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Abstract: This study evaluates a method to accurately, repeatably, and reliably extract camel zoo-

metric data (linear and tridimensional) from 2D digital images. Thirty zoometric measures, includ-

ing linear and tridimensional (perimeters and girths) variables, were collected on-field with a non-

elastic measuring tape. A scaled reference was used to extract measurement from images. For girths 

and perimeters, semimajor and semiminor axes were mathematically estimated with the function 

of the perimeter of an ellipse. On-field measurements’ direct translation was determined when 

Cronbach’s alpha (Cα) > 0.600 was met (first round). If not, Bayesian regression corrections were 

applied using live body weight and the particular digital zoometric measurement as regressors (ex-

cept for foot perimeter) (second round). Last, if a certain zoometric trait still did not meet such a 

criterion, its natural logarithm was added (third round). Acceptable method translation consistency 

was reached for all the measurements after three correction rounds (Cα = 0.654 to 0.997, p < 0.0001). 

Afterwards, Bayesian regression corrected equations were issued. This research helps to evaluate 

individual conformation in a reliable contactless manner through the extraction of linear and tridi-

mensional measures from images in dromedary camels. This is the first study to develop and correct 

the routinely ignored evaluation of tridimensional zoometrics from digital images in animals. 

Keywords: endangered breed; perimeters and circumferences; on-field measurements;  

mathematical modelling; software-assisted image analysis 

MSC: 62H35 

 

1. Introduction 

Zoometry, or the measurement and comparison of the sizes and proportions of ani-

mals or animal parts, has traditionally been considered a key element for breed character-

ization [1]. Such a determinant role not only relies on the implication of body confor-

mation and dimensions in the definition of breed standards, but also on the functional 

classification of individuals depending on their better suitability for the development of 

certain tasks [2]. In these regards, zoometric analysis may help to detect differences 

among livestock populations or breeds which may be the source for niche specialization 

or exploration opportunities. As a direct consequence, zoometrics has been reported as 

one of the driving agents for the conservation (seeking a particular breed standard) and 

selection strategies (intraherd and interherd breeding criteria definition) that are eventu-

ally implemented [3] in local breeds. 
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Animal body measurements have been traditionally obtained manually with the use 

of a diverse range of instruments [4]. However, these tasks are not exempt of risks and 

inconveniences for both the animals and the workers, such as the increased stress induced 

in the animals or the errors in measurements due to the difficulty of maintaining the ani-

mals in a complete stationary position, among others. If sedation or the use of anesthetics 

is required for animal immobilization due to temperament issues, therefore becoming po-

tentially hazardous to the operators, not only can the animal welfare be compromised, but 

this also makes the time and costs of the zoometric tasks increase [5]. 

For these reasons, several methods aiming at automatizing zoometric measurements 

collection in non-invasive, contactless, cheaper, and faster ways have been attempted in 

different species over the past decade [6]. Literature has reported the success of bidimen-

sional and tridimensional image-based zoometric analysis methods in domestic and wild 

animal populations [7–20]. Among them, software-assisted digital imaging zoometrics of-

fers a sound and solid alternative, which has not only solved the aforementioned issues, 

but also overcome the accuracy of traditional zoometric practices [5,6]. The evaluation of 

static images may reduce the biases derived from human data collection due to the ani-

mals’ spontaneous movements. However, the use of high-resolution images may be 

needed, and inferring certain tridimensional measurements such as perimeters from bidi-

mensional photographs is still critical. In this sense, mathematic modelling can help cor-

rect potential computational biases from both linear and tridimensional measures, while 

at the same time providing an economically affordable opportunity to perform zoometric 

comprehensive analyses, and the stress induced in animals at the time of being held and 

measured is substantially minimized [5]. 

Some minor species such as camels, despite being increasingly prevalent at livestock 

scenarios for their contemporary recognition as a sustainable species [21], have only an-

ecdotally been attempted for zoometric evaluation and breed characterization [3]. Drom-

edaries or one-humped camels (Camelus dromedarius) are a typical element in the scene of 

developing economies and constitute the vast majority of the world’s camel census. Due 

to the economical context in which they are normally evaluated and the lack of attention 

paid to them in the past [21], the scarce initiatives towards morphometrics phenotypic 

variability collection have mainly been implemented via on-field sampling [1,22–25]. 

However, these practices are not free from challenges. Indeed, the combination of camels’ 

large size and often strong temper may compromise the integrity of operators [3] and turn 

zoometric analysis into a dangerous time and a demanding human resources practice [16]. 

As a consequence, certain measurements, or medial regions like udders [26] and genitals 

[27], are routinely almost never registered due to the difficulty or danger that their access 

implies. 

Contextually, for the safe accomplishment of on-field zoometric collection, camels 

need to be properly restrained for their secure handling [4], and the use of a wide diversity 

of measuring tools is compulsory. Hence, camels still lack contactless methods which may 

help to safely improve the efficiency and accuracy of zoometrics for camel breed charac-

terization and the definition of adapted selection criteria for the maintenance of camel 

global genetic diversity [28]. This becomes even more crucial when the camel breed being 

considered is at risk of extinction and has a very defined applicability for tourism, work 

development, or therapeutic kinetics [29], as occurs for the Canarian camel. 

The early development of image-analysis methodologies for measuring zoometrics 

in dromedaries is evidenced by the first body zoometric digital reconstruction [30]. As a 

result, the 3D modeling method is confirmed to be used as a remote method to extract 

morphological features of camels in a reliable manner. However, the experimental nature 

of this initiative and the time and costs needed for it to be implemented at a large scale 

make it compulsory to explore other alternatives. In this sense, a recent investigation has 

approached the accuracy of image analysis for the extraction of some linear zoometric 

measurements in dromedaries [31]. Nevertheless, the evaluation of tridimensional meas-

urements (such as perimeters) is still misconsidered. Thus, the relatively scarce data that 
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are obtained continue to be incomplete, given that relevant functionally important traits 

might not be recorded [32]. In this framework, the present research aims to develop a 

standardized and validated method for the comprehensive collection of both linear and 

tridimensional zoometric measurements in live dromedary camels by using 2D images. 

The combination of bidimensional digital imaging and logarithmically adjusted Bayesian 

regression methods provides a timely response to the need for the accurate registration of 

linear and tridimensional zoometric measurements. The method proposed not only offers 

a time and money affordable precise alternative that can be used as the main source for 

breed characterization and functional evaluation at a large scale, but also in a comparative 

manner which may be translatable to other camel populations. 

2. Materials and Methods 

2.1. Zoometric Parameter Definition 

The bibliography on the topic was reviewed to obtain a comprehensive database of 

zoometric measurements in camels during the whole month of September 2019. Biblio-

graphic analysis was performed using Google Scholar search engine 

(https://scholar.google.com/) (accessed on 1 September 2019), as suggested by other pa-

pers in which document library data extraction has been performed, due to the possibili-

ties this search engine offers in regards to data extraction [21]. After this document search, 

six papers dealing with camel zoometrics, regardless of the measuring method used, pub-

lished from 1994 to 2019, were found [33]. The list of measurements included in the afore-

mentioned documents was completed with other variables relevant for camel functional 

development [3]. After a variable list was completed, a total of 30 zoometric measures 

were determined to be collected on-field and later extracted from digital images. Table 1 

presents a description of the aforementioned zoometric variables. 

Table 1. Description of the zoometric measures in Canarian camels collected for the study. 

Area Measurements Description 

Head 

Head length Distance from the anterior edge of the nasal bones to the nuchal crest. 

Head width Distance between the midpoint of both orbits. 

Ear length Distance from the base to the tip of the ear. 

Ear width Widest distance perpendicular to ear length. 

Neck 

Neck length: dorsal line 
Distance from the base of the neck (cervicothoracic junction) to the base of 

the head (atlanto-occipital joint) following the upper line of the neck. 

Neck length: ventral line 
Distance from the base of the neck (cervicothoracic junction) to the base of 

the head (jaw angle) following the lower line of the neck. 

Neck girth: cranial third 
Circular perimeter of the neck measured at its insertion to the base of the 

head. 

Neck girth: middle third Circular perimeter of the neck measured at its middle part. 

Neck girth: caudal third Circular perimeter of the neck measured at its insertion to the chest. 

