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Abstract

The stability of a spherically confined atomic system when confinement
is removed is studied. We consider s, p, d and f states of the Hydrogen atom
confined by a finite barrier. The stability is characterised in terms of the
ionisation probability of the atom when confinement is removed. The ioni-
sation probability presents different sharply peaked, non-symmetric maxima
as a function of the confinement radius that can be explained in terms of
tunnelling and re-tunnelling of the confined bound states. The spatial struc-
ture of the confined bound state plays a key role in the stability of the atom.
Different measures arising from information theory, such as information en-
tropy, disequilibrium indices and complexity measures, have been calculated
to characterise quantitatively the structure of the confined state. A direct
relationship between the complexity of a confined state and its stability when
it is released from confinement has been found.

Keywords: confined atoms, electronic structure, ionisation probability,
sudden approximation, statistical complexity

1. Introduction

The experimental achievement of inserting atoms and molecules in molec-
ular nanocontainers [1, 2, 3] has increased the interest in these complexes.
Different applications of these structures have been proposed for energy trans-
port and storage [4] or in medicine [5, 6]. Spatial confinement leads to a
modification of the properties of enclosed species as, for example, the energy
levels. Absorption and emission properties can be modified by the confine-
ment, see e.g. [7], so encapsulated atoms present interesting applications
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because they open the possibility of designing materials with selected optical
properties [8].

The bound state properties of encapsulated atoms and molecules have
been widely studied in the literature, see e.g. the reviews [9, 10, 11, 12].
However, the knowledge of stability after confinement is much more scarce
[13, 14]. This aspect is important because many of the above mentioned
applications are based, first, on inserting the atom or molecule of interest
into a molecular cavity, and second, on extracting it for its future use. This
requires that the atom remains stable when confinement is removed, which
is not necessarily the case because spatial confinement changes the energy
of the encapsulated atom with respect to its value when no confinement is
present. This leads to a probability of ionisation or dissociation of the atom
or molecule when it is extracted from the cage.

In this work we address the problem of the stability of an atom when
it is released from confinement. The ionisation probability is calculated for
different initial states and confining sizes. We consider a penetrable repulsive
spherically symmetric model for confinement which contains relevant phys-
ical features of spatial confinement [15, 16]. We study the excited states
of the Hydrogen atom, for which a very accurate analysis can be carried
out and it provides the basis for the understanding of this process for more
complex systems. The sudden approximation is employed for calculating
the time evolution of the atomic state when it is released from confinement.
The results have been analysed in terms of energy and confined orbitals shell
structure that plays a key role in the stability of the atom when it is released
from confinement. The structure of the charge distribution is characterised
in terms of quantitative measures of the complexity of the electronic density.
The complexity is related to the information content, uncertainty or delocal-
isation of the electronic charge distribution. In Quantum Chemistry, several
definitions of complexity have been applied to analyse different properties
and processes related to structure studies and reactivity [17]. Atomic units
are used through out this work.

2. Methodology

We start from a confined atom in a stationary state, Ψc

nlm
,

Hc Ψc

nlm
(~r) = Ec

nl
Ψc

nlm
(~r) (1)
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where Hc is the Hamiltonian of the confined Hydrogen atom

Hc = −
1

2
∇2 −

1

r
+ vc(r), (2)

and vc(r) is the confining potential

vc(r) =

{

v0 if r0 ≤ r ≤ r0 + ∆
0 otherwise,

(3)

with r0 the inner radius, v0, the height, and ∆, the width of the barrier. Here,
we use v0 = 2.5 and ∆ = 5, as in [16]. The wave function of the confined
state can be written as

Ψc

nlm
(~r) =

uc

nl
(r)

r
Ylm(Ω). (4)

When the atom is extracted from the confining cavity, the Hamiltonian
reduces to that of the free Hydrogen atom. The wave function of the atom
when it is released from confinement can be expanded in terms of the sta-
tionary states of the free Hydrogen atom

Ψf

lm
(~r, t) =

∞
∑

n′=0

Cnl

n′ e
−iE

n
′ tΨn′lm(~r) +

∫

∞

0

dE Cnl(E)e−iE tΨElm(~r). (5)

Note that, due to the spherical symmetry of the confining potential, l and m

do not change when confinement is removed.
If we assume that one can neglect the time to extract the atom from the

confining cavity, then

Cnl

n′ =

∫

∞

0

dr un′l(r)u
c

nl
(r), Cnl(E) =

∫

∞

0

dr uEl(r)u
c

nl
(r), (6)

where un′l(r) and uEl(r) are the reduced radial functions of the bound and
ionised Hydrogen states, respectively. The bound states are normalized to
one and the states of the continuum spectrum are normalized in the energy
scale. When confinement is removed, |Cnl

n′ |2 gives the probability that the
electron lies in the {n′lm} bound state of the free atom, and |Cnl(E)|2dE

is the probability that the electron is ejected with energy between E and
E + dE . The total ionisation probability is calculated as

PI =

∫

∞

0

dE |Cnl(E)|2, (7)
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and the probability that the atom is not ionised as

PB =
∞

∑

n′=0

|Cnl

n′ |2 = 1 − PI. (8)

The reduced radial functions are computed here by using the analytic
continuation method [18, 19, 20]. This technique is based on a polynomial
expansion of the solution around each one of the tabular points. The in-
teraction potential is also expanded in a power series around these points.
The linear coefficients of the solution at each point are obtained through a
three term recursion relation. By using step sizes of 103 and polynomials
of range 20, very accurate solutions of the radial Schrödinger equation are
obtained. The calculation of the integrals giving the C coefficients, Eq. (6),
can be done analytically by using the piecewise polynomial representation of
the reduced radial function.

Quantitative analysis of complexity are based on measure indices which
provide different information about the confined system. These indices can
be written as the product of two terms, one related to the disequilibrium
from the most probable state and the other to the information content of
the system. In particular, we consider complexity measures proposed by
López-Ruiz, Mancini and Calbet [21] (LMC) in its shape complexity form
[22], and the Fisher-Shannon complexity [23] (FS). Information, delocalisa-
tion and complexity indices have been employed to quantitatively study the
importance of the shape and structure of the electronic charge distribution
of different properties [17] and effects as for example relativistic [24] and
confinement effects [25, 26].

The shape form of the LMC index in position space is defined as

Cs

r
= DrHr, (9)

where Dr is the disequilibrium function given by the density expectation
value

Dr =

∫

d~r ρ2(r), (10)

with ρ(r) the spherically averaged electron density distribution normalized
to unity. Dr is related to the distance from the most probable state, the
equilibrium, which within this framework is the uniform density.

Hr is a measure of the information of the state and it is defined as

Hr = eSr (11)
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where Sr is the Shannon information entropy

Sr = −

∫

d~r ρ(r)lnρ(r). (12)

On the other hand, the FS index is, in position space,

Pr = Ir

1

2πe
H

2

3

r , (13)

with the Fisher information measure, Ir, as

Ir =

∫

d~r
|~∇ρ(r)|2

ρ(r)
. (14)

This is another measure for the distance from the most probable state.

3. Results and discussion

In Figure 1, we plot the energy of the confined 2p−5p states as a function
of r0. It is negative and presents a sawtooth structure. Each np orbital energy
has n − 1 local maxima whose positions coincide with the positions of the
local minima of the (n + 1)p orbital energy.

Figure 1

The physical origin of these kinks lies in the behaviour of the orbitals
around some critical values of the confinement radius r0. This is studied in
Figure 2, where we plot in the upper panel, the 4p orbital obtained for r0 =
25.15 and r0 = 25.20. The unconfined orbital, i.e. without the penetrable
barrier, is also plotted for the sake of comparison.

Figure 2

For r0 = 25.20 the 4p state is within the confinement region. A small
decrease of the confinement size, r0 = 25.15, leads to an abrupt change in
the structure of the orbital, which becomes negligible inside the cavity. The
nodes of the 4p orbital for r0 = 25.15 are not visible within the scale of
the figure. The orbital has tunnelled out when the confinement radius has
been reduced. Although the charge distribution is very different in both
situations, the energy of the 4p orbital is very similar. In fact, the orbital
energy is continuous as a function of the cavity size, as it can be seen in
Figure 1. The behaviour of the 5p orbital, see the lower panel of Figure 2,
is the opposite to that of the 4p orbital. For r0 = 25.20 it lies outside the
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confinement region while for r0 = 25.15 it is within the confinement region.
The 4p orbital leaves the cavity for the r0 where the 5p orbital tunnels in.
The energy of both orbitals for that particular r0 value is very similar and
corresponds to a local maximum and a local minimum of the 4p and 5p orbital
energies respectively. The behaviour of the orbital energy as a function of
r0 is related to the phenomena of the avoided crossing: neighbouring levels
with the same symmetry repel each other when they become close and do not
cross. This behaviour has been also obtained for d, f , . . . confined orbitals
here studied and it was previously found for the s orbitals [14] and for S

states of the confined He atom in a spherical potential well [27].
The energy of the nl orbital as a function of r0 presents a sawtooth

structure with n− l local maxima, as shown in Figure 3 for the orbitals of the
N shell of the Hydrogen atom. If one starts the analysis from the unconfined
situation, r0 → ∞, when smaller r0 values are considered, the states that
tunnel out first are those whose orbital quantum number is smaller. The local
maxima of the 4s orbital appear for lager r0, followed by the local maxima of
the 4p, 4d and 4f states. The reason is that their spatial extension is larger
and they are affected by confinement at bigger values of r0.

Figure 3

The behaviour of the confined orbitals with the cavity size has an effect
on the ionisation probability when the atom is released from confinement. In
previous studies [13], we have obtained that the ionisation probability does
not depend directly on the energy of the confined state as one could think
beforehand. The spatial structure of the radial function of the confined
orbital, and in particular the location and extension of the electronic shells,
governs the ionisation probability.

Figure 4

In Figure 4 we plot the ionisation probabilities for the 2p to 5p states
as a function of r0. An oscillatory behaviour with several sharply peaked,
non-symmetric maxima are found for those r0 values where the states tunnel.
When the state is within the confinement region, the ionisation probability
increases as r0 decreases, while an oscillatory behaviour is observed when the
state is outside the confinement region. The ionisation probability presents
a counterintuitive behaviour when the state tunnels. A steep rise in the
ionisation probability is observed when the orbital enters into the confinement
region. The energy of the orbital is practically unchanged when the orbital
tunnels in, but the slope sign of the energy as a function of r0 changes. The
ionisation probability is governed by the structure of the charge distribution.
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Information theoretical tools are employed to study quantitatively the
structure of the confined orbitals. The complexity indices here employed,
Eqs. (9) and (13), include both the delocalisation and the information con-
tent of the charge density. For sake of space we only report here results for
the N shell, which are representative for the rest of cases.

In Figure 5, we plot the disequilibrium function, Dr, Eq. (10), and the
Fisher information measure, Ir, Eq. (14), for the 4s to 4f orbitals as a func-
tion of r0. Both indices present a similar pattern characterised by maxima
in the regions where states are confined inside the barrier. This is due to
the compression of the electronic charge towards the nucleus which leads to
both, a more compact density and a larger curvature of the radial functions.
On the other hand, these indices practically vanish when the states tunnel
out because their spatial extension is larger, the curvature decreases and the
density is more uniform inducing a minimum disequilibrium.

Figure 5

In Figure 6, we plot the exponential Shannon entropy, Hr, Eq. (11), as
a function of the confinement size. This index provides a measure of the
information of the state. Unlike disequilibrium indices, if states are confined
between the origin and the wall, their uncertainty in position drops and
small Hr is obtained. The opposite holds when orbitals lie mostly outside
the barrier, the uncertainty in the position is higher and the value of the
information index is larger.

Figure 6

Complexity indices contain both, disequilibrium and information mea-
sures simultaneously. Both indices present opposite behaviours when the
charge is localised inside or outside the confinement region. The complexity
indices here studied are governed by the disequilibrium as shown in Figure
7, where we plot the LMC shape complexity measure, Cs

r
, Eq. (9), and the

FS index, Pr, Eq. (13), as a function of r0. When the states are inside
the cage, the larger value of disequilibrium index compensates for the lower
information content. Outside the confinement region, although the informa-
tion index is large, the low values of the disequilibrium lead to a smaller
complexity of the state. As a result the complexity indices are sensitive to
the structure of the orbitals and present the same structure as the ionisation
probability. The states are more complex when they are localised inside the
confinement region and the complexity grows as the confinement volume is
reduced. When the state jumps out of the confinement region a sharp drop
in the complexity is observed. In the light of these results, complexity indices
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and other information theory measures characterise avoided level crossing,
tunnelling of confined states and the stability of the atom when confinement
is removed.

Figure 7

4. Conclusions

The stability of a Hydrogen atom when confinement is removed is studied
in terms of the ionisation probability of the confined states. A penetrable
spherical barrier is used as a model for confinement. The confined atom
is initially in a stationary state and the time needed to extract the atom is
assumed to be small. The ionisation probability of each nl state as a function
of the confinement size presents an oscillatory behaviour with n − l sharply
peaked, non-symmetric maxima. This behaviour has been explained in terms
of successive tunnelling and re-tunnelling processes through the barrier at
different inner radii. This is also reflected in the energy and its sawtooth
structure, where the maxima are located at the same radii as those of the
ionisation probability.

The shape LMC and the FS complexity measures have also been calcu-
lated. Confinement effects on these indices have been studied. The value of
the disequilibrium governs the behaviour of the complexity of the confined
state. The larger value of the disequilibrium indices of the states when the
charge is localised within the confinement barrier overcomes the lower in-
formation content of the state. Our calculations show that complexity is a
measure of the stability of the confined atom when it is released from con-
finement: the larger the complexity the smaller its stability. The complexity,
as well as the ionisation probability, are greatly reduced when the electronic
charge distribution of the confined state lies mostly outside the confinement
region. This particular charge distribution appears when the confined bound
state has tunnelled out the penetrable confining barrier.
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[21] R. López-Ruiz, H. L. Mancini, X. Calbet, A statistical measure of com-
plexity, Physics Letters A 209 (1995) 321–326.
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Figure 1: Energy of the confined 2p to 5p states as a function of the confinement size, r0.
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Figure 2: Upper panel: Reduced radial functions, u(r), of the confined 4p state for con-
finement sizes of r0 = 25.15 and r0 = 25.2. The unconfined radial orbital is also shown.
Lower panel: The same for the 5p state.
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Figure 3: Energy of the confined 4s to 4f orbitals as a function of r0.
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Figure 4: Ionisation probability of the 2p to 5p orbitals as a function of r0.
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Figure 5: Upper panel: Disequilibrium, Dr, in log scale for the 4s to 4f states as a function
of r0. Lower panel: The same for the Fisher information index, Ir.
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