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Abstract: This study presents a master–slave methodology to solve the problem of optimally locating
and sizing photovoltaic (PV) generation units in electrical networks. This problem is represented
by means of a Mixed-Integer Nonlinear Programming (MINLP) model, whose objective function is
to reduce the total annual operating costs of a network for a 20-year planning period. Such costs
include (i) the costs of purchasing energy at the conventional generators (the main supply node
in this particular case), (ii) the investment in the PV generation units, and (iii) their corresponding
operation and maintenance costs. In the proposed master–slave method, the master stage uses the
Discrete–Continuous version of the Crow Search Algorithm (DCCSA) to define the set of nodes where
the PV generation units will be installed (location), as well as their nominal power (sizing), and the
slave stage employs the successive approximation power flow technique to find the value of the
objective function of each individual provided by the master stage. The numerical results obtained
in the 33- and 69-node test systems demonstrated its applicability, efficiency, and robustness when
compared to other methods reported in the specialized literature, such as the vortex search algorithm,
the generalized normal distribution optimizer, and the particle swarm optimization algorithm. All
simulations were performed in MATLAB using our own scripts.

Keywords: crow search algorithm; discrete–continuous codification; master–slave strategy; location
and sizing of photovoltaic generation units; reduction in total annual operating costs; alternating
current networks

MSC: 65K05; 65K10; 68N99; 90C26; 90C59

1. Introduction
1.1. General Context

In recent years, the rapid modernization of countries, the fast advancement of tech-
nology, and the ongoing population growth have led to a significant increase in electrical
energy consumption and, therefore, to a looming global energy crisis. As a result, conven-
tional energy resources—often used to meet the energy demand—have begun to run out [1].
In fact, energy sources based on, for instance, coal, natural gas, and oil are unable to meet
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the current energy demands [2]. Additionally, these sources have a negative impact on
the environment. This issue has attracted the attention of researchers, who are constantly
looking for ways to transform the current energy system (based on conventional energy
resources) into a cleaner one (based on renewable energy resources) in order to meet the
energy demand while also protecting the environment [1,3].

Distributed energy resources, such as photovoltaic (PV) generation units and wind
turbines, are becoming increasingly popular and widely employed because they are consid-
ered clean and limitless energy sources. Likewise, better and more advanced technologies
are being developed to use these resources in a practical and cost-effective manner [1,4].
In Colombia, thanks to the abundance of the solar resource in the Caribbean and Pacific re-
gions, PV systems are the most extensively employed technology to produce electricity and
displace fossil fuel generation [5]. The country, thus, has a huge potential for integrating
PV generation sources, which will allow it to propose solutions that are both energetically
and environmentally sustainable in order to meet the energy demand while reducing the
use of fossil fuels [6].

Optimally designing PV generation units and installing them in electrical systems,
however, is a challenging task because an improper planning may result in overvoltages
and overcurrents in the nodes and lines that make up the electrical system. This, in turn,
can cause a variety of problems [7], including an increase in energy losses and a decline
in energy quality, which affect not only the network’s operational capabilities but also its
financial viability by failing to meet the standards enforced by regulatory bodies as the
Commission for the Regulation of Energy and Gas in Colombia (CREG, by its Spanish
acronym) [8]. This poses a challenge for engineers in charge of the design, planning,
and operation of electrical networks, as effective strategies for the proper integration of
PV generation units must be devised. These strategies must be able to ensure the project’s
financial viability over a specific time horizon as well as the safe and reliable provision of
the service while adhering to the standards set out by regulatory bodies.

A lot of research has been completed, from a technical approach, on the optimal loca-
tion and sizing of PV generation units in electrical systems to reduce power losses [9], im-
prove voltage profiles [10], and enhance voltage stability [11]. Such an approach, however,
does not analyze the financial viability of the proposed solutions, as the costs associated
with the investment in PV generation units and their related operation and maintenance
costs, as well as the planning horizon, are not taken into account in the calculation of the
objective function. Considering these two aspects as well would ensure that the solution is
both technically and economically feasible [12,13].

1.2. State of the Art

In recent years, different combinatorial optimization techniques mostly based on
master–slave methodologies that use a discrete–continuous codification have been de-
veloped to solve the problem of optimally locating and sizing PV generation units in
electrical systems. These techniques consider financial aspects that respect the technical
and operating conditions of the network.

A discrete–continuous codification allows optimal location and sizing problems to
be solved jointly. For example, the authors of [14] presented a master–slave methodology
that combines the Discrete–Continuous version of the Chu and Beasley Genetic Algorithm
(DCCBGA) and the successive approximation power flow method. Their main goal was
to reduce the total annual operating costs of electrical networks, including the costs as-
sociated with the investment in PV systems, as well as their corresponding maintenance
and operation costs. In order to assess the applicability and effectiveness of their proposed
methodology, the 33- and 69-node test systems were used. In addition, they compared
the results obtained by their proposed methodology with the exact solution to the Mixed-
Integer Nonlinear Programming (MINLP) model (which represented the problem being
addressed) produced by the BONMIN solver of the General Algebraic Modeling System
(GAMS). Additionally, the authors performed a statistical analysis and examined process-



Mathematics 2022, 10, 3774 3 of 22

ing times in order to assess the repeatability and robustness of the algorithm. Importantly,
the mathematical model developed in their study has been used as the basis to design
new optimization techniques that employ a discrete–continuous codification to solve the
problem of optimally integrating PV generation units in electrical networks.

In [15], the authors employed the Newton Metaheuristic Algorithm (NMA) for solv-
ing the problem of optimally siting and sizing PV generation units in the IEEE 34- and
85-node test systems. Their main goal was also to minimize the annual operating costs of
electrical networks. When compared to the results obtained by the BONMIN solver and
the DCCBGA, their proposed methodology was found to be effective. The authors did
not perform a statistical analysis or examine processing times to evaluate the repeatability
and robustness of their algorithm. For their part, the authors of [12] proposed using the
Discrete–Continuous Vortex Search Algorithm (DCVSA) to solve the problem of optimally
integrating PV generation units in alternating and direct current networks. In fact, this is the
first study to assess the reduction in total annual operating costs in both types of networks.
According to the results obtained in the 33- and 69-node test systems, the proposed method-
ology was capable of finding an optimal solution while observing the voltage and current
constraints established in the MINLP model. The authors also compared their proposed
methodology with the BONMIN solver and the DCCBGA, conducted statistical analyses,
and evaluated the processing times with the purpose of evaluating the repeatability and
robustness of the algorithm.