Thorax and 

Dorsum 

Chest width 
Distance between the medial point of the front of the forelimbs, measured at 

the base of their insertion into the torso. 

Heart girth 
Circular perimeter of the chest measured directly behind the sternal callos-

ity and before the hump. 

Height at withers (stature) Distance from the withers to the ground. 

Body length Distance between the shoulder to the point of the hip. 

Hump 

Hump-to-tail distance 
Distance between the most caudal point of the base of the hump to the base 

of the tail. 

Hump length 
Distance between the front and the back of the hump passing through the 

top of it. 

Hump width 
Distance between the front and the back of the hump passing through one of 

its laterals. 
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Hump height 
Distance between the middle points of the base of the hump at each lateral, 

passing through the top of the hump. 

Hump girth Circular perimeter of the hump measured at its base 

Rump and 

Tail 

Rump length Distance from the coxal to the ischial tuberosity. 

Rump width Distance between the right and left coxal tuberosity. 

Tail length Distance from the base to the tip of the tail, excluding the tail skirt. 

Width at the base of the 

tail 
Distance between the most lateral points of the base of the tail. 

Extremities  

Thigh perimeter Circular perimeter of the thigh measured at its middle part. 

Hock perimeter Circular perimeter of the hock measured at its middle part. 

Fore cannon bone perime-

ter 
Circular perimeter of the front cannon bone measured at its middle part. 

Rear cannon bone perime-

ter 
Circular perimeter of the hind cannon bone measured at its middle part. 

Feet 

Sole length 
Distance from the front to the back of the sole, measured at the planter sur-

face. 

Length of toe dorsal line 
Distance from the external reference of the fetlock to the upper edge of the 

hoof. 

Heel height Distance from the caudal point of the fetlock to the ground. 

Foot perimeter Circular perimeter of the foot measured at its plantar edge. 

2.2. Animal Sample 

Zoometric record collection took place between September 2019 and August 2020 for 

130 Canarian camel breed individuals (58 females and 72 males). Camels were located in 

three representative emplacements where Canary camels are bred: (Doñana National 

Park) Huelva (36.972330, −6.427498), Almería (36.902180, −2.429520), and Fuerteventura 

(28.186777, −14.158361) in Spain. Animals were clinically exanimated to ensure the proper 

condition of the animals, which enabled their participation in the study. Furthermore, to 

prevent bias issues derived from the sexual status of the animals at the moment of sam-

pling, sexually immature individuals were discarded (below 3 years of age). Parallelly, 

only non-gravid she-camels were included in this study, since pregnancy may be a source 

of bias in zoometric measurements in the thoracoabdominal region [34]. Age or live 

weight did not normally distribute (p < 0.05). Live weight was calculated using the follow-

ing formula (Equation (1)) by Boujenane [35]. 

Live Weight= 6.46 × 10−7 (HW + ChG + HG)3.17 (1) 

where HW is height at the withers, ChG is chest girth, and hg is hump girth, respectively. 

The sampling of each of the 30 zoometric measures taken from each animal was collected 

from its left side following the premises in Iglesias et al. [33] and Alhajeri et al. [3]. Females 

and males’ age and live body weight descriptive statistics are represented in Figure 1. 
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Figure 1. Descriptive statistics for age and live body weight in females and males, respectively. 

2.3. Sampling 

The end of the molting season, which is a six-to-eight-week period starting in late 

spring [36], was chosen as the sampling moment to prevent the bias which may potentially 

be ascribed to hair length and texture [8]. Figure 2 presents a flowchart summarizing the 

research methodology. 

 

Figure 2. Flowchart summarizing the methodology proposed in the present study. 

2.3.1. On-Field Zoometrics 

Live animal-based measurements sampling took place with the animals holding a 

static upright position with their head naturally raised and in correct aplomb (parallel fore 

and hind legs perpendicular to the ground with lined toes). Animals were measured on a 

flat and hard ground surface. Measure collection was performed using a non-elastic meas-

uring tape. All operators were trained. The first operator performed on-field measure-

ment collection and digital image measurement extraction. The first operator was assisted 

by a second operator in zoometric measurements collection, while a third operator anno-

tated the outputs of zoometric evaluation and held a one-meter measuring bar to be used 

as a reference for calibration on digital zoometrics extraction (Figure 3). 
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Figure 3. Graphic representation of the relative position of operators during across data collection 

phases. During (A) image collection, first operator (Grey) was responsible to hold camel on correct 

aplomb at a completely static position while keeping the photographic and camel midsagittal planes 

parallel; second operator was responsible to take photographs for digital imaging analysis; Second 

operator (Blue): responsible to take photographs for digital imaging analysis, and third operator 

(Orange): responsible to hold a one-meter measuring bar (yellow bar) near the animal body to be 

used as a reference for image calibration on digital zoometrics. During (B) on-field collection of 

zoometric data, first (Grey) and second (Blue) operators perform on-field measurement collection 

with a non-elastic tape (green tape) while third operator (Orange) annotates the outputs of zoomet-

ric evaluation. During (C) digital imaging analysis, first operator (Grey) performs digital image 

measurement extraction. 

2.3.2. Digital Imaging 

Three photographs (front, lateral, and back perpendicular to the camera) were taken 

per animal right before on-field zoometric evaluation. The second operator took these 

three photographs for digital imaging analysis (front, lateral, and back views). The third 

operator was in charge of holding a one-meter measuring bar at the same midline of the 

body to be used for reference calibration of distances on the computer measurement soft-

ware for digital imaging zoometrics while taking the aforementioned photographs. The 

obtained images were digitally processed using Kinovea 0.95 (Free Software Foundation, 

Inc., Boston, MA). Zoometric linear measurements were obtained in pixels by drawing a 

straight line between two points in the picture and automatically converted into cm after 

calibration of the software using the measuring bar as a reference using the Calibrate op-

tion of the Line tool of the software [37]. Puig-Diví et al. [38] reported Kinovea software to 

be a valid and reliable tool which is able to measure accurately at distances up to 5 m from 

the object and at an angle range of 90°–45°. 

Image collection was performed on an open hard ground and flat area. Light condi-

tions were chosen so as for the animal not to be placed in a shaded area or in one in which 

light exposure may distort image capture. The animal color was considered to ensure 

background color did not lead to any measure distortion or measure misregistration. The 

camera was positioned at a standardized height of 1 m on a camera stand 4 m away from 

the camel center of balance. The aforementioned distance and height permitted framing 
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of the animals being evaluated on the whole. We followed the premises in Iglesias et al. 

[33] to determine the proper aplomb of the animals and tracing standard lines on the 

ground before photograph taking to ascertain the animal was in the right position. Image 

capture was performed using a digital camera (Sony DSC-RX100 SENSOR CMOS Exmor 

1.0 of 20.1 MP, F1.8-4.9, Zoom 20-100, Optical Zoom 3.6×, 3” LCD Screen Image stabilizer) 

in standard mode. Joint Photographic Experts Group (JPEG) compression format was 

used. One trained operator performed zoometric measurement digital extraction from 

photographs manually. 

2.4. Statistical Analysis 

2.4.1. Method Comparison/Reproducibility and Repeatability: Interobserver Correlation 

Coefficient (ICC) 

Intraclass correlation coefficient (ICC), based on multiple paired Cohen’s κ tests, was 

run to compare zoometric on-field analysis to digital imaging zoometric analysis. As sug-

gested in Bunting et al. [39], the intraclass correlation coefficient (ICC) is a reference 

method to determine the reproducibility and reliability of numeric measurements orga-

nized into groups beyond a simple pairing, for example, different operators measuring 

the same variable in different animals or the same operator using different methods on 

different animals. In this study, we issued the equations, and equations were solved. Then, 

we used ICC to compare the results from model solving and real measurements to test for 

the reproducibility and reliability of models. 

Fleiss and Cohen [40] established reproducibility/repeatability guidelines for ICC in-

terpretation as less than 0.4 (low); between 0.4 and 0.59 (reasonable); 0.6 to 0.74 (good); 

and 0.75 to 1.0 (excellent) to determine whether reproducible, repeatable, and reliable 

enough levels were attained. A “Two-Way Random” model was chosen from the premises 

in Koo and Li [41]. Then, we computed 95% confidence intervals after the following ex-

pression 95% kappa Confidence Interval (95%CI) = κ ± 1.96 SEκ, where SEκ = ((po (1 − 

po)/n (1 − pe) 2) 0.5, with the reliability analysis routine of the scale procedure of SPSS 

Statistics for Windows, Version 25.0, IBM Corp. (2017). 

