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ABSTRACT

rosis or Huntington Disease, are illnesses that are not well-known

while at the same time having a significant impact on the quality
of life of the patients and their survival. The focus of this dissertation is
finding biomarkers for the identification of these diseases, ideally in a rapid
a reliable manner. The analysis was carried out using DNA CpG methy-
lation data. In recent years there has been very significant technological
improvements. It is currently possible to obtain the methylation levels for
hundreds of thousands of CpG in a patient in a fast and reliable manner. It
is however challenging to analyze these amounts of new data. A reasonable
approach to tackle this issue is using machine learning techniques that
have proven useful in many other fields. In this dissertation I developed a
nonlinear approach to identifying combinations of CpGs DNA methylation
data, as biomarkers for Alzheimer (AD) disease. It will be shown that this
approach increases the accuracy of the detection on patients with AD when
compared to directly using all the data available. I also analyzed the case of
Huntington Disease (HD).Using nonlinear techniques I was able to reduce
the number of CpGs considered from hundreds of thousands to 237 using a
non-linear approach. It will be shown that using only these 237 CpGs and
non-linear techniques such as artificial neural networks makes it possible
to accurately differentiate between control and HD patients. Additionally,
in this dissertation I present a technique, based on the concept of Shannon
Entropy, to select CpGs as inputs for non-linear classification algorithms. It
will be shown that this approach generates accurate classifications that are
a statistically significant improvement over using all the data available or
randomly selecting the same number of CpGs. The results seems to clearly
illustrate that the analysis of the DNA methylation data, for the identi-
fication of patients suffering from the degenerative neurological diseases
above mentioned, needs to be carefully carry out. Having the possibility of
analyzing hundreds of thousands of CpGs level does not necessarily trans-

D egenerative neurological diseases, such as Alzheimer, Multiple Scle-
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late into better results as some of these levels might be unrelated and only
adding noise to the analysis. It will be shown that the proposed algorithms
generate accurate results while at the same time decreasing the number of
CpGs used. For instance, in the case of Alzheimer the results obtained with
the proposed algorithm generate a sensitivity of 0.9007 and a specificity of
0.9485. One of the underlying expectations is that in the future there will be
curative treatments for these illnesses, which do not currently exists. It is
also assumed that early detection, similarly to many other diseases, might
be important when such treatments appear. Using the current technology
it is relatively simple to analyze DNA methylation data and hence it can
become an interesting biomarker in the context of these illnesses.
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RESUMEN

Esclerosis Multiple o la Enfermedad de Huntington son enfermedades

que aun no son del todo conocidas y, al mismo tiempo, tienen un gran
impacto en la calidad de vida del paciente y en su supervivencia. El enfoque
de esta tesis es encontrar biomarcadores para la identificacion de estas
enfermedades, idealmente de una manera rapida y precisa. El analisis se
llevé a cabo utilizando datos de metilaciéon de ADN CpG. En los tultimos afios
se han producido mejoras tecnolégicas muy significativas. Actualmente es
posible obtener los niveles de metilacion para cientos de miles de CpG en un
paciente de una manera rapida y confiable. Sin embargo, es dificil analizar
estas cantidades de nuevos datos. Un enfoque razonable para abordar este
problema es el uso de técnicas de aprendizaje automatico que han demos-
trado ser tutiles en muchos otros campos. En esta tesis doctoral desarrollé
un enfoque no lineal para identificar combinaciones de datos de metilacion
del ADN (CpGs), como biomarcadores para la enfermedad de Alzheimer
(EA). Se demostrara que este algoritmo aumenta la precision de la deteccion
en pacientes con EA en comparacion con el uso directo de todos los datos
disponibles. También analicé el caso de la enfermedad de Huntington (EH).
Usando técnicas no lineales pude reducir el nimero de CpG considerados de
cientos de miles a 237 utilizando tambien un enfoque no lineal. Se demos-
trara que el uso de solo estos 237 CpG y técnicas no lineales como las redes
neuronales artificiales permite diferenciar con precisiéon entre pacientes de
control y EH. Adicionalmente, en esta tesis presento una técnica, basada en
el concepto de Entropia de Shannon, para seleccionar CpGs como entradas
para algoritmos de clasificacién no lineal. Se demostrara que este enfoque
genera clasificaciones precisas con una mejora estadisticamente significa-
tiva sobre el uso de todos los datos disponibles o la seleccion aleatoria del
mismo numero de CpG.

L as enfermedades neurolégicas degenerativas, como el Alzheimer, la

Los resultados parecen ilustrar claramente que el andlisis de los datos
de metilacién del ADN, para la identificacién de pacientes que sufren de la
enfermedad neurolégica degenerativa antes mencionada, debe llevarse a
cabo cuidadosamente. Tener la posibilidad de analizar cientos de miles de



niveles de CpG no necesariamente se traduce en mejores resultados, ya que
algunos de estos niveles pueden no estar relacionados y solo agregar ruido
al analisis. Se demostrara que los algoritmos propuestos generan resultados
precisos y, al mismo tiempo, disminuyen el nimero de CpG utilizados. Por
ejemplo, en el caso del Alzheimer los resultados obtenidos con el algoritmo
propuesto generan una sensibilidad de 0,9007 y una especificidad de 0,9485.
Una de las expectativas subyacentes es que en el futuro habra tratamientos
curativos para estas enfermedades, que actualmente no existen. También
se supone que la deteccion temprana, de manera similar a muchas otras
enfermedades, podria ser importante cuando aparecen tales tratamientos.
Utilizando la tecnologia actual, es relativamente simple analizar los datos
de metilacion del ADN y, por lo tanto, puede convertirse en un biomarcador
interesante en el contexto de estas enfermedades.
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CHAPTER

INTRODUCTION

1.1 Degenerative neurological diseases

egenerative neurological diseases have a significant impact on

the quality of life of patients as well as on their survival. Several

of this type of disease have currently no curative therapy [59, 68,
77] but there is a very significant amount of research currently carried out.
Furthermore, as the population, due to advances in medicine and sanitation
among others, tends to live longer some of these illnesses are likely to
appear more frequently [21, 58]. A good example of this is Alzheimer
Disease, which is a paradigm of age-related disease [16, 69]. There is clearly
a wide range of different degenerative neurological diseases with different
causes and prognosis. For several of these disease there is a genetic as well

as environmental factors, like in the case of AD, causing the illness. In this

1



CHAPTER 1. INTRODUCTION

dissertation I focus on three different degenerative neurological diseases:

e Alzheimer Disease (AD)

* Huntington Disease (HD)

* Multiple Sclerosis (MS)

These three illnesses have a high mortality rates and typically cause a
significant impact on the quality of life of the patient (depending on the

stage of the illness).

1.1.1 Alzheimer Disease (AD)

Alzheimer disease is the most common type of dementia [64] with some
estimates suggesting that it represent from 60% to 80% of all dementia [41].
The illness receives its name from the doctor Alois Alzheimer, which first
described the illness in 1906 [22, 63, 97]. AD currently has no cure [44, 46]
and has a significant impact on the quality of life of the patient [64]. Most
of the prescribed medications to AD patients are to mange symptons[55].
AD is likely caused by a combination of genetic and environmental factors
[13, 78, 90]. Tanzi et al. concluded that genetic factors to be significant in
80% of the cases [85].

Some of the most visible symptoms of AD is the memory deterioration [39,
47, 94], particularly short-term memory, as well as cognitive impairment.
AD causes deterioration on brain cells. More specifically, Serrano-Pozo et

al. [74] mentioned the following lessons as some of the most frequently

2



1.1. DEGENERATIVE NEUROLOGICAL DISEASES

associated with AD: 1) amyloid plaques, 2) cerebral amyloid angiopathy, 3)
Neurofibrillary tangles and 4) Neuronal and synaptic loss.

