spherical shape particles. In terms of chemical composition, TiO2
nanostructures contained Ti and O, only, which confirmed that the material was free from
impurities, as observed from Figure 5c. The presence of Ba was confirmed in the Ba/TiO2
nanostructures from Figure 5d.

Appl. Sci. 2022, 12, x  7 of 12 
 

further supported our findings as productive in DSSCs, because the photocatalytic effi-
ciency of TiO2 is affected by its ability to respond to UV radiation along with visible light, 
which could be improved by shifting its optical absorption from UV to the visible region. 
Ba doping increased the absorption in the visible region. 

 
Figure 4. UV-visible absorption spectra of synthesized TiO2 and Ba/TiO2 photoanodes with N3 dye 
molecule. 

3.3. Morphological Studies 
The surface morphologies of the TiO2 and Ba/TiO2 nanostructures were subsequently 

examined by SEM as shown in Figure 5. Both TiO2 (5a) and Ba/TiO2 (5b) exhibited similar 
agglomerated spherical shape particles. In terms of chemical composition, TiO2 nanostruc-
tures contained Ti and O, only, which confirmed that the material was free from impuri-
ties, as observed from Figure 5c. The presence of Ba was confirmed in the Ba/TiO2 
nanostructures from Figure 5d. 

 

Figure 5. SEM analysis of synthesized (a) TiO2 and (b) Ba/TiO2, and EDS analysis of synthesized
(c) TiO2 and (d) Ba/TiO2 nanopowders.

3.4. Electrochemical Behavior of TiO2 and Ba/TiO2

The reaction kinetics linked with DSSCs were investigated using EIS results. EIS
spectra of TiO2 and Ba/TiO2 photoanodes under dark conditions with 0.6 V open circuit
voltage are depicted in Figure 6. The EIS of DSSC was explained by three semicircles in
the high, middle, and low frequency range, corresponding to the electrochemical output
in platinized counter-electrode and electrolyte-interface (R1), WE/electrolyte (R2), and
diffusion resistance of electrolyte (Rd), respectively. The displacement of the graph from
origin represents the series resistance due to the contact resistance of the cell (Rs) [55].
Associated charge transfer in the electrolyte influenced the low frequency region, which
was evident from the third semicircle. From the fitted data, the Ba/TiO2 photoanode charge
transfer resistance value was higher than the TiO2 photoanode charge transfer resistance
value. Barium doping increased the band gap value (which was also confirmed by optical
analysis), and this reduces electron recombination in the Ba/TiO2/electrolyte interface.
This behavior is attributed to the charge transfer value increment. The increment of charge
transfer resistance was helpful to reduce charge recombination, which was evident for the
photocurrent increment.
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3.5. Photovoltaic Studies

The photovoltaic performance of the fabricated DSSC is shown in Figure 7. Photocur-
rent density of Ba/TiO2 was higher than that of the TiO2 photoanode. This increment
was due to the increased photon absorption of dye molecule as compared to the TiO2
counterpart. The Ba/TiO2 photoanode had higher surface area than the TiO2 photoanode,
which led to enhanced dye-loading capacity. These results were also confirmed by the
XRD and UV analysis. Another important factor was that the increment in photocurrent
density was supported by the recombination rate or dark current reduction. The Ba/TiO2
photoanode had the high recombination resistance compared to the TiO2 photoanode,
which reduce dark current production between the MOS and electrolyte.
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The Ba/TiO2 photoanode yielded higher PCE (3.4%) compared to the TiO2 photoanode
(2.1%). The calculated photovoltaic parameters are summarized in Table 3. The higher
PCE of the Ba/TiO2 photoanode (3.4%) corresponds to a maximum output power density
(Pmax) of approximately 34.4 µW/cm2 as compared to the TiO2 photoanode’s Pmax of
26.5 µW/cm2. These findings suggest that DSSCs can be produced with the appropriate
power rating to operate electronic devices such as tablets and Internet-of-Things gadgets
that require low power Pmax < 100 µW/cm2 [56].

Table 3. Photovoltaic parameters derived from current voltage characteristic curves of synthesized
TiO2 and Ba/TiO2 photoanodes.

Sample

Short Circuit
Current
Density

Jsc (mA/cm2)

Open Circuit
Voltage

Voc (mV)

Fill Factor
FF (%)

Efficiency (η)
(%) Ref

TiO2 5.96 761 48 2.1 Present work
Ba/TiO2 8.70 740 53 3.4 Present work

TiO2 2.53 650 63 1.03 [57]
W-TiO2 4.77 730 71 2.47 [57]
Fe-TiO2 1.52 680 0.463 0.47 [26]

4. Conclusions

Incorporation of barium (0.5 wt%) into TiO2 was successfully accomplished using a
microwave irradiation method. With respect to Ba content, its incorporation modulated the
band gap of TiO2 by decreasing particle size, leads to increased specific surface area and
consequently, superior dye uptake and high photocurrent, resulting in higher DSSC power
conversion efficiency. The higher band gap value of Ba/TiO2 (3.26 eV) as compared to
TiO2 photoanode (3.21 eV) was attributable to the quantum confinement effect, which was
observed due to the reduced size of the as-synthesized samples. EDS results confirmed the
presence of barium in Ba/TiO2 without any impurities; this was further confirmed by XRD
results. A higher efficiency of Ba/TiO2 photoanode was observed as compared to pure
TiO2 (3.4 vs 2.1%). Barium doped titania (Ba/TiO2) could be employed in DSSCs owing to
its relevant photoactive properties, with further prospects for other applications including
photocatalysis as well as wastewater treatment.
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