2.4.2. Scale Reliability and Repeatability: Cronbach’s Alpha (Cα) 

Instrument scale internal consistency was measured using Cα. Internal consistency, 

when applied to instrument comparison, is an estimate of ‘reliability based on the average 

correlation among items within a test’, with each of these items being each of the measur-

ing methods, zoometric on-field evaluation, and zoometric digital imaging, in our case 

[42], and examines the degree to which such instruments measure the same characteristics 

or domains of knowledge [43]. Typically, internal consistency is measured by the calcula-

tion of a reliability coefficient [43], such as Cα. 

In this context, Cα represents the reliability level of the instrument being compared 

to a reference instrument (zoometric digital imaging to zoometric on-field analysis as a 

reference) [44]. As a general criterion, George and Mallery [45] suggest the following rec-

ommendations for evaluating Cα coefficients: >0.9 is excellent, >0.8 is good, >0.7 is ac-

ceptable, >0.6 is questionable, >0.5 is poor, and < 0.5 is unacceptable. However, when com-

paring internal consistency between instruments, Pallant [46] reported that Cα value 

above 0.6 is considered a highly reliable and acceptable index [42]. Furthermore, retaining 

variables with values over 0.5 has been suggested due to their ability to explain data var-

iability [47]. 

As suggested by González Ariza et al. [47], single measures of ICC determine how a 

single observation taken at random may correlate to another single observation, that is, in 

our case, how a zoometric measure from on-field evaluation may correlate with its paired 

counterpart from digital imaging. By contrast, average ICC and Cα determine how con-

sistent the set of instruments being compared are on average. Consequently, in instrument 

comparison, average measures somehow prevent potential measuring errors affecting 
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particular measurements, and as a result, report erroneously decreased instrument relia-

bility and accuracy values for the instrument being tested (digital imaging zoometrics in 

our case). 

2.4.3. Parametric Assumptions Testing and Approach Decision 

The statistical approach was decided after parametric assumptions testing. The 

Shapiro–Francia W’ test (for 50 < n < 2500 samples), Shapiro–Wilk test (for n < 50 samples), 

and Levene’s test were used to determine whether normality and homoscedasticity para-

metric assumptions were met. The Shapiro–Francia W’ test was run using the Shapiro–

Francia normality routine of the test and distribution graphics package of the Stata Ver-

sion 15.0 software (StataCorp, College Station, TX, USA) [48]. Homoscedasticity was run 

using the explore procedure of the descriptive statistics package in SPSS Statistics (Version 

25.0, IBM Corp., Armonk, NY, USA) [49]. 

2.4.4. Perimeters and Girths Calculation 

As suggested by Singaraju et al. [50] in their study performing ellipsoid biometric 

computations, Ramanujan’s equation of ellipse model for ellipsoid perimeter (P) was used 

to fit zoometric perimeters and girths (neck girth (cranial, middle, and caudal thirds), 

heart girth, hump girth, thigh perimeter, hock perimeter, fore cannon bone perimeter, rear 

cannon bone perimeter, and foot perimeter, respectively) as follows; 

𝑃 ≈  𝜋(𝑎 + 𝑏) (1 +
3ℎ

10+ √4−3ℎ
)  (2) 

where a is the semimajor axis, b is the semiminor axis, and h is computed as follows h = (a 

− b)2/(a + b)2. This approximation is within about 5% of the true value, as long as a is not 

more than three times longer than b. Figure 4 schematically represents semimajor and 

semiminor axis digital imaging collection references for perimeters and girths computa-

tion. Ramanujan’s equation of the ellipse model was applied using Microsoft Office Excel 

2016 as suggested in the literature [51,52]. 

 

Figure 4. Schematic representation of semimajor and semiminor axis digital imaging collection ref-

erences for perimeters and girths computation in Canarian camels. (1) Neck girth: cranial third; (2) 

Neck girth: middle third; (3) Neck girth: caudal third; (4) Heart girth; (5) Hump girth; (6) Thigh 

perimeter; (7) Hock perimeter; (8) Fore cannon bone perimeter; (9) Rear cannon bone perimeter and 

(10) Foot perimeter. 
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2.4.5. Bayesian Linear Regression Modelling and Natural Logarithmic Correction for 

Perimeters and Girths 

Limited sample sizes derived from endangered populations may distort the distribu-

tion of variables that are presumably sampled from normally distributed populations, 

such as zoometrics. Such distortion may be ascribed to highly skewed data appearing as 

a result of valid outliers. A valid outlier would be an animal that is considerably smaller 

or larger than the rest, but which may still fit in the context of an endangered breed stand-

ard, even if it statistically distorts sample distribution properties. 

If valid outliers are not present, skewness may not be forced towards one of the dis-

tribution ends, and applying the logarithmic bias correction may not be necessary. How-

ever, body score condition and live body weight have been reported to act as sources of 

bias when performing zoometric analyses in dromedary camels [35]. The bias effect of 

other factors, such as age or coat color, was also considered. 

In such cases, regressing the variable measured in the field against the potentially 

originating factor of the bias during the collection of measurements from digital sources 

(live body weight, age, or coat color in our case) and the same variable measured with 

digital methods (given our aim is to perform a comparison between methods) may have 

to be performed to ensure the replicability between methods. This ensures that the accu-

racy of estimation of real measurements after digital measurements is maintained. 

The effects derived from outlier distortion become stronger in perimeters, girths, or 

circumferences calculations given that these cannot be extracted from photographs 

straight away. The inability to account for such a bias while evaluating tridimensional 

zoometric parameters from bidimensional images makes it compulsory to apply correc-

tion methods. According to the Energy Information Administration of the United States 

[53], to correct for skewness derived bias in estimations, a bias correction should be issued. 

To solve this issue, the Energy Information Administration of the United States [53] sug-

gests that sample size limitations could be buffered by regressing the log transformation 

of the variable to which regression models were initially aimed. 

Once the variable measured in the field has been regressed against the potentially 

originating factors of the bias, and the same variable is measured with digital methods, 

bias correction may be obtained after summing the outcomes of this regression to the nat-

ural logarithm of the zoometric variable measured using digital methods. 

In these contexts, the application of regression equations may be difficult due to the 

alteration of sample properties and ordinary least squares regression assumptions. How-

ever, these distribution distortions events may be saved using statistical alternative meth-

ods such as Bayesian linear regression, which are less sensitive to outliers and distribution 

alterations [54], and their estimations may be subject to wide confidence intervals. 

Valid outliers’ detection in our data sample was performed using the identify outliers 

procedure of the Analyze/Built-in analysis of the column analyses package of GraphPad 

Prism version 8.3.0. The ROUT method was applied to prevent the effects of outliers. The 

ROUT method combines robust regression and outlier removal and is based on the false 

discovery rate (FDR). A maximum desired FDR must be predefined (Q coefficient). ROUT 

method assumes all data except for outliers to be sampled from a Gaussian distribution. 

When data does not meet the aforementioned assumption, outliers may follow the same 

distribution as data. 

The ROUT method strength to detect outliers was determined using the Q coefficient. 

Higher levels of Q are indicative of lower threshold strictness for outliers’ detection, thus, 

the higher the outlier detection power, but also the higher the probability for a false outlier 

to be identified as a true one. Lower Q values set stricter thresholds for outlier definition, 

which consequently translates into lower power to detect real outliers, but also lower 

chances for false outlier consideration. A Q coefficient of 1% is the recommended thresh-

old to be used as a default [55], given it implies a lower than 1% false discovery rate for 

outlier detection. 
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Consequently, after considering the presence of outliers, when evidence of a lack of 

acceptable fit (Cα < 0.600) between perimeter or girth on-field zoometric evaluation and 

digital imaging mathematical computation using Ramanujan’s equation for ellipsoid pe-

rimeter was found, we used Bayesian linear regression modelling to correct measurement 

as a function of live body weight. 

The presumably large dependence of zoometric parameters on age may have sug-

gested the inclusion of age in the regression models, as according to Carlin [56], Bayesian 

inferences are sensitive to the dependence of variables on time (conditional on θ and x). 