Amyloid deposits have been long associated with AD [52]. The actual
mechanics of the relationship between deposits and AD remain not fully
understood [73]. Frauschy et al. [36] realized in vivo experiments in rats
injecting amyloids into the cortex and hippocampus. These experiments
show a clear neuronal response to the amyloid. In figure 1.1 it can be seen
a graphical representation of brain deterioration due to AD. The left part
represents a healthy brain while the right side represents the brain of
a patient with AD. It can be seen in the figure that the brain undergoes

physical changes, such as shrinking.

Figure 1.1: Representation of a healthy brain (left) and a brain with AD
(right).

It is common to make the distinction between early onset AD, for patients
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CHAPTER 1. INTRODUCTION

that are <65 years old, and the more common late onset AD for patients over
65 years old [62]. The symptoms in early onset and late onset AD might
be different. For instance, Koedam et al. [53] analyzed 270 patients with
early onset AD and 90 patients with late onset AD. The authors classified
the patients in two categories, one defined as memory presentation and the
other as non-memory presentation. They concluded that 33% of the patients
in the early onset group were classified as non-memory presentation while

only 6% of the late onset AD patients were classified in the same group.



1.1. DEGENERATIVE NEUROLOGICAL DISEASES

1.1.2 Huntington Disease (HD)

Huntington Disease (HD) is a fatal [49, 61, 72] neurodegenerative disease
[83] which causes cognitive deterioration [3, 67], movement disorders as well
as psychiatric disorders. Perhaps some of the most recognizable symptoms
are movement disorders such as involuntary movements [50, 79] as well
as muscular rigidity [17, 18]. There are significant amounts of research on
the illness but currently there is no curative therapy [71]. It is understood
that the protein huntingtin [37, 45] plays an important role. A mutation
consisting of the repetition of a CAG trinucleotide seems to be the cause of
the illness [8, 84]. HD causes the progressive degeneration on brain cells
which eventually leads to death. Some of the regions most affected by HD
are the basal ganglia, hypothalamus and brain stem cells [23].

Craufurd et al. [24] studied behavioral changes in HD patients estab-
lishing that some behavioral changes are much more frequent that others.
The authors mentioned that low energy, poor quality of work and impaired
judgment were among the most common behavioral changes. They also
found that depression and irritability occurred in approximately half of the
cases. Psychotic episodes were rare. HD is more frequent among individuals

of European descent [27].
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1.1.3 Multiple Sclerosis (MS)

Multiple Sclerosis (MS) is a severe neurodegenerative, chronic, autoinmune
disease [40] that is characterized by having a deterioration in myelin (sec-
ondary to damage to Schwann cells), see figure 1.2. It is among the most
common non-traumatic reasons of disability among young adults [29]. The
illness is due to genetic [31] and environmental factors[32]. Sospedra et al.
mentioned that the illness likely requires an environmental insult [80].

The symptoms and evolution of MS differs greatly from patient to patient
with a vast array of manifestations [51]. Some of the most common symp-
toms include weakness, tremors and poor coordination. Typically symptoms

[10] are described as:

* Primary — Directly related to the illness, such as weakness.
* Secondary — Related to the primary symptoms, such as Infections.

¢ Tertiary — due to social and psychological factors, such as depression.

Even tough the illness has attracted a significant amount of research there
is no curative therapy for MS [43, 60, 93]. As with other neurodegenerative
disease prescribed treatments typically focus on managing the symptoms or
stop its progression [25, 38]. It is common for some patients to experienced
periods of remission, which is some cases might last long periods of time.
Cycles of relapse-remission are also very common [70]. Steinman [82]
describes how 80% of the patients experience periodic relapses-remissions
(at the early stages). It is also not uncommon that patients that experience a

relapse-remission type of MS evolve to more debilitating type of MS [35, 81].

6
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Figure 1.2: Representation MS neurological damage. Top (healthy), Bottom
(MS).

The evolution of the illness, such as for instance what triggers periods or

remission of how long will it last, are not well understood.



CHAPTER 1. INTRODUCTION

1.2 Machine Learning

Machine learning techniques [33, 48] are an increasingly popular set of
tools with applications in many fields [11, 19, 56]. They can be used for
several different purposes, including time series forecasting and classifica-
tion purposes [1, 42, 65, 75]. Artificial neural networks (ANN) [5, 14] are
a subset of these techniques. ANN are a biologically inspired algorithm
[15, 34]. The basic component of an ANN is an artificial neuron [7]. Artificial
neurons can be understood as a mathematical function that generate an
output when provided with an input. Artificial neurons also have a related
weight, as seen in figure 1.3. In the common practice of supervised learning
[26, 57] this weight is iteratively modify in order to make the generated
output as close as possible to the target output. Normally, an artificial
neural networks has many artificial neurons and they are usually grouped
in layers [54, 92]. The above mentioned supervised learning approach is the
approach followed in this dissertation when trying to ascertain if a certain
individual is healthy or present a certain neurodegenerative disease. In this
approach the data is divided into two groups a training and a testing dataset
[6, 28]. The training dataset is sued to train the neural network. During
this process the weights of the individual neurons are iteratively changed to
try to generate a binary output for the overall ANN (either “0” for healthy
individual or “1” for patients with the disease) as accurate as possible. The
training phase is done iteratively until either a certain acceptable level
for the error is reached or a predefined maximum number of iterations is

reached [86, 91]. After the training phase is complete i.e., the weights of the

8



1.2. MACHINE LEARNING
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Figure 1.3: Representation of an artificial neuron.

ANN are already obtained. Then the ANN is tested with the testing dataset.
It is important to mention that the testing dataset is not used during the
training phase. Some measure of the error rate is then obtained for the
testing dataset. This error rate in the testing dataset is a more accurate
description of the real accuracy of the network as there could be overfitting

[12, 66] in the training dataset.

As in any other techniques there are advantages and disadvantages
[20, 30, 87] on using machine learning techniques, such as neural networks.
One of the main advantages is that they are flexible [4, 76] and can be
applied to a large number of different problems with accurate result [2,
9, 88]. In basic terms the only requirements, in principle, is having an
underlying process with an input and an output signal. ANN do not require
in depth knowledge of the underlying process [95]. The most frequently
mentioned disadvantage is that these techniques can be difficult to interpret

[28, 89, 96]. The forecast and classification estimations obtained by the

9



CHAPTER 1. INTRODUCTION

ANN are relatively straightforward to be understood. However, the actual
model i.e. the artificial neural network with the optimized weights, is likely
going to be a rather complex mathematical model that might not be easy to

be understood by the researcher.
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CHAPTER

HYPOTHESIS AND OBJECTIVES

n this chapter I present the hypothesis underlying this dissertation

as well as the objectives.

2.1 Hypothesis

2.2 Conceptual hypothesis

Biomarkers for neurodegenerative diseases (such as Alzheimer disease,
Huntington disease and multiple sclerosis) can be built using DNA CpG
methylation data. Given the large amount of DNA CpG methylation data
available a machine learning approach is suitable to analyze the data.
Neural networks are a viable machine learning technique to analyze DNA

CpG methylation data. These machine learning techniques can differentiate
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CHAPTER 2. HYPOTHESIS AND OBJECTIVES

between patients suffering from a neurodegenerative disease and controls

patients using DNA CpG data input.

2.3 Operating hypothesis

Reducing the dimensionality of the input data (DNA Methylation data) i.e.,
reducing the number of CpGs used in the analysis can increase the accuracy
of the classification. The underlying process that enables the identification
of patients vs. control individuals is not necessarily linear. Data needs to
be divided into training and testing dataset when using neural networks
in order to avoid issues such as overfitting. An excessively large amount of
DNA CpG methylation data can introduce noise in the analysis, as not all

CpG methylation levels will be relevant for illness identification.

