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Resumen

RESUMEN

Introduccion y motivacion de la Tesis

La elaboracion de vinagre de forma industrial se realiza a partir de un medio de origen
alcoholico en el que interviene un cultivo mixto de bacterias acéticas (BAA) para llevar
a cabo un proceso de biotransformacion del etanol en &cido acético. A pesar de que el
proceso de acetificacion es bien conocido desde un punto de vista practico y técnico,
existen todavia numerosos aspectos fundamentales que no se han estudiado de forma
exhaustiva, especialmente, aquellos que controlan, en altimo término, la actividad y el
comportamiento de las complejas microbiotas responsables del proceso. Se sabe que
estas comunidades microbianas mayormente estan conformadas por unas pocas especies
de BAA, aerobias estrictas y principales responsables del mencionado proceso (Gullo et
al., 2014; Peters et al., 2017). No obstante, fracciones menores tanto de BAA como de
otros microorganismos pueden coexistir en el medio con las especies predominantes y
contribuir a la funcion de la comunidad (Trc¢ek et al., 2016; Peng et al., 2021). Los
miembros de estas microbiotas y, especialmente, las BAA, debido a sus condiciones de
crecimiento tan particulares basadas principalmente en la necesidad de un medio liquido
rico en etanol como fuente de carbono, homogéneo y con constante aporte de oxigeno
disuelto, son dificiles de aislar y cultivar fuera de estos entornos dénde normalmente
realizan su actividad (Mamlouk and Gullo, 2013; Gullo et al., 2014). En este contexto,
la identificacion, asi como los estudios de biodiversidad y comportamiento de estos
microorganismos a nivel molecular plantean numerosas dificultades. Estos aspectos no
solo implican un desafio para mejorar la comprension de conceptos cientificos-basicos
de estas bacterias, sino que dificultan el control de la calidad final de los productos
obtenidos, ya que depende de la composicion microbiana, la materia prima y las

condiciones operativas (Mas et al., 2014).

En el contexto que se plantea, las ciencias dmicas ofrecen en la actualidad multiples
posibilidades para la identificacion y caracterizacion de comunidades microbianas en su
medio natural, sin necesidad de aislamiento. En el campo de la produccién de vinagre,
los estudios existentes estdn mayormente centrados en metagendmica y/o metabolomica
de vinagres tradicionales, tanto aquellos obtenidos mediante fermentacion en estado
solido como en superficie, asi como estudios moleculares de especies concretas (Xia et
al., 2016; Peters et al., 2017; Wu et al., 2017; Zhu et al., 2018; Wang et al., 2021). Este
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trabajo, enfocado en el uso del cultivo sumergido como método de produccion y
numerosas herramientas 6micas, pretende contribuir a ampliar el conocimiento actual

que existe en esta area de investigacion.

Contenido de la investigacion

En la presente Tesis Doctoral, se caracteriz6 y comparo el desarrollo de tres perfiles de
acetificacion para estudiar la evolucion de las variables del sistema y el efecto de las
tres materias primas empleadas: un medio sintético de alcohol, un vino fino y una
cerveza artesana, sobre la composicién y la actividad de la microbiota responsable del
proceso. Con este objetivo, se emplearon diferentes herramientas 6micas basadas en
metaprotedmica (LC-MS/MS), metagendmica (secuenciacion del ARNr 16S), huella de
proteinas (MALDI-TOF MS) y metabolomica (SBSE acoplada con GC-MS), asi como
el cultivo sumergido, trabajando en modo semicontinuo, para la produccion de vinagre a

escala de laboratorio, tratando de imitar los procedimientos industriales.

En primer lugar, la caracterizacion de los perfiles de acetificacion de las materias primas
de trabajo, desde un enfoque metaprotedmico, permitié describir la composicién y el
comportamiento de la microbiota responsable del proceso. El género Komagataeibacter,
representado principalmente por la especie Komagataeibacter europaeus y seguida de
otras especies relacionadas, conformaron la microbiota predominante. Adicionalmente,
este andlisis reveld una fraccion menor de microorganismos compuesta por géneros
tipicos de la familia Acetobacteraceae, nunca descritos en vinagre hasta la fecha.
Posteriores estudios de metagendmica y huella proteica confirmaron la predominancia
del género Komagataeibacter y permitio describir nuevos géneros bacterianos en estos
medios e incluso grupos de arqueas. A partir de los estudios de metaprotedmica, analisis
cuantitativos centrados en el perfil de proteinas de la especie mayoritaria, K. europaeus,
permitieron diferenciar entre los principales procesos biolégicos que tienen lugar a lo
largo del ciclo de acetificacion en base a las variaciones en la actividad de las proteinas
asociadas. Los resultados procedentes de la caracterizacion y comparacion de dos
perfiles de acetificacion de materias primas naturales: vino fino y cerveza artesana,
permitieron sugerir una estrategia molecular en la que K. europaeus puede asegurar su
supervivencia a través del uso de nutrientes presentes en cada sustrato. En base a ello, la
metabolizacion del acido acético, procedente de la oxidacion incompleta del etanol,

mediante el ciclo de Krebs y otras vias metabdlicas relacionadas (ruta de las pentosas
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fosfato y glucolisis), suministrando precursores biosintéticos (aminoacidos y acidos
nucleicos), asi como mecanismos de membrana para liberar el acido acético, pueden ser
procesos de interés biotecnoldgico para la produccion de vinagre mediante cultivo
sumergido. Por ultimo, un estudio preliminar a nivel metabolomico condujo a la
caracterizacion del “volatiloma” y la diferenciacion de volatiles minoritarios clave tanto
de las materias primas como de las respectivas acetificaciones, permitiendo establecer
diferencias significativas, siendo éstas méas evidentes entre el medio sintético y los

medios naturales.

Conclusién

La investigacion realizada en este trabajo ha permitido caracterizar y confirmar la
composicion de la microbiota presente durante tres perfiles de acetificacion, con K.
europaeus como especie predominante seguida de una fraccion menos abundante de
microorganismos como especies estrechamente relacionadas, especies de otros géneros
tipicos de BAA, grupos bacterianos diferentes a las BAA e incluso arqueas. Desde un
punto de vista cuantitativo, se ha demostrado que el uso de diversas materias primas no
influye directamente en la composicion microbiana, mayormente comun, pero si en la

actividad, comportamiento y estrategias moleculares empleadas durante la acetificacion.

Estos hallazgos pueden contribuir a mejorar el conocimiento actual que existe acerca de
la composicion y el papel de las comunidades microbianas responsables del proceso de
acetificacion, asi como ampliar el uso de nuevas materias primas para la elaboracion de
vinagre mediante cultivo sumergido. A su vez, estos logros podrian conducir a la mejora
de las condiciones de operacion para la obtencion de nuevos tipos de vinagre con

mejores propiedades organolépticas y calidad.
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ABSTRACT

Introduction and Thesis motivation

The industrial elaboration of vinegar is performed from an alcoholic medium in which a
mixed culture of acetic acid bacteria (AAB) is used to carry out a biotransformation
process of ethanol into acetic acid. Although the acetification process is well known
from a practical and technical point of view, there are still may fundamental aspects that
have not been exhaustively studied, especially, those that ultimately control the activity
and behavior of the complex microbiota responsible for the process. It is known that
these microbial communities are mostly composed of a few species of AAB, strict
aerobes and the main responsible for the aforementioned process (Gullo et al., 2014;
Peters et al., 2017). However, minor fractions of both AAB and other microorganisms
may coexist in the medium with the predominant species and contribute to the
community function (Tréek et al.,, 2016; Peng et al., 2021). Members of these
microbiota and, especially AAB, because of their particular growing conditions based
mainly on the requirement for a liquid medium rich in ethanol as a carbon source,
homogeneous, and with constant dissolved oxygen supply, are difficult to isolate and
cultivate outside these environments where they are normally developed (Mamlouk and
Gullo, 2013; Gullo et al., 2014). In this context, the identification, as well as
biodiversity and behavior studies of these microorganisms at a molecular level present
several difficulties. These aspects not only imply a challenge to improve the
understanding of scientific-basic concepts of these bacteria but hinder to control of the
final quality of the obtained products, since it depends on the microbial composition, the

raw material, and the operating conditions (Mas et al., 2014).

In this context, omics sciences currently offer multiple possibilities for the identification
and characterization of microbial communities in their natural environment, without the
need for isolation. In the field of vinegar production, existing studies are mainly focused
on metagenomics and metabolomics of traditional vinegars, both those obtained through
solid-state and surface fermentation, as well as molecular studies of concrete species
(Xia et al., 2016; Peters et al., 2017; Wu et al., 2017; Zhu et al., 2018; Wang et al.,
2021). This work, focused on the use of submerged culture as the production method
and diverse omics tools, aims to contribute to expanding current knowledge in this

research area.

13



Abstract

Content of the Thesis

In the present Doctoral Thesis, the development of three acetification profiles was
characterized and compared to study the evolution of system variables and the effect of
the three raw materials used: a synthetic alcohol-based medium, a fine wine, and a craft
beer, on the composition and activity of the microbiota responsible for the process. With
this objective, different omics tools based on metaproteomics (LC-MS/MS),
metagenomics (16S rRNA sequencing), protein fingerprinting (MALDI-TOF MS), and
metabolomics (SBSE couple with GC-MS) were used, as well as submerged culture,
working in a semi-continuous mode, for vinegar production at a pilot scale, trying to

mimic industrial procedures.

First, the characterization of the acetification profiles of working raw materials, from a
metaproteomic approach, allowed the description of the composition and behavior of
the microbiota responsible for the process. The Komagataeibacter genus, represented
mostly by the species Komagataeibacter europaeus and followed by other related
species, conformed to the predominant microbiota. Additionally, this analysis revealed a
minor fraction of microorganisms composed of typical genera of the Acetobacteraceae
family, never described in vinegar to date. Subsequent metagenomics and protein
fingerprinting studies confirmed the predominance of the Komagataeibacter genus and
allowed the description of new bacterial genera in these media and even archaea groups.
From the metaproteomics studies, quantitative analyses focused on the protein profile of
the main species, K. europaeus, allowed for differentiating among the main biological
processes that occur throughout the acetification cycle according to the variations in the
activity of associated proteins. The results from the characterization and comparison of
two acetification profiles of natural raw materials: fine wine and craft beer, allowed us
to suggest a molecular strategy in which K. europaeus may ensure its survival through
the use of nutrients present in each substrate. Based on this, the metabolization of acetic
acid, from incomplete oxidation of ethanol, through the TCA cycle and other metabolic
related pathways (pentose phosphate pathway and glycolysis), supplying biosynthetic
precursors (amino acids and nucleic acids), as well as membrane mechanisms for acetic
acid release, may be processes of biotechnological interest for the submerged vinegar
production. Finally, a preliminary study at a metabolomic level led to the

characterization of the “volatilome” and differentiation of key minor volatiles of both
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the raw materials and their respective acetifications, allowing to establish significant

differences, these being more evident between the synthetic and natural media.

Conclusion

The research conducted in this work has allowed for characterizing and confirming the
composition of the microbiota present throughout three acetification profiles, with K.
europaeus as predominant species followed by a less-abundant microorganisms fraction
including closely related species, species from other typical AAB genera, groups of
bacteria, other than AAB, and even archaea. From a quantitative point of view, it has
been demonstrated that the use of diverse raw materials does not directly influence the
composition of the microbiota, mostly common, but it influences the activity, behavior,

and molecular strategies used throughout the acetification.

These findings may contribute to improving the existing current knowledge on the
composition and role of the microbial communities responsible for the acetification, as
well as expanding the use of new raw materials for the elaboration of vinegar through
submerged culture. In turn, these achievements might lead to the improvement of the
operating conditions for the obtention of new types of vinegar with improved

organoleptic properties and quality.
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1. Introduction

1. INTRODUCTION
1.1. The vinegar
1.1.1. The historical context of vinegar: origin and uses

Vinegar has its origin in ancient civilizations, concretely, the first testimony written on
the use of vinegar comes from ancient Babylon, about 5,000 years ago, being employed
as a food preservative. Vinegar was “discovered” fortuitously when undisturbed stored
wine in the open-air turned spontaneously into vinegar (Andrés-Barrao and Barja,
2017). Probably, due to this phenomenon, known as “wine pitting”, and its sour taste,
vinegar has been considered historically as a byproduct with poor commercial interest.
However, the numerous applications and benefits of vinegar have been disclosed by
mankind throughout history. Hippocrates (460-377 BCE) recommended vinegar for
cleaning ulcerations and for the treatment of sores (Johnston and Gaas, 2006). Long
afterward, in the 10" century, Sung Tse implemented the use of vinegar as a hand-
washing agent to prevent infections which led to an important development in the field
of forensic medicine in China (Tan, 2005; Johnston and Gaas, 2006; Ho et al., 2017). In
the 18" century, American medical practitioners used vinegar to treat many ailments
including poison ivy, stomachache, high fever, and edema among others (Tan, 2005; Ho
et al., 2017). Nowadays, vinegar is widely consumed all over the world both directly
and included in a great variety of products including sauces, ketchup, and mayonnaise
(Ho et al., 2017).

Although vinegar has been traditionally used as a flavoring and food preservative,
several studies evidence its nutritional potential effects which can, directly, affect the
health of consumers. This is due, in great part, to the healthy properties that acetic acid,
the main constituent of vinegar, can exert on the human liver and gastrointestinal tract
(Ali et al., 2018). As a consequence, some of the benefits of vinegar may include
appetite stimulation, recovery from exhaustion, antioxidant activity, lower lipid content
in blood, and regulation of blood pressure which, in turn, have an effect on biomarkers
for several diseases such as obesity, cancer, diabetes, and hypertension among others,
see Figure 1 (Honsho et al., 2005; Chang and Fang, 2007; Yamashita et al., 2007;
Budak and Guizel-Seydim, 2010; Budak et al., 2011, 2014; Chou et al., 2015; Ali et al.,
2018).
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Figure 1. Effects of vinegar on human metabolism and several diseases. Source: adapted from Ali et al.
2018.

1.1.2. Definitions of vinegar

The definition of vinegar comes, etymologically, from the Latin term “Vinum acre”
equivalent to “sour wine”, however, in this meaning, its origin is not limited to wine,
but it can be applied to any substrate containing fermentable sugars. According to the
World Health Organization, as stated in its Codex Alimentarius Commission (Codex
Alimentarius Commission, 1987), vinegar is a liquid that is fit for human consumption
and produced, exclusively, from suitable products containing starch and/or sugars by
double fermentation processes, alcoholic and acetic acid. Vinegar shall not contain more
than 0.5% (v/v) ethanol and less than 50 g/L (w/v) acetic acid; stabilizers are not
permitted for use according to European law. The European Union (UNE-EN
13188/AC:2002) defines vinegar as a product originated, exclusively, from double
fermentation biological processes, alcoholic and acetic acid, of agricultural origin
substances. This standard also indicates that the total acidity of vinegar shall not contain
less than 45 g/L (w/v) and, concretely, less than 60 g/L (w/v) for wine vinegar, both
calculated in terms of water-free acetic acid. The residual alcohol content must not
exceed 0.5% (v/v) for standard vinegar and 1% (v/v) for wine vinegar. In Spain, the
sanitary-technical regulation (Royal Decree 661/2012, 13" April) indicates that the total
acetic acid content for wine vinegar must be at least 60 g/L (w/v), as well as 50 g/L
(w/v) for the rest. The residual alcohol content may be a maximum of 0.5% (v/v),

except for wine vinegar [1% (v/V)].
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1.1.3. Varieties of vinegar

There are a great variety of vinegars around the world whose organoleptic properties are
conferred by the starter microbial composition, raw material, and technical methods
used for its production (Mas et al., 2014; Li et al., 2015b). Vinegar has an alcoholic
origin, normally, coming from the processing of vegetables or fruits (Budak et al.,
2014). In this way, several raw materials can be processed and used as acetification
substrates including wines, spirits, cereal grains (rice wines and malts), and fruit juices,
among others. Other raw materials of animal origin can be used such as whey or honey
(Parrondo et al., 2009; Baena-Ruano, 2013; Ho et al., 2017; Lazim et al., 2019). This
section will describe some of the most widely used varieties of vinegar in the world
whose raw materials are specific to particular regions and confer on the final product

exceptional organoleptic properties and high quality.