In our case, zoometric analyses were performed when animals had reached the adult stage 

to prevent age-derived biases from occurring, as suggested by the lack of pieces of evi-

dence or a significant effect of age (p > 0.05). Contextually, the age variation coefficient 

(CV) was 0.598. As a rule of thumb, a CV ≥ 1 indicates a relatively high variation, while a 

CV < 1 can be considered low, hence, the lack of a significant interindividual variability 

prevented age from being considered as a covariate. 

Pieces of evidence for a non-significant bias effect of coat color effect were also re-

ported (p > 0.05 and CV of 0.376). This lack of bias ascribed to coat color variability may 

derive from the fact that photographs were taken once the hair molting season had passed 

and an appropriate lighting scenario that remarked the topographic shadows of bone ac-

cidents (references for measurement) had been considered. Furthermore, animals were 

photographed and measured by the same people trained for this purpose, with the same 

technological equipment, and information regarding their coat color was registered to 

minimize the effects of the aforementioned potentially biasing factors. 

Those zoometric perimeters and girths did not reach acceptable levels of scale relia-

bility (Cα < 0.600), and hence were considered the dependent variables of Bayesian regres-

sion models to apply body live weight correction. 

As suggested in Koehrsen [57], Bayesian linear regression uses probability distribu-

tions rather than point estimates. This means response, y, is not estimated as a single 

value, but is assumed to be drawn from a probability distribution. The output, y, is gen-

erated from a normal (Gaussian) distribution characterized by a mean (the transpose of 

the weight matrix multiplied by the predictor matrix) and variance (the square of the 

standard deviation σ, multiplied by the identity matrix, given it is a multi-dimensional 

model formulation). Hyperparameters’ means and variance were used to obtain the best 

values of the hyperparameters of the prior distribution, as suggested by Kundu [58]. 

The objective of Bayesian linear regression is to determine the posterior distribution 

for the model parameters, rather than the best value for model parameters. Not only is the 

response generated from a probability distribution, but the model parameters presumably 

come from the same distribution. The posterior probability of the model parameters is 

conditional on the training inputs and outputs. In contrast to frequentist Ordinary Least 

Squares Regression (OLS), there is a posterior distribution for the model parameters pro-

portional to the likelihood of the data multiplied by the prior probability of the parame-

ters. 

This implies two primary benefits of Bayesian linear regression: priors and posteri-

ors. When there is knowledge, or a guess for what the model parameters should be, these 

priors can be included in the model (for example, the influence of live body weight on 

zoometrics). This approach contrasts the frequentist approach, which assumes everything 

there is to know about the parameters comes from the data. Indeed, in Bayesian regres-

sion, when there is no prior information known, non-informative priors for the parame-

ters such as a normal distribution can be used. 

Afterwards, posteriors, or the results of performing Bayesian linear regression, are a 

distribution of possible model parameters based on the data and the priors. Posteriors 

enable quantifying uncertainty about the model. Hence, the fewer data points, the greater 

the dispersion of posterior distribution will be. As the amount of data points increases, 

the likelihood washes out the prior, and in the case of infinite data, the outputs for the 

parameters converge to the values obtained from OLS. 



Mathematics 2022, 10, 3453 11 of 24 
 

 

To summarize, in Bayesian inference for linear regression, we use priors as initial 

estimates, and as we gather more evidence, testing our model against data (posteriors), 

the model supports or disproves our prior hypotheses. In practice, the evaluation of the 

posterior distribution for the model parameters is intractable for continuous variables 

when we implement Bayesian linear regression. Thus, sampling methods are used to 

draw random samples from the posterior distribution to approximate the posterior distri-

bution to which it should be using Monte Carlo algorithms method and its variants. 

The (Metropolis–Hastings) random walk algorithm, which uses Markov Chains to 

perform Monte Carlo estimate via the Gibbs Sampler algorithm, was used as aforemen-

tioned given a different prior to the default uniform prior specified in IBM SPSS Statistics 

Algorithms v. 25.0. by IBM Corp. [59] was selected. The random walk Metropolis algo-

rithm is the preferable option for data imputation from the collection of Markov Chain 

Mote Carlo (MCMC), as suggested in MacKay [60], given that neither admissibility nor 

stability were selected. 

The following general equation was used for each of the regression models defined 

in this study yi = X1β1 +… Xiβi + εi, where i = 1, 2, …i is the ith number of factors; yi is the 

vector of records for the aforementioned dependent variables with dimension n (a total of 

910 records, one record per each of the seven circumferences/perimeters which did not 

reach acceptable reliability levels and each of the 130 dromedary camels measured); Xi is 

the appropriate incidence matrix for factors; βi is the standardized regression coefficients 

for the ith number of factors and covariates considered, respectively. The general regres-

sion equation used for each perimeter or girth was Y = Intercept + βon field perimeter/girth (cm)·on-

field perimeter/girth (cm) + βLive body weight (Kg)·body live weight (Kg). 

As Brewer [61] suggested, the intercept was necessary given that we used unstand-

ardized coefficients. The magnitude of intercept confidence intervals was an empirical 

indicator of the need for its estimation. Residual effects (εi) normality was assumed as 

follows 𝜀𝑖|𝑋𝑖𝑁(0, 𝜎𝜀𝑖
2 ), where Xεi is an identity matrix and 𝜎𝜀𝑖

2  is the residual variance, re-

spectively. Continuous predictor variable unstandardized coefficients were produced by 

the linear regression model using the independent variables measured in their original 

scales. 

As suggested by Hayes et al. [62], unstandardized coefficients (βi) can be defined as 

the average increase of βi units in Y associated with an increase of one unit in Xi main-

taining the rest of the variables constant. Below, a detailed summary of the priors and 

posterior distributions used in this study is reported. The complete description of the al-

gorithms used by SPSS to perform Bayesian inference on multiple linear regression mod-

els in this study can be found in IBM SPSS Statistics Algorithms v. 25.0. by IBM Corp. [59]. 

Quadratic approximation was discarded (even if it has been reported to be computa-

tionally faster in terms of discretization and computing the likelihood over all possible 

parameter combinations). Instead, the Markov Chain Monte Carlo (MCMC) approxima-

tion was used, as it does not assume the fact that the posterior distribution follows a nor-

mal distribution. 

Bayesian linear regression analyses were performed using the linear regression pack-

age from the Bayesian statistics task of SPSS Statistics, Version 25.0, IBM Corp. [49]. The 

Bayesian linear regression test routine of the linear regression and related package of the 

Stata Version 16.0 software process was used to compute posterior distribution statistics 

for the factors considered. Afterwards, we evaluated the estimated effect of the factors 

considered in the resulting predictive models, its confidence intervals, and posterior dis-

tribution statistics to build linear regression equations, calculate digital perimeter/girth 

extrapolation, and ICC was run again. When Cα had not significantly improved over ac-

ceptable levels, the natural logarithm of each particular perimeter or girth was added to 

each aforementioned equation, and ICC was calculated again to ensure that reliability lev-

els had been attained. 
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2.4.6. Jeffrey–Zellner–Siow (JZS) Mixture of g-Priors 

The Jeffrey–Zellner–Siow mixture of g-priors [63] was used given it successfully sat-

isfies several theoretical requirements such as the equality constraint on the test-relevant 

parameters, for instance of β, which leads to the null hypothesis H0 = β = β0 [64], as sug-

gested by Heck [65]. Rouder et al. [66] and Liang et al. [63] also acknowledged the benefits 

of JSZ prior distribution. Contextually, conditional on the residual variance (σεi
2 ), the JZS 

prior defines a multivariate Cauchy distribution for the slope parameters of the full model, 

as follows. 

(βi|σεi
2 )~MVC(0P, γi

2σεi
2 Ci

−1), which is defined by a P-dimensional zero vector (loca-

tion vector) and a scale matrix. The constant γi measures the magnitude of scaling and is 

a priori chosen by the user, the residual variance σεi
2 , and the matrix Ci  =  Xi

′Xi/Ni, which 

is the covariance matrix of the centred design matrix Xi. 