12



2.4. OBJECTIVES

2.4 Objectives

There are several objectives in this dissertation:

* Objectivel. One of the main aims of this dissertation is to provide
alternative approaches to detect neurodegenerative diseases, such
Alzheimer Disease, Huntington Disease and Multiple Sclerosis using
DNA methylation data as input and machine learning techniques as
the data processing tool. This objective was achieved as illustrated in

Chapter 3 (sections 3.1, 3.2 and 3.3).

* Objective 2. Another important objective in this dissertation is to
show the importance of reducing the dimensionality of the input
data i.e., using less CpGs. The objective is to show that appropriate
reduction of the dimensionality of the data can increase the accuracy
of the classification forecasts, differentiating between patients and
control individuals. This objective was also achieved and illustrated

in Chapter 3 (sections 3.1, 3.2 and 3.3).

* Objective 3. Developing algorithms for the selection of CpGs using
non-linear techniques that can generate classification forecasts more
accurate than using all the available CpGs. This results was also

achieved and it is illustrated in Chapter 3 (sections 3.1, 3.2 and 3.3).

* Objective 4. Apply the concept of Shannon Entropy for CpG selection
purposes, showing that it generates better forecasts than a direct
approach using all information available. This aim was also achieved

in Chapter 3 (section 3.1).

13
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Abstract: Multiple sclerosis (MS) is a relatively common neurodegenerative illness that frequently
causes a large level of disability in patients. While its cause is not fully understood, it is likely due to
a combination of genetic and environmental factors. Diagnosis of multiple sclerosis through a simple
clinical examination might be challenging as the evolution of the illness varies significantly from
patient to patient, with some patients experiencing long periods of remission. In this regard, having
a quick and inexpensive tool to help identify the illness, such as DNA CpG (cytosine-phosphate-
guanine) methylation, might be useful. In this paper, a technique is presented, based on the concept
of Shannon Entropy, to select CpGs as inputs for non-linear classification algorithms. It will be shown
that this approach generates accurate classifications that are a statistically significant improvement
over using all the data available or randomly selecting the same number of CpGs. The analysis
controlled for factors such as age, gender and smoking status of the patient. This approach managed
to reduce the number of CpGs used while at the same time significantly increasing the accuracy.

Keywords: multiple sclerosis; DNA methylation; entropy

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune illness affecting the brain and spinal
cord associated with various degrees of disability. In MS, the immune system of the
patient attacks the axons, more specifically, the myelin cover; see Figure 1 for a graphical
illustration [1]. Inflammation is highlighted by some researchers as one of the drivers of
neurodegeneration in MS [2—4]. The evolution of the illness varies greatly from patient to
patient, with some individuals experiencing long periods of remissions due to mechanisms
that are not yet well understood. The usual manifestation age of the illness is from 20
to 45 years old, but it can occasionally manifest at younger ages, even in children [5].
The causes of MS remain unclear, with a complex underlying combination of genetic and
environmental factors the most likely cause [6-10].

Multiple sclerosis

Figure 1. Graphical illustration of neurological damage in MS.

There are some gender considerations to take into account, as the illness is more
common in women than men in a 3:1 ratio (and in some countries like Sweden even 5:1).

J. Pers. Med. 2022, 12, 398. https:/ /doi.org/10.3390/jpm12030398 https:/ /www.mdpi.com/journal /jpm
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Some of the common symptoms of the illness include fatigue and numbness, typically in one
side of the body [11,12]. Behavioral and cognition abnormalities are also common [13-15].
Currently there are many therapeutic approaches to control or stop the progression of the
disease, but no curative treatment is available. However, a large amount of research has
been generated regarding this disease. MS has a particularly high prevalence in some areas
of Europe and the United States, particularly in northern regions [16].

CpG DNA methylation data has been used to analyze neurodegenerative diseases
such as Alzheimer’s [17-20] and Parkinson [21-23]. As can be seen in Figure 2, in the
context of DNA methylation, CpG dinucleotide (or CpG) refers to cytosine followed by a
guanine in the same DNA strand (typically 5’ to 3’), not to be confused with cytosine and
guanine pared in two complementary strands.

CpG Island

3 5

Not a
CpG Island

;
1
1
1
|
1
1
1
|
1
1
|
|
1

1
1
|
|
1
1
|
1
1
1
|
1
7

Figure 2. Illustration of CpG islands.

Methylation is simply the addition of a methyl group at the 5-carbon (see Figure 3).
DNA methylation has been extensively studied in the context of aging, with several
biological clocks built using such types of data. Technological advances in recent years
have made possible the analysis of DNA methylation levels on thousands of CpGs in a fast
and reliable way. In practice, what is obtained is the percentage level of methylation with
a value ranging from 0 to 1 (100% methylated). DNA methylation for cancer diagnostics
has made significant progress in the last decades, including many seminal papers [24-27].
There is also a significant body of research covering diabetes [28-32].

DNA methylation has also been used in the context of multiple sclerosis [33,34]. Most
of the existing literature on the topic tends to use linear approaches. In this paper, we have
followed a non-linear approach, which is in principle more generic and encompassing than
a linear approach. Machine learning techniques have been successfully used in multiple
applications of different types of diseases [35-38]. More specifically, neural networks have
been used as an algorithm for the identification of neurodegenerative illnesses, such as
Alzheimer’s, using DNA methylation data as the input [39-41].



J. Pers. Med. 2022, 12, 398

3o0f12

We applied the concept of Shannon Entropy in the context of DNA methylation ap-
plied to multiple sclerosis identification. As far as we are aware, this approach has not
been followed before. Shannon Entropy is a concept initially developed in information
theory, which attempts to quantify the amount of information contained in a certain set
of data [42]. The precise mathematical definition of this concept will be introduced in the
materials and methods section. It will be shown that using the concept of Shannon Entropy
for CpG selection can generate accurate results.

CpG island (0.66)
A PG slang (0.50)

T Methylated

F‘ Not Methylated

Figure 3. DNA methylation illustration.

Motivation and Aims

Biomarkers are an increasingly important field, particularly when they can be ana-
lyzed using non or minimally invasive techniques. In this regard, blood is a particularly
interesting tissue as it can be cheaply and quickly obtained from a patient causing only
minimal discomfort. Blood has a significant advantage over other tissues such as brain
matter, which is much harder to obtain. DNA methylation data can be accurately and
rapidly analyzed using technologies such as the Illumina machines. Shannon Entropy is
a concept frequently used in machine learning. The motivation to use this approach for
data selection is in trying to find techniques that might reduce the dimensionality of the
data. Shannon Entropy is one of the few concepts in the existing literature directly related
to the amount of information contained in the data, which seems to be a reasonable starting
point when trying to reduce the dimensionality of the data while maintaining as much
information as possible.

The aim of this article is to develop techniques to identify DNA methylation signatures
applicable for the identification of multiple sclerosis patients.

2. Materials and Methods

The DNA methylation data for each individual was stored in a vector X'.
X
X5
Xi

)

X

where m is the number of CpGs analyzed per patient. A numerical example would be:
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0.211

0.723
X*=1{ @)

0.983

Which represents all the CpG information available for patient number 2. In this ex-
ample, the methylation level in the first and second CpGs are 21.1% and 72.3%, respectively.
As there is a large number of cases analyzed it is more convenient to group the data in a
matrix form.