In [16], as in the previous study, the authors tested a Discrete–Continuous version
of the Generalized Normal Distribution Optimizer (DCGNDO) in the 33- and 69-node
test systems. When compared to the DCVSA, their proposed methodology achieved
significant reductions in the total annual operating costs. The authors, however, did not
perform a statistical analysis or examine processing times, which does not guarantee
the repeatability or the robustness of the algorithm. Finally, the work by [17] employed
a Discrete–Continuous version of the Parallel Particle Swarm Optimization algorithm
(DCPPSO) algorithm. When compared to other optimization methodologies that also use a
discrete–continuous codification, their proposed methodology obtained the best results in
terms of best solution, processing time, and standard deviation in the 33- and 69-node test
systems. Moreover, the authors conducted a statistical analysis and examined processing
times, thus proving that their proposed methodology is a robust and reliable tool to solve
the problem of optimally integrating D-STATCOMs units in electrical systems.

1.3. Motivations, Contributions, and Scope

From the literature review, the importance of considering an objective function focused
on financial aspects was identified. This is because the primary goals are to (i) provide an
efficient and cost-effective service, (ii) reduce the costs associated with the investment in
PV generation units and their operation while adhering to the standards of energy quality,
voltage, and service, and (iii) meet the energy demand in compliance with the regulations
in force. In addition, it was observed that the Crow Search Algorithm (CSA) has not been
yet used to solve the optimization problem addressed in this study.

Therefore, this paper presents a master–slave method whose master stage uses a
Discrete–Continuous Crow Search Algorithm (DCCSA) to solve the problem of optimally
locating and sizing PV generation units in electrical systems, and the slave stage employs
the successive approximation power flow technique to find the value of the objective
function, which is the reduction in the total annual operating costs of an electrical system
over a 20-year planning and operation horizon. These costs include (i) the annual costs of
purchasing energy at the conventonal generators (Slack node in this particular case); (ii) the
annual investment in PV generation units; and (iii) their corresponding annual operation
and maintenance costs. The following are the main contributions of this study to solving
the optimization problem under analysis:
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• A thorough description of the mathematical model that represents the problem of
optimally locating and sizing PV generation units in electrical systems. This model
has, as the objective function, the reduction in the total annual operating costs and
observes the set of constraints that represent the behavior of electrical networks in a
DG scenario.

• A new master–slave methodology to solve the MINLP model that represents the prob-
lem under study. In this methodology, the master stage uses a Discrete–Continuous
version of the Crow Search algorithm (DCCSA) to define the set of nodes where the
PV generation units will be installed (location), as well as their corresponding nominal
power (sizing). Meanwhile, the slave stage employs the successive approximation
power flow method to evaluate the total annual operating costs of the network.

• A new master–slave methodology that finds a global optimal solution to the problem
of optimally locating and sizing PV generation units in electrical systems and produces
the best results in terms of solution quality and repeatability.

Figure 1 shows the graphical abstract that summarizes the contents of the article.
The main idea of this research paper is to use a CSA-based master–slave methodology
that employs the successive approximations power flow method for solving the problem
of siting and sizing PV generation units to minimize the total annual operating costs in
electrical distribution systems.

Location and
size? 

PV generator units

Optimization methodology

Crow Search Algorithm

Master stage

Successive Approximation 
Power Flow Method

Slave stage

Location
SizeObjective

function value

Optimal location
and size of PV 

generator units

Distribution system

Total annual operating costs

Figure 1. Graphic proposed methodology.

1.4. Structure of the Paper

This paper is organized as follows. Section 2 introduces the mathematical formulation
of the problem regarding the optimal location and sizing of PV generation units in electrical
systems, with the objective function being the reduction in the total annual operating
costs. Section 3 presents the proposed methodology, which combines the DCCSA and the
successive approximation power flow technique. Section 4 presents the main character-
istics of the 33- and 69-node test systems, the generation and demand curves employed,
and the parametric information necessary to find the value of the fitness function. Section 5
presents a discussion on the results obtained for the problem under analysis as well as the
total annual operating costs. Finally, Section 6 outlines the conclusions and future lines
of research.

2. Mathematical Formulation

The problem of optimally locating and sizing PV generation units in electrical systems
can be expressed and solved using an MINLP model. In this model, the decision variables
(i.e., those of a binary nature) are associated with the selection of the nodes where the PV
generation units will be installed [18], whereas its nonlinearities appear in the formulation
of the power flow due to the nonlinear nature of its equations [19,20].
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The next subsections present the objective function and the set of constraints that
represent the problem under analysis.

2.1. Formulation of the Objective Function

The main focus of power system planning projects is to recover the initial investment
made by the grid operator. In this case study, in order to recover the investment made to
integrate the PV generation units into electricity systems, the aim is the minimization of
the total power purchase costs at the node that interconnects the distribution system with
the transmission/subtransmission grid. Note that the installation and maintenance costs of
the PV generation units are charged to the distribution system operators (DSO), as they are
the body in charge of distributing and managing the power required to supply the demand
of the users together with the system losses, in order to provide a service with high power
quality that is as economical as possible.

In this context, the objective function considered is the reduction in the total annual
operating costs of an electrical network, which will allow the initial investment to be
recovered. Such costs include (i) the costs of purchasing energy at the main supply node
(also known as the slack node or substation node), (ii) the investment in PV generation
units, and (iii) their corresponding maintenance and operation costs. Such an objective
function is presented in (1)–(4).