JZS prior [66] is especially appropriate in Bayesian linear regression analyses given 

that it is symmetric and centered at zero, as explained by Bayarri et al. [67]. This means 

that positive and negative values of the parameters of the slope are a priori equally likely 

to occur. Moreover, JZS prior does not depend on the scale of the variables, factors, or 

covariates considered. Hence, the Bayes factor is scale-invariant, and outputs remain the 

same when the variables expressed in different units are evaluated, which is likely to oc-

cur in multifactorial studies. 

Scaling the multivariate Cauchy distribution by the residual variance σεi
2  ensures the 

achievement of such independence from the measurements of model elements (a priori, a 

larger residual variance implies larger slopes) and by the inverse of the covariance matrix 

Ci (a priori, a covariate with a larger variance implies smaller slopes). In this context, the 

process of definition of scaled priors for unstandardized coefficients (βi) equals the pro-

cess of definition of priors for standardized coefficients (βi
∗) [66]. 

Third, the scale parameter γ is fixed to a constant, hence prior beliefs are specified 

about the expected effect size remain constant as well. The IBM Corp. [59] algorithm 

guide, in its section for the algorithm of JZS prior for linear regression analyses, sets the 

default value of γ =  2√π = 3.5 to compute Bayes Factor. This reflects a belief of a priori 

medium effect size, which, for a single covariate x, implies a priori probability for the 

standardized regression slope βi
∗  =  βi ·  SD(xi)/σi of 53.2% of being in the range (−0.50, 

+0.50). 

Rouder and Morey [68] explained other benefits from the choice of the JZS prior, for 

instance, its model selection aimed at consistency (this is that Bayes factor, goes to infinity 

as the number of observations N increases without bound-favoring the data-generating 

model) or consistency in information (the Bayes factor for a certain effect goes to infinity 

as the proportion of explained variance or R Squared (R2) increases to 1). Additionally, 

Bayes factors for JZS prior are highly precise and relatively easy to compute [69], resulting 

in its wide applicability for the default t-test [70], ANOVA [66], and linear regression [65]. 

2.4.7. Bayesian Modelling of Factor and Covariate Effects (FCEBM) 

Being yi, any of the effects of any of the independent variables (covariates) consid-

ered in this study (live body weight, age, and coat color), the posterior distribution of yi 

in the context of the data, D, is 

p(yi D⁄ )  =  ∑ p(i
i = 20 yi|Mi, D) p(Mi|D)  (3) 

This means each model’s average of posterior distributions is weighted by their pos-

terior model probabilities. In the aforenoted equation, the posterior predictive distribution 

of yi given a particular model Mi is, 

p(yi|MiD)  =  ∫ p(yi|βi, Mi, D)p(βi|MiD) dβi  (4) 

and the posterior probability of the model Mi is given by 
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p(Mi|D)  =  
p(D|Mi)p(Mi)

∑ pi
i = 20 (D|Mi)p(Mi)

  (5) 

where, 

p(Mi|D)  =  ∫ p(D|βi, Mi)p(βi|Mi) dβi  (6) 

is the integrated probability of the model Mi, βi is the vector of parameters of the model 

Mi, p(βi|Mi) is the prior density of βi under model Mi, p(D|βi|Mi) is the probability, and 

p(Mi) is the prior likelihood that Mi is the true model. 

The number of models (K) for a problem with P potential covariates can be enormous 

(K = 2P in the absence of other constraints). Only a small number of these K models will 

be sufficiently supported by the data, and hence selected by SPSS for each of the P covari-

ates. Gibbs sampling algorithm was used to estimate marginal posterior distributions of 

all unknowns. 

2.4.8. Factors and Covariate Effect Bayesian Interpretation (CEBI) 

The detection of issues before model estimation was evaluated using the checklist 

proposed by Depaoli and Van de Schoot [71]. Among the issues checked, we tested for 

those occurring after model estimation before interpreting results, in priors’ influence 

comprehension, and after interpreting results for conclusion drawing. Interpreting the ef-

fect of each particular covariate (independent variables used in this study) was made as 

follows. 

First, the posterior probability p[βi
∗ ≠ 0 D⁄ ] expresses the probability that every sin-

gle independent factor or covariate affects each particular dependent variable. Standard 

rules of thumb [72] for posterior probability interpretation are as follows: <50% evidence 

against the effect; 50–75% weak evidence; 75–95% positive evidence; 95–99% strong evi-

dence; >99% very strong evidence, which is comparable to commonly used thresholds that 

define the level of significance of evidence using Bayes factor (BF) (Supplementary Table 

S1). 

Second, posterior distribution means determines the magnitude of the effect of every 

single factor and covariate. For metric covariates (continuous predictors) or the numeric 

variables used in this study, regression coefficients define the difference in the predicted 

value of the response variable for each one-unit change in the predictor variable, with all 

other predictors being constant. When dependent variables are metric, β regression coef-

ficients are a measure of effect sizes by themselves. 

Third, a 95% credibility interval suggests that a 95% likelihood for these regression 

coefficients (every single covariate and factor posterior distribution means) lies within the 

corresponding credibility intervals. A significant effect is reported when 0 is not contained 

within the credibility interval for each particular factor. In the present study, only live 

body weight significantly influenced zoometric measurements (p < 0.05). 

2.4.9. Convergence Criterion 

Iteration rounds continued until a tolerance convergence criterion of 10−8 was reached 

[73]. After this, initial parameters were defined, and model fitting properties were ana-

lyzed. The maximum number of iteration rounds was 2000 for each analysis as stated in 

IBM SPSS Statistics Algorithms version 25.0 by IBM Corp. [59]. Such a convergence crite-

rion was defined given its wide application in Bayesian ANOVA and linear regression 

analyses in limited sample sizes research contexts [74]. 

2.4.10. Model Validity and Explanatory Power of Present Data, and Predictive Power of 

Future Data 

Validation and comparison of Bayesian models were described in Geweke [75]. Con-

textually, other authors [76] suggest model validation should base on models’ mean 

square error (MSE). Although mean square residual or error (MSE) and minimum mean-
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square residual or error (MMSE) have been widely used to measure the closeness between 

a regression line and a set of points (model fit to explain data), mean square prediction 

error, or MSPE (=RSS/no. of observations), was used to measure error variation due to the 

MSE being influenced by the number of predictors [77] in reduced sample sizes cases 

[78,79]. 

The residual sum of squares (RSS) quantifies the amount of variability in a data set 

not explained by a regression model. That is, the RSS measures the amount of error re-

maining between the regression function and the data set, thus it essentially defines the 

ability of a certain regression model to explain or represent the data. Smaller values of RSS 

are indicative of better suitability of the regression function to model for the data it intends 

to model. 

Specific to Bayesian inference, Monte Carlo standard error (MCSE), which is defined 

as the standard deviation of the chains divided by their effective sample size, measures 

the accuracy of the chains. MCSE is the non-parametric or Bayesian counterpart of MSPE, 

and should be used as the validation criteria in Bayesian linear regression model compar-

ison studies [80]. 

Bayes factor (BF) is an indirect measure of models’ explanatory power to describe 

observed data. Larger values of BFs evidence higher probabilities for the combinations of 

the factors modelled to explain dependent variables. Supplementary Table S1 reports 

common thresholds to define the significance of evidence as suggested by Jeffreys [81] 

and Lee and Wagenmakers [82]. Bayesian R2 is related to BF and can be considered as a 

data-based estimate of the fraction of variance explained for data. Parallelly, acceptance 

rate, efficiency, and Monte Carlo standard error (MCSE) were used to determine Bayesian 

methods’ validity. Supplementary Table S2 presents the description and interpretation of 

model validity parameters. The predictive accuracy of the model’s Bayesian statistics [83] 

can be estimated through posterior predictive checking [84]. 

Afterward, the Bayesian information criterion (BIC) or Schwarz information criterion 

(also SIC, SBC, SBIC) was calculated to determine the model predictive ability of new data 

as follows: 

BIC =  N ∗ N ln(MCSE) + K ∗ ln(N)  (7) 

where MCSE is the Monte Carlo standard error, N is the number of observations or rec-

ords, and K is the number of independent parameters of the model. 

BIC was used to compare predictive power across models as it considers the statisti-

cal goodness of fit and the number of parameters to be compulsorily estimated to reach 

such fitness degree, as it penalizes every time the number of parameters considered in-

creases [85,86]. As a result, BIC quantifies the balance between model fit and model com-

plexity [87]. Lower BIC values mean that a particular model is a comparatively better pre-

dictive model than the rest. Contrastingly, Bayesian R2 estimates the explanatory power 

of observed data. 