X xz ... Xy
X X3 ... XJ

X=1 ®)
XL X2 ... X

In this notation, there are # cases (including both patients and controls) with m CpGs
associated with each case. The status of the individual analyzed (multiple sclerosis or
control) was defined with a binary variable {0,1} stored in a target vector T, with the
value 0 indicating a healthy control case and the value 1 indicating a patient with multiple
sclerosis.

T =1{0,1,0,...,1} )

As there are n cases, there will be # entries for this vector. In this example, the first
and third cases are control cases, and the second one a patient with MS. As a preliminary
step, each CpG was individually linearly modeled against the classification vector T and
only those with a p-value below 5% were included. The rest of the CpGs were discarded.
The dimension of X was reduced from (n - m) to (n - I), where [ is the number of CpGs
with a p-value below 5%. p-value prefiltering was carried out in all the data. The Shannon
Entropy (H) concept was then used to further filter the number of CpGs used. The Shannon
Entropy approach step was carried out only for the training dataset. Shannon Entropy can
be intuitively understood as the amount of information contained in some data and it is
a concept borrowed from information theory. The mathematical expression for Shannon
Entropy is as follows:

H=- ZPiZOgZ(Pi) ©)

This concept is typically applied in discrete mathematics. The probabilities can be
estimated empirically. In simple terms, more entropy translates into more information
contained. After the initial filtering, the absolute value of the Shannon Entropy was
estimated for each CpG.

Hq
Hp

H=4 "~ (6)
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Only CpGs with an entropy value (H;) bigger than certain predefined value (Hlf )
were considered. All the other CpGs were excluded from the analysis. In this way we
obtained H*.

Hi
Hy

H* @)

Hy

In this notation g < I. After selecting the CpGs, it is necessary to choose the clas-
sification algorithm that is used. A neural network with a hidden layer and an output
layer was used. The hidden layer contained 50 artificial neurons, while the output layer
contained a single artificial neuron. The 50 neurons in the hidden layer are of the sigmoid
symmetric transfer function type. The neuron in the output layer is of the type sigmoid
positive transfer function (both of these transfer functions are built-in in Matlab). All the
neurons include a bias factor. The neural network was trained with the scaled conjugate
backpropagation algorithm. Another four learning algorithms were tested (Levenberg-
Marquardt, resilient backpropagation, one-step secant and gradient descent). As in the
case of the transfer functions in the artificial neural networks, the learning algorithms are
also built-in options in Matlab. Among all the learning algorithms, the best results were
obtained using the scaled conjugate backpropagation approach. The data was divided
into a training and a testing dataset. The testing dataset accounted for approximately
15% of the data. All the calculations were carried out in Matlab. Neural networks have
been extensively used for modeling purposes and can accurately describe many complex
underlying dynamics. An important step is to check that the classification error obtained
using the above mentioned Shannon Entropy approach for CpG selection is more accurate
than the one obtained when using the same number of randomly selected CpGs; in other
words, controlling that the improvement in accuracy is not simply due to the reduction in
the dimensionality of the data.

All the calculations were done in Matlab, the Shannon Entropy value was calculated
using an existing Matlab function. The methylation data was analyzed using two decimals
of precision in percentage terms. The analysis did not appear to be very sensitive to an
increase to the third decimal place, but it started to have more impact thereafter (four or
five decimal places in percentage terms). We believe that using two decimal places is a
reasonable precision considering the likely accuracy of the experimental data.

A sensitivity analysis was also carried out. The underlying assumption was that CpGs
with very little data variation would be less useful for classification purposes. In an extreme
case, if the DNA methylation level for a given CpG was the same for all patients, then this
information would not be useful for classification purposes. We did not assume that the
CpGs with the most data variation (measured as the standard deviation) were necessarily
the best choices, as other factors such as experimental noise (and potentially many others)
can increase the variation of the data. However, it seemed reasonable to carry out a
sensitivity analysis over reasonable values of the volatility of the DNA methylation data.

Data

DNA methylation data for 279 individuals were obtained from the GEO database
(publicly available data) with the accession code GSE 106648 [43]. The database contained
both individuals with multiple sclerosis (140) as well as control individuals (139). The
age range was from 16 to 66 years old, and there were 77 male individuals. There were
more females than male patients. This is consistent with the observation that MS tends to
be more common among females than males; 138 of the individuals in the dataset were
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smokers. Age, gender and smoking status (Table 1) were used as inputs in the model. As in
the case of DNA methylation, these factors were allocated to their corresponding training
or testing dataset.

Table 1. Basic descriptive information of the patients.

Description Amount
Male 77
Female 202
Smokers 138
Non-smokers 141
Age 16,77

The DNA methylation data [43] was obtained from peripheral blood tissue using the
Mlumina Human Methylation 450 Beach Chip. There were 485,512 CpG DNA methylation
data per patient.

3. Results

As can be seen in Figure 4, the average classification error using all the available
data with a p-value below 5% was 55.4%, while the error obtained when using only the
CpGs with the top 10% Shannon Entropy values (9499 CpGs) was 19.93%, which is a
statistically significant improvement. Equivalently, the proposed approach (using Shannon
Entropy as a filter) generated a successful classification rate of approximately 80.07%,
while the direct approach (using all the data) generated a successful classification rate
of approximately 44.6%. The direct approach likely generates poor classifications due to
the issue of local minima, which is likely improved by the introduced Shannon Entropy
filtering. The model accuracy was substantially improved while at the same time reducing
the amount of input data required in the mode. After the two steps (p-value filtering
and Shannon Entropy filtering), the amount of CpGs was reduced by approximately 98%
compared to the total initial data available. These results were obtained by dividing the
data into training and testing datasets, with the testing dataset not used during the training
phase. The testing dataset contained approximately 15% of the total data. Unless explicitly
mentioned, all the results shown below refer to the testing dataset results. All the models
controlled for age, gender and smoking status of the patients. As it can be seen in Table 2,
the average sensitivity and specificity obtained were 78.3% and 81.8%, respectively. An
example showing a confusion matrix and ROC can be seen in Figures 5 and 6.

0.6

0.5F

I
~
T

Error rate (%)
o
w

o
)
T

0.1F

Base (All) Shannon Filtered

Figure 4. Error rate comparison between direct approach and Shannon Entropy filtered approach.
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Table 2. Average classification forecasting accuracy.

Accuracy Measure Percentage
Average successful classification 80.1%
Sensitivity 78.3%
Specificity 81.8%

Training Confusion Matrix
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Figure 5. A sample confusion matrix (after p-value prefiltering and Shannon Entropy filtering).
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Figure 6. ROC (after p-value prefiltering and Shannon Entropy filtering).
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In order to compare the results, two baseline values were obtained using the volatility
(standard deviation) as an indicator. In the first baseline case, the top 2% most volatile
CpGs were selected without any prefiltering (such as p-value). This was done in order to
have a dimensionality comparable to the results obtained using the proposed approach
(p-value prefiltering plus Shannon Entropy filtering). The classification success ratio using
this technique was approximately 51.6%. A second base line level was obtained. In this
case, p-value prefiltering was carried out followed by a selection of the most volatile CpGs.
The threshold value for the volatility was selected in order to make the final dimension
of the data, i.e., number of CpGs selected, approximately the same as the one obtained in
the proposed approach (p-value plus Shannon filtering). The successful classification rate
was 56.1%.

An important test to carry out is comparing the performance of the obtained CpGs
by the Shannon Entropy approach (as inputs for the classification algorithm) to the results
using a matrix of randomly selected CpGs. In this way, we account for the reduction in
dimensionality of the data. Ten randomly selected sets of CpGs of the same size as the one
obtained using the Shannon Entropy approach (9499) were selected. All the included CpGs
in this random approach had p-values of less than 5%, i.e., this analysis was carried out
after the initial linear filtering. Ten simulations were carried out for each of the ten different
randomly selected sets of CpGs. The average value and the confidence interval can be seen
in Figure 7. The Shannon Entropy approach generates classifications that are statistically
significantly more accurate than a random selection of the same size.