min Acost = f1 + f2 + f3, (1)

f1 = CkWhT fa fc

(
∑

h∈H
∑

k∈N
pcg

k,h∆h

)
, (2)

f2 = Cpv fa

(
∑

k∈N
ppv

k

)
, (3)

f3 = CO&MT

(
∑

h∈H
∑

k∈N
ppv

k,h∆h

)
, (4)

with

fa =

(
ta

1 − (1 + ta)−Nt

)
,

fc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

,

where Acost is the objective function value and represents the total annual operating costs of
the system. f1 denotes the annual costs of purchasing energy at the main supply node. f2 is
the annual investment in PV generation units; and f3 is their corresponding operation and
maintenance costs. CkWh represents the average energy purchasing cost at the substation
node. T is the number of days in an ordinary year (365). fa denotes the annuity factor that
can be used to calculate the regular payments that the network operator must make, which
are dependent on the expected internal return rate (ta) and the planning horizon (years, Nt).
fc represents the factor associated with the increase in the cost of energy during the planning
period, which depends on the annual percentage rise in the cost of energy expected by the
network operator (te). pcg

k,h is the active power produced by each conventional generator
connected to node k in time period h. ∆h denotes the time during which the electrical
variables are assumed constant (i.e., 1 h for a one-day operation scenario). Cpv represents
the average installation cost for 1 kW of PV power. ppv

k is the nominal power of each PV
generation unit connected to node k. CO&M denotes the maintenance and operation costs
associated with each PV generation unit. ppv

k,h represents the active power produced by each
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PV generation unit connected to node k in time period h. Finally, N , H, and T are the sets
containing all the network nodes, the time periods in a one-day operation scenario, and the
number of years in the planning horizon, respectively.

2.2. Set of Constraints

The set of constraints of the problem regarding the optimal placement and sizing of
PV generation units in electrical systems represents the different operational limits found
in such systems, such as active and reactive power balance, maximum and minimum
capacities of each device, and voltage regulation bounds at each node in the system. Such
constraints are presented in (5)–(13).

pcg
k,h + ppv

k,h − Pd
k,h = vk,h ∑

j∈N
Ykjvj,h cos

(
θk,h − θj,h − φkj

)
,
{
∀k ∈ N , ∀h ∈ H

}
, (5)

qcg
k,h − Qd

k,h = vk,h ∑
j∈N

Ykjvj,h sin
(

θk,h − θj,h − φkj

)
,
{
∀k ∈ N , ∀h ∈ H

}
, (6)

ppv
k,h = ppv

k Gpv
h ,
{
∀k ∈ N , ∀h ∈ H

}
, (7)

Pcg,min
k ≤ pcg

k,h ≤ Pcg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (8)

Qcg,min
k ≤ qcg

k,h ≤ Qcg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (9)

xkPpv,min
k ≤ ppv

k ≤ xkPpv,max
k ,

{
∀k ∈ N

}
, (10)

vmin
k ≤ vk,h ≤ vmax

k ,
{
∀k ∈ N , ∀h ∈ H

}
, (11)

∑
k∈N

xk ≤ Navail
pv , (12)

xk ∈ {0, 1},
{
∀k ∈ N

}
, (13)

where Pd
k,h and Qd

k,h are the active and reactive power demanded at node k in time period
h, respectively. qgc

k,h denotes the reactive power produced by each conventional generator
connected to node k in time period h. vk,h and vj,h denote the voltages at nodes k and j
in time h, respectively. Ykj is the admittance relating nodes k and j and whose angle is
φk,j. θk,h and θj,h denote the voltage angles at nodes k and j in time period h, respectively.
Gpv

h represents the expected PV generation curve in the area of influence of the electrical

system. Pcg,min
k and Pcg,max

k are the active power bounds for each conventional generator

connected to the node k, whereas Qcg,min
k and Qcg,max

k denote the reactive power bounds for

each conventional generator connected to node k. P f v,min
k and P f v,max

k represent the active
power bounds for the PV generation units connected to node k. xk is the binary variable
in charge of locating each PV generation unit in a node k of the system. vmin

k and vmax
k

denote the minimum and maximum voltage regulation values allowed at each node that
makes up the electrical system. Finally, Navail

f v represents a constant parameter related to
the maximum number of PV generation units available for installation along the network.

2.3. Model Interpretation

The model presented in (1)–(13), which represents the problem of optimally locating
and sizing PV generation units in electrical systems, can be interpreted as follows: Equa-
tion (1) defines the objective function of the problem, which is the sum of (i) the annual
energy purchasing costs at the node that connects the electrical system with a transmis-
sion/distribution network, as shown in Equation (2); (ii) the annual investment in PV
systems, as shown in Equation (3); and (iii) their corresponding maintenance and operation
costs, as shown in Equation (4). Equality Equations (5) and (6) represent the active and
reactive power balance at each system node in each time period, respectively. These are the
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most complex constraints in the problem under analysis, and, due to their nonlinear and
nonconvex nature, they require numerical methods to be properly solved [21]. Equation (7)
establishes that the active power produced by the PV generation units varies depending
on their nominal power and the expected generation curve in the area of influence of the
network. Inequality Equations (8) and (9) define the minimum and maximum active and re-
active power injected by the conventional generators. Inequality Equation (10) determines
the minimum and maximum active power produced by the PV generation units that will
be installed along the system. Box-type Equation (11) presents the lower and upper voltage
regulation bounds for all nodes and time periods. Equation (12) defines the maximum
number of PV generation units available for installation along the network. Equation (13)
shows the binary nature of the decision variable xk.

Note that the MINLP model in Equations (1)–(13) is a general representation of the
problem under study. The two main drawbacks of this model are (i) its nonlinearities and
nonconvexities in the active and reactive power balance equations and (ii) the fact that it
combines binary and integer variables. Consequently, as there might be multiple solutions
to this model, which will be local optima, several authors have proposed using master–slave
methods to solve it because they enable separating the continuous optimization problem
from its discrete part [22].

Therefore, to solve the problem under study, this research presents a master–slave
methodology that combines the DCCSA and the successive approximations method. This
technique has not been reported in the specialized literature and belongs to the main
contributions of this work.

3. Proposed Solution Methodology

To solve the problem of optimally locating and sizing PV generation units in elec-
trical systems, which was described above, this study proposes using a master–slave
methodology that employs a Discrete–Continuous version of the Crow Search Algo-
rithm (DCCSA) [23] in the master stage and the successive approximations power flow
method [24] (slave stage). In this methodology, the master stage defines the set of nodes
where the PV generation units will be installed, as well as the size of such units, and the
slave stage evaluates the objective function and constraints associated with network opera-
tion, which were presented in (5)–(13).

The next subsections present the codification used to represent the problem under
analysis as well as each component of the proposed methodology (i.e., master stage and
slave stage).