In consequence, although the addition of “noise” variables to the fit, variables that 

explain small redundant fractions of variance, will slightly increase R2 values, model pre-

dictive power will decrease (as denoted by its higher BICs). Indeed, as more variables are 

added to the model, its predictive accuracy decreases. This is, higher R2 will also translate 

into higher—and therefore worse—BIC values. 

3. Results 

3.1. Parametric Assumptions Testing and Approach Decision 

All variables did not grossly meet the normality assumption (p < 0.01), respectively. 

Homoscedasticity was violated as well (p < 0.01), hence, a parametric approach was dis-

carded, and Bayesian methods resulted in being the most preferable option. No likely out-

lier was detected, and therefore we preserved all observations for further analyses. 

3.2. Initial/First Round of Method Comparison/Repeatability and Scale Reliability 
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Among the zoometric perimeters and girths measured, neck girth at cranial and mid-

dle thirds and hump girth reached acceptable levels of scale reliability (Average/Cα ≥ 

0.600, Table 1). Therefore, their direct extrapolation after the application of Ramanujan’s 

equation of the ellipse model for ellipsoid perimeter calculation was feasible and no fur-

ther analysis was performed. The rest of the variables, which did not reach acceptable 

reliability levels, continued for further analyses (Average/Cα < 0.600, Table 2). 

Table 2. Intraclass correlation coefficient (ICC) for single and average measurements (Cronbach’s 

alpha, Cα) comparison between on-field zoometrics and digital imaging zoometrics. 

Area Measurements 
Parame-

ters 

Intraclass Correla-

tion 

95% Confidence In-

terval Lower Bound 

95% Confidence 

Interval Higher 

Bound 

F Test with 

True Value 1 
df1 df2 Sig Round a 

Head 

Head length 

Single 0.975 0.965 0.982 78.434 129 129 0.001 

1st Aver-

age/Cα 
0.987 0.982 0.991 78.434 129 129 0.001 

Head width 

Single 0.738 0.649 0.808 6.64 129 129 0.001 

1st Aver-

age/Cα 
0.849 0.787 0.894 6.64 129 129 0.001 

Ear length 

Single 0.854 0.800 0.895 12.697 129 129 0.001 

1st Aver-

age/Cα 
0.921 0.889 0.944 12.697 129 129 0.001 

Ear width 

Single 0.875 0.827 0.910 14.973 129 129 0.001 

1st Aver-

age/Cα 
0.933 0.906 0.953 14.973 129 129 0.001 

Neck 

Neck length: dorsal 

line 

Single 0.847 0.791 0.890 12.108 129 129 0.001 

1st Aver-

age/Cα 
0.917 0.883 0.942 12.108 129 129 0.001 

Neck length: ven-

tral line 

Single 0.992 0.989 0.994 247.029 129 129 0.001 

1st Aver-

age/Cα 
0.996 0.994 0.997 247.029 129 129 0.001 

Neck girth: cranial 

third 

Single 0.556 0.425 0.664 3.504 129 129 0.001 

1st Aver-

age/Cα 
0.715 0.596 0.798 3.504 129 129 0.001 

Neck girth: middle 

third 

Single 0.664 0.555 0.750 4.947 129 129 0.001 

1st Aver-

age/Cα 
0.798 0.714 0.857 4.947 129 129 0.001 

Neck girth: caudal 

third 

Single 0.541 0.407 0.652 3.357 129 129 0.001 

3rd Aver-

age/Cα 
0.702 0.579 0.789 3.357 129 129 0.001 

Thorax 

and Dor-

sum 

Chest width 

Single 0.779 0.701 0.838 8.036 129 129 0.001 

1st Aver-

age/Cα 
0.876 0.824 0.912 8.036 129 129 0.001 

Heart girth 

Single 0.682 0.578 0.764 5.285 129 129 0.001 

3rd Aver-

age/Cα 
0.811 0.732 0.866 5.285 129 129 0.001 

Height at withers 

(stature) 

Single 0.986 0.979 0.990 152.735 129 129 0.001 

1st Aver-

age/Cα 
0.993 0.989 0.995 152.735 129 129 0.001 

Body length 

Single 0.865 0.814 0.902 13.78 129 129 0.001 

1st Aver-

age/Cα 
0.927 0.897 0.949 13.78 129 129 0.001 

Hump 

Hump-to-tail dis-

tance 

Single 0.984 0.977 0.989 123.989 129 129 0.001 

1st Aver-

age/Cα 
0.992 0.989 0.994 123.989 129 129 0.001 

Hump length 

Single 0.905 0.868 0.932 20.049 129 129 0.001 

1st Aver-

age/Cα 
0.950 0.929 0.965 20.049 129 129 0.001 

Hump width 

Single 0.989 0.985 0.992 182.709 129 129 0.001 

1st Aver-

age/Cα 
0.995 0.992 0.996 182.709 129 129 0.001 

Hump height Single 0.995 0.992 0.996 375.396 129 129 0.001 1st 
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Aver-

age/Cα 
0.997 0.996 0.998 375.396 129 129 0.001 

Hump girth 

Single 0.587 0.461 0.689 3.838 129 129 0.001 

1st Aver-

age/Cα 
0.739 0.632 0.816 3.838 129 129 0.001 

Rump and 

Tail 

Rump length 

Single 0.938 0.914 0.956 31.371 129 129 0.001 

1st Aver-

age/Cα 
0.968 0.955 0.977 31.371 129 129 0.001 

Rump width 

Single 0.984 0.978 0.989 124.652 129 129 0.001 

1st Aver-

age/Cα 
0.992 0.989 0.994 124.652 129 129 0.001 

Tail length 

Single 0.984 0.977 0.988 121.041 129 129 0.001 

1st Aver-

age/Cα 
0.992 0.988 0.994 121.041 129 129 0.001 

Width at the base 

of the tail 

Single 0.842 0.783 0.885 11.642 129 129 0.001 

1st Aver-

age/Cα 
0.914 0.879 0.939 11.642 129 129 0.001 

Extremi-

ties  

Thigh perimeter 

Single 0.618 0.500 0.714 4.239 129 129 0.001 

2nd Aver-

age/Cα 
0.764 0.666 0.833 4.239 129 129 0.001 

Hock perimeter 

Single 0.753 0.668 0.819 7.107 129 129 0.001 

3rd Aver-

age/Cα 
0.859 0.801 0.901 7.107 129 129 0.001 

Fore cannon bone 

perimeter 

Single 0.612 0.492 0.709 4.156 129 129 0.001 

3rd Aver-

age/Cα 
0.759 0.660 0.830 4.156 129 129 0.001 

Rear cannon bone 

perimeter 

Single 0.529 0.393 0.642 3.243 129 129 0.001 

3rd Aver-

age/Cα 
0.692 0.564 0.782 3.243 129 129 0.001 

Feet 

Sole length 

Single 0.718 0.623 0.792 6.097 129 129 0.001 

1st Aver-

age/Cα 
0.836 0.768 0.884 6.097 129 129 0.001 

Length of toe dor-

sal line 

Single 0.894 0.853 0.924 17.832 129 129 0.001 

1st Aver-

age/Cα 
0.944 0.921 0.960 17.832 129 129 0.001 

Heel height 

Single 0.977 0.968 0.984 86.753 129 129 0.001 

1st Aver-

age/Cα 
0.988 0.984 0.992 86.753 129 129 0.001 

Foot perimeter 

Single 0.486 0.343 0.607 2.894 129 129 0.001 

3rd Aver-

age/Cα 
0.654 0.511 0.756 2.894 129 129 0.001 

a First: Variables for which direct translation between methods was feasible; Second: Variables for 

which Bayesian regression modelling correction as a function of digital measurements and live body 

weight was performed (except for foot perimeter, for which live body weight did not report a sig-

nificant effect (p < 0.05)); Third: Variables for which Bayesian regression modelling correction as a 

function of live body weight and natural logarithm correction addition was performed. 