As mentioned in the methods and materials section, a sensitivity analysis using the
standard deviation of the DNA methylation data for each CpG was also carried out. In
Figure 8, the results of selecting the CpGs with the highest volatility are shown. The range
selected encompassed the top 5% to the top 50%, in 5% increments. For example, the first
column shows the error rate (misclassifications) when using the top 5% of CpGs according
to their standard deviation from the initial pool containing 9499 CpGs (after the initial
filtering using Shannon Entropy filtering).

0.6

051 b

04r

031

Error rate (%)

0.2 |

Random Shannon Filtered

Figure 7. Error rate comparison between the Shannon Entropy filtered approach and random selection
of the same size.

The intuition behind this approach is selecting CpGs with variation in the methylation
values. As an extreme example, completely flat data (with standard deviation equal to zero)
will arguably contain no value from a classification point of view. It is also acknowledged
that some of that volatility might be caused by experimental and other sources of noise.
The best results were obtained when using the top 15% most volatile CpGs with an average
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correct classification rate of 81.42%. However, the results were not statistically different
(at a 5% significance) when compared with the results obtained by filtering for Shannon
Entropy only (no filtering according to the standard deviation of the CpGs).

0.3 T T T T T T T T

Oi++ +++++

0.15 | b

Error rate (%)

0.05

L L L L

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
CpG selection (according to standard deviation)

Figure 8. Sensitivity analysis according to the standard deviation of the value of the CpGs. Error rate
as a function of the amount of CpGs selected according to their standard deviation.

4. Discussion

An innovative approach is shown for the selection of DNA methylation CpGs to be
used in non-linear classification models. This approach is based on the concept of Shannon
Entropy, which it is an idea borrowed from the information theory field. Shannon Entropy,
in simple terms, can be understood as a measure of the amount of information contained in
a set of data. The overall data was first filtered, discarding the CpG with p-values above
5%. A quality pre-check of the data was also carried out, excluding CpGs with missing
data. The analyzed dataset appeared to be of good quality with no major data issues.
Using the two steps approach of p-value prefiltering followed by the proposed Shannon
Entropy filtering, the dataset was reduced from an original size of approximately 485,512
to a final size of 9499 CpGs, which represents a 98% reduction. The classification analysis,
distinguishing between control and multiple sclerosis patients, using the entire dataset, did
not generate accurate results. The error rate when using the Shannon Entropy approach
was 19.93% (80.07% correct classification), which is a statistically significant improvement
over the base case. These error rates were obtained using artificial neural networks as the
classification algorithm. All the analyses were carried out controlling for age, gender and
smoking status of the patients. It was also tested if the increase in accuracy was due simply
to the reduction in the dimensionality of the data. In order to do this, several random
CpG configurations of the same size (9499 CpGs) as the one obtained using the Shannon
Entropy approach were tested. Their average error rate was 52.66%, which is statistically
significantly higher than the results obtained using the Shannon Entropy. This suggests
that the Shannon Entropy approach might be a reasonable approach to select potential
CpGs relevant for the classification analysis. This type of tool might become rather useful
in the future, as the amount of CpGs analyzed per person increases and the computational
costs increase accordingly. Another interesting analysis is controlling for the volatility, i.e.,
the standard deviation, of the CpGs. A sensitivity analysis was carried out in this regard by
selecting CpGs according to their standard deviation (in buckets of 5%), i.e., top 5%, top
10%, and so on. When carrying out this type of analysis, there were some improvements in
the average accuracy, but these improvements were not statistically significant.
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These results were consistent with other articles that found a relationship between
DNA methylation in other tissues such as the hippocampus [44]. Using blood as the
selected tissue [43] is better suited for clinical purposes. Having a simple test, such as
one based on DNA methylation data, which can be applied to many different diseases
in a rapid and inexpensive way, can be useful. Multiple sclerosis is a relatively difficult
illness to diagnose. Using only clinical symptoms and imaging, such as MRI, is frequently
requested when the presence of illness is suspected. From a clinical point of view, it might
be practical to have techniques, such as DNA methylation levels in the blood, which can
be identified, with a reasonable level of accuracy, the presence of MS with a simple blood
test. The physician can use the results from the blood-based biomarker combined with the
clinical assessment to decide if it is necessary to carry out further tests, such as imaging.

A very interesting area of future research is the temporal evolution of the DNA
methylation in multiple sclerosis, given the diverse evolution of the illness, particularly
the long periods of remission experienced by some patients. Further research is necessary
to determine feasibility, but it might be possible to use this type of approach for early
detection. As more data becomes available, it might be possible to distinguish between
different types of illness progression using DNA methylation data. It is possible that
differentiating between the different types of evolution might help in targeting therapies in
a more precise way.

5. Conclusions

Technical improvements are making possible the generation of large amounts of
epigenetic data, such as DNA CpG methylation data, that can be used for the detection
of several different types of illnesses, such as multiple sclerosis (MS). Multiple sclerosis is
a complex illness with genetic and environmental factors, and importantly, an uncertain
evolution with some patients experiencing long periods of remission. In this paper, we
present a technique based on the Shannon Entropy concept for the selection of CpGs as
inputs for MS identification using non-linear techniques such as artificial neural networks.
It was shown that using the proposed approach, the number of CpGs used decreased
while the accuracy of the classifications significantly improved. As more DNA methylation
data becomes available, it is important to have techniques to efficiently filter these large
amounts of information. In this regard, borrowing concepts like Shannon Entropy from
other disciplines, such as information theory, might be an interesting approach. Having
more data is likely beneficial but not all the new data will be helpful for analysis with a
large percentage potentially adding noise. Therefore, it is important to develop techniques
to further facilitate quantitative data analysis.

In the future, as more DNA CpG methylation data becomes available, it might be
possible to extend this type of analysis in order to identify patients with different types
of MS evolution. Currently, MS has no cure, but it is a field of intense research. It is
possible that differentiating between the different types of evolution might help in targeting
therapies in a more precise way, and this is a very appealing area of future research.
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Abstract: A nonlinear approach to identifying combinations of CpGs DNA methylation data, as
biomarkers for Alzheimer (AD) disease, is presented in this paper. It will be shown that the presented
algorithm can substantially reduce the amount of CpGs used while generating forecasts that are
more accurate than using all the CpGs available. It is assumed that the process, in principle, can
be non-linear; hence, a non-linear approach might be more appropriate. The proposed algorithm
selects which CpGs to use as input data in a classification problem that tries to distinguish between
patients suffering from AD and healthy control individuals. This type of classification problem is
suitable for techniques, such as support vector machines. The algorithm was used both at a single
dataset level, as well as using multiple datasets. Developing robust algorithms for multi-datasets is
challenging, due to the impact that small differences in laboratory procedures have in the obtained
data. The approach that was followed in the paper can be expanded to multiple datasets, allowing
for a gradual more granular understanding of the underlying process. A 92% successful classification
rate was obtained, using the proposed method, which is a higher value than the result obtained using
all the CpGs available. This is likely due to the reduction in the dimensionality of the data obtained
by the algorithm that, in turn, helps to reduce the risk of reaching a local minima.
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1. Introduction