3.1. Proposed Codification

The DCCSA is the cornerstone of our proposed solution methodology because it
is responsible for determining the optimal locations and sizes of PV generation units in
electrical networks. To that end, each individual in the metaheuristic algorithm uses a
discrete–continuous codification of the form

Ct
i =

[
2, z, ..., n |0.0000, ppv

z , ..., 2.4000
]
; i = 1, 2, ..., Ni, (14)

where Ct
i is an individual i from population C at iteration t, whose size is 1 × (2Navail

pv ). z is
a random number that defines the node where each PV generation unit will be installed.
This number can take a value between 2 and the number of nodes in the system (i.e., n),
which means that the PV generation units are only placed in the demand nodes. Finally, Ni
is the number of individuals in the population.

As can be seen in Equation (14), each individual in the population has two components:
(i) the first Navail

pv parameters of the solution vector, which define the demand nodes where
the PV generation units are to be installed, and (ii) the subsequent Navail

pv parameters of
the solution vector, which determine the optimal sizes of each PV generation unit to be
installed in the system.
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The main advantage of this codification is that it allows the optimal location and sizing
problem to be solved in a single stage by transforming the MINLP model defined from
(1)–(13) into a nonlinear programming model. Consequently, the solution space can be
efficiently explored and exploited in shorter processing times [16].

3.2. Master Stage: The Discrete–Continuous Version of the Crow Search Algorithm (DCCSA)

The DCCSA is a bio-inspired optimization metaheuristic algorithm, which is based on
the intelligent behavior of crow flocks [23]. In the animal kingdom, crows are considered the
smartest birds because they are capable of memorizing and remembering faces, using tools,
communicating with one another, and properly feeding throughout the year [23]. They
are known to be ambitious birds because they compete with one another for better food
sources and pay attention to where other birds hide their food to steal it [25]. After stealing
food, crows take the necessary precautions to avoid becoming victims, such as changing
their hiding places and course [26].

This behavior can be modeled mathematically by considering the following simple
principles in order to properly explore and exploit the solution space [23]:

✓ Crows live in flocks.
✓ Crows remember where they hide their food.
✓ Crows follow other crows to steal their food.
✓ Crows protect their hiding places from theft via stochastic processes.

3.2.1. Initial Population

The DCCSA is a population-based algorithm. The population in this algorithm consists
of crows that are randomly located in the environment, which allows it to start exploring
and exploiting the solution space. The structure of the initial population of crows is as
shown below:

Ct =


Ct

11 Ct
12 · · · Ct

1Nv
Ct

21 Ct
22 · · · Ct

2Nv
...

...
. . .

...
Ct

Ni1
Ct

Ni2
· · · Ct

Ni ,Nv

, (15)

where Ct is the population of crows at iteration t, and Nv is the number of variables or the
dimension of the solution space, that is, the number of PV generation units to be installed
in the electrical system and their sizes, i.e., 2Nava

pv .
To generate an initial population of crows that respects the structure shown in (14),

Equation (16) is used. This equation creates a matrix of random numbers (within the lower
and upper limits) containing all possible solutions.

C0 = yminones(Ni, Nv) + (ymax − ymin)rand(Ni, Nv) (16)

In (16), ones(Ni, Nv) ∈ RNi×Nv is a matrix filled with ones. rand(Ni, Nv) ∈ RNi×Nv is a
matrix filled with random numbers between 0 and 1, which are generated with a uniform
distribution. Finally, ymin ∈ RNv×1 and ymax ∈ RNv×1 are vectors that represent the lower
and upper bounds of the solution space, respectively:

ymin =

[
y1,min
y2,min

]
, ymax =

[
y1,max
y2,max

]
,

where y1,min ∈ RNava
pv ×1 and y1,max ∈ RNava

pv ×1 denote the lower and upper bounds, re-
spectively, of the decision variables related to the locations of the PV generation units
in the demand nodes, and y2,min ∈ RNava

pv ×1 and y2,max ∈ RNava
pv × 1 are the lower and

upper bounds, respectively, of the decision variables associated with the sizes of the PV
generation units.

Finally, at each iteration (t), each crow (i) in the population memorizes the position
of its hiding place, as shown in Equation (17). This equation thus stores the position of
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the best food source found thus far by each crow. Note that crows memorize their best
experience thanks to the fact that they move around in their environment in search of the
best food source.

Mt =


Ct

11 Ct
12 · · · Ct

1Nv
Ct

21 Ct
22 · · · Ct

2Nv
...

...
. . .

...
Ct

Ni1
Ct

Ni2
· · · Ct

Ni ,Nv

 (17)

3.2.2. Crows’ Movement

One could say that in iteration t, crow j wants to visit its hideout (i.e., best food source
found thus far), which is at position Mt

j , and crow i decides to follow crow j to be near its
cache. At this point, there are two possible scenarios:

1. Scenario 1: Search
In this scenario, crow j is unaware that crow i is following it. Hence, i can get close to
the cache of crow j and updates its position in the solution space. This new position
can be modeled mathematically as follows:

Ct+1
i = Ct

i + rand f l (Mt
j − Ct

i ), (18)

where rand is a random number between 0 and 1, generated with a uniform distribu-
tion, and f l is the flight length of crow i. As per [23], small values of f l allow for a
local exploration of the solution space (close to Ct

i ), whereas large values of f l allow
for a global exploration of the solution space (far from Ct

i ).
2. Scenario 2: Evasion

In this scenario, crow j is aware that crow i is following it. Hence, to prevent its
hidden food from being stolen, it tries to fool crow i by moving to a random position
in the solution space.

These two scenarios can be summarized as follows:

Ct+1
i =

{
Ct

i + rand f l (Mt
j − Ct

i ) If rj ≥ Ap

a random position otherwise
, (19)

where rj is a random number between 0 and 1, which is generated by a uniform distribution,
and Ap is the probability that crow j finds out that crow i is following it.

3.2.3. Memory Updating

Once the position of the crows is updated considering the two scenarios described
above, the new position of the food source must be memorized based on its quality. Thus,
if the fitness function value of the new food source is better than the fitness function value of
the previously memorized food source, crows update their memory with the new position:

Mt+1
i =

{
Ct+1

i If FF(Ct+1
i ) < F(Mt

i )
Mt

i otherwise
, (20)

where Ff (·) represents the fitness function to minimize.

3.2.4. General Implementation of the DCCSA

Algorithm 1 shows how the DCCSA is implemented to solve the problem addressed
in this study.
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Algorithm 1: Crow search algorithm used to solve optimization problems.