3.3. Bayesian Linear Regression Modelling and Second Round of Method 

Comparison/Repeatability and Scale Reliability 

After the initial round of method comparison/repeatability and scale reliability, neck 

girth at caudal third, heart girth, thigh perimeter, hock perimeter, fore cannon bone pe-

rimeter, rear cannon bone perimeter, and foot perimeter, respectively, did not reach ac-

ceptable levels of scale reliability (Average/Cα < 0.600, Table 2). Hence, we subjected them 

to Bayesian Regression Modelling Correction as a function of live body weight (except for 

foot perimeter, for which a nonsignificant effect of live body weight was reported p < 0.05), 

and the second round of ICC computation was performed. We did not consider additional 

factors such as coat color or age, given no evidence for their significant effect was found 

(p > 0.05). Table 3 summarizes Bayesian unstandardized linear (β) regression coefficients 

posterior distribution statistics for each of the variables considered. Bayesian determina-

tion coefficients (R2) or percentages of variance captured by each of the models and their 
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respective BF are provided in Table 4. Models were considerably more probable than 

those which only comprised the intercept. Posterior predictive p values (pppvalues) for 

models were 0 < pppvalues < 1 and around 0.500, so therefore model fit was ensured (Ta-

ble 5). 

Table 3. Bayesian estimates of posterior distribution statistics for unstandardized linear regression 

coefficients for digital measurements and live body weight as regressors for the zoometric traits for 

which Average/Cronbach’s alpha did not surpass 0.600 at direct translation in the first round. 

Zoometric Trait (=y) Parameter 

Posterior 95% Credible Interval 

Mode Mean Variance 
Lower 

Bound 

Upper 

Bound 

Corrected Neck girth: caudal 

third 

Intercept 40.713 40.713 214.839 11.938 69.488 

Neck girth: caudal third 0.347 0.347 0.013 0.125 0.570 

Live body weight 0.088 0.088 0.000 0.054 0.121 

Corrected Heart girth 

Intercept 76.511 76.511 48.808 62.796 90.227 

Heart girth −0.017 −0.017 0.001 −0.081 0.046 

Live body weight 0.111 0.111 0.000 0.092 0.130 

Corrected Thigh circumference 

Intercept 44.180 44.180 30.676 33.307 55.053 

Thigh circumference 0.217 0.217 0.007 0.059 0.376 

Live body weight 0.039 0.039 0.000 0.021 0.058 

Corrected Hock circumference 

Intercept 13.005 13.005 11.842 6.250 19.761 

Hock circumference 0.335 0.335 0.008 0.162 0.508 

Live body weight 0.025 0.025 0.000 0.015 0.036 

Corrected Fore cannon bone pe-

rimeter 

Intercept 10.646 10.646 2.169 7.755 13.537 

Fore cannon bone perimeter 0.247 0.247 0.005 0.104 0.390 

Live body weight 0.006 0.006 0.000 0.001 0.010 

Corrected Rear cannon bone pe-

rimeter 

Intercept 9.392 9.392 1.684 6.844 11.939 

Rear cannon bone perimeter 0.225 0.225 0.003 0.111 0.340 

Live body weight 0.009 0.009 0.000 0.005 0.013 

Corrected Foot perimeter 
Intercept 33.356 33.356 21.631 24.226 42.487 

Foot perimeter 0.260 0.260 0.016 0.015 0.506 

Table 4. Bayes factor model summary for correction models comprising digital measurements and 

live body weight, except for foot perimeter, for which only digital measurement was used as a re-

gressor, to estimate for on-field zoometric measurements in Canarian camels. 

Zoometric 

Trait (=y) 

Corrected Neck 

Girth: Caudal Third 

Corrected 

Heart Girth 

Corrected Thigh 

Circumference 

Corrected Hock Cir-

cumference 

Corrected Fore 

Cannon Bone Pe-

rimeter 

Corrected Rear 

Cannon Bone Pe-

rimeter 

Corrected Foot 

Perimeter 

Correction 

Method 

Bayesian regression 

and Natural loga-

rithm 

Bayesian re-

gression and 

Natural loga-

rithm 

Bayesian regres-

sion 

Bayesian regression 

and Natural loga-

rithm 

Bayesian regres-

sion and Natural 

logarithm 

Bayesian regres-

sion and Natural 

logarithm 

Bayesian regres-

sion and Natural 

logarithm 

Regressors 

Live body weight and 

Digital Imaging 

measurement for 

neck girth: caudal 

third 

Live body 

weight and 

Digital Imag-

ing measure-

ment for 

heart girth 

Live body weight 

and Digital Imag-

ing measurement 

for Thigh circum-

ference 

Live body weight 

and Digital Imaging 

measurement for 

Hock circumference 

Live body weight 

and Digital Imag-

ing measurement 

for Fore cannon 

bone perimeter 

Live body weight 

and Digital Imag-

ing measurement 

for Rear cannon 

bone perimeter 

Digital Imaging 

measurement for 

Foot perimeter 

Round 3rd 3rd 2nd 3rd 3rd 3rd 3rd 

Equation 

y = 40.713 + 0.347 ∗ 

(Neck girth: caudal 

third) + 0.088 ∗ (Live 

body weight) + 

ln(Neck girth: caudal 

third)  

y = 76.511 + (-

0.017) ∗ 

(Heart girth) 

+ 0.111 ∗ 

(Live body 

weight) + 

y = 44.18 + 0.217 ∗ 

(Thigh circumfer-

ence) + 0.039 ∗ 

(Live body 

weight) 

y = 13.005 + 

0.335(Hock circum-

ference) + 0.025 ∗ 

(Live body weight) + 

ln(Hock circumfer-

ence) 

y = 10.646 + 0.247 

∗ (Fore cannon 

bone perimeter) + 

0.006 ∗ (Live body 

weight) + ln(Fore 

y = 9.392 + 0.225 ∗ 

(Rear cannon 

bone perimeter) + 

0.009*(Live body 

weight) + ln(Rear 

y = 33.356 + 0.260 

∗ (Foot perimeter) 

+ ln(Foot perime-

ter) 
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ln(Heart 

girth) 

cannon bone pe-

rimeter) 

cannon bone pe-

rimeter) 

Regression 

Sum of Squares 
11,540.442 12,611.463 3226.575 1504.485 114.180 182.118 162.324 

Regression df 2.000 2.000 2.000 2.000 2.000 2.000 1.000 

Regression 

Mean Square 
5770.221 6305.731 1613.288 752.242 57.090 91.059 162.324 

F 20.168 67.975 23.580 33.454 11.409 23.354 4.409 

Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.038 

Residual Sum 

of Squares 

(RSS) 

36,336.003 11,781.220 8689.017 2855.697 635.487 495.174 4712.808 

Residual df 127.000 127.000 127.000 127.000 127.000 127.000 128.000 

Residual Mean 

Square 
286.110 92.766 68.417 22.486 5.004 3.899 36.819 

Bayes Factor 

(BF) 
269,937.547 6.39 × 1017 3,356,913.557 2.93 × 109 252.807 2,850,184.198 0.597 

R 0.491 0.719 0.520 0.587 0.390 0.519 0.182 

Bayesian R 

Square 
0.241 0.517 0.271 0.345 0.152 0.269 0.033 

Bayesian Ad-

justed R Square 
0.229 0.509 0.259 0.335 0.139 0.257 0.026 

SE 16.915 9.631 8.271 4.742 2.237 1.975 6.068 

Monte Carlo 

standard error 

(MCSE) 

279.508 90.625 66.839 21.967 4.888 3.809 36.252 

Bayesian Infor-

mation Crite-

rion (BIC) 

95,207.940 76,173.431 71,028.278 52,222.907 26,827.621 22,611.369 60,684.398 

LN: Natural logarithm; SE: Standard error. 

Table 5. Predictive Posterior p-Values (pppvalues) for correction models comprising digital meas-

urements and live body weight, except for foot perimeters, for which only digital measurement was 

used as a regressor to estimate for on-field zoometric measurements in Canarian camels. 

Variables for Which a Correction Was Issued P(T >= T_obs) Predictive Posterior p-Values 

Corrected Neck girth: caudal third 0.496 

Corrected Heart girth 0.459 

Corrected Thigh circumference 0.495 

Corrected Hock circumference 0.495 

Corrected Fore cannon bone perimeter 0.494 

Corrected Rear cannon bone perimeter 0.497 

Corrected Foot perimeter 0.497 

P(T >= T_obs) close to 0 or 1 indicates a lack of fit. 