Alzheimer (AD) is a relatively common neurological disorder associated with a decline
in cognitive skills [1,2] and memory [3-5]. The causes of Alzheimer are not yet well
understood, even as some processes of the development of amyloid plaque seems to be
a major part of the disease [6]. The development of biomarkers [7] for the detection of
AD is of clear importance. Over the last few decades, there has been a sharp increase
in the amount of information publicly available, with researchers graciously making their
data public. This, coupled with advances, such as the possibility to simultaneously estimate
the methylation [8] levels of thousands of CpGs in the DNA, has created a large amount
of information. CpG refers to having a guanine nucleotide after a cytosine nucleotide
in a section of the DNA sequence. CpGs can be methylated, i.e., having an additional
methyl group added. The level of methylation in the DNA is a frequently used marker
for multiple illnesses [9-12], as well as a estimator of the biological age of the patient;
hence, it has become an important biomarker [13]. The computational task is rather
challenging. Current equipment can quickly analyze the level of methylation of in excess
of 450,000 CpGs [14-16], with the latest generation of machines able to roughly double
that amount [17]. As previously mentioned, methylation data has been linked to many
diseases [18-20] and it is a logical research area for AD biomarkers. An additional challenge
is that, at least in principle, there could be a highly non-linear process that is not necessarily
accurately described by traditional regression analysis. The scope would then, hence,
be to try to identify techniques that select a combination of the CpGs to be analyzed
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and then a non-linear algorithm that is able to predict whether the patient analyzed has
the disease. However, on the other hand, it would not appear reasonable to totally discard
the information presented in linear analysis. In the following sections, a mixed approach is
presented. It will be shown that the approach is able to generate predictions (classifications
between the control and patients suffering from Alzheimer).

1.1. Forecasting and Classification Models

Prediction and/or classification tasks are frequently found in many scientific and
engineering fields with a large amount of potential artificial intelligence related techniques.
The specific topics covered are rather diverse, including weather forecasts [21], plane flight
time deviation [22], distributed networks [23], and many others [24-26]. One frequently
used set of techniques are artificial neural networks. These techniques are extensively
used in many fields. There are, however, several alternatives, which have received less
attention in the existing literature (for instance, k-nearest neighbors and support vector
machines). It should be noted that the k-nearest neighbor technique is frequently used
in data pre-processing for instance in situations, in which the dataset has some missing
values and the researcher needs to estimate those (typically as a previous step before using
them as an input into a more complex model).

In our case the non-linear basic classification algorithm chosen was support vector
machines (SVM) [27-29]. The basic idea of SVM is dividing the data into hyperplanes [30]
and trying to decrease the measures of the classification error. This is achieved by following
the usual supervised learning, in which a proportion of the data are used for training
the SVM, while other portion (not used during the training phase) is used for testing
purposes only, in order to avoid to avoid the issue of overfitting [5,31]. This technique has
been applied in the context of Alzheimer for the classification of MRI images [32,33]. Some
SVM models have been proposed in the context of CpGs methylation related to AD [34].

1.2. CpG DNA Methylation

A CpG is a dinucleotide pair (composed by cytosine a phosphate and guanine),
while methylation refers to the addition of a methyl group to the DNA. Methylation
levels are typically expressed as a percentage with 0 indicating completely unmethylated
and 1 indicating 100% methylated. CpG DNA methylation levels are frequently used as
epigenetic biomarkers [35,36]. Methylation levels change as an individual ages and this
has been used to build biological clocks [37]. Individuals with some illnesses such as some
cancers and Alzheimer present deviations in their levels of methylations.

1.3. Paper Structure

In the next section a related literature review is carried out given an overview of
articles in prediction and classification. The literature review is followed by the materials
and methods section, in which the main algorithm is explained. In this section, there
is also a subsection describing the analyzed data. In Section 4 the results are presented.
This section is divided into two subsection the first one describing the results for a single
dataset and the second subsection describing the results when a multi dataset approach is
followed. The last two sections are the discussion and the conclusions.

2. Literature Review

As previously mentioned, the CpG DNA methylation data were used in a variety
of biomedical applications, such as the creation of biological clocks. For instance, Hor-
vath [38] created an accurate CpG DNA methylation clock. Horvath managed to reduce
the dimensionality of the data from hundred of thousands of CpGs analyzed per patient
to a few hundred. This biological clock is able to predict the age of patients (in years)
with rather high accuracy using as inputs the methylation data of a few hundred CpGs.
A related article is [39], in which the authors used neural networks to predict the forensic
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age of individuals. The authors showed how using machine learning techniques could
improve the accuracy of the age forecast, compared to traditional (linear) models.

Park et al. [40] is an interesting article focusing on DNA methylation and AD. The au-
thors of this article found a link between DNA methylation and AD but similar to Horvath
paper did not use machine learning techniques. Machine learning techniques have been
applied with some success. For instance, ref. [41] used neural networks to analyze the rela-
tionship between gene-promoters methylation and biomarkers (one carbon metabolism
in patients). Another interesting model was created by [42]. In this model the authors
use a combination of DNA methylation and gene expression data to predict AD. The ap-
proached followed by the authors in this paper is different from the one that we pursued
as they increased the amount of input data (including gene expression), while we focus on
trying to reduce the dimensionality of the existing data i.e., select CpGs.

While most of the existing literature focuses on neural networks, there are also some
interesting applications of other techniques such as for instance support vector machines
(SVM). For instance, ref. [43] used SVM for the classification of histones. SVM have also
been used for classification purposes in some illnesses such as colorectal cancer [44]. Even
if SVM appears to be a natural choice for classification problems there seems to be less
existing literature applying it to DNA methylation data in the context of AD identification.

3. Materials and Methods

One of the main objectives of this paper is to be able to accurately generate classifi-
cation forecasts differentiating between individuals with Alzheimer’s disease (AD) and
control cases.The algorithm was built with the intention to be easily expandable from one
to multiple data sets. A categorical variable y; was created to classify individuals.

_ | 0 if Control
Yi = { 1if AD @)

In this way, a vector Y = {Y1, Y, ..., Yy} can be constructed classifying all the existing
cases according to the disease estate (control or AD). In this notation nc denotes the total
number, including both control and AD, of cases considered. Every case analyzed (j) has
an associated vector X/ containing all the methylation levels of each CpG.

Xl
XZ

.an
This notation is used in order to clearly differentiate between the vector (X;) con-

taining all the methylation data for a single individual (all CpGs) from the vector (X;)
containing all the cases for a given CpG.

Xi = {X11X2/~--~/ XHC} (3)
In a matrix notation the complete methylation data can be expressed as follows

Xt xi oL Xk
X? X3 .. X3

x| - . . 4

mn mn mn
Xmn o xmn X
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For clarity purposes it is perhaps convenient shoving a hypothetical (oversimplified)
example, in which 4 patients (nc = 4) are analyzed (2 control and 2 AD) and that only 5
CpGs were included per patient (mn = 5). In this hypothetical example:

Y ={0,0,1,1} ®)
As an example, the methylation data for patient 1 could be:

0.9832
0.6145
X' ={ 0.1254 (6)
0.7845
0.6548

Similarly, the methylation data for a single CpG for all patients can be expressed as:

X; = {0.9832,0.3215, 0.6574,0.6584 } (7)

And the methylation data for all patients (matrix form) would be as follows:

0.9832 0.3215 0.6574 0.6584
0.6145 0.6548 0.8475 0.7487
X =]01254 0.6587 0.3254 0.6514 (8)
0.7845 0.3514 0.6254 0.6584
0.6548 0.6547 0.6587 0.6555

The proposed algorithm has two distinct steps. In the first step an initial filtering is
carried out. This step reduced the dimensionality of the problem. The second step is the
main algorithm. Both steps are described in the following subsections.

3.1. Initial Filtering

1. VX estimate a linear regression with Y as the dependent variable. Save the p-value for
each X;.
2. Filter off the X; with (p-value) < 0.005.

{X1/X2/"-/an} — {X1/X2//Xm} (9)
with m < mn.

3.2. Main Algorithm

Create a vector grid (D) with the each component representing the dimension (group
of X;) includes in the simulation. Two grids are included, a fine grid with relative
small differences in the values of the elements (representing the dimensions that the re-
searcher considers more likely) and a broad grid with large differences in values.

Fine grid = {ny,ny + Ans, ny +2Ans, ..., ny + 1Ans} (10)

Broad grid = {(n1 + IAns) + Anj, (nq + 1Ang) +2Any, . ..

(n1 +1Ang) + pAn; }. an

The values inside the above grids represent the X; selected. As an example, 1y rep-
resents Xj. An; and Ang are the constant step increases in the fine and broad grids,
respectively. For instance, 111 + An; and 11 + 2An; are the second and third elements in
the fine grid. The actual X; elements related to this second and third values depend on
the actual value of An;. If An; = 1 then the second and third elements related to X; and
X3, respectively, while if Anj = 2, then they relate to X3 and X5, respectively. Where
An; > Ang, each of these values, i.e., n; + Ang is the number of x; chosen. [ € Z* isa
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constant that specifies (together with 7;) the total size of the fine grid, while p € Z™*
is the analogous term for the broad grid. For simplicity purposes the case of a fine
grid, starting a X1, followed by a broad grid has been shown but this is not a required
constraint. The intent is giving discretion to the researcher to apply the fine grid to the
area that is considered more important. This is an attempt to bring the expertise of the
researcher into the algorithm. In Equation (12) it can be seen the combination of these
two grids (D).

D = {ny,ny + Ans,ny +2Ans, ..., n1 + 1Ans, (n1 + 1Ang) + Any,

12
(n1 + 1Ang) +2Any, ..., (ny + 1Ang) + pAn; }. (12)

For clarity purposes, let simplify the notation:
D={S;} ={51,52,--.,5m} (13)

where Equations (12) and (13) are identical. ”S” is a more compact notation with for
instance S1 and S; representing 11 and 11 + An,, respectively.

Create a mapping between each x; = {Xy,..., X, } = {X;}, where each X; is a vector,
and 10 decile regions. The group of X; with the highest 10% of the p-value are included
in the first decile and assigned a probability of 100%. The group of X; with the second
highest 10% of the p-value are included in the second decile and assigned a probability
of 90%. This process is repeated for all deciles creating a mapping.

{X4,...,Xm} — B{1.0,09,08,...,0.1} (14)

Where B is a vector of probabilities. In this way, the X; with the largest p-values are
more likely to be included.

For each S; generate VX;, i=1,...,m, a random number R; with (0 < R; < 1). If R; >
B{X;} then X; is not included in the preliminary S; group of X;s. Otherwise it is
included. In this way a filtering is carried out.

{Xl,,Xm}%{Xl,,Xm*}VS] (15)

Randomly S; elements of m* are chosen.
Estimate the Hit Ratio (HR)

_CE
~ TE
where TE is the total number of classification estimations and CE is the number of
correct classification estimates.

Repeat steps (3) to (6) k times for each S;. In this way there is a mapping:

HR (16)

{S1,.--,Sm} — {HR(S1),...,HR(Sm)} (17)

Remark 1. An alternative approach would be choosing the starting distribution S; as the one
after which the mean value of the HR does not statistically increase at a 5% confidence level.

Define new search interval between the two highest success rates:

max{HR(S1),...,HR()} = Sk.x (18)
max{HR(S1),...,HR(u)} < Skar — SL (19)

max—1

Iteration 1 (Iter=1) ends, identifying interval:

{Silmle S}nax—l} (20)
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Remark 2. It is assumed, for simplicity, without loss of generality that S}, < S. ..
If that it is not the case then the interval needs to be switched ({S} Shax -

max—1’
8. Divide the interval identified in the previous step into k — 1 steps.

{S1,...,5} (21)

where 51 = S}nax and Sk = S}nuxfl

9. Create a new mapping estimating the new hit rates (following the same approach as
in previous steps)
{S1,...,S¢} = {HR(S1),..., HR(Sk) } (22)

10. Repeat Iter; times until the maximum number of iterations (Itery;qy) is reached.

Itery > Iteryay (23)

or until the desire hit rate (HR jps;,¢4) is reached
HR(S) < HRyesired (24)

or until no further HR improvement is achieved. Select S/, ..

A few points need to be highlighted. It is important to reduce the number of combina-
tions to a manageable size. For instance, assuming that there are “m” X; (after the initial fil-
tering of p-Values) there would be (") combinations of size r. The well known equation (25)
can be used.

f: (m) —2"Vm e Nt (25)

r=0 4

Assuming that at least one of the X; is selected:

L()=50) ()= &

i (’f) —om_1 27)

r=1

For large m values the —1 term is negligible.

In the initial step the problem of having to calculate the estimations for 2™ combina-
tions is simplified into calculating a q27 combinations with g < m. If for example, g = m /10,
then the problem is reduced form 2!% to 1027 combinations. It can be proven that:

2100 > 10-27vg > 2 (28)

Proof. Using induction. Base case (q=2). 2'0) = 220 — 1,048,576;10 - 27 = 10 - 22 = 40.
1,048,576 > 40. Therefore, the base case is confirmed. Assume:

219 > 10 2 for some k > 2 (29)

induction hypothesis
210(k+1) > 10- 2k+1 (30)
2100k+1) = 210k910 > 10 26210 = 10 2227 = 10 2K+127 > 10 25! (31)

which completes the proof by induction. O
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3.3. Data

The methylation data set (Table 1) were obtained from the GEO database and the cor-
responding accession codes are shown in the table. The methylation data in these two
experiments was obtained following similar approaches and both experiments used an Il-
lumina machine. The raw data were structured in a matrix form. For clarity purposes
a sample for an specific individual is shown in Table 2. In this table it can be seen the methy-
lation level for all 481,868 CpGs analyzed for a single patient. In the second column it can
be seen the identification number for each specific CpG, while in the third column the level
of methylation for each specific CpG is shown. Please notice that this is a percentage
value ranging from 0 (no methylation) to 1 (fully methylated). Additionally, each patient
in the database will be classified according to a binary variable showing if the patient has
Alzheimer of if he/she is a healthy control individual. The binary classification variable
can be seen in the last row of the table (it is eithera 0 or a 1).

Table 1. Methylation data sets included in the analysis.

GEO Code Cases Tissue Illness
GSE66351 190 Glian and neuron AD and control
GSE80970 286 Pre-frontal cortex and gyrus AD and control

Table 2. Single patient methylation data.

Number CpG (Indetifier) Methylation Level
1 cg13869341 0.89345
2 cg14008030 0.71088
481,868 €g05999368 0.51372
AD/Control 0

Hence, the problem becomes a classification problem, in which the algorithm has
to identify how many and which CpGs to use in order to appropriately classify the indi-
viduals in the two categories (AD and healthy). A oversimplified sample (not accurate
for classification purposes but rather clear for explanation purposes) is shown in Table 3.
In this (unrealistic) case only two CpGs were selected for each patient.

Table 3. Single patient methylation data.

Number CpG (Indetifier) Methylation Level
2 cg14008030 0.71088
481,868 €g05999368 0.51372
AD/Control 0

It is perhaps easier to conceptualize if the number and the CpG identifier are omitted
and several patients are shown (Table 4). This table shows the results (for illustration
purposes only) of an unrealistic case, in which the algorithm selects only two CpGs for
each patient. Three patient in total are shown, two are control patients and one has AD.
This clearly illustrates the objective of the algorithm, which is Selectric the CpGs (rows
in this notation) to classify each patient (columns in this notation) according to a binary
variable (last row in this notation).
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Table 4. Multiple patient methylation data.

Patient 1 Patient 2 Patient 3
0.71088 0.63174 0.72582
0.51372 0.62145 0.43212

0 1 0

In this notation, the Table 4 is the solution generated by the algorithm when presented
with the original data of the form shown in Table 5. Table 5 shows all the potential

input variables X{ (to be selected) where, as previously mentioned, ”i” identifies all the
potential CpGs per patient and the index ”j” identifies the patient. The variable Y; is
the binary variable associated with each patient differentiating between healthy an AD
individuals. When expressed in this notation, it is easy to see that the problem boils down

to a classification problem, suitable for techniques such as support vector machines.

Table 5. Multiple patient methylation data (general data structure).

Patient 1 Patient 2 Patient 3
X X3 X3
X3 X3 X3
1 2 3
X481,868 X481,868 X481,868
Y; Y, Y3
4. Results

4.1. Single Data Set

Initially a first estimation using all the available CpGs and a support vector machine
classifier was used. The age of the patient (Table 6) was one of the main factors affecting
the accuracy of the patient classification using the data set GSE 66351. Controlling for age
allowed for better HR rates. Controlling for other variables, such as gender, cell type, or
brain region did not appear to improve the classification accuracy . Three different kernels
were used (linear, Gaussian, and polynomial), with the best results obtained when using
the linear kernel.

Table 6. Hit Rate (HR) of SVM with 3 different kernels for Alzheimer classification (versus control
patients), using all the CpGs available (481,778) and controlling for different factors, such as age,
gender, cell type, or brain region (GSE 66351 test data).

Controls HR (Linear) HR (Gaussian) HR (Polynomial) CpGs
None 0.8211 0.7921 0.8167 All
Age 0.8947 0.8142 0.8391 All
Gender 0.8211 0.7921 0.8167 All
Cell type 0.8211 0.7921 0.8167 All
Brain Region 0.8211 0.7921 0.8167 All

In the initial filtering stage the linear regression between each CpGs (X;) and the vector
classification (identifying patients suffering from Alzheimer and control patients was
carried out and the p-values stored. CpGs with p-values higher than 0.05 were excluded.
The remaining 41,784 CpGs were included in the analysis. It can be seen in Table 7 that as
in the previous case controlling for age did improve the HR.The linear kernel was used.
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Table 7. HR of SVM for Alzheimer classification (versus control patients), using all CpGs with
p-values < 0.05 (41,784) and controlling for different factors, such as age, gender, cell type, or brain
region (GSE 66351 test data).

Controls Hit Rate CpGs
None 0.7263 41,784
Age 0.8424 41,784
Gender 0.7263 41,784
Cell type 0.7263 41,784
Brain Region 0.7263 41,784

In Figure 1 it is shown that it is possible to achieve high HR using a subset of the CpGs.
This HR is higher than the one obtained using all CpGs. As in all the previous cases,
the HR rate showed is the out-of-sample HR, i.e., the HR obtained using the testing data
that were not used during the training phase. The SVM was trained with approximately
50% of the data contained in the GSE 66351 data set. The testing and training datasets
were divided in a manner that roughly maintained the same proportion of control and
AD individuals in both datasets. 10-fold cross validation was carried out to try to ensure
model robustness. The SVM used linear kernel. The analysis in this figure was carried
out controlling for age, gender, cell type and brain region. As in previous cases, the only
factor that appears to have an impact on the calculation, besides the level of methylation of
the CpGs, was the age. In total, 190 cases of this database was used for either training or
testing purposes. The maximum HR obtained was 0.9684, obtained while using 1000 CpGs.

0-97 T T T T

0.96 .

095 4

0.94 - .

0.93 4

Max Hit Rate

0.92 4

0.91 .

0'89 1 1 1 1
0 0.5 1 1.5 2 2.5

Number of CPGs «10%

Figure 1. Max Hit Rate (HR) versus number of CpGs included in the analysis.

Figure 2 shows the alternative approach mentioned in the methodology, rather
than the maximum HR rate obtained the figure shows the average HR obtained at each
level(number of CpGS) and its related confidence interval (5%). It is clear from both
Figures 1 and 2 that regardless of the approach followed it appears that after a certain
amount of CpGs adding additional CpGs to the analysis does not further increased the HR.
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0.84 T T T T

0.835

0.83

0.825 -

0.82

0.815

0.81

Hit Rate (conficende interval)

0.805 -

081

0.795 ; ! ; !
0 0.5 1 1.5 2 2.5

Number of CPGs «10%

Figure 2. Average Hit Rate (HR) and confidence interval (5%) versus number of CpGs included
in the analysis.

4.2. Multiple Data Sets

One of the practical issues when carrying out this type of analysis is the lack of con-
sistency between databases, even when there are following similar empirical approaches.
As an example, in the case of the GSE66351 dataset a total of 41,784 CpGs were found to be
statistically significant (after data pre-processing). Of these 41,784 CpGs only 18.98% (7929)
were found to be statistically significant (same p-value) in the GSE80970 dataset. This is
likely due to subtle different in experimental procedures. In order to overcome this issue
only the 7929 CpGs statistically significant CpGs were used when analyzing these two
combined datasets. Besides this different pre-filtering step the rest of the algorithm used
was as described in the previous section. Both data sets were combined and divided into
a training and a test data set.

One of the main differences in the results, besides the actual HR, is that including
the age of the patient in the algorithm (using these reduced starting CpG pools) did not
appear to substantially increase the forecasting accuracy of the model. The best results
when using this approach were obtained when using 4300 CpGs with a combined HR
(out of sample) of 0.9202 (Table 8). The list of the 4300 CpGs can be found in the supple-
mentary material.

Table 8. HR of SVM for AD vs. control patients using 4300 CpGs.

Controls Hit Rate CpGs
GSE66351 0.8710 4300
GSE80970 0.9517 4300

All 0.9202 4300

Following the standard practice [45] the sensitivity, specificity, positive predictive
value (PPV) and negative predictive ratio (NPV) were calculated for all the testing data
combined as well as for the testing data in the GSE66351 and GSE80970 separately, Table 9,
using the obtained model (4300 CpGs) All the cases included in the analysis are out-of-
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sample cases, i.e., not previously used during the training of the support vector machine.
It is important to obtain models that are able to generalize well across different data sets.

Table 9. Classification ratios (out-of-sample), including positive predictive value (PPV) and negative
predictive ratio (NPV).

Ratio All GSE66351 GSE80970
Sensitivity 0.9007 0.8333 0.9506
Specificity 0.9485 0.9394 0.9531

PPV 0.9621 0.9615 0.9625

NPV 0.8679 0.7561 0.9385

5. Discussion

In this paper, an algorithm for the selection of DNA methylation CpG data is pre-
sented. A substantial reduction on the number of CpGs analyzed is achieved, while
the classification precision is higher than when using all CpGs available. The algorithm
is designed to be scalable. In this way, as more data set of Alzheimer DNA methylation
become available, the analysis can be gradually expanding. There appear to be substantial
differences in the data contained in the data sets analyzed. This is likely due to relatively
small experimental procedures. There results obtained (two data sets) are reasonably
precise with a sensitivity of 0.9007 and a specificity of 0.9485, while the PPV and the NPV
were 0.9621 and 0.8679, respectively. It was also appreciated that when using large amounts
of CpGs controlling for age was a crucial steps. However, as the number of CpGs selected
by the algorithm decreased, the importance of controlling for age also decreased. Given
the large amount of possible combinations of CpGs it is of clear importance to develop algo-
rithm for their selection. As an example, it is clearly not feasible to calculate all the possible
combinations of a data set composed by 450,000 CpGs.

The results highlight the necessity to reduce the dimensionality of the data. This is
not only in order to facilitate the comput