1 Define parameters Ni, Nv, Ap, f l, tmax, ymin, and ymax;
2 Generate the initial population using Equation (16);
3 Calculate the fitness function value (see Equation (24)) of each individual;
4 Initialize the memory (M0

i ) of each crow (i);
5 for t ≤ tmax do
6 for j = 1 : Ni do
7 Randomly select a crow (i);
8 if randj ≥ AP then
9 Generate the new position of crow i using Equation (18);

10 else
11 Generate a random position for crow i;

12 Evaluate the fitness function value of crows’ new position (see Equation (24));
13 Update crows’ memory (Mt+1) using Equation (20);

14 Result: The best solution is found for Ctmax
i , and its fitness function is F(Ctmax

i ).

3.3. Slave Stage: Successive Approximation Power Flow Method

The successive approximation method used to solve the power flow in electrical
systems was first introduced by Montoya and Gil-González in [24]. The active and reactive
power balance equations given by (5) and (6), respectively, can be solved iteratively using
this method. It enables the slave stage to evaluate the fitness function value for each
individual in the population of crows while ensuring that the constraints specified in the
MINLP model (described in Section 2) are respected. Likewise, this method was selected
because it requires short processing times and rapidly converges toward the solution.

The recursive formula that can be employed to solve the power flow presented in (5)
and (6) is given by

Vt+1
d,h = −Y−1

dd

[
diag−1(Vt,∗

d,h)(S
∗
d,h − S∗pv,h) + YdsVs,h

]
, (21)

where t is the iteration counter. Vd,h denotes the vector that contains the voltage at the
demand nodes for each time period h, i.e., the variables of interest. Yds is the component
of the admittance matrix that associates the slack node with the demand nodes, whereas
Ydd denotes the component of the admittance matrix that relates the demand nodes to
each other. Sd,h represents the vector in the complex domain that contains the active and
reactive power demanded at the load nodes for each time period h. Spv,h is the vector in the
complex domain that contains the active power produced by each PV unit for each time
period h. Vs,h denotes the vector that contains the voltage at the terminals of the substation
node for each time period h, which is a known parameter in the solution of the power flow.
Finally, diag(z) represents a diagonal matrix made up of the elements of vector z.

To assess the convergence of the iterative process, the criterion shown in (22) is used.
According to this criterion, the maximum difference between the demand voltages (i.e.,
Vd,h) for each time period h in two consecutive iterations should be below a predefined
threshold.

max
h

{
||Vt+1

d,h | − |Vt
d,h||

}
≤ ζ (22)

In (22), ζ represents the convergence error, which, for the purposes of this study, will
be 1 × 10−10, as recommended by the authors of [24].

Once the power flow is solved for all time periods h using the successive approxima-
tion method, the power produced at the terminals of the substation node must then be
calculated, as follows:

S∗s,h = diag(V∗
s,h)(YssVs,h + YsdVd,h), (23)
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where Ss,h denotes the vector in the complex domain that contains the active and reactive
power produced at the slack node for each time period h. Yss is the component of the
admittance matrix associated with the slack node, while Ysd is the component of the
admittance matrix that associates the slack node to the demand ones.

Note that the value of f1 can be obtained by solving (23). Similarly, the solutions
provided by each individual in the master stage, which respect the codification established
in (14), can be used to obtain the value of f2 and f3. However, to rule out possible infea-
sible solutions, which violate the boundaries of the solution space, the objective function
described in (1) is replaced by the fitness function shown in (24) [27,28].

Ff =Acost + β1 max
h

{
0, |Vd,h| − vmax}− β2 min

h

{
0, |Vd,h| − vmin

}
− β3 min

h

{
0, real(Ss,h − Pgc,min

k )
} (24)

In (24), Ff is the value of the fitness function, and β1, β2, and β3 denote the penalty
factors applied to the objective function. These penalty factors come into play when the
solutions provided by the master stage violate the voltage regulation constraints or power
generation capacities at the substation node. In this study, the value of such penalty factors
is 1 × 106, and each penalty factor has its corresponding unit.

One of the main advantages of using a fitness function is that it helps the metaheuristic
optimization algorithm to efficiently explore and exploit the solution space. If all the
constraints presented in (5)–(13) are met, the final value of Ff equals the original value
of the objective function (Acost). If not, the solution is discarded as a possible optimal
solution [29].

4. Test Systems

To validate the master–slave methodology proposed in this paper to solve the problem
of optimally locating and sizing PV generation units in electrical systems, the 33- and
69-node test systems were used, both of which have a radial topology [30]. These test
systems are selected for the sake of comparison, as they have been previously used in the
literature to solve the problem of locating and sizing PV generation units. This allows
evaluating and comparing the best response, repeatability, and processing times of the
proposed master–slave methodology. The next subsections present the main characteristics
of each test system.

4.1. First Test Feeder: 33-Node Test System

This system consists of 33 nodes and 32 distribution lines, as shown in Figure 2. It
operates at a base voltage of 12.66 kV and a base power of 100 kVA. In the peak power
consumption scenario, the loads of this system demand (3715 + j2300) kVA. Its parametric
information can be found in [31].

4.2. Second Test Feeder: 69-Node Test System

This system consists of 69 nodes and 68 distribution lines, as illustrated in Figure 2. It
operates at a base voltage of 12.66 kV and a base power of 100 kVA. In the peak power con-
sumption scenario, the loads of this system demand (3890.7 + j2693.6) kVA. Its parametric
information can be found in [31].
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Figure 2. Single-line diagram of the two test feeders used in this study: (a) 33-node test system and
(b) 69-node test system.

4.3. Calculation of the Objective Function

To calculate the value of the fitness function defined in (24), the parametric data shown
in Table 1 were used [32,33] .

Table 1. Parameters used to calculate the objective function.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
∆h 1 h te 2 %
Cpv 1036.49 USD/kWp C0&M 0.0019 USD/kWh

Navail
pv 3 - ∆V ±10 %

Ppv,min
k 0 kW Ppv,max

k 2400 kW
β1 1 × 106 USD/V β2 1 × 106 USD/V
β3 1 × 106 USD/W - - -

To assess the impact of integrating PV generation units in the systems described above,
typical generation and demand curves reported for Medellín (Colombia) were used, which
are illustrated in Figure 3.
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Figure 3. Typical behavior of the generation and demand curves reported for Medellín (Colombia).
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5. Numerical Results and Discussion

This section discusses the numerical results obtained by the DCCSA in solving the
problem of optimally locating and sizing PV generation units in the two test systems
under analysis. To show the efficiency of the proposed metaheuristic algorithm, it was
compared against the following six methods, which have also been used to solve the same
problem: (i) the BONMIN solver of the GAMS (exact solution to the MINLP model) [14],
(ii) the Discrete–Continuous version of the Chu and Beasley Genetic Algorithm (DC-
CBGA) [14], (iii) the Discrete–Continuous version of the Newton Metaheuristic Algorithm
(DCNMA) [15], (iv) the Discrete–Continuous version of the Vortex Search Algorithm
(DCVSA) [12], (v) the Discrete–Continuous version of the Generalized Normal Distribu-
tion Optimizer (DCGNDO) [16], and (vi) the Discrete–Continuous version of the Parallel
Particle Swarm Optimization (DCPPSO) algorithm [17].

For both test systems, this study considered installing three PV generation units, each
with a maximum capacity of 2400 kW. All simulations were performed in MATLAB (version
2022a) using our own scripts on a desktop computer with an Intel(R) Core(TM) i9-11900
CPU@2.50Ghz processor and 64.0 GB RAM, which was running 64-bit Windows 10 Pro.

5.1. DCCSA Parameters

The information presented in Table 2 was used to implement the master–slave method-
ology proposed in this study to solve the problem of optimally locating and sizing PV
generation units in electrical systems.

Table 2. Parameters of the DCCSA employed in the master stage.

Parameter DCCSA

Number of individuals (Ni) 87
Maximum iterations (tmax) 816

Flight length ( f l) 2.8741
Awareness probability (Ap) 0.0046

To define the parameters shown in Table 2, the DCCSA was tuned using the Chu
and Beasley genetic algorithm [34], with an initial population of 50 individuals and a
maximum number of iterations of 350 for the 69-node test system because it is the largest
of the two systems used to validate the proposed methodology. The tuning parameters
were: (i) a population size (Ni) in the [1, 100] range, (ii) a maximum number of iterations
(tmax) in the [1, 1000] range, (iii) a flight length ( f l) in the [0, 3.5] range, and (iv) an
awareness probability (Ap) in the [0, 1] range. Moreover, the proposed methodology was
evaluated 100 consecutive times to find the best, average, and worst values for the objective
function. Additionally, the standard deviation and average time required by the algorithm
to determine the optimal locations and sizes of the PV generation units were calculated for
the two test systems under analysis.

5.2. Results Obtained in the First Test System under Analysis
5.2.1. Numerical Results

Table 3 shows the numerical results of the proposed methods and of those used as com-
parison in the 33-node test system. From left to right, this table specifies the methodology
implemented, the nodes where the PV generation units were installed and their nominal
power, the annual operating costs provided by each solution methodology, the reduction
percentage obtained by each methodology with respect to the base case (values reported in
the second row), the average processing time, and the standard deviation.
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Table 3. Numerical results obtained in the 33-node test system.

Method Location (Node)/Power (MW) Acost (USD/year) Reduction (%) Time (s) STD (%)

Base case

-
3,700,455.38 0 - --

-

BONMIN
17/1.3539

2,701,824.14 26.9867 3.64 018/0.2105
33/2.1452

DCNMA
8/2.0961

2,700,227.33 27.0298 20.21 0.081216/1.2688
30/0.2770

DCCBGA
11/0.7605

2,699,932.29 27.0378 5.30 0.045215/0.9690
30/1.9060

DCVSA
11/0.7606

2,699,761.71 27.0424 170.23 0.042714/1.0852
31/1.8030

DCGNDO
10/1.0083

2,699,671.76 27.0436 268.69 0.070016/0.9137
31/1.7257

DCPPSO
10/1.0092

2,699,671.76 27.0436 8.32 0.024616/0.9137
31/1.7245

DCCSA

10/1.0093
2,699,671.76 27.0449 77.00 0.003716/0.9138

31/1.7246

According to the information in Table 3, the solution provided by each metaheuristic
algorithm outperformed that by the BONMIN solver (i.e., the exact solution to the MINLP
model), which confirms that the presence of binary variables causes conventional opti-
mization techniques to get stuck in local optima. Additionally, the proposed DCCSA, like
the DCGNDO and the DCPPSO, managed to reduce the total annual operating costs by
1,000,783.62 USD/year when compared to the base case. This suggests that the global
optimal solution for this test system is 2,699,671.76 USD/year, which is found by placing
the PV generation units at nodes 10, 16, and 31, for a total installed capacity of 3647.65 kWp.
Finally, all the methods allowed a reduction of more than 26.95% with respect to the base
case, with the DCCSA allowing the highest reduction (27.0449%). When compared to
the other methods in terms of reduction in total annual operating costs, the DCCSA out-
performed the BONMIN solver by 0.0581%, the DCNMA by 0.0151%, the DCCBGA by
0.0071%, the DCVSA by 0.0025%, and the DCGNDO and the DCPPSO by 0.0013%.

5.2.2. Statistical Analysis

To show the effectiveness and robustness of the DCCSA in solving the problem of
optimally locating and sizing PV generation units in electrical systems, it was run 100 con-
secutive times in the 33-node test system. The results of such validation are illustrated in
Figure 4, which shows the improvements obtained by the DCCSA in terms of best solution,
processing time, and standard deviation when compared to the other solution method-
ologies. The numbers in red indicate that the method used for comparison outperformed
the DCCSA.

As observed in Figure 4, the DCCSA produced the best results in terms of reduction in
annual operating costs when compared to the other methods. It outperformed the BONMIN
solver by 0.0797%, the DCNMA by 0.0206%, the DCCBGA by 0.0097%, the DCVSA by
0.0053%, and the DCNGDO and the DCPPSO by 1 × 10−7%.
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Figure 4. Improvements obtained by the DCCSA in the 33-node test system.

Regarding processing times, the BONMIN solver, the DCNMA, the DCCBGA, and the
DCPPSO were faster than the proposed solution methodology. When compared to the
DCCSA, they reduced processing times by 95.2727%, 73.7529%, 93.1168%, and 89.1947%,
respectively. Importantly, these differences in processing times are attributed to the fact
that the population size employed for the proposed DCCSA included 77 more individuals
than those used for the other methods. This means that at each iteration, the proposed
algorithm had to evaluate 1848 power flows more than the other techniques. The DCCSA,
however, was faster than the DCVSA and the DCNGDO; it reduced processing times by
121.0809% and 248.6963% when compared to the DCVSA and the DCNGDO, respectively.
The processing times obtained by the DCCSA can be considered negligible when compared
to the planning horizon chosen for this study (i.e., 20 years).

As for the standard deviation, the proposed DCCSA was superior to the other methods,
as it achieved an improvement of 2075.4620% with respect to the DCNMA, of 1109.8241%
with respect to the DCCBGA, of 1043.0023% with respect to the DCVSA, of 1775.1372%
with respect to the DCNGDO, and of 559.0663% with respect to the DCPPSO. Note that
in this case, the DCCSA was not compared to the BONMIN solver. The reason for this
is that the solution of the BONMIN solver will always be the same because it is an exact
solution to the MINLP model, so even if it is run 100 times, its standard deviation will
always be 0.

The results mentioned above confirm the effectiveness and reliability of the DCCSA,
as when solving the problem of optimally locating and sizing PV generation units in
electrical networks to reduce the annual operating costs, it produced the best results in
terms of solution quality and repeatability. Hence, the proposed methodology is regarded
as the best option to solve such a problem in the 33-node test system.

5.2.3. Feasibility Check

To verify that the optimal solution yielded by the DCCSA is feasible, i.e., it satisfies
the electrical constraints proposed by the mathematical model presented in (5)–(13) and
considered in the formulation of the fitness function given by (24), the active power
generation at the main supply node was analyzed before and after implementing the
solution obtained by the proposed methodology (see Figure 5).

When the solution provided by the DCCSA was implemented in the 33-node test
system, the power produced by the slack node was inversely proportional to the power
produced by the PV units. This means that as the power produced by the PV units increased
from hour 7 to 14 (see Figure 3), the power produced at the substation node decreased until
it hit zero (right when the PV power reached its maximum value). Similarly, as the power
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produced by the PV units decreased from hour 15 to 20, the power produced at the slack
node increased. This proves that power generation respected the capacity constraint, as it
yielded positive or zero values.
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Figure 5. Impact of PV integration in the 33-node test system.

Finally, to confirm that the voltage profiles were within the regulation bounds (i.e.,
±10%), the behavior of the minimum and maximum voltages was examined for all time
periods once the solution provided by the DCCSA was implemented (see Figure 6).
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Figure 6. Voltage behavior during one day in the 33-node test system: (a) maximum voltage and
(b) minimum voltage.

As may be concluded from Figure 6, the minimum and maximum voltage values in
all time periods respected the voltage regulation bounds, as they remained within ±10%.
Additionally, the maximum voltage (i.e., 1.0322 pu) was recorded at node 16 when the PV
units injected 100% of their nominal power. The minimum voltage (i.e., 0.9038 pu), which
coincided with the minimum voltage of the base case, was recorded at node 18 when the
PV units did not inject power and during the period of peak demand (from hour 20 to
hour 21).

5.3. Results Obtained in the Second Test System under Analysis
5.3.1. Numerical Results

Table 4, which was organized the same way as Table 3, shows the numerical results
of the proposed technique and the methods used for the sake of comparison in the 69-
node test system. Importantly, the BONMIN solver was not employed for comparison
purposes in this test system because it failed to converge to any feasible solution. This can
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be explained by the fact that the solution space in this test system was larger than that in
the first test system.

Table 4. Numerical results obtained in the 69-node test system.

Method Location (Node)/Power (MW) Acost (USD/year) Reduction (%) Time (s) STD (%)

Base case

-
3,878,199.93 0 - --

-

DCNMA
12/0.0794

2,826,368.60 27.1216 91.81 0.190060/1.3805
61/2.3776

DCCBGA
24/0.5326

2,825,783.33 27.1397 22.36 0.099961/1.8954
64/1.3772

DCVSA
16/0.2632

2,825,264.56 27.1502 887.64 0.094261/2.2719
63/2.2934

DCGNDO
21/0.4812

2,824,923.38 27.1589 1237.23 0.255861/2.4
64/0.9259

DCPPSO
21/0.4890

2,824,923.29 27.1589 55.15 0.026761/2.4
64/0.9169

DCCSA

21/0.4816
2,824,923.05 27.1589 377.49 0.022561/2.4

64/0.9254

According to the information in Table 4, the proposed DCCSA provided the best
solution for the 69-node test system, with a reduction in the total annual operating costs of
approximately 1,053,276.87 USD/year with respect to the base case. This means that the
optimal solution for this test system is 2,824,923.05 USD/year, which is found by placing
the PV generation units at nodes 21, 61, and 64, for a total installed capacity of 3807.02 kWp.
Moreover, all the methods used to solve the problem addressed in this paper allowed a
reduction of more than 27% with respect to the base case, with the DCGNDO, the DCPPSO,
and the DCCSA allowing the highest reduction (27.1589%). When compared to the other
methods in terms of reduction in the annual operating costs, the proposed methodology
outperformed the DCNMA by 0.0373%, the DCCBGA by 0.0192%, and the DCVSA by
0.0087%.

5.3.2. Statistical Analysis

As in the previous test system, the proposed methodology was run 100 consecutive
times in the 69-node test system to validate its efficiency and robustness in solving the prob-
lem of optimally locating and sizing PV generation units in electrical systems. The results
of such validation are shown in Figure 7, which shows the improvements obtained by the
DCCSA in terms of best solution, processing time, and standard deviation when compared
to the other solution methodologies. The numbers in red indicate that the method used for
comparison outperformed the DCCSA.

As can be seen in Figure 7, the DCSSA provided the best results in terms of reduction
in annual operating costs when compared to the others methods. It outperformed the
DCNMA by 0.0512%, the DCCBGA by 0.0306%, the DCVSA by 0.01198%, the DCGNDO
by 1.1589 × 10−5%, and the DCPPSO by 8.621 × 10−6%.
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Figure 7. Improvements obtained by the DCCSA in the 69-node test system.

Regarding processing times, the DCNMA, the DCCBGA, and the DCPPSO were faster
than the proposed methodology. When compared to the DCCSA, they reduced processing
times by 75.6789%, 94.0767%, and 85.3903%, respectively. Importantly, these differences
in processing time are attributed to the population size used for the DCCSA. The DCCSA,
however, was faster than the DCVSA and the DCGNDO; it reduced processing times by
135.1417% and 227.75044% when compared to the DCVSA and the DCGNDO, respectively.
The processing times obtained by the DCCSA can be considered negligible when compared
to the planning horizon chosen for this study (i.e., 20 years).

As for the standard deviation, the proposed DCCSA produced the best results, as it
achieved an improvement of 743.5249% with respect to the DCNMA, of 343.5967% with
respect to the DCCBGA, of 318.4626% with respect to the DCVSA, of 1035.6953% with
respect to the DCNGDO, and of 18.6085% with respect to the DCPPSO.

According to this, the proposed DCCSA provided the best results in terms of solu-
tion quality and repeatability, which makes it the best option for solving the problem of
optimally locating and sizing PV generation units in the 69-node test system.

5.3.3. Feasibility Check

To verify whether the optimal solution yielded by the DCCSA is feasible, the active
power generation at the main supply node was evaluated before and after implementing
the solution obtained by the proposed methodology (see Figure 8).
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Figure 8. Impact of PV integration in the 69-node test system.

Before implementing the solution provided by the DCCSA, the power produced at
the slack node followed the same behavior of the demanded active power (see Figure 3)
along with the system losses. However, once the best solution delivered by the DCCSA
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was implemented, the power produced at the slack node significantly decreased as the
power produced by the PV units increased until it hit zero in time period 14 when the PV
units injected 100% of their capacity. This proves that power generation at the slack node
respected the capacity constraint, as it yielded positive or zero values.

Finally, to confirm that the voltage profiles were within the regulation bounds (i.e.,
±10%), the behavior of the minimum and maximum voltages was examined for all time
periods once the solution delivered by the DCCSA was implemented (see Figure 9).
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Figure 9. Voltage behavior during one day in the 69-node test system: (a) maximum voltage and
(b) minimum voltage

As may be concluded from Figure 9, the minimum and maximum voltage values in
all time periods respected the voltage regulation bounds, as they remained within ±10%.
In addition, the maximum voltage (i.e., 1.0322 pu) was recorded at node 64 when the PV
units injected 100% of their nominal power. The minimum voltage (i.e., 0.9092 pu), which
coincided with the minimum voltage of the base case, was recorded at node 65 when the
PV units did not inject power and during the period of peak demand (from hour 20 to 21).

6. Conclusions and Future Work

This study presented a master–slave method that employs a discrete–continuous
version of the Crow Search Algorithm to solve the problem of optimally locating and sizing
PV generation units in electrical networks. In the slave stage, the DCCSA is responsible
for defining the set of nodes where the PV generation units are to be installed as well
as the sizes of such units. In the slave stage, the successive approximations power flow
method is in charge of finding the fitness function value. The objective function was the
reduction in the total annual operating costs of a electrical network, which include (i) the
energy purchasing costs at the main supply node, (ii) the investment in the PV generation
units, and (iii) their corresponding operation and maintenance costs. The parameters of the
proposed methodology were tuned using the CBGA.

The numerical results generated by our solution method in the 33- and 69-node test
systems proved its applicability and effectiveness in comparison with other six methods
reported in the specialized literature (the BONMIN solver of the GAMS, the DCCBGA,
the DCNMA, the DCVSA, the DCGNDO, and the DCPPSO algorithm). The following are
the key findings of this study:
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✓ The DCCSA managed to reduce the total annual operating costs by approximately
1,000,783.62 USD/year and 1,053,276.87 USD/year in the 33- and 69-node test systems,
respectively. These values represent reductions of 27.0449% and 27.1589%. These are
the largest reductions found for the problem of locating and sizing PV generation
units, which indicates that the overall optimal solutions to this problem for both test
systems are 2,699,671.76 USD/year and 2,824,923.05 USD/year, respectively.

✓ After 100 consecutive evaluations, the proposed DCCSA showed the lowest standard
deviation values in both test systems, with improvements of 559.0663% and 18.6085%
with respect to the DCPPSO (the second method with the best results) in the 33- and 69-
node test systems, respectively. These results confirm the repeatability and robustness
of the DCCSA in solving the problem under study, which makes the methodology used
in this study the best option (i.e., over the other methodologies used in this topic) to
solve the problem regarding the location and sizing of PV generation units. Moreover,
this guarantees that in each evaluation, the solutions will be close to 80 USD/year and
637 USD/year for the 33- and 69-node test systems, respectively.

✓ The processing times required by the proposed technique to find an optimal and
feasible solution was 76.9990 s in the 33-node test system and 377.4915 s in the 69-node
test system. These are good values, considering that at each iteration, the DCCSA
evaluated 1848 power flows more than the other methods. Additionally, processing
times are not critical in power system planning because the quality of the solution
provided by the methodology is what really matters.

✓ Due to the nonlinearities and nonconvexities of the mathematical model used to
express the problem of optimally locating and sizing PV generation units in electrical
systems, the complexity of the problem rises as the number of nodes increases. As a
result, the BONMIN solver of the GAMS was unable to find an optimal solution in
the 69-node test system. The proposed DCCSA, on the contrary, was found to be
independent of the number of nodes in the electrical system because it produced the
best results in terms of reductions in the total annual operating costs and standard
deviation, even as the complexity of the problem increased. This allows concluding
that the proposed DCCSA is the best option to solve the problem under analysis. Yet,
as the number of system nodes increases, so does the size of the solution space, which
implies that the time required to find an optimal solution will increase as well.

Based on our findings, future studies could reformulate the mathematical model of
the problem under study, taking into account the maximum thermal current supported by
the conductors in an electrical network. They could also solve the problem addressed in
this paper using a multi-objective optimization approach that improves not only economic
but also technical and environmental aspects that represent the operating conditions of
electrical systems. Finally, the optimal conductor selection problem could be included in
power system planning, and the costs associated with the investment in each conductor
could be considered.
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Acronyms

PV Photovoltaic
MINLP Mixed-Integer Nonlinear Programming
GAMS General Algebraic Modeling System
DCCBGA Discrete–Continuous Chu and Beasley Genetic Algorithm
DCNMA Discrete–Continuous Newton Metaheuristic Algorithm
DCVSA Discrete–Continuous Vortex Search Algorithm
DCGNDO Discrete–Continuous Generalized Normal Distribution Optimizer
DCPPSO Discrete–Continuous Parallel Particle Swarm Optimization
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