3.4. Natural Logarithmic Correction for Perimeters and Girths and Third Round of Method 

Comparison/Repeatability and Scale Reliability 

Afterwards, all the variables except for thigh perimeters had not reached acceptable 

levels of scale reliability (Average/Cα < 0.600, Table 2). Therefore, natural logarithm was 

added to their equation, and the third round of ICC computation was used. 

3.5. Final Outputs for Method Comparison/Repeatability and Scale Reliability 

After Bayesian linear regression modeling and natural logarithmic correction, all 

methods proved to be highly repeatable and reliable, as suggested by the values of ICC 

and 95% CI for average measurements (Average/Cα) for all the zoometric measurements 

that were made. Finally, the resulting equations are reported in Table 4. Linear zoometrics 

always reported excellent repeatability values over 0.836 (for sole length average meas-

urements ICC) with high 95%CI lower bounds over 0.768. Although perimeters and girths 



Mathematics 2022, 10, 3453 19 of 24 
 

 

reported lower average measurements ICC, values were always higher than 0.654 (for foot 

perimeter average measurements ICC), which suggested good repeatability, while also 

presenting a reasonable 95%IC lower bound over 0.511. A summary of the results ob-

tained after the three rounds of ICC calculation (single and average measurements/Cα) 

and 95%CI is reported in Table 1. Dispersion statistics for the measurements collected on-

field and those extracted from digital imaging methods after correction are reported in 

Supplementary Table S3. 

4. Discussion 

Apart from the time reduction, personnel requirements, and handlers’ safety im-

provement implicit in digital imaging zoometrics, a lower expected random error is ob-

tained when these are compared to on-field measurements. This improved accuracy, reli-

ability, and repeatability is not only supported by our results (Tables 2 and 5, Supplemen-

tary Table S3), but also by literature references highlighting a greater dispersion of the 

zoometric data collected with traditional instruments on-field against those extracted 

from digital image-based methods [5,8,88]. 

This may be ascribed to the difficulty for the animals to remain completely immobile 

during on-field measurement collection, which could add undesired noise to the data. As 

a drawback of image-based zoometric measurements, rigorous efforts may need to be 

made by operators to hold animals in the correct aplomb at a completely static position 

while keeping the photographic and camel midsagittal planes parallel [6]. 

In line with these preliminary arguments, collateral factors such as the image resolu-

tion, the accuracy of the distance measurement from the camera to the animal (focal 

plane), hair length and extension, coat color, and the fat condition of the animal, may need 

to be controlled before and during the zoometric measurements extraction from digital 

images to ensure that data depicts the real morphometry of the individuals as far as pos-

sible [8,19,89–91]. 

The correspondence between on-field and image-based zoometrics methods was 

evaluated via the average measurements intraclass correlation coefficient 

(ICC)/Cronbach’s alpha (Cα) [92]. Method correspondence was considered acceptable 

when a limit value of 0.6 ICC/Cα was reached [93]. This limit was attained for all the 

measurements except for ‘Neck girth: caudal third’, ‘Thoracic girth’, ‘Thigh perimeter’, 

‘Hock perimeter’, ‘Fore cannon bone perimeter’, ‘Rear cannon bone perimeter’, and ‘Foot 

perimeter’ at the first round (direct extrapolation). These findings were compared with 

those of Pezzuolo et al. [94] and Pérez-Ruiz et al. [89], who reported a particularly large 

relative error in digital three-dimensional zoometric measurements when compared to 

on-field three-dimensional measurements. Hence, the need for a correction methodology 

for digital three-dimensional measurements was suggested. 

The basis for this lack of initial correspondence (in the first round) between three-

dimensional measurements may be based on the fact that for their on-field collection, the 

participation of at least two operators is generally required. This, in turn, results in an 

unbalanced placement of the corresponding measuring instrument at different transverse 

planes in the homologous contralateral regions. By contrast, linear measurements are gen-

erally made by the same operator who controls the exact position of the instrument used 

for the measurement and is only performed on one side of the animal, which reduces the 

probability of finding morphological variance throughout the measured area. 

As a result, the second round of correction was necessary to enhance method corre-

spondence for the measurements for which acceptable levels had not been attained in the 

first round. A Bayesian linear regression was applied between manual and non-contact 

measurements, considering body weight as the most critical influencing parameter. 

Evidence of body weight is a source for such quantitative differences between on-

field and digital imaging-based three-dimensional measurements found, as suggested by 

the lack of evidence of significance and CV values. According to literature, the circular 

perimeter of the area to be measured can intrinsically vary along its length depending on 
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the regional adiposity [95] and the muscular development of the region [96], which are 

both directly related to body weight. Indeed, Boujenane [35] referenced that such a strong 

relationship between zoometry and weight could have been expected, since the estimation 

of the latter relies on chest and hump girth apart from height to withers via its estimation 

formula. 

Once the digital measurement was multiplied by the coefficients obtained and the 

intercept value-added, the ICC between on-field and the corrected digital measurement 

improved only for the variable of ‘Thigh perimeter’. Hence, the third round of correction 

was necessary to improve correspondence for the remaining measurements for which ac-

ceptable levels had not been reached. The correspondence between on-field and digital 

measurements was achieved after applying an additional correction consisting of the sum 

of the natural logarithm of the digital measurement (third round). 

The fact that a linear regression model was enough to obtain a corrected digital meas-

urement with acceptable correspondence for on-field thigh perimeter could be explained 

under the assumption that this area, given its location, hardly varies in its muscular tonus 

if no strong movements are carried out. This lack of variability does not distort skewness 

values; hence, the logarithmic correction does not improve correspondence values. 

By contrast, for ‘Neck girth: caudal third’ and ‘Thoracic girth’, continuous respiratory 

movements may cause slight perimeter variations in the photographs taken during on-

field evaluations, altering skewness properties and perhaps making it necessary to con-

sider a natural logarithmic correction factor. 

This could also be applied to the rest of the variables, that is, ‘Hock perimeter, ‘Fore 

cannon bone perimeter’, ‘Rear cannon bone perimeter’, and ‘Foot perimeter’. The implicit 

difficulty to restrain camels in a completely static position may induce temporary size 

changes in these local areas. Specifically, the pressure that the fore and rear limbs have to 

cope with depends on the particular position of the animal aplomb at the moment of meas-

ure collection (photo taking). 

This may derive from the fact that the musculoskeletal systems involved in maintain-

ing the posture are incapable of maintaining limbs in a perfect and unique stationary po-

sition, with the consequent increase in local muscle temperature due to rising blood flow 

and the transient oscillation of the distal limbs to the resonant frequency of heartbeats 

producing muscle tremor [97,98]. This translates into a source of increased skewness, data 

dispersion, and noise, which is corrected, as suggested by literature, via the addition of 

natural logarithms of the zoometric measurement to the equation. 

5. Conclusions 

The efficiency, repeatability, and accuracy of the on-field zoometric methods that are 

routinely considered for zoometric characterization in dromedaries can be enhanced 

through the use of digital imaging techniques. On-field and digital imaging zoometric 

extrapolation results in comparatively improved performance of the latter, due to the re-

duced dispersion of the data extracted from photographs. However, mathematical correc-

tion methods may be needed for three-dimensional measurements to reach acceptable 

levels of on-field/digital imaging methods correspondence. Body weight is the main 

source of bias in perimeter digital zoometric extraction if other factors such as age and 

coat color are controlled. All zoometric perimeters collected on-field should be regressed 

against body weight, except for foot perimeter, to ensure acceptable levels of correspond-

ence are attained. Additionally, we summed the natural logarithms of the particular meas-

urements which could be affected by spontaneous movements (breathing or propriocep-

tion) to correct for derived skewness distortion. The present method offers a time and 

economically affordable alternative, which saves the drawbacks derived from the lack of 

consideration of three-dimensional measurements that routinely occur in digital imaging 

zoometrics. The high degree of correspondence between methods makes this tool valid 

for its standardized implementation in camel zoometric characterization, while it may be 

translatable to other species. 
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www.mdpi.com/article/10.3390/math10193453/s1, Table S1. Commonly used thresholds to define 

significance of evidence through Bayes factor (BF); Table S2. Model validity and accuracy parame-

ters definition and interpretation; Table S3. Descriptive statistics and dispersion measurements for 

digital imaging and on-field zoometric variables in Canarian camels. 
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