1.1.3.1. The Mediterranean vinegar: wine and balsamic vinegar

In Mediterranean countries, wine is the most used raw material due to the importance of
grapevine cultivation in this region. Wine-producing countries are usually major
vinegar-producing countries (Maestre et al.,, 2008). White and red wines allow
producing a large part of total wine vinegars (Sellmer-Wilsberg, 2009). In Spain, there
are three Protected Designations of Origin (PDOs): “Sherry Vinegar”, “Vinegar of
Condado de Huelva”, and “Vinegar of Montilla-Moriles”, all of them located in
Andalusia (Duran-Guerrero et al., 2021). Climate and soil factors of this region allow
the growing of native varieties of grapes used for producing high-quality wines which
confer on final vinegar exceptional organoleptic properties (Mas et al., 2014). The aging
process by the method known as “Criaderas y Soleras” is one of the singularities of
these vinegars which enhances, even more, their uniqueness (Lucena-Velasco, 2006). In
northern Italy, traditional balsamic vinegar has two PDOs: “L'Aceto Balsamico
Tradizionale di Modena” and “L'Aceto Balsamico Tradizionale di Reggio Emilia”
(Giudici et al., 2009). From the native varieties of grapes grown in this region near
Modena, a must is obtained which is subsequently cooked. The cooked must is then
subjected to a simultaneous and spontaneous alcoholic and acetic acid fermentation,
followed by a prolonged aging period of, at least, 12 years using barrels of different
types of wood and sizes (Gullo and Giudici, 2008; Giudici et al., 2009).
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1.1.3.2. Spirit vinegar

Spirit vinegar, also known as white vinegar, is obtained by the acetic acid fermentation
of an alcohol medium coming from a previous alcoholic fermentation of an agricultural
product containing fermentable sugars (Grierson, 2009). Spirit vinegar can reach the
highest acidity levels [15-20% (w/v)] and although from a sensory point of view, its
organoleptic profile is usually very poor, in quantitative terms, it is one of the most
produced vinegars worldwide, mainly in Great Britain, Germany, and the eastern USA
(Budak et al., 2014; Andrés-Barrao et al., 2016). For these reasons, spirit vinegar is used
in studies that aim to achieve a high-yield acetification profile. Its main applications are

as a cleaning product, seasoning, and food preservative (Budak et al., 2014).

1.1.3.3. Cereal vinegar

Traditional cereal vinegar has a long history with thousands of years of development
and improvement that bind it to the Asian continent (Giudici et al., 2017; Zhang et al.,
2019). These vinegars differ according to several factors such as the type of cereal and
legumes used as raw material, the microbial composition of starter cultures, elaboration
procedures, and aging times (Giudici et al., 2017). Among them, rice vinegar, obtained
by acetic acid fermentation of rice wine “sake”, is popular in Asian countries. In Japan,
they are classified into polished rice vinegar “Komesu”, unpolished rice vinegar
“Kurosu”, sake-less vinegar “Kasuzu”, and other grain vinegars (Murooka et al., 2009).
Different starchy substrates from each region are used for making some of the most
famous Chinese vinegars including Shanxi aged vinegar, Zhenjiang aromatic vinegar,
Sichuan bran vinegar, and Fujian Monascus vinegar (Chen et al., 2009; Xu et al., 2011;
Zhu et al., 2018; Jiang et al., 2019). The particularities of processing the cereal vinegar
include the use of solid-state fermentation (SSF), in which the starter culture is
previously treated to allow the dominant microbiota to carry out the saccharification and
subsequent alcohol fermentation of the grains, as well as to obtain a final product
slightly milder and sweeter than Western vinegars (Chen et al., 2009; Wu et al., 2017).

1.1.3.4. Fruit vinegar

Fruit vinegar is usually elaborated as an alternative for the exploitation of existing fruit

surpluses, thus reducing the economic and environmental impact produced by the fruit
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industry (Luzén-Quintana et al., 2021). Although Asian countries were the first ones to
become interested in fruits as raw materials, their use and study in other parts of the
world have been increasing, see Figure 2A. The acidic nature of fruit vinegar and the
high sensory impact of acetic acid on its organoleptic properties allow almost any type
of fruit to be used for its elaboration. Among them, well-known cider vinegars are
elaborated using apple juice through double alcoholic and acetic acid fermentation,
especially in the United Kingdom, the United States, and Switzerland (Joshi and
Sharma, 2009). Many other fruits have been explored for the elaboration of vinegars
such as berry, persimmon, strawberry, pineapple, cherry, orange, mango, banana, and
tomato in the last few years, see Figure 2B (Luzon-Quintana et al., 2021). Raw material
processing is essential for the extraction of juice; crushing or pressing fruits are usually
the most employed methods. Both traditional surface culture and submerged culture
methods can be employed (Joshi and Sharma, 2009; Budak et al., 2011; Trcek et al.,
2016; Luzon-Quintana et al., 2021). Depending on the fruit used, the final product will
have different nutritional composition; in the case of cider vinegar, the high polyphenols
content of apples is responsible for its exclusive organoleptic properties such as a high
astringency and viscosity as well as numerous health benefits (Joshi and Sharma, 2009;
Budak et al., 2011, 2014; Ousaaid et al., 2021).
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Figure 2A. Percent distribution of scientific articles on fruit vinegar published from 2015 to 2020,
according to the country of the research groups (Source: Scopus). Figure 2B. Different fruits (other than
grapes) used for the elaboration of vinegar for which two or more scientific articles about the
technological process have been found in the literature from 1990 to 2020. Source: adapted from Luzdn-

Quintana et al. 2021.
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1.1.4. Systems of vinegar production

Vinegar elaboration can be carried out by either solid-state fermentation (SSF) or liquid
fermentation, which includes a set of techniques implemented in Western and European
countries, mainly surface and submerged cultures. The submerged culture is one of the
main systems to produce vinegar on an industrial scale (Gullo et al., 2014; Tréek et al.,
2016; Lee et al., 2017; Alvarez-Céliz et al., 2021).

1.1.4.1. Traditional systems: solid-state fermentation and surface culture

SSF consists of a series of traditional techniques in which the microbiota responsible for
the fermentation grows on substrates in the absence of free water (Gullo et al., 2014).
These systems are very used in Asian countries to elaborate vinegar from grains
(cereals) and to obtain high-quality vinegar after a period of aging (Wu et al., 2010; Xia
et al., 2019). SSF includes three main biological processes: (1) starch liquefaction and
saccharification, (2) alcohol fermentation, and (3) acetic acid fermentation. However,

this method may be slower and low efficient than other techniques (Gullo et al., 2014).

Among the rest of traditional systems, the Orléans, Luxembourgish, and Schiitzenbach
methods are the most known (Tesfaye et al., 2002; Mas et al., 2014; Bekatorou, 2019).
The Orléans or French method is the main surface culture system, consisting of an old
procedure based on the use of wooden barrels to elaborate vinegar. The substrate used
consists of a mixed culture of wine and vinegar while acetic acid bacteria (AAB) are
located on the surface forming a biofilm known as “the mother of vinegar” (Andrés-
Barrao et al., 2011; Mas et al., 2014). The acetification and aging processes occur
simultaneously to obtain a high-quality product, but this method is too slow and
involves high production costs (Tesfaye et al., 2002; Raspor and Goranovic, 2008). The
Luxembourgian and Schitzenbach or German methods implement an immobilization
system of AAB using supports made from wood shavings. This allows for increasing
the contact surface between AAB and the acetification substrate, thus improving the
oxygenation of the medium and the acetification yield (Llaguno, 1991; Baena-Ruano,
2013). Despite the high quality of vinegars obtained by these methods, they show some
disadvantages as the difficulties of controlling the system's operational variables such as
temperature, oxygen supply, as well as volatile compounds and ethanol losses through
evaporation. In addition, the bioprocess is normally slowed down and the system does
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not allow obtaining final products with acetic acid concentrations higher than 8-10%
(w/v) (Llaguno, 1991, Tesfaye et al., 2002).

1.1.4.2. Submerged culture system

To industrialize vinegar production, the submerged culture was developed. Through this
system, a submerged fermentation process takes place by which the ethanol content of
raw materials such as spirits, wines, or juice fruits is oxidized to acetic acid by AAB
under controlled stirring conditions (Gullo et al., 2014; Tréek et al., 2016). This
biotransformation is carried out in short periods (24-48 h) and it allows to obtain high
acidity final products. This is mainly possible because of the efficiency of mass transfer
and continuous vigorous aeration throughout the process (Garcia-Garcia et al., 2009,
2019). Some aspects that contribute to the high efficiency of this method are described

as follows.

1.1.4.2.1. The bioreactor: acetator Frings

The current success of vinegar-making industries is undoubtedly given by the use of the
acetator Frings developed by Hromatka and Ebner (2002) and marketed by Heinrich
Frings GmbH and Co., Bonn, Germany, see Figure 3. These bioreactors have stainless
steel tanks that can work with different volumes, from a pilot-scale (effective capacity
of 8 L) up to an industrial scale volume (20,000-100,000 L) (Llaguno, 1991). They are
equipped with coils as heat exchangers to maintain a constant temperature of 30-31 °C
and an efficient volatile recovery system by condensation of gasses; as a result, the
losses of volatile compounds because of stripping are considerably minimized (De Ory
et al., 2004; Garcia-Garcia et al., 2009; Gullo et al., 2014). But undoubtedly, the
aeration system of these bioreactors confers on them a great part of their success. It
consists of a turbine system that sucks air from the outside and releases it inside
resulting in very fine air bubbles thus generating a homogeneous mixture with the
culture medium (Garcia-Garcia et al., 2009; Fernandez-Pérez et al., 2010; Gullo et al.,
2014; Qi et al., 2014). Through this system, a higher oxygenation efficiency is reached

thus obtaining higher acetification yields than using the traditional methods.
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Figure 3. Bioreactor Frings on a pilot scale (effective capacity, 8 L) making wine vinegar. Source: own

work.

1.1.4.2.2. Operating modes

Another fundamental aspect lies in the operating modes used for these bioreactors
which, mainly, may work in a batch, semi-continuous, and continuous way. Although
this choice depends on the specific purpose, which may comprise many factors, in
general, a suitable environment for the development and activity of acetic acid bacteria
must be ensured (Garcia-Garcia et al., 2009; Gullo et al., 2014). According to several
authors, AAB may show high sensibility to different variables including ethanol
concentration, acetic acid concentration, the total strength of the medium (sum of the
previous two), temperature, and available dissolved oxygen (Garcia-Garcia et al., 2007;
Baena-Ruano et al., 2010a, b; Santos-Duefias et al., 2015; Jiménez-Hornero et al.,
2020). In this sense, numerous studies have demonstrated that using a continuous mode,
a maximum acidity level of 8-10% (w/v) can be achieved because a higher
concentration or even a low ethanol content can affect the specific growth rate of AAB
(Gullo et al., 2014). Furthermore, the batch mode normally implies lower productivity
and additional difficulty in the preparation and maintenance of starter cultures for each
cycle (Baena-Ruano, 2013).
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The semi-continuous working mode has been mainly imposed for the industrial
production of vinegar (De Ory et al., 2004; Garcia-Garcia et al., 2007, 2009; Gullo et
al., 2014). In this method, each cycle is started by a loading phase that replenishes the
reactor with a fresh medium to the working volume without exceeding a preset ethanol
concentration. Then, an exhausting stage occurs depleting the ethanol in the culture
broth to a preset extent. Finally, a part of the reactor is partially unloaded and the
remaining volume is used as inoculum for the next cycle, see Figure 4 (Lee et al., 2017;
Jiménez-Hornero et al., 2020). Working in this way, the operational variables are the
initial concentration of ethanol in the culture medium, the concentration to which
ethanol must be depleted for a cycle to be finished, the volume of the broth that is then
unloaded, and the rate at which the bioreactor is loaded with fresh medium (Garcia-
Garcia et al., 2007; Baena-Ruano et al., 2010a, b). Because AAB are highly sensitive to
both ethanol and acetic acid, cell concentration and viability can be strongly affected by
fermentation conditions (Garcia-Garcia et al., 2009, 2019). Therefore, an appropriate
selection of the values of operational variables is essential for maintaining suitable
ranges of both substrate and product concentrations and, in this way, the natural self-
selection of the best-adapted AAB to the specific working medium is carried out
(Jiménez-Hornero et al., 2020). This system also allows for obtaining high-strength
vinegars that may reach high acidity levels [up to 15% (w/v)]. With the high demand for
these products may be necessary to use dual-stage-high-strength processes in which two
fermentation tanks are operated in a synchronous mode thus achieving acetic acid
concentrations even above 20% (w/v) (Alvarez-Céliz et al., 2021). In this way, the
stressful environment to which AAB are subjected detracts from the overall

acetification rate (Garcia-Garcia et al., 2009).
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Figure 4. Submerged culture for vinegar production working in a semi-continuous mode. Each cycle of
acetification starts by loading the tank to its working volume (8 L) without exceeding a preset ethanol
concentration [5% (v/v)]. When ethanol concentration is depleted to 1.0-1.5% (v/v), 50% of the reactor
content (4 L) is unloaded. This system is maintained for the following production cycles. Source: own
elaboration.

1.1.4.2.3. Automation systems

Each operating mode, particularly the semi-continuous one, required control and
monitoring because the particular fermentation conditions may induce variations in the
development of the cycles even under identical conditions (Garcia-Garcia et al., 2009;
Kalogianni et al., 2019). For this, the use of a monitoring system is necessary to obtain a
constant recording of data of the main variables to be measured including the volume of
the medium, the concentration of ethanol and dissolved oxygen in it, and temperature
(Garcia-Garcia et al., 2007; Qi et al., 2014). Monitoring is usually performed by the
Supervisory Control and Data Acquisition (SCADA) software which allows the setting
of instructions to specific sensors controlled by signal acquisition modules (Garcia-
Garcia et al., 2009; Baena-Ruano, 2013). This scheduling system also allows sampling
at critical moments of the cycle, such as at specific points in the loading and unloading
periods, by different measuring devices such as probes and transducers equipped with
sensors that continuously monitor and register all values of each main aforementioned
variable (Jiménez-Hornero et al., 2020). As an example, Figure 5 shows a pilot plant, on
a laboratory scale, consisting of a Frings Acetator (8 L) working in a semi-continuous
mode and equipped with an automation system that allows control of the main system

variables.

28



1. Introduction

Gas condenser

system

1 [
I"
! .

Signal acquisition
modules

I — —

"| -~
Dissolved oxygen and I Al‘ = S ‘ o = - il -
emperature sensor f \ \ - Alcohol
temperature sensor l~ ' ! | i h I ) T
LR il A € ® i concentration
AV Pl Py 2. £ | 3 L ¥ measurer
3 b N = el :
X )
¢

- Monitoring system
(SCADA)

Air-flow measurer

Bioreactor Frings

Supplying medium SL)

Alcohol
concentration
probe
Loading-Unloading

peristaltic pumps Differential
pressure sensor

Figure 5. Pilot plant, on a laboratory scale, equipped with a Frings Acetator (8L) working in a semi-
continuous mode and an automation system that controls the main variables of the system. Source:

Biochemical Engineering Laboratory, Chemical Engineering Section, University of Cérdoba, Spain.

1.2. Acetic acid bacteria
1.2.1. General characteristics of acetic acid bacteria

The vinegar elaboration would not be possible without the activity of the acetic acid
bacteria (AAB), see Figure 6. These bacteria are Gram-negative or Gram-variable and
their metabolism is strictly aerobic by using molecular oxygen (O) as the last electron
acceptor. Despite this, some strains of Acetobacter and Gluconobacter may survive in a
dormant state under low dissolved oxygen concentrations, as throughout the alcoholic
fermentation in winemaking, being potentially reactivated during the wine clarification
(Mas et al., 2014; Saichana et al., 2015; Jackson, 2020). AAB are catalase positive and
oxidase negative, their optimum growing temperature usually ranges between 25-30 °C,
and their optimum growing pH is between 5-6.5 although many AAB do not present
difficulties in growing at much lower pH levels, between 3-4 (Tréek et al., 2015; Wang
et al., 2015a; Gomes et al., 2018). The tolerance to low pH depends on parameters such
as ethanol and acetic acid concentrations and oxygen availability (Baena-Ruano, 2013).
Regarding their shape, most AAB are ellipsoidal or cylindrical, their size usually ranges
between 0.4-1 um wide and 0.8-4.5 um long, and can be observed under the microscope
alone, in pairs, or in aggregates and chains (Malimas et al., 2017).
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These microorganisms constitute a very heterogeneous bacterial group whose cells are
normally mobile with peritrichous or polar flagellation. In nature, AAB are found on
substrates containing sugars and/or alcohols such as fruit juice, wine, cider, beer, and
vinegar (Mas et al., 2014). On them, sugars and alcohols are incompletely oxidized thus
producing organic acids such as acetic acid coming from ethanol, performed by the
genera Acetobacter and Komagataeibacter, or gluconic acid coming from glucose,
carried out by the genus Gluconobacter (Mamlouk and Gullo, 2013; Andrés-Barrao et
al.,, 2016; Qiu et al.,, 2021). This ability of AAB is of great interest to the
biotechnological industry; however, vinegar production is still the most extensively
used industrial application.

Figure 6. Images taken by scanning electron microscopy (SEM) of the acetic acid bacteria working inside

the bioreactor used (Frings, 8 L). Source: own work.

1.2.2. Current taxonomy of acetic acid bacteria

Acetic acid bacteria are classified in the family Acetobacteraceae included in the order
Rhodospirillales of the class Alphaproteobacteria. Acetobacteraceae consists of two
groups, an acetous group and an acidophilic group based on ecological and phylogenic
studies (Komagata et al., 2014). The former includes AAB, which share different a set
of general features (see section 1.2.1.) and includes several genera: Acetobacter, Asaia,
Gluconacetobacter, Gluconobacter, Granulibacter, and Komagataeibacter among
many others. The acidophilic group has natures and origins physiologically and
biochemically heterogeneous and includes other acidophilic and neutrophilic genera like

Acidiphilum and Roseomonas among many others (Komagata et al., 2014).
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Regarding the acetic acid bacteria group, Acetobacter was the first proposed genus
(Skerman et al., 1980). In the 1960s, the taxonomy of AAB was significantly influenced
by the chemotaxonomic study of the G + C content of DNA, quinone systems, cellular
fatty acid composition, and DNA-DNA hybridization (Gillis and De Ley, 1980).
Throughout time, four main genera of AAB (Acetobacter, Gluconobacter,
Gluconacetobacter, and Komagataeibacter) were confirmed based on their membrane-
bound dehydrogenases, which define their ethanol oxidation capabilities, and the type of
respiratory coenzyme chain they contained (Yamada, 1983, Yamada et al., 2012).
Through the development of polyphasic classification techniques that integrate several
phenotypic, chemotactic, and genotypic data, new genera and species have been
continuously reported (Cleenwerck and De Vos, 2008). Further, data from phylogenetic
analysis based on 16S ribosomal RNA (rRNA) gene sequences have had a profound
impact on the systematics of AAB, as well the rest of the genera of the family
Acetobacteraceae (Komagata et al., 2014).

Currently, up to 47 genera and 207 species belonging to the family Acetobacteraceae
have been identified according to Hordt et al. 2020 and the List of Prokaryotic names
with Standing in Nomenclature (LPSN) database (Parte et al., 2020). From them, 20
genera and 108 species belong to AAB updated by the author from Qiu et al. 2021.
Table 1 recompiles the most updated classification of the family Acetobacteraceae to

date and highlights the acetic acid bacteria.

1.2.3. Metabolism of acetic acid bacteria

The molecular and biochemical aspects that define the metabolism of acetic acid
bacteria are becoming more and more the target of many research works. In this section,
a general and updated overview of the main AAB metabolic pathways, especially those
related to the carbon sources assimilation including alcohols, sugars, and sugar alcohols
for the production of organic acids, has been performed. It is worth noting that many
other related metabolic pathways, partially or completely unknown, are being presently
studied by several authors (Zheng et al., 2017; Li et al., 2019; Sankuan et al., 2021;
Sriherfyna et al., 2021; Wang et al., 2021). A detailed review of these molecular

strategies, mainly at an “omics level”, can be found in section 1.3.3.
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1. Introduction

1.2.3.1. Biotransformation of ethanol to acetic acid

The overall oxidative biological reaction that defines the biotransformation of ethanol

into acetic acid can be represented as follows:

CoHsOH + O, — CH3COOH + H,O  AH° =-520 KJxmol™!

AAB are chemoorganotrophs microorganisms that use ethanol coming from a medium
of alcoholic origin as a carbon source. The genera Acetobacter and Komagataeibacter
usually show a higher ethanol preference although other AAB groups may show a
preference for other carbon sources (Gullo et al., 2014; Andrés-Barrao et al., 2016).
This biotransformation consists of an incomplete oxidation reaction of two steps. First,
alcohol dehydrogenase (ADH) binds to pyrroloquinoline quinone (PQQ) to oxidize the
ethanol into acetaldehyde. Next, acetaldehyde is oxidized to acetic acid by membrane-
bound aldehyde dehydrogenase (ALDH); both enzymes are located on the periplasmic
side of the inner cell membrane (Adachi et al., 1980; Ameyama and Adachi, 1982).
Oxidized nicotinamide adenine dinucleotide (NAD®) and nicotinamide adenine
dinucleotide phosphate (NADP), located in the cytoplasm, may be used as coenzymes
by NAD-ADH, NAD-ALDH, and NADP-ALDH (Sriherfyna et al., 2021; Qin et al.,
2022). The inner acetic acid can be completely oxidized by the acetyl-CoA synthase,
which led the input of acetyl-CoA in the TCA cycle and here, up to CO, and H.O
providing energy (ATP) and detoxifying the cell (Matsushita et al., 2016; He et al.,
2022). Other organic acids such as lactic, pyruvic, malic, succinic, citric, and fumaric
may be similarly metabolized (Mamlouk and Gullo, 2013). Because of the strictly
aerobic metabolism of AAB, the ADH-PQQ and ALDH complexes are closely linked to
the respiratory chain, which transfers reducing equivalents from donor substrates to
ubiquinone (UB). Then, electrons from the reduced UB named ubiquinol (UBH>), are
transferred to the final electron acceptor, oxygen (O>), by terminal ubiquinol oxidases
(UOX) producing H2O, see Figure 7 (He et al., 2022; Qin et al., 2022).
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Periplasm | Ethand
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Figure 7. Incomplete oxidation reaction of ethanol into acetic acid both (1) at the cell membrane level
(green box): PQQ-ADH, PQQ-dependent alcohol dehydrogenase; ALDH, membrane-bound aldehyde
dehydrogenase; UB, ubiquinone; UBH,, ubiquinol; UOX, ubiquinol oxidase; and (2) the cytoplasm level
(red box): NAD-ADH, NAD-dependent alcohol dehydrogenase; NAD-ALDH, NAD-dependent aldehyde
dehydrogenase; NADP-ALDH, NADP-dependent aldehyde dehydrogenase. ATP, energy; TCA cycle,
Tricarboxylic Acid Cycle. Source: adapted from He et al. 2022.

The ADH complex of most AAB is composed of three subunits although also may
contain two subunits in any species (Yakushi and Matsushita, 2010). Subunit | (72-78
kDa), encoded by the gene adhA, is a catalytic component containing a PQQ and a
heme C moiety. Subunit Il (44-45 kDa), encoded by the gene adhB, is a membrane-
anchoring and ubiquinone-reducing component possessing three heme C moieties; these
both subunits participate in the intramolecular electron transport to the terminal UB.
Subunit 11l (20 kDa), encoded by the gen adhS, which has no prosthetic group,
facilitates the association of subunits I and Il to the membrane and acts as a molecular
chaperone for folding and/or maturation of subunit I (Mamlouk and Gullo, 2013; Qin et
al., 2022). Several authors have related a high ADH stability and activity with a high
tolerance and production of acetic acid, mainly, in species from the current genus
Komagataeibacter (Trc¢ek et al., 2007; Andrés-Barrao et al., 2016). The ALDH complex
is composed of two or three subunits depending on the AAB species and acts as an
operon. Although its optimum pH ranges between 4-5, the oxidation of acetaldehyde to
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1. Introduction

acetate may be catalyzed at lower pH values. ALDH is highly sensitive to low oxygen
concentrations and the presence of ethanol in the medium (Mamlouk and Gullo, 2013).

1.2.3.2. Carbohydrates oxidation metabolism

AAB can metabolize different carbohydrates as carbon sources, mainly glucose, but
also arabinose, fructose, galactose, mannose, ribose, sorbose, and xylose (Mamlouk and
Gullo, 2013). Most AAB have been characterized by non-functional glycolysis because
of the absence of phosphofructokinase enzyme; therefore, the pentose phosphate
pathway (PPP) is the main metabolic route of AAB to oxidize the glucose available in
the medium by the catalytic activity of the enzymes glucose-6-P dehydrogenase
(G6PDH) and 6-phosphogluconate dehydrogenase (6PGD) providing metabolic
precursors such as ribulose-5-phosphate, generating NADPH + H*, and energy (Adler et
al., 2014; Garcia-Garcia et al., 2017; Yin et al., 2017). Among AAB, several species
from Gluconobacter are glucose-preference and several Gluconobacter oxydans strains
also exhibit the ability to oxidize glucose to gluconic acid via glucono-6-lactone
forming D-gluconate. This oxidation reaction occurs in the periplasm by a membrane-
bound pyrrologuinoline quinone-dependent glucose dehydrogenase (PQQ-GDH)
located on the outer side of the cytoplasmic membrane. D-gluconate can be further
oxidized rapidly to ketogluconates such as 2-ketogluconate (2-KGA), 5-ketogluconate
(5-KGA), and 2,5-diketogluconic acid (2,5-DKGA) both in the periplasm and
cytoplasm by different oxidizing enzymes, see Figure 8 (Bringer and Bott, 2016;
Garcia-Garcia et al.,, 2017; Kiefler et al.,, 2017). Glucose, gluconic acid, and
ketogluconates can be assimilated by these bacteria thus obtaining biomass, energy, and
acidifying the medium, possibly, as a part of their metabolic strategy to prevail over
other glucose-like microorganisms (Garcia-Garcia et al., 2017). Final products of PPP
and Entner Doudoroff pathway (EDP) may be completely oxidized to CO2 and H20 by
Acetobacter, Gluconacetobacter, and Komagataeibacter spp. using the TCA cycle
when carbon source of the medium is exhausted but not by Gluconobacter spp., which
show a non-functional TCA cycle (Mamlouk and Gullo, 2013; Kiefler et al., 2017).

AAB also exhibit the ability to oxidize several sugar alcohols such as glycerol, D-
mannitol, and D-sorbitol among others, being especially remarkable in winemaking the
use of glycerol as a carbon source producing dihydroxyacetone (DHA) by the activity of
some oxidizing enzymes, mainly glycerol dehydrogenase, and providing energy (ATP)
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via gluconeogenesis. Strains from Acetobacter pasteurianus, Gluconobacter oxydans,
and Komagataeibacter xylinus are some of the most studied regarding this oxidative
pathway (Mamlouk and Gullo, 2013; La China et al., 2018).

[ D-glucose ] [ D-gluconate ] [ 2-keto-D-gluconate ] [ 2,5-Diketo-D-gluconate ]

/A - N
z

N
D-glucose-6-P

Citoplasm

Periplasm

[ D-gluconate ] [ 5-keto-D-gluconate ]

Figure 8. Glucose metabolism in Gluconobacter. Cell membrane enzymes: PQQ-GDH, PQQ-dependent
D-glucose dehydrogenase; GADH, FAD-dependent D-gluconate 2-dehydrogenase; 2KGADH, FAD-
dependent 2-keto-D-gluconate dehydrogenase; GA5SDH, PQQ-dependent D-gluconate 5-dehydrogenase.
Cytoplasm enzymes: GDH-NAD, NADP-dependent D-glucose dehydrogenase; GASDH-NAD, NADP-
dependent D-gluconate 5-dehydrogenase; 2KGR, 2-keto-D-gluconate reductase; 5KGR, 5-keto-D-
gluconate reductase; G6PDH, glucose-6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate
dehydrogenase. Compounds: G3P, glyceraldehyde 3-phosphate. Pathways: PPP, pentose phosphate
pathway; EDP, Entner Doudoroff pathway. Source: adapted from Garcia-Garcia et al. 2017.

1.2.4. Biotechnological applications of acetic acid bacteria

AAB are the main microorganisms responsible for vinegar production, but they are also
used in different applications very useful in biotechnology which are increasingly being
investigated. Other foods can be produced as the result of the activity of AAB, as is the
case of kombucha, a traditional beverage obtained by fermenting sugary tea with a
symbiotic culture of acidophilic yeasts and bacteria including acetic acid bacteria
(AAB) and lactic acid bacteria (LAB) immobilized in a microbial cellulose biofilm
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known as tea fungus (Gomes et al., 2018; Villareal-Soto et al., 2018). First, yeasts
transform sugars from tea into organic acids, ethanol, and CO,. Then, AAB may
synthesize different compounds such as acetic acid (Acetobacter aceti, Acetobacter
pasteurianus), gluconic acid (Gluconobacter oxydans), and bacterial cellulose
(Komagataeibacter xylinus) due to the high biodiversity of AAB. This product is
becoming more and more popular because of its probiotic characteristics as a treatment
of gastrointestinal disorders as well as improving general health and increasing
longevity attributed due to its acidic composition and high phenolic antioxidant content
(Ayed et al., 2017; Gomes et al., 2018; Villareal-Soto et al., 2018). Another product,
gluconic acid, is industrially obtained by the oxidation of glucose by several AAB,
mainly Gluconobacter oxydans. Gluconic acid improves the sensory properties of food
products and may also be used as an additive and preservative by the food industry. Due
to its role in the aromatic profile of foods, gluconic acid has been proposed as a quality
parameter of food products (Mounir et al., 2016; Gomes et al., 2018). Gluconic acid is
used in the pharmaceutical industry as gluconates of divalent metals, which function as
mineral supplements to treat some diseases (Cafiete-Rodriguez et al., 2016). The high
oxidative capability of strains of Gluconobacter is also exploited to convert sugar
alcohols as in the case of D-sorbitol to L-sorbose, an important intermediate in
industrial production of L-ascorbic acid (vitamin C), an antioxidant very used in the
food industry (Mamlouk and Gullo, 2013).

Among biotechnological applications of AAB, the production of bacterial cellulose has
attracted interest in recent years because of its extreme purity, unlike plant-derived
cellulose, thus representing a promising alternative for many industries (Gomes et al.,
2018). Among its multiple applications, bacterial cellulose is employed as a gelling,
stabilizing, and thickening agent in foods, heart medicine, pharmacy, and skin repair in
wound healing and burn treatments (Shi et al., 2014; Mohammadkazemi et al., 2015;
Ullah et al., 2016). K. xylinus is the most commonly used species of AAB because of its
capability to produce high amounts of bio-cellulose from different carbon and nitrogen
sources and involves different enzymes such as glucose kinase, phosphoglucomutase,
UDP-glucose pyrophosphorylase, and membrane-bound cellulose synthase (Kuo et al.,
2016). Besides bio-cellulose, AAB may produce other microbial exopolysaccharides,
such as levans, dextran, acetan, mannan, and gluconacetan with important industrial

applications (Gomes et al., 2018; Anguluri et al., 2022).
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1.3. Omics sciences applied to vinegar-producing microbiota
1.3.1. Methods of molecular identification

The particular growing conditions and metabolic characteristics of AAB hinder their
isolation by traditional methods in solid media, outside the environments in which they
carry out their activity fully (Fernandez-Pérez et al., 2010; Mamlouk and Gullo, 2013).
This occurs especially from fermented beverages such as industrially produced vinegar
within bioreactors since here, the microbiota involved requires proper concentrations of
substrate (ethanol) and product (acetic acid), low pH, a constant oxygen supply, and
aeration of the medium (Garcia-Garcia et al., 2019). This phenomenon, known as viable
but non-culturable (VBNC) state, limits the study of the richness and biodiversity,
probably ignoring key species that compose these microbiota inhabiting aggressive
media (Mamlouk and Gullo, 2013). Traditionally, AAB have been identified according
to several morphological, biochemical, and physiological criteria, however, current
identification methods are focused on the global analysis of biological macromolecules
(DNA, RNA, and proteins) and metabolites in a cell, tissue, organism, or population at
critical moments and under specific conditions (Cleenwerck and De Vos, 2008; Porras-
Aguera, 2020). In this way, the “omics sciences” emerge as an alternative to solve many
of the problems present by traditional methods. In this section, the main molecular
techniques used throughout the time for the identification and typing of AAB are
described according to the taxon identified (genus, species, and strain) and the

macromolecule selected (DNA, RNA, protein, and metabolite).

1.3.1.1. Genomics and metagenomics

The use of molecular techniques for the identification of AAB began with DNA-based
techniques more than 25 years ago. After the first assays focused on selective extraction
of nucleic acids such as plasmid profiling (Teuber et al., 1987; Mariette et al., 1991) and
DNA-DNA hybridization (Boesch et al., 1998), the PCR-based systems were
developed. PCR amplification of specific regions on the 16S rRNA gene and restriction
fragment length polymorphism (RFLP)-PCR of the same gene, let to identify microbial
populations in vinegar at the genus and species levels (Sievers et al., 1998; Ruiz et al.,
2000). The digestion using restriction enzymes such as tagl and rsal allowed

discrimination between AAB genera, although the high conservation of 16S rRNA gene
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required the use of 16S-23S rRNA intergenic spacer region (ITS) with a higher
variability than functional sequences for differentiating under a species level (Ruiz et
al.,, 2000; Gonzalez et al., 2006). Other PCR-based methods include first, the
amplification of specific regions on other genes such as adhA in K. europaeus and
nifH/nifD in nitrogen-fixing AAB (Loganathan and Nair, 2004; Tréek, 2005; Dutta and
Gachhui, 2006); and second, a combination of other techniques including
enterobacterial repetitive intergenic consensus (ERIC)-PCR, repetitive extragenic
palindromic (REP)-PCR, (GTG)s-rep-PCR, quantitative real-time PCR (gPCR), nested
PCR, random amplified polymorphic DNA (RAPD)-PCR, and amplified fragment
length polymorphism (AFLP) which several authors have used to identify, typing, and
some to enumerate species and strains of AAB mainly in wine and vinegar microbiota
(Ruiz et al., 2000; Gonzélez et al., 2005, 2007; De Vuyst et al., 2008; Cleenwerck et al.,
2009; Fernandez-Pérez et al., 2010; Vegas et al., 2010; Li et al., 2014). Although these
techniques have been described as rapid methods for the taxonomic grouping of AAB,
an accurate identification is only possible based on a polyphasic approach. In this sense,
the electrophoresis-based techniques act by the separation of amplified fragments of the
16S rRNA gene according to their mobility under denaturing conditions (Lopez et al.,
2003). Both denaturing gradient gel electrophoresis (DGGE)-PCR and denaturing high-
performance liquid chromatography (DHPLC) have been used to group the main genera
of AAB involved in traditional (De Vero and Giudici, 2008) and submerged vinegar
production (Trc¢ek et al., 2016). Both approaches are useful for monitoring structural
changes of fermented food microbiota, however, due to the small size of DNA
fragments, only identification to genus level is possible. For this reason, Andrés-Barrao
et al. 2016 used DGGE-PCR along with housekeeping sequencing of genes (dnaK,
groEL, rpoB) and multi-locus sequence typing (MLST) to build a detailed phylogenetic

tree of Komagataeibacter strains making high-acid spirit vinegar.

Recently, metagenomics and massive sequencing appear as new technologies that allow
the analysis of the genomic DNA or RNA from all organisms of a microbial population
(Rizo et al., 2018). These next-generation sequencing (NGS) tools provide a great deal
of information about the gene content and function allowing both the identification and
classification of microbiomes, rebuilding metabolic routes, and comparing experimental
conditions to find differential microbial composition, abundance, and function (Mayo et

al., 2014; Escobar-Zepeda et al., 2015). Amplicon metagenomics (pyrosequencing and
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Illumina) of specific genes or genome regions was applied to identify and quantify
metagenomes of AAB in different types of vinegar produced by surface (Peng et al.,
2015; Valera et al., 2015) and submerged systems (Tréek et al., 2016). Finally,
“shotgun” metagenomics implements the use of the sequencing data to infer potential
metabolic functions encoded by the genomes of the community members under study
through the assembly of the sequence reads followed by gene prediction and even
discovering whole genomes of VBNC microorganisms (Smukowski-Heil et al., 2018;
Verce et al., 2019). In vinegar, this technology was first used for the analysis of the

microbiota of cereal vinegar to reveal the flavor metabolic network (Wu et al., 2017).

1.3.1.2. Proteomics and metaproteomics

The DNA within the cells contains the genetic map of the whole organism, however, the
cellular phenotype can only be detected by studying proteins. Proteins are responsible
for carrying out one or more specific functions within cells and because of their high
activity and sensitivity to environmental changes, their study throughout fermentation
dynamics is increasingly widespread (Elviri and Mattarozzi, 2012; Rizo et al., 2018).
Proteomics is the analysis of the entire set of proteins produced by a cell or organism
allowing us to identify them and quantify their abundance thus offering a precise picture
of what is occurring in crucial moments and under specific conditions of a biological
process (Pischetsrieder and Baeuerlein, 2009; Rizo et al., 2018). Analysis of complex
microbiota, such as AAB inhabiting vinegar, is improved through metaproteomic
approaches that let the study of the composition and function of multiple proteomes

belonging to different species or strains with high throughput (Heyer et al., 2017).

The first protein-based technique used for the analysis of the vinegar microbiota was
two-dimensional electrophoresis (2DE) which separates complex mixes of proteins first,
by isoelectric focusing (IEF) and second, according to their molecular weight (SDS-
PAGE) using polyacrylamide gels (Elviri and Mattarozzi, 2012). Lasko et al. 1997
studied protein patterns in response to acetate stress in two acetate-resistant species of
Acetobacter. A few years later, proteins for acetic acid response in A. aceti and their
relationship with the TCA cycle as a strategy of its assimilation were determined
(Nakano et al., 2004, 2006; Nakano and Fukaya, 2008). Although 2DE provided
remarkable molecular advances for improving vinegar production, the trouble of the

inherent lack of reproducibility between gels led to the development of differential gel
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electrophoresis (DIGE) consisting of the labeled of two samples, each with a different
fluorescent dye (Cy3-NHS, Cy5-NHS), before running them on the same gel (Minden,
2012). 2D-DIGE has allowed identifying differentially expressed proteins in the
proteome of A. pasteurianus and metaproteome of Komagataeibacter spp. producing
spirit vinegar (Andrés-Barrao et al., 2012, 2016).

Since all these molecular methods require extensive sample manipulation and intensive
work, new approaches have been developed for rapid identification of bacteria (Tréek
and Barja, 2015). One of them, matrix-assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF MS), allows performing a rapid routine identification
for a large number of bacteria samples obtaining a unique mass spectrum composed of
several peaks corresponding to high-abundance soluble proteins. This results in a
protein profile for each bacteria that allow for differentiation among genera, species,
and strains (Tréek and Barja, 2015; Gomes et al., 2018). MALDI-TOF MS has been
described as a quick and reliable method for the identification of AAB involved in the
industrial production of vinegar and beer spoilage (Andrés-Barrao et al., 2013; Wieme
et al., 2014). In recent years, mass spectrometry (MS) technology has been combined
with liquid chromatography (LC) leading to LC-MS, an analytical method sensitive,
selective, and accurate consisting of the physical separation and mass-based detection of
proteins, peptides, other macromolecules, and metabolites (Malachovéa et al., 2018;
Lasch et al., 2020). By adding a second mass analyzer, both working in tandem (LC-
MS/MS), “shotgun” metaproteomics technology emerged as a powerful tool for the fast
identification of thousands of proteins from a metaproteome by analyzing complex
mixtures of peptides resulting from their proteolytic digestion without a prior separation
by electrophoresis and providing a wider dynamic range and protein coverage (Zhang et
al., 2018; Roux-Dalvai et al., 2019). Although previous works have used free-label LC-
MS/MS and isobaric tags for relative and absolute quantitation (iTRAQ) in the AAB
field (Xia et al., 2016; Yin et al., 2017), “shotgun” metaproteomics by LC-MS/MS
method for the study of a whole vinegar microbiota has been developed, to our

knowledge, for the first time in the current Doctoral Thesis.

1.3.1.3. Metabolomics

Vinegar is mainly the result of numerous metabolic reactions in which the microbiota

present are involved. This fact leads to the release of several metabolites (sugars, sugar
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alcohols, amino acids, carboxylic acids, fatty acids, and volatile compounds) which
comprise a metabolomic profile essential for the organoleptic properties of the final
product (Pinu et al., 2016). Metabolomics is a recent approach that is often applied
along with (meta)genomics and/or (meta)proteomics to relate macromolecules (genes,
proteins, etc.) belonging to the microorganisms present in the medium with their
corresponding produced metabolites (Patti et al., 2012; Rizo et al., 2018). Two types of
approaches are used in metabolomic studies: untargeted and targeted analyses; however,
the instrumental techniques for most of them consist of a previous separation of the
metabolites from the samples by chromatography followed by their identification and
quantification using MS according to the mass-to-charge (m/z) ratio (Patti et al., 2012;
Pinu et al., 2016). For the analysis of different metabolomic vinegar profiles, above all
balsamic and cereal vinegar, gas chromatography(GC)-MS (Pinu et al., 2016; Zhu et al.,
2018), high-performance liquid chromatography(HPLC)-MS (Cocchi et al., 2002;
Sanarico et al., 2003), capillary electrophoresis(CE)-MS (Lee et al., 2019), and nuclear
magnetic resonance (NMR) spectrometry (Caligiani et al., 2007) have been widely used.
GC-MS is one of the most mature technologies in metabolomics; it allows the
identification and simultaneous analysis of hundreds of metabolites with high-resolution
capability and sensitivity thus obtaining comprehensive metabolite profiles of fermented
products. However, this method usually requires chemical derivatization for non-
volatile metabolites (Villas-Bdas et al., 2005; Smart et al., 2010). For the extraction of
volatiles, stir bar sorptive extraction (SBSE) with polydimethylsiloxane (PDMS)
coating let to reduce the disadvantages of other extraction systems. This method does
not use solvents, is simple, fast, highly sensitive, and shows suitable limits for the
quantification and detection of volatile compounds in vinegar (Duran-Guerrero et al.,
2006, 2007).

1.3.14. Databases and software for raw data analysis in omics sciences

After identification and/or quantification of the different macromolecules or compounds
coming from the microorganisms inhabiting vinegar, to know their microbial
composition and behavior on their natural media, the raw data obtained must be
processed by using specific databases or software according to each omic science.
Currently, the technologies that support not only the omics sciences procedures but also

the subsequent raw data manipulation are continuously updated, improved, and
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developed mainly in terms of efficiency and accuracy (Porras-Aguera, 2020). The

choice of suitable tools for raw data processing and bioinformatic analyses is essential

for the success of an experimental design working with omics sciences. Here, some of

the most currently used databases or software in the omics sciences field are described,

see Table 2.

Table 2. Compilation of the main databases, software, and tools used in the raw data processing

mainly focused on the field of bacterial omics sciences. Source: own work.

Tool Accession link Omics science Description
BLAST https://blast.ncbi.nlm.nih (Meta)genomics and Comparison of nucleotides or
.gov/Blast.cqgi (meta)proteomics protein sequences
QIIME2 https://giime2.org/ (Meta)genomics Treatment metagenomic data
and interactive visualization
LPSN https://Ipsn.dsmz.de/ (Meta)genomics Taxonomic classification of
prokaryotic microorganisms
Proteome — (Meta)proteomics MS raw data analysis
Discoverer
Uniprot https://www.uniprot.org/ (Meta)proteomics Database of protein sequence
blast/ and functional information.
GO Term analysis
MaxQuant https://www.maxquant.o (Meta)proteomics Quantitative proteomics for
rg/ high-resolution analysis. MS
raw data treatment
Perseus https://maxquant.net/per (Meta)proteomics Proteins quantification,
seus/ interaction, and PTM
STRING https://string-db.org/ Proteomics Protein-protein interactions
and functional associations
KEGG https://www.genome.jp/  Genomics Collection of genome
kegq/ databases, enzymatic routes,
and chemical compounds
BioCyc https://biocyc.org/ Genomics and Collection of genome
proteomics databases, metabolic routes,
and chemical compounds
MetaboAnalyst https://www.metaboanal Metabolomicsand  Metabolomic and other
yst.ca/ multi-omics omics data analysis. Statistics
RStudio https://www.rstudio.com Multi-omics Raw data analysis.

/

Programming, bioinformatics

1.3.2. Microbial biodiversity throughout the acetification process

The microbiota composition inhabiting vinegar has a crucial role in the organoleptic

properties and quality of the final product. Omics sciences have certainly facilitated the
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understanding of the microbial biodiversity throughout the acetification process by
using different approaches such as metagenomics (Trcek et al., 2016; Peters et al., 2017;
Wu et al., 2017; Peng et al., 2021), transcriptomics (Sakurai et al., 2011; Wang et al.,
2021), proteomics (Andrés-Barrao et al., 2012; Zhang et al., 2015; Xia et al., 2016;
Zheng et al., 2017), metaproteomics (Andrés-Barrao et al., 2016), and metabolomics
(Zhu et al., 2018; Jiang et al., 2019; Zhang et al., 2019). These studies have allowed
identifying the microorganisms involved in these biotransformations as well as
describing their behavior both under different operating conditions and media thus

helping to elucidate the key role of the vinegar-making microbiota.

The microbial composition of vinegar is highly dependent on the starting inoculum, raw
material, and production system (Mas et al., 2014; Li et al., 2015b). Acetobacter and
Komagataeibacter are usually the main AAB responsible for the acetification process
because of their high oxidative capabilities to transform ethanol into acetic acid,
although other minor fractions of microorganisms might coexist with the best-adapted
ones (Gullo et al., 2014; Wang et al., 2015a; Peng et al., 2021). Species of Acetobacter
are usually damaged when the acetic acid concentration reaches 7-8% (w/v) with a
maximum of 9-10% (w/v), so they are widely found in wine, cereal, and balsamic
vinegar elaborated by traditional methods and early stages of those produced by
submerged culture or low-acid vinegar, like cider vinegar [4.0-9.0% (w/v)] and wine
vinegar [4.5-10% (w/v)]. A. pasteurianus is usually the most widely found species of
this genus (Gullo et al., 2009; Gullo et al., 2014; Zhang et al., 2015) although A. aceti,
A. malorum, and A. pomorum have been also detected in some of the aforementioned
media, see Table 3 (Gullo and Giudici, 2008; Andrés-Barrao et al., 2013). In low-acid
vinegar, the presence of bacteria other than AAB, such as lactic acid bacteria
(Lactobacillus, Leuconostoc, Oenococcus, and Pediococcus) has been reported (Tréek
et al., 2016; Zhu et al., 2018).

Species of Komagataeibacter (main of them relocated from Gluconacetobacter), which
can resist 15-20% (w/v) acetic acid, are highly predominant in submerged cultures

including spirit vinegar and late stages of most white and red wine vinegar (Fernandez-
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Pérez et al., 2010; Gullo et al., 2014; Andrés-Barrao et al., 2016). Because of their
tolerance to low acidity levels [7-9% (w/v)], several strains have been also shown to
participate in the acetification profiles of cider, other fruits, and even traditional
vinegars (Fernandez-Pérez et al., 2010; Fu et al., 2014; Trcek et al., 2016). K. europaeus
has been described as the main suitable AAB for the industrial production of vinegar
due to its particular growing conditions (Trcek et al., 2007; Andrés-Barrao et al., 2011)
although other Gluconacetobacter (Ga. entanii) and Komagataeibacter species (K.
hansenii, K. intermedius, K. medellinensis, K. oboediens, K. rhaeticus, and K. xylinus)
are present in different types of vinegar, see Table 3 (Boesch et al., 1998; Schuller et al.,
2000; Fernandez-Pérez et al., 2010; Trcek et al., 2016; Peters et al., 2017).

The biodiversity of the microbiota decreases with the increase in the concentration of
acetic acid in the medium and operating conditions that control bioreactors cause these
media to be even more selective since few species show the growing conditions that
allow them to adapt and survive (Vegas et al., 2010; Gullo et al., 2014). However,
recent studies highlight the presence of a minor fraction of microorganisms trying to
coexist with the better-adapted species and contributing to the stability of the microbial

community (Tréek et al., 2016; Peng et al., 2021).

1.3.3. Key molecular strategies throughout the acetification process

The behavior of the microorganisms which participate in the industrial elaboration of
vinegar may be influenced by the chemical features of the raw material, the production
system, and operating conditions (Mas et al., 2014). Although the metabolism of these
microbiota is driven by the incomplete oxidation reaction of ethanol into acetic acid,
there are many other molecular strategies at both the cytoplasmic and membrane level
for the adaptation and survival of the community members to the conditions imposed by
the medium (Wang et al., 2015a; Xia et al., 2016; Peng et al., 2021; Qiu et al., 2021).
Because the basic assimilative metabolism of the AAB has been described in section
1.2.3., here, a compilation of the main associated processes or pathways used by the
microbiota as strategies, mainly focused on acetic acid throughout vinegar production,
has been performed. The analyses of these strategies, some of them partially or

completely unknown, have been approached mainly from an omics perspective.
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1.3.3.1. Strategies on the cytoplasm: biosynthetic and stress-related
processes

Acetic acid bacteria are available to produce a variety of macromolecules (amino acids,
proteins, nucleic acids, and lipids) and metabolites (alcohols, sugar alcohols, esters, and
other aromatic compounds) throughout acetification (Li et al., 2016; Zhu et al., 2018).
Ammonium is a key nitrogen source used in the biosynthesis of amino acids, proteins,
nucleotides, and volatile compounds (Gobert et al., 2019). Amino acids are synthesized
through L-glutamine and L-glutamate both being nitrogen sources that are self-regulated
according to the cell requirements (Yin et al., 2017; Sankuan et al., 2021). AAB may
use their high nitrogen recovery capability to transform continuously nitrogen sources
like proteins, nucleic acids, and apoptotic cells into ammonium and amino acids to
replace the cell material losses throughout the submerged acetification (Alvarez-Céliz et
al., 2012; Kuypers et al., 2018). The deamination process consists of the switch of L-
glutamine into L-glutamate by a glutaminase (YbaS) with the release of gaseous
ammonia (NHs) thus increasing the content of acid products (H*, NHa4) at the end of
acetification (Lu et al., 2013; Trcéek, 2015). In this sense, acetolactate synthase (Als) is a
key enzyme related to the formation of branched-chain amino acids (BCAA) from
pyruvate that may provide NHz and energy to neutralize this increase of final acid
products and support intracellular pH balance, see Figure 9 (Santiago et al., 2012;
Andrés-Barrao et al., 2016; Yin et al., 2017).

The biosynthesis of proteins is one of the most highlighted metabolic pathways in AAB
throughout acetification. Ribosomal proteins and others ensuring an accurate translation
process often undergo a decrease in their activity when the concentration of acetic acid
increases at the final stages of the acetification (Ibba and S6ll, 2000; Rubio-G6mez and
Ibba, 2020). A negative effect of the acidity increase on ribosome integrity and protein
biosynthesis has been described in proteomic and transcriptomic approaches (Andrés-
Barrao et al., 2012; Xia et al., 2016; Wang et al., 2021). However, the activity of
proteins that regulates the translation by recycling and inactivating ribosomes, such as
ribosome recycling factor (RRF) and hibernation promoting factor (HPF), increases
under high-acidity conditions. Then, several stress-related proteins, such as heat shock
proteins 60 GroES, 10 GroEL and molecular chaperones Dnal, DnaK, GrpE, and ClpB,
have been described as protectors to prevent the protein denaturation and refolding
under stress conditions (Hartl and Hayer-Hartl, 2002; Okamoto-Kainuma et al., 2002;
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Hirokawa et al., 2005; Matzov et al., 2019). Studies performed in A. pasteurianus
detailed an up-regulation of these proteins when the acidity was increased, so possible
regulation of the formation and folding of proteins as a molecular strategy against acetic
acid stress is proposed, see Figure 9 (Andrés-Barrao et al., 2012; Wang et al., 2015b;
Xiaetal., 2016).

It is also worth noting that throughout a submerged vinegar fermentation and,
especially, those working in a semi-continuous mode, the microbiota is subjected to
sudden changes in volume, substrate, and product concentration that trigger constants
biotransformations. These oxidation reactions, performed under a continuous aeration
condition, may generate a variety of toxic compounds and reactive oxygen species
(ROS) in the cellular cytoplasm of AAB (Okamoto-Kainuma et al., 2008). Catalase
(KatE), superoxide dismutase (SodB), ferredoxin (FdxA), glutaredoxin (GrxC), and
bacterioferritin (Bfr), among many other oxidoreductases and cofactors (NADH/NAD*
and NADPH/NADPY), have been described as up-regulated proteins under acetic acid
stress in different species of AAB, see Figure 9 (Xia et al., 2016; Sriherfyna et al.,
2021). Redox homeostasis may be a valuable strategy and a crucial metabolic pathway

to control submerged vinegar fermentation.

1.3.3.2. The tricarboxylic acid cycle (TCA)

The TCA cycle was one of the first metabolic pathways whose enzymes were shown to
be associated with inner acetic acid assimilation (Nakano et al., 2004, 2006; Nakano and
Fukaya, 2008). Cytoplasmic acetic acid can be completely oxidized to CO2 and H.O
providing energy (ATP) and detoxifying the cell by the well-known overoxidation
reaction (Matsushita et al., 2016). Acetyl-CoA synthase (Acs) catalyzes the conversion
of acetate into acetyl-CoA and its input into the TCA cycle when the ethanol source in
the medium is exhausted to promote secondary growth (Ramirez-Baena et al., 2013).
Acetobacter, Gluconacetobacter, and Komagataeibacter spp. may use the TCA cycle
but not Gluconobacter spp., which lacks some enzymes showing a non-functional TCA
cycle (Mamlouk and Gullo, 2013; Kiefler et al., 2017). Proteomic and genomic analyses
revealed that three genes (aarA, aarB, and aarC) are influenced by acetic acid stress and
their deletion causes acid resistance lost in A. aceti 1023 (Fukaya et al., 1990). AarA and
aarC genes, which encode citrate synthase (AarA) and succinyl-CoA transferase (AarC)

respectively, were some of the first acetic acid resistance determinants (Mullins et al.,
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2008). AarC is produced by Acetobacter and Komagataeibacter replacing succinyl-CoA
synthetase (SucCD) in Acetobacter spp. classified into the A. pasteurianus group
(Azuma et al., 2009; Mullins and Kappock, 2012). Aconitate hydratase (AcnA), another
TCA cycle enzyme, was up-regulated when growing A. aceti in a 1% EtOH medium,
and its overexpression increased the acetic acid resistance of the strain (Nakano et al.,
2004). Proteomic and metaproteomic analyses of A. pasteurianus [4% (w/v)] and
Komagataeibacter spp. [> 10% (w/v)] respectively, for submerged vinegar production,
revealed up-regulated enzymes of the TCA cycle under high-acid conditions including
citrate synthase (AarA), aconitate hydratase (AcnA), isocitrate dehydrogenase NAD™
(Icd), succinate dehydrogenase (SdhA), fumarate hydratase (FumA/C), and succinyl-
CoA transferase (AarC) among others (Andrés-Barrao et al., 2012, 2016). Considering
that AAB must cope with continuous changes in the ethanol, acetic acid, and cell
concentrations throughout submerged acetification, the TCA cycle may be used for
assimilating inner acetic acid coming from ethanol, supplying energy and biosynthetic
precursors, see Figure 9. The TCA cycle participates in the strategy that confers to the
vinegar microbiota its inherent resistance to living and thriving in its natural aggressive
media within bioreactors (Adler et al., 2014; Andrés-Barrao et al., 2016; Qiu et al.,
2021).

1.3.3.3. Acetic acid resistance mechanisms on the cell membrane

The increase of acetic acid concentration in the medium may trigger modifications on
the cell membrane morphology in AAB. Acetobacter and Komagataeibacter are acetic
acid-producing species commonly found in the vinegar industry, but the latter shows
higher acid resistance than the former (Qiu et al., 2021). Acetobacter spp. can be
classified according to their surface shape into R (rough cell surface) and S (smooth cell
surface), being the first related to a pellicle polysaccharide formation (Deeraksa et al.,
2005). A. pasteurianus R strains have demonstrated a higher capability production and
tolerance of acetic acid than S strains and intracellular acetic acid content of the latter is
3 or 4 times higher than that of the R strains thus showing a higher diffusion of acetate
molecules into the cell of S strains due to the absence of the aforementioned pellicle
(Kanchanarach et al., 2010). In Komagataeibacter spp., a lack of capsular
polysaccharides (CPS) layer has been reported during the industrial production of
vinegar, conversely to Acetobacter spp. Ethanol and acetic acid should diffuse freely
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through the outer membrane throughout acetification, so the absence of the CPS layer
may favor the exchange of metabolites between the cellular inner and the medium, thus
enhancing industrial vinegar production (Andrés-Barrao et al., 2016). CPS may not be
involved in the acetic acid resistance of Komagataeibacter but probably are in yield

enhancement.

Regarding cell membrane composition, Komagataeibacter strains (K. europaeus) show
higher phosphatidylcholine (PC) content than those of Acetobacter thus becoming the
main phospholipid of the cell membrane, particularly in presence of acetic acid in the
medium, see Figure 9. Likewise, non-polar glycolipids content also increased under
these conditions which could result in the strengthening of the cell hydrophobic layer
(Tréek et al., 2007). Sphingolipids' content may also increase through dihydroceramide,
whose synthesis has been directly related to acetic acid tolerance and the stability of the
PQQ-ADH enzyme in Acetobacter malorum during vinegar production (Ogawa et al.,
2010). Komagataeibacter spp. exhibit higher levels of hopanoids, particularly
tetrahydroxybacteriohopane (THBH), which contributes to the stabilization of the cell
membrane at high ethanol concentration and has been also related to the acetic acid
resistance in AAB (Matsushita et al., 2016; Nakano and Esibuya, 2016). Alterations in
the fatty acids’ composition have been also described through the attenuation of the flux
of the fatty acid pathway and subsequently reduce the total lipids content. The
downregulation of two effector proteins in A. pasteurianus, FabD and FabG, involved in
the biosynthesis and elongation of fatty acids under acetic acid stress is clear evidence
of it (Xia et al., 2016). However, two genes involved in the increase of the proportion
and chain length of unsaturated fatty acids, des and cfa, were activated in a K. hansenii
strain under acetic acid stress which could indicate different strategies among AAB to
adapt their membrane composition to the conditions imposed by the medium, see Figure
9 (Lietal., 2019).

On the other hand, proteins and enzymatic complexes located in the cell membrane may
contribute to the molecular strategy of the vinegar-producing microbiota. Although
well-known membrane-bound ADH-PQQ and ALDH system that carried out the acetic
acid generation from ethanol has been described in section 1.2.3.1., it is worth noting
that the activity of their enzymes has been also described. ADH-PQQ enzymes usually

show high quantification throughout acetification although can exhibit more unstable
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behavior as a consequence of the shift of the carbon source from glucose to ethanol or
the growing phase in some AAB strains (Quintero et al., 2009; Andrés-Barrao et al.,
2012). However, ADH-PQQ relevance in this transformation is usually greater than that
of membrane-bound ALDH (Wang et al., 2021). Because the role of cytoplasmic
enzymes (ADH-NAD and ALDH-NADP) is the conversion of the cytoplasmic ethanol,
their activities during the acetification on the cell membrane are completely inhibited
(Yakushi and Matsushita, 2010; Gullo et al., 2014; Qiu et al., 2021). Acetic acid can be
released to the periplasm by an efflux pump proton motive force-dependent and ATP-
binding cassette (ABC) transporters. A putative ABC transporter in A. aceti, named
AatA, was associated with acid resistance acting as an efflux pump for acetic acid
release (Matsushita et al., 2005; Nakano et al., 2006). Comparative genomic analysis
demonstrated that species of Komagataeibacter contain more genes encoding putative
ABC transporter proteins than Acetobacter (Wang et al., 2015b). This correlation may
indicate that ABC transporters are directly associated with acetic acid resistance (Qiu et
al., 2021). The outer membrane may also contribute to cell membrane function. The
outer membrane protein (OMP) family acts as permeable porins of small solutes and
maintains the stability of the outer membrane structure (Confer and Ayalew, 2013).
OmpA, OmpH, OmpW, and OsmC were implied in the balance of nutrient uptake and
resistance to the toxicity of molecular stressors in response to the high acidity in A.
pasteurianus and K. europaeus. However, there are important differences in the
behavior of these proteins and their corresponding coding genes between AAB genera
throughout acetification, thus unraveling possible diverse strategies contributing to
acetic acid resistance (Andrés-Barrao et al., 2012; Xia et al., 2016; Wang et al., 2021).

These molecular strategies at the cell membrane level are described in Figure 9.
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Figure 9. Main metabolic pathways performed by vinegar-producing AAB microbiota under high acetic
acid concentration conditions. The molecular strategies are included both (1) at the cell membrane level
(proteins in blue): ADH-PQQ, PQQ-dependent alcohol dehydrogenase; ALDH, membrane-bound
aldehyde dehydrogenase; UB, ubiquinone; TO, terminal oxidase; AatA, putative ABC transporter;
FabD/G, acyl-carrier transacylase; Des, fatty acid dehydrogenase; Cfa, cyclopropane fatty acid synthase;
Omp, outer membrane family protein; OsmC, osmotically inducible protein C; and (2) at the cytoplasm
level (proteins in orange): ADH-NAD, NAD-dependent alcohol dehydrogenase; ALDH-NADP, NADP-
dependent aldehyde dehydrogenase; Acs, acetyl-CoA synthase; AarA, citrate synthase; AcnA, aconitate
hydratase; lcd, NAD* isocitrate dehydrogenase; SucAB, o-ketoglutarate dehydrogenase; SucCD,
succinyl-CoA synthetase; AarC, succinyl-CoA transferase; SdhA, succinate dehydrogenase; FUmA/C,
fumarate hydratase; Mqgo, malate dehydrogenase; Pdh, pyruvate dehydrogenase; Als, acetolactate
synthase; YbaS, glutaminase S; GroESL, heat shock proteins; DnaKJ/GrpE/ClpB, molecular chaperonin
proteins; RRF, ribosome recycling factor; HPF, hibernation promoting factor; KatE, catalase; SodB,
superoxide dismutase; FdxA, ferredoxin; GrxC, glutaredoxin; Bfr, bacterioferritin. Next to each protein, it
is shown if is normally upregulated (green arrow) or downregulated (red arrow) based on studies to date.
AcH, acetic acid; BCAA, brain-chain amino acids; NHs, gaseous ammonia; NHs, ammonium; PC,
phosphatidylcholine; THBH, tetrahydroxybacteriohopane; ROS, reactive oxygen species. Source: own

elaboration.
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1.3.4. Komagataeibacter europaeus: a crucial species for industrial vinegar
production

Komagataeibacter europaeus was initially observed by Sievers et al. 1992 (then named
Acetobacter europaeus) and subsequently isolated and characterized from high-acid
vinegar fermentations in central Europe. This species has been described as one of the
most suitable AAB for the industrial production of vinegar because of its particular
growing conditions that include high ethanol-oxidizing capability and high acetic acid-
producing capability that entails both its requirement and tolerance. Consequently, they
can also grow at pH 2.5 and require a constant oxygen supply (Sievers et al., 1992;
Yamada et al., 2012; Gullo et al., 2014). These metabolic features allow its growth in
any vinegar produced by submerged culture, especially wine vinegar [4.5-10% (w/v)]
and spirit vinegar [10-20% (w/v)], but also in low-acidity vinegar [4-7% (w/v)] such as
traditional balsamic vinegar and cereal vinegar (Gullo et al., 2009; Ferndndez-Pérez et
al., 2010; Andrés-Barrao et al., 2011; Mamlouk and Gullo, 2013).

K. europaeus is normally imposed on the rest of the microbiota working in the industrial
production of vinegar and currently, numerous metabolic strategies are being studied by
which different strains of this species can achieve it. The main strategies used according
to the literature are shown in Figure 10. Like other Komagataeibacter species, the
respiratory chain coenzyme Q used is Q10 (Qiu et al., 2021). Moreover, PQQ-ADH is
the key enzyme responsible to oxidize ethanol into acetic acid and its enzymatic activity
in K. europaeus cells under high acidity is two times greater than that of A. pasteurianus
(Rajpurohit et al., 2008). A higher ADH activity can result in a bigger energy pool
available for membrane-associated processes such as the acetate/acetic acid export
systems (Gullo et al., 2014). Integrated analysis of published AAB genomes showed
differences in the number of gene copies of PQQ-ADH. The genus Komagataeibacter
contains the most encoding gene copies and K. europaeus is one of the most containing
species. Specifically, K. europaeus 5P3 contains six copies, while this gene is absent
from K. hansenii ATCC 23769 and K. medellinensis NBRC 3288. The differences in
the number of PQQ-ADH genes may be crucial to prevail and dominate throughout

high-acid acetification processes (Wang et al., 2015b; Qiu et al., 2021).

The modification of the cellular structure and membrane composition are also important

molecular strategies to consider, see Figure 10. K. europaeus may adapt its initial short
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rod shape in absence of acetic acid to form longer and thinner rods as the acidity level
increases. This morphologic change decreases the effective area for passive diffusion
and storage of acetic acid into cells, enabling them to tolerate higher activity levels
(Tréek et al., 2007; Qiu et al, 2021). K. europaeus has been implied in the increase of
lipid content of its cell membrane such as PC and THBH as well as the absence of CPS
as differential strategies against other AAB to impose themselves throughout
submerged fermentation (Tréek et al., 2007; Matsushita et al., 2016; Nakano and
Esibuya, 2016). Recently, an O-antigen polysaccharide fraction (Ke-PS) was isolated
from K. europaeus NBRC 3261 and might be involved in acetic acid resistance
mechanisms (Devanthéry et al., 2020). The population dynamics of submerged vinegar
production using starting mixes of different AAB describes, through different
metagenomics tools, that although A. pasteurianus is one of the predominant species at
the beginning of the cycle, mainly at high ethanol content [5-7% (v/v)], K. europaeus
always prevails after the start of the fermentation phase (Fernandez-Pérez et al., 2010;
Andrés-Barrao et al., 2011).

In the SSF of Chinese cereal vinegar, it has been defined that non-abundant microbiota
communities play fundamental roles in network stability. Peng et al. 2021 identified K.
europaeus as the most co-occurrent non-abundant species with an essential role in the
function and resilience of the microbial community. Bioaugmentation of K. europaeus
JNP1 verified that it may modulate the composition of the microbiota and improve the
bioprocess efficiency by increasing acetic acid content and decreasing reducing sugar
content (Figure 10). K. europaeus is capable to confer stability to the microbiota thus
enhancing the final vinegar properties both in the microbiota that predominate and in
those that do not.

In short, a better understanding of the molecular mechanisms used by this species to
adapt to the medium and impose itself on the rest of the microbiota is necessary to
improve the fermentation conditions. The characterization of suitable strains of K.
europaeus would undoubtedly improve the features of the starter cultures currently
employed for the obtention of final products with better organoleptic properties and

higher quality.
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Figure 10. Different strategies used by strains of Komagataeibacter europaeus to prevail and impose
themselves on the rest of the microbiota throughout the submerged acetification process. AcH, acetic
acid; CPS, capsular polysaccharides; PC, phosphatidylcholine; PQQ-ADH, PQQ-dependent alcohol

dehydrogenase; THBH, tetrahydroxybacteriohopane. Source: own elaboration.

1.4. Conclusions

This review has attempted to summarize the current state of knowledge on vinegar
production from the diversity of raw materials and starter cultures to systems production
and operating conditions used. Because of the multiple variables that influence vinegar
production, it is not easy for the industries to achieve a balance between them aimed at

the optimization of this process.

Considering current research and the evolution of the agri-food market, the
improvement of organoleptic properties of these unique products will be focused on the
implementation of new operating conditions, the characterization of new raw materials,
and the study of the microbial composition and behavior of the microbiota inhabiting
vinegar. “Omics sciences” emerge in the last years as one of the best tools to approach
these strategies with high throughput without compromising the fitness of microbiota

and the quality of the final product. The integrated study in these areas can establish the

58




1. Introduction

first steps of a path toward obtaining new types of vinegar and other bioproducts with

acetic acid as the main component in order to satisfy the current consumer preferences.
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2. HYPOTHESIS AND OBJECTIVES
2.1. Starting hypothesis

The elaboration of submerged vinegar is the result of a biotransformation process in
which, essentially, the ethanol coming from an alcoholic raw material is converted into
acetic acid. Although the technical aspects of vinegar production are currently well-
known, fundamental features that finally control the activity of the microorganisms
responsible for the process, complex microbiota of acetic acid bacteria, are not yet
exhaustively known. Because of their particular growing conditions, acetic acid bacteria
are difficult to isolate outside the bioreactors, where are fully developed thus hindering
the identification and understanding of their molecular mechanisms. Strategies focused
on the imposition and survival of the predominant microbiota, as well as the adaptation
of the minor population making a stable community are of special interest. “Omics
sciences” allow for the massive analysis of macromolecules and metabolites coming
from these microorganisms working in their natural media to offer a precise picture of
what is occurring throughout acetification. Metagenomics, metatranscriptomics,
metaproteomics, and metabolomics applied to “shotgun” technology consist of
innovative approaches that allow determining genes, proteins, and metabolites content,
respectively, of complex microbiota. Presently, these methodologies are starting to be
implemented in the vinegar industry field. The updating of the existing knowledge of
interactions between substrate, microbiota, and multi-omics would allow for improving
the quality of vinegars and the development of new ones with sensory and bio-healthy

profiles adapted to the Andalusian agri-food sector.

In light of the above-mentioned, the proposed starting hypothesis aims to approach three
premises. First, there are possible differences in the microbial diversity and function of
the vinegar-producing microbiota throughout submerged acetification. Second, the use
of different raw materials may influence the characterization of these acetification
profiles. Third, these findings may be verified and compared under different omics

approaches.

2.2.  Objectives
2.2.1. General objective

Because of the foregoing, the following general objective has been proposed:
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To characterize and compare the development of three acetification profiles to study the

evolution of operating conditions and the effect of diverse raw materials used (synthetic

alcohol-based medium, fine wine, and craft beer) on the composition and the behavior

of the microbiota responsible for the process.

2.2.2. Specific objectives

1) To characterize and compare the metaproteome, qualitatively and quantitatively,

2)

3)

of the microbiota responsible for three acetification profiles (synthetic alcohol-

based medium, fine wine, and craft beer) and evaluate the differential variables

throughout the process.

This objective has been approached from three aspects:

To study the variations of system variables, as well as of the composition
and main functions of the microbiota present throughout the evolution of
an acetification process using a reference raw material (synthetic alcohol-
based medium) through a qualitative metaproteomic approach.

To explore the quantitative differences of the metaproteome, especially on
the particular proteome of the predominant microbiota, and its interactions
with the non-abundant community throughout the acetification profile of

synthetic alcohol-based medium.

To characterize two acetification processes from natural raw materials
(fine wine and craft beer) and compare the influence of each one on the
metaproteome of both the predominant and minor microbiota, especially,

through the molecular strategies used for adaptation and survival.

To confirm the composition of the microbiota obtained through metaproteomics

by applying metagenomics tools, as well as the collection and characterization of

isolates from the samples taken throughout the acetification of the three working

media: synthetic alcohol-based medium, fine wine, and craft beer.

To characterize the “volatilome” and differentiate the key volatile compounds

throughout the evolution of the acetification of the three raw materials: synthetic

alcohol-based medium, fine wine, and craft beer.

64



2. Hypothesis and Objectives

2.2.3. Publications covering each objective
1) Publications for specific Objective 1

I.  Romén-Camacho, J. J., Santos-Duefias, I. M., Garcia-Garcia, l., Moreno-
Garcia, J., Garcia-Martinez, T., Mauricio, J. C. (2020). Metaproteomics of
microbiota involved in submerged culture production of alcohol wine
vinegar: A first approach. International Journal of Food Microbiology. 333,
108797. https://doi.org/10.1016/j.ijfoodmicro.2020.108797.

Il.  Roman-Camacho, J. J., Mauricio, J. C., Santos-Duefias, I. M., Garcia-
Martinez, T., Garcia-Garcia, I. (2021). Functional metaproteomic analysis of
alcohol vinegar microbiota during an acetification process: A quantitative
proteomic approach. Food Microbiology. 98, 103799.
https://doi.org/10.1016/j.fm.2021.103799.

I11.  Romén-Camacho, J. J.,, Mauricio, J. C., Santos-Duefias, I. M., Garcia-
Martinez, T., Garcia-Garcia, . (2022). Unraveling the role of acetic acid
bacteria comparing two acetification profiles from natural raw materials: a
quantitative approach in Komagataeibacter europaeus. Frontiers in
Microbiology. 13, 840119. https://doi.org/10.3389/fmich.2022.840119.

2) Publications for specific Objective 2

IV.  Romén-Camacho, J. J., Garcia-Garcia, I., Santos-Duefias, I. M., Ehrenreich,
A., Liebl, W., Garcia-Martinez, T., Mauricio, J. C. (2022). Combining omics
tools for the characterization of the microbiota of diverse vinegars obtained
by submerged culture: 16S rRNA Amplicon Sequencing and MALDI-TOF
MS. Frontiers in Microbiology (ACCEPTED).

3) Publications for specific Objective 3

The results obtained from this specific objective are shown, at this time, as

unpublished results.
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3. RESULTS AND DISCUSSION

The results obtained throughout this work are presented below in different sections

according to each one of the specific objectives proposed (see section 2.2.2.).

3.1. Metaproteomics of the microbiota responsible for the acetification of three

raw materials: synthetic alcohol-based medium, fine wine, and craft beer

Several fundamental aspects of the molecular mechanisms driving the overall activity of
complex microbiota of acetic acid bacteria (AAB) are not yet comprehensively well-
known despite their importance in vinegar production. Metaproteomics provides an
innovative approach to studying microbial communities inhabiting vinegar without the
requirement to isolate them outside their natural media, which entails serious difficulties
to perform. Moreover, it allows for the massive analysis of proteins providing wide and
precise information about the composition and behavior of the microbiota throughout
acetification. In this section, the results obtained through metaproteomic studies, both at
a qualitative and quantitative level, of the microbiota responsible for three submerged
acetification processes by using first, a reference raw material (synthetic alcohol-based
medium) and second, two natural raw materials (fine wine and craft beer) are presented.
This research is approached from three works that, as a whole, allow for the
characterization and comparison of three acetification profiles in order to evaluate the

differential variables throughout the process.
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3.1.1. Chapter I. Metaproteomics of the microbiota throughout the evolution of
the acetification of synthetic alcohol-based medium. Study of the microbial
composition and functions through a qualitative approach

In this first work, vinegar from a synthetic alcohol-based medium was produced through
a submerged culture of acetic acid bacteria using a pilot acetator, operated in a semi-
continuous mode, where the main system variables were monitored. Metaproteomic
analysis was performed at crucial moments of the acetification cycle (at the end of fast
and discontinuous loading phases and just before the unloading stage) by the use of
liquid chromatography with mass tandem spectrometry (LC-MS/MS) technology.
Through a first qualitative approach, it is aimed to evaluate the system variables, as well
as characterize the composition and behavior of the existing microbiota and its possible

variations throughout the course of the acetification process.

The results from the synthetic alcohol-based medium acetification profiling supported
that the main system variables induced variations in the mean values of some properties
of the culture medium, mainly determined by the semi-continuous state of the cycles
leading to ethanol concentration sudden changes and increasing levels of acetic acid,
which may directly influence the behavior and stress response of AAB microbiota.
Metaproteomic analysis revealed that the microbiota was composed, in terms of protein
abundance, mainly of Komagataeibacter (85.66%), Acetobacter (5.34%),
Gluconacetobacter (1.63%), and Gluconobacter (1.10%) contributing these four genera
with 1,675 out of 1,723 (93.73%) total proteins belonging up to 30 different genera of
the Acetobacteraceae family. The species Komagataeibacter europaeus provided the
highest protein amount (73.67% of total proteins), far above the rest ones. It is worth
noting that no relevant differences in the number of proteins throughout the acetification
cycle were found, probably because of the high number (49.39%) of common proteins
at the sampling times. GO Term enrichment analysis highlighted the important role of
the catalytic activity, organic cyclic compound binding, and metabolic processes of
biosynthesis throughout acetic acid fermentation. These results proposed a microbiota
composition in which K. europaeus is the predominant species and a minor fraction of
less-abundant species, including both species closely related to K. europaeus, and others
never before described in vinegar to date, might coexist and contribute to the whole
microbiota role. The well-known particular growing conditions of K. europaeus endorse

its suitability to prevail over the rest of the vinegar microbiota.
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This first qualitative metaproteomic study allowed to get an overview of the biodiversity
and behavior of the microorganisms which participate in alcohol-based vinegar making
and establish the basis of a reference acetification profile to compare with subsequent
works using both different alcoholic raw materials and operating conditions. These
findings might contribute to the optimization of the methodology and the improvement
of the quality of the final products. Despite this, exhaustive protein quantification and
differential expression analyses will be essential for a better understanding of the
molecular strategies used by the AAB microbiota throughout the submerged

acetification (see section 3.1.2.).

The results which comprise this work have been published in the journal International
Journal of Food Microbiology with the title “Metaproteomics of microbiota involved in
submerged culture production of alcohol wine vinegar: A first approach”, see section

6.1.1., appendix.

International  Journal of Food  Microbiology 333  (2020) 108797,
https://doi.org/10.1016/j.ijfoodmicro.2020.108797.
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3.1.2. Chapter Il. Quantitative metaproteomics for the characterization of
alcohol-based vinegar microbiota. A comprehensive functional analysis of
the Komagataeibacter europaeus proteome

In this work, as a continuation of the first one (section 3.1.1.), the characterization of the
reference acetification profile of synthetic alcohol-based medium was completed at the
technical and microbiological levels. A “shotgun” metaproteomic strategy was carried
out consisting of the identification and quantification of the metaproteome through LC-
MS/MS and subsequent exhaustive bioinformatic analysis of the proteome of the most
predominant species in terms of protein amount, K. europaeus. The detection of
differential quantification changes of the main species may contribute to predicting the

metaproteome function.

A total of 78 species of 25 different genera were found from 1,361 proteins identified in
the alcohol-based vinegar metaproteome. Komagataeibacter species provided more than
90% of the total proteins highlighting K. europaeus, which accounts for around 74%.
Metaproteome function analysis of the main Komagataeibacter species and, briefly, of
the minor species, described the natural behavior of the AAB microbiota. Non-abundant
species might survive and establish a stable coexistence and functional relationship with
the predominant species, K. europaeus, which manifested a key role in the function of
the vinegar microbiota. For these reasons, the proteome of K. europaeus was subjected
to enrichment LC-MS/MS and detailed bioinformatic analyses. These results confirmed
the importance of some metabolic processes of macromolecules, such as amino acids
(biosynthesis and deamination) and proteins (aminoacylation of tRNAs, formation of
ribosomes, and translation), as well as energy (ATP) generation related pathways (TCA
cycle, pentose phosphate pathway, and glycolysis), whose proteins increased their
quantification values throughout the loading phase. Afterward, these proteins suffered a
quantification decrease and came into play other proteins involved in the acetic acid

resistance at the final moments of the acetification, just before unloading.

This work, as a continuation of the previous one, could be a further step towards
achieving a better understanding of the role of the vinegar microbiota, especially by
focusing on the predominant acetic acid bacteria and their interactions with the less-

abundant population. The characterization of the alcohol-based medium may establish a
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reference acetification profile, because of its synthetic origin, for comparison with

further works using different natural raw materials (section 3.1.3).

The results obtained in this work have been published in the journal Food Microbiology
with the title “Functional metaproteomic analysis of alcohol vinegar microbiota during
an acetification process: A quantitative proteomic approach”, see section 6.1.1.,

appendix.

Food Microbiology 98 (2021) 103799; https://doi.org/10.1016/j.fm.2021.103799.

73



3. Results and Discussion

3.1.3. Chapter Ill. Characterization and comparison of two acetification profiles
using natural raw materials (fine wine and craft beer) and their influence

on the quantitative proteome of Komagataeibacter europaeus

In this work, two submerged acetification profiles coming from the same starter
inoculum of acetic acid bacteria but using two natural raw materials of different origins
(fine wine and craft beer), were characterized and compared mainly focusing on the
study of the effect of these raw materials. It is worth noting that the starter inoculum
consisted of a mixed culture coming from our previous works, concretely, harvested at
the final of a fully active acetification process making alcohol-based vinegar (sections
3.1.1. and 3.1.2.). The composition and natural behavior of AAB microbiota inhabiting
vinegar throughout the acetification of both raw materials were compared through
“shotgun” metaproteomics using LC-MS/MS, especially focusing on the protein profile
of K. europaeus from a quantitative approach. This species was selected, as in our
previous studies, because it provided the highest amount of the metaproteome (73.5%)

and played an essential role in the microbial community function.

The results of the characterization of the two acetification processes showed significant
differences as a function of the available nutrients. The remarkable presence of sugars in
the craft beer medium might lead to the activation of several metabolic pathways aimed
at taking advantage of this nutrient source. Similarly, fine wine not only allowed higher
acetification rates but also higher final acidity levels, thus making harsher
environmental conditions that could lead to the activation of other metabolic strategies
in response to stress. A total of 1,069 and 1,268 proteins were identified in the LC/MS-
MS analysis in fine wine and craft beer media, respectively. Although proteins from 84
different species of AAB were found, only 13 of them constituted around 90% of the
metaproteome (11 species from Komagataeibacter as well as Acetobacter sp. and
Gluconacetobacter sp.). K. europaeus was the most abundant species providing a mean
protein frequency of 73.5%. It is interesting to note that despite working with two
different raw materials, no significant changes regarding the microbial composition of
the protein profiles were observed but they influenced the protein abundance. A later
enrichment and quantitative proteomic analysis of K. europaeus revealed significant
changes depending on the raw material and sampling phase. A molecular strategy in
which K. europaeus might prevail over the rest of the microbiota by taking advantage of

the nutritional features of each raw material based on three aspects was proposed: (1) by
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metabolizing the excess of cytoplasmic acetic acid using the TCA cycle and supplying
biosynthetic precursors to replenish the cellular material losses; (2) by previous use of
the excess of available glucose, mainly in the craft beer medium, through the pentose
phosphate pathway and the glycolysis; (3) by triggering membrane mechanisms proton

motive force-dependent to detoxify the cell at the end of the acetification.

The characterization of the acetification of these two natural raw materials, with high
nutritional richness, may lay the groundwork for the use of new raw materials as
acetification substrates to propose new types of vinegar. Although these metaproteomic
approaches, particularly focused on the quantitative protein profile of the predominant
microbiota, have allowed obtaining a better knowledge about the microbial composition
and the molecular strategies used by these microorganisms throughout submerged
acetification, the confirmation of these findings using other omics tools should be
considered (section 3.2.). Additional metabolomic assays may be necessary to
determine the metabolite profiles from the raw materials to the final products, as well as

clarify their main differences (section 3.3.).

These findings have been published in the journal Frontiers in Microbiology with the
title “Unraveling the role of acetic acid bacteria comparing two acetification profiles
from natural raw materials: a quantitative approach in Komagataeibacter europaeus”,

see section 6.1.1., appendix.

Frontiers in Microbiology 13 (2022) 840119;
https://doi.org/10.3389/fmicb.2022.840119.
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The industrial production of vinegar is carried out by the activity of a complex microbiota
of acetic acid bacteria (AAB) working, mainly, within bioreactors providing a quite
specific and hard environment. The “omics” sciences can facilitate the identification and
characterization analyses of these microbial communities, most of which are difficult
to cultivate by traditional methods, outside their natural medium. In this work, two
acetification profiles coming from the same AAB starter culture but using two natural
raw materials of different alcoholic origins (fine wine and craft beer), were characterized
and compared and the emphasis of this study is the effect of these raw materials.
For this purpose, the composition and natural behavior of the microbiota present
throughout these profiles were analyzed by metaproteomics focusing, mainly, on the
quantitative protein profile of Komagataeibacter europaeus. This species provided a
protein fraction significantly higher (73.5%) than the others. A submerged culture system
and semi-continuous operating mode were employed for the acetification profiles and
liquid chromatography with tandem mass spectrometry (LC-MS/MS) for the protein
analyses. The results showed that neither of two raw materials barely modified the
microbiota composition of the profiles, however, they had an effect on the protein
expression changes in different biological process. A molecular strategy in which
K. europaeus would prevail over other species by taking advantage of the different
features offered by each raw material has been suggested. First, by assimilating the
excess of inner acetic acid through the TCA cycle and supplying biosynthetic precursors
to replenish the cellular material losses; second, by a previous assimilation of the excess
of available glucose, mainly in the beer medium, through the glycolysis and the pentose
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phosphate pathway (PPP); and third, by triggering membrane mechanisms dependent
on proton motive force to detoxify the cell at the final moments of acetification.
This study could complement the current knowledge of these bacteria as well as to
expand the use of diverse raw materials and optimize operating conditions to obtain

quality vinegars.

Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [PXD031147].

Keywords: Komagataeibacter europaeus, vinegdar, fine wine, craft beer, proteomics, submerged culture

INTRODUCTION

The industrial elaboration of vinegar is carried out through an
acetification process from an alcoholic raw material obtaining
a final product with high acetic acid content. The incomplete
oxidation of the ethanol into acetic acid is performed by
acetic acid bacteria (AAB), strictly aerobic microorganisms
that, among their several biotechnological applications, are
primarily responsible for this process of biotransformation that
occurs within industrial reactors (Garcia-Garcia et al., 2007;
Mamlouk and Gullo, 2013).

The quality of the vinegar depends on many factors including
the microbial composition, the raw material, and operating
conditions (Mas et al., 2014; Li et al., 2015). Regarding microbial
composition, several studies have demonstrated that vinegar is
a product resulting from the metabolism of a complex AAB
microbiota, not by pure species (Tréek et al, 2016; Roman-
Camacho et al, 2020). This microbiota is mostly composed
of species from the genera Acetobacter and Komagataeibacter
(many of them relocated from Gluconacetobacter) which are
imposed because of their high capabilities for vinegar production,
although species from other genera might coexist with the best-
adapted ones (Gullo et al,, 2014; Wang et al., 2015). The raw
material employed as acetification substrate plays an essential
role in the quality of the final product. High-quality wines
allow to elaborate some of the most appreciated vinegars in
the world, however, other alcoholic substrates including cereals
(rice, malt, wheat, corn, and among others), fruits, and apple
cider are also well-known (Hidalgo et al., 2013; Trcéek et al,
2016; Zhang et al., 2019; Kandylis et al, 2021; Peng et al,
2021). Conversely, vinegar is mainly produced at the industrial
scale by submerged cultures in reactors that continuously
supply very fine air bubbles into the medium as an aeration
mechanism. The submerged system has several advantages over
other techniques, such as solid-state fermentation or surface
fermentation including high yield and process speed (Gullo
et al., 2014). Through a semi-continuous operating mode,
in which each cycle starts by loading the tank with fresh
medium to a preset volume and finishes when a part of
the volume is unloaded after depleting ethanol to an also
preset concentration, high productivity and stability are ensured
(Jiménez-Hornero et al., 2020). This working mode allows
part of the biomass produced in each cycle to rapidly start
the next one. Also, the operational variables can be used
to maintain the average substrate and product concentrations

within appropriate ranges for AAB to operate, which in turn,
facilitates self-selection and adjustment to the specific medium
(Garcia-Garcia et al., 2019).

The particular growing conditions and metabolic
characteristics of AAB hinder their isolation outside the
environments in which they carry out their activity fully
(Ferndndez-Pérez et al., 2010; Mamlouk and Gullo, 2013).
This fact limits the study of the richness and biodiversity
of these microbiota that inhabit aggressive media as is
the case of vinegar. The “omics” sciences can facilitate
the analysis of the identification and function of complex
microbiomes and resolve the hurdles of traditional methods
for the characterization of either non-cultivable or hard to
cultivate microorganisms (Andrés-Barrao et al., 2016; Xia et al,,
2016; Zhu et al., 2018; Jiang et al., 2019; Verce et al., 2019).
Recently, the microbiota of an acetification process using an
alcohol medium as a reference has been characterized at a
metaproteomic level (Romén-Camacho et al., 2020, 2021).
The Komagataeibacter species were predominant throughout
the process and K. europaeus provided the major fraction of
proteins, far above the others. This species has been described
as one of the most suitable AAB for the industrial production
of vinegar because of its growing conditions that include high
ethanol-oxidizing ability, acetic acid requirement, and tolerance
to both low [7-9% (w/v)] and high acidity levels [10-20%
(w/v)] (Treek et al., 2007; Yamada et al., 2012; Gullo et al., 2014;
Peng et al., 2021).

The present work aims to characterize and compare
two acetification profiles using the same starter culture,
coming from an acetification of previous works (Romén-
Camacho et al,, 2020, 2021) making alcohol vinegar, but using
different raw materials. For this purpose, the composition
and natural behavior of the microbiota present throughout
both processes were compared employing a metaproteomic
analysis and especially, focusing on the protein profile of
K. europaeus from an exhaustive quantitative approach.
This species has been selected, as in our previous studies,
because it provides a considerable amount (73.5%) of the
metaproteome and plays an essential role in the microbial
community function. A comparison of vinegar profiles using
two natural raw materials (fine wine and craft beer), with a
higher nutritional richness than the reference synthetic alcohol
medium (Roman-Camacho et al., 2020, 2021), under a strategy
that employs a submerged culture and a semi-continuous
operating mode, could elucidate the effect of the raw materials
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on the organoleptic properties and quality of industrially
elaborated vinegars.

MATERIALS AND METHODS

Raw Material

Two different alcoholic substrates were used as fermentation
media: a dry fine wine from the Montilla-Moriles region
(Bodegas Alvear S.A., Montilla, Cérdoba, Spain) and a craft
beer (Mahou-San Miguel, Cérdoba, Spain). The dry fine wine
contained an initial ethanol concentration of 15% (v/v) and
an amino acids content of 0.72 £+ 0.20 mM for L-proline,
0.24 £+ 0.03 mM for L-aspartic acid, 0.23 £+ 0.21 mM for
ammonium ion, 0.21 £+ 0.00 mM for L-y-aminobutyric acid,
0.19 £ 0.02 mM for L-glutamic acid, 0.16 £ 0.01 mM for
L-lysine, 0.15 & 0.01 mM for L-arginine, 0.11 4= 0.01 mM for
L-tyrosine, 0.06 & 0.01 mM for L-leucine, 0.05 £ 0.01 mM for
L-valine, 0.04 £ 0.01 mM for L-histamine, 0.03 £ 0.01 mM
for L-glycine, 0.02 &+ 0.01 mM for L-threonine, and
0.01 =+ 0.01 mM for L-tryptophan. Conversely, the craft
beer was obtained from a medium containing 35% of total
sugars, remaining without fermenting 7% and composed,
roughly, half, and half between maple syrup and muscovado
sugar. The ethanol content was 17% (v/v) and the amino
acids content of 3.66 + 0.05 mM for L-y-aminobutyric
acid, 1.44 £ 0.03 mM for L-aspartic acid, 1.21 £+ 0.02 mM
for L-glutamic acid, 1.05 £ 0.02 mM for L-arginine,
0.92 £ 0.02 mM for ammonium ion, 0.90 £+ 0.13 mM for
L-proline, 0.55 £ 0.01 mM for L-glutamine, 0.47 £+ 0.0l mM
for L-glycine, 039 =+ 0.0l mM for L-phenylalanine,
0.30 = 0.01 mM for L-tryptophan, 0.18 + 0.01 mM for
L-leucine, 0.17 & 0.01 mM for L-tyrosine, 0.13 £ 0.01 mM for
L-histidine, 0.11 £ 0.03 mM for L-threonine, 0.04 &+ 0.01 mM
for L-histamine, and 0.02 £ 0.01 mM for L-lysine. Both
raw materials were diluted with distilled water to adjust the
ethanol concentration to the working conditions [~ 10% (v/v)]
reaching 9.8 & 0.3 and 9.5 £ 0.3% (v/v) for fine wine and
beer, respectively; the initial acetic acid concentration was of
0.2 +0.1% (w/v).

Microorganism

The starter culture consisted of a mixed broth coming
from a fully active acetification process making alcohol
vinegar, concretely harvested from the end of the ethanol
exhausting phase, see microbial composition in Supplementary
File 1 (Romdn-Camacho et al., 2020). This original alcohol
medium was composed of 10% ethanol, glucose (1 g/L),
calcium pantothenate (13 mg/L), calcium citrate (0.1 g/L),
potassium citrate (0.1 g/L), diammonium phosphate (0.5 g/L),
magnesium sulfate (0.1 g/L), manganese sulfate (5 mg/L),
and iron chloride (1 mg/L) following the method of Llaguno
(1991) with yeast extract (0.25 g/L) and peptone (0.5 g/L)
additionally supplied. A previous stage using each specific
raw material, including several cycles of acetification, is
necessary to adapt the inoculum and achieve a repetitive
system behavior.

Operating Mode

Acetification cycles were carried out in a fully automated
8 L Frings bioreactor (Heinrich Frings GmbH & Co., KG,
Bonn, Germany) working in a semi-continuous operating mode.
Each cycle is started by a loading phase that replenishes
the reactor with a fresh medium to the working volume
(8 L) without exceeding a preset ethanol concentration of
5% (v/v). Then, an exhausting stage occurs depleting ethanol
in the culture broth to a preset concentration of 1.0-1.5%
(v/v). Finally, 50% of the volume is fast unloaded and the
remaining content is used as inoculum of the next cycle.
A constant temperature of 31°C, a fast-loading rate of 1.3 L/h,
and an air-flow rate of 7.5 L/(h L medium) were employed.
Sigmaplot 12.0 (Systat Software Inc., CA, United States) was
used for graphical representation of the acetification profiles after
monitoring the system data by LabView application (National
Instruments, TX, United States). Figure 1 shows the profiles of
the main variables.

Sampling

Sampling was performed at two relevant times of the acetification
cycle: at the end of the loading phase (EL), when final
working volume or preset ethanol concentration of 5%
(v/v) is reached, whichever occurs first; and just before the
unloading phase, at the end of the ethanol exhaustion (UL).
A total of 15 acetification cycles for each vinegar profile were
performed including some previous cycles (7-10) necessary
to achieve a semi-continuous repetitive state of the system.
Six samples were harvested from fine wine vinegar: three
at EL (cycles 12, 14, and 15) and three at UL (cycles 11,
13, and 14); and seven samples from beer vinegar: four at
EL (cycles 11, 12, 13, and 14) and three at UL (cycles
12,13, and 14).

Analytical Methods

System variables including the volume of the medium (L),
ethanol concentration % (v/v), and temperature (°C) were
constantly measured using an EJA 110 differential pressure probe
(Yokogawa Electric Corporation, Tokyo, Japan), an Alkosens®
probe (Heinrich Frings GmbH & Co., KG, Bonn, Germany),
and a temperature probe, respectively. The automatization of the
system allows the continuous recording of data as well as testing
the high reproducibility of the method. Acetic acid concentration
%, (w/v) was determined by acid-base titration with 0.5 N NaOH.
Viable cells concentration, the difference between total and no
viable cells, were directly counted using a light microscope
(Olympus BX51), a Neubauer chamber (Blaubrand™, 7178-
10) with 0.02 mm depth and rhodium-coated bottom, and
propidium iodide (VWR, Inc., PA, United States). Though the
chamber was subdivided into 25 square groups, composed of
16 squares each, 5 square groups (0.04 mm? each) on the
diagonal were used for cell counting following the method
of Baena-Ruano et al. (2006); samples were quantified by
triplicate and standard error was calculated. These variables
were exclusively measured at sampling times. The efficiency of
the process was evaluated by mean acetification rate (r4) and
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FIGURE 1 | Comparison of the main system variables throughout fine wine (A) and beer (B) vinegar profiles. Mean values and standard deviation (SD) of the
variables of stable cycles performed are represented. Sampling times (EL, end of loading; UL, just before unloading) are also shown.

global production of acetic acid (p4) which were calculated as
follows:

Final acetic acid concentration (%, w/v)
x Unloaded volume (L)

ra =
Total cycle time (h) x Mean cycle volume (L)
Final acetic acid concentration (%, w/v)
x Unloaded volume (L)
pa =

Total cycle time (h)

Proteomics

Sample Processing

Vinegar samples were harvested by directly unloading a volume
of 300 mL from the pilot acetator, dividing it into six fractions
of 50 mL each, and putting them in centrifuge tubes on ice.
Cells were separated by centrifugation and then, twice cleaned
using cold sterile distilled water; the resulting pellets were
stored at —80°C. Then, cell extracts were broken by several
cycles using glass beads and sonication after adding extraction
buffer (100 mM Tris-HCI buffer pH 8.0, 2 mM dithiothreitol
(DTT), 1 mM ethylenediaminetetraacetic acid (EDTA), and
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1 mM phenylmethylsulphonyl fluoride (PMSF) supplemented
with Protease Inhibitor Cocktail tablets). The protein fraction
was precipitated, vacuum dried, solubilized, and its concentration
was quantified by Bradford (1976) assays. A volume of each
protein sample containing 50 pg was injected into LC-MS/MS
analysis at Research Support Central Service (SCAI), University
of Cérdoba, Spain. All proteomic procedures were performed
following the methodology previously developed by our group
(Romdan-Camacho et al., 2020).

Protein Identification by Database Searching
Mass spectrometry raw data were processed using Proteome
Discoverer (version 2.1.0.81, Thermo Fisher Scientific, MA,
United States). MS/MS spectra were searched with SEQUEST
engine against Uniprot.' Peptides obtained from tryptic digestion
were searched setting the following parameters: up to one missed
cleavage, cysteine carbamidomethylation as a fixed modification,
and methionine oxidation as a variable one. Precursor mass
tolerance was 10 ppm while ion products were searched at 0.1
Da tolerances. Peptide spectral matches (PSM) validation was
performed at a 1% FDR using a percolator based on g-values.
Peptide quantification was carried out by calculating precursor
ion areas by Precursor Ion Area Detector and normalizing
by Total Peptide Amount mode of Proteome Discoverer. The
parsimony law was applied to obtain protein groups and
filtered to 1% FDR.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE [1] partner
repository with the dataset identifier PXD031147.

Raw Data Analysis

Proteins identified in the metaproteome were first screened
removing those with score < 2 and number of peptides < 2. Then,
proteins in at least 50% out of total samples (three or four) in
at least one sampling time were maintained. Exclusive proteins
were obtained by the difference between those aforementioned
and those identified in at least 50% out of total samples in each
sampling time. From those, a GO Term analysis using Uniprot
and Gene Ontology (GO) annotation tool* was performed to
detail the metaproteome function. Subsequently, an enrichment
analysis LC-MS? of the proteome of K. europaeus was performed
and quantitative changes throughout each acetification profile
were compared. Protein values were normalized by dividing each
one by the sample global intensity and then multiplied by the
mean value of global intensity from all samples. First, those
proteins obtained in at least 50% of samples in one sampling
time were retained and plotted in an intersection diagram
(“UpSetR” R library). For the hierarchical clustering and heat
map analysis, proteins identified in at least 50% of samples
in each sampling time were used. Mean quantification values
were previously scaled, centered by z-score transformation, and
then, Pearson correlation was applied with method “complete”
(“hclust” function in stats package from R). One-Way ANOVA
followed by HSD Tukey’s test was calculated by R functions “Im”

Uhttp://www.uniprot.org
Zhttp://geneontology.org/

and “anova” and g-value was used to calculate p-value multiple
testing correction. Proteins identified only in one biological
replicate were eliminated from the overall count.

Furthermore, the biological function of the protein clusters
was studied by building protein-protein interaction network
maps (INM) by using STRING database v11.> High confidence
interaction (score = 0.70-0.90) and protein annotations based on
the databases Uniprot (see text footnote 1) and KEGG* were used
(see Supplementary File 2). Because K. europaeus is not available
in the database, as in previous works (Romén-Camacho et al.,
2021), K. xylinus E25, a closely related species (MUM index of
0.21, according to Ryngajlto et al., 2018), was used as a model
organism due to the high genome homology.

RESULTS

Description of Fine Wine and Beer

Acetification Profiles: A Comparison

Figure 1 shows a comparison of the mean cycle of main
system variables throughout fine wine (Figure 1A) and beer
(Figure 1B) profiles, while Table 1 lists the mean values of the
aforementioned variables. The fine wine profile showed a fast-
loading phase up to reach the working volume (8.0 & 0.1 L)
and an ethanol concentration of 4.9 & 0.0% (v/v) at the end of
the stage, at 3.0 & 0.0 h. An exhausting phase started with the
depletion of ethanol content up to 1.3 = 0.3% (v/v) and just
then, 50% of the reactor volume was unloaded (4.0 &= 0.1 L), at
21.4 = 0.1 h. During this period, both acetic acid concentration
[from 4.3 £0.0to 7.9 £ 0.2% (w/v)] and cell viable concentration
(from 1.43 £ 0.33 to 1.47 & 0.28 x 10% cel/mL) were increased.
The beer profile was operated with a final working volume of
7.0 £ 0.2 L because of the excessive foaming. First, a continuous

Shttps://string-db.org/
“https://www.genome.jp/kegg/

TABLE 1 | Main variables of the acetification profile including both the system
variables constantly monitored and those exclusively measured at sampling times.

Variable FW_EL FW_UL B_EL B_UL
Mean + SD  Cycle time (h) 3.0+00 214+0.1 28+04 243+11

Volume (L) 8.0+ 0.1 8.0+ 0.1 7.0+0.2 7.0+0.2

Ethanol (% v/v) 4.9+0.0 1.3+£0.3 4.7 +0.2 1.2+£01

Acetic acid (% 4.3+0.0 79+0.2 42+ 0.4 6.8+ 0.7

W/V)

Viable cell (108 1.43+0.33 147 +£0.28 0.84+0.70 1.05+0.70

cel/mL)

FW B

Mean 0.19 + 0.01 0.16 + 0.01

acetification rate

(ra) [g acetic

acid/(L h)]

Global acetic 1562+0.5 11.3+05

acid production

(pa) (g acetic

acid/h)
Data show mean values of all variables at the sampling times (FW_EL, FW_UL,
B_EL, B_UL) and their standard deviation (SD). Variables used to obtain the
acetification efficiency of each profile are included.
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fast loading was performed to the aforementioned volume and
an ethanol concentration of 4.7 & 0.2% (v/v), both achieved at
2.8 £ 0.4 h. The second phase (24.3 £ 1.1 h) concluded when
ethanol concentration was depleted to 1.2 & 0.1% (v/v) and 50%
of the volume of the medium was unloaded (3.5 & 0.1 L). At
the same time, the acetic acid concentration [from 4.2 4+ 0.4
to 6.8 £ 0.7% (w/v)] and cell viability (from 0.84 £ 0.70 to
1.05 £ 0.70 x 10® cel/mL) were increased throughout this
exhausting period. The efficiency of each acetification profile
was evaluated by the mean acetification rate (r4) and global
production of acetic acid (pa), both calculated as described in
section “Analytical Methods” (see Table 1).

It is interesting to note that the two raw materials used
show some significant differences to evaluate the behavior of the
microbiota as a function of the available nutrients. In particular,
the significant presence of sugars in the craft beer medium could
lead, as it will be discussed later in this work, to the activation
of several metabolic pathways aimed at taking advantage of this
resource. Similarly, fine wine, a substrate whose suitability as
an acetification medium is well known, not only allows higher
acetification rates, but also higher final acidity values, which leads
to harsher environmental conditions. This fact can trigger the
activation of metabolic pathways other than those mentioned
above in response to stress.

Comparison of the Metaproteome of

Fine Wine and Beer Vinegar

Microbial Composition

A total of 1,069 (EL, 934; UL, 945) and 1,268 (EL, 1,226; UL,
1,110) proteins were identified in the LC/MS-MS analysis in
fine wine and beer vinegar samples, respectively, after removing
contaminants and those proteins not found in at least 50% of
the samples in at least one sampling time (see Supplementary
File 1). Although proteins belonging to 84 different species
from the Acetobacteraceae family were identified, only 13
of them constituted around 90% of the metaproteome (see
Supplementary Table 1): 11 species from the Komagataeibacter
genus (K. europaeus, K. xylinus, K. intermedius, K. rhaeticus,
K. diospyri, K. swingsii, K. medellinensis, K. nataicola,
K. oboediens, K. sp., and K. sucrofermentans) as well as
Acetobacter sp. and Gluconacetobacter sp.; K. europaeus was
the most abundant species providing the largest amount
of proteins (73.5%: FW_EL, 75.9%; FW_UL, 75.0%; B_EL,
70.6%; B_UL, 72.6%), far above the rest of species. No relevant
differences regarding the composition of the microbiota were
observed between sampling times and profiles. Since none of
the remaining species exceeds a mean frequency of 0.5%, the
functional metaproteome analysis is mainly focused on this
major amount, which is considered sufficiently representative of
the total (Roman-Camacho et al., 2021).

Gene Ontology Term Functional Analysis

Because a high amount of the metaproteome (834 proteins) was
common when different raw materials were used during the
acetification, a GO Term analysis of exclusive proteins at each
sampling time was performed to compare accurately the natural
behavior of the microbiota. A total of 259 (FW_EL: 124; FW_UL:

135) and 200 (B_EL: 158; B_UL: 42) exclusive proteins were
identified and detailed in Supplementary File 3. As previously
mentioned, this analysis is mostly focused on the major amount
of the metaproteome.

At the end of the loading phase for the fine wine profile
(FW_EL), the metabolism of amino acids, mostly aminoacyl-
tRNA ligases, cell division, and, briefly, stress-related response
(metabolism of glutathione and chaperones) was highlighted
between most abundant species. At the end of the exhausting
phase (FW_UL), the formation of peptide release factors,
ribosomal subunits, and stress-related response (chaperones,
redox activity, and synthesis of lipopolysaccharides) were some
of the most reported GO Terms. The end of the loading
phase for the beer profile (B_EL) showed the metabolism of
amino acids, energy metabolism pathways, and redox activity
as main functions; exclusively identified in K. europaeus, outer
membrane proteins as ABC transporters, and porins. At the
end of the exhausting phase (B_UL), the predominant species
were involved in ATP-binding, redox processes, and cellular
homeostasis while the minor fractions were in stress-response
(chaperones). K. europaeus (73.5%) not only shared the main GO
terms with other related and minor species but was involved in
other exclusive ones. A quantitative proteomic description of this
species could provide an accurate approach to the microbiota
function under the comparison of two acetification profiles.

Comparative of Two Quantitative
Proteomic Profiles in Komagataeibacter

europaeus

After subjecting all the samples to an LC/MS? enrichment
analysis, a total of 1,533 wvalid proteins were identified in
K. europaeus. From them, 1,420 (B_EL: 1,264; B_UL: 1,245;
FW_EL: 1,121; FW_UL: 1,152) were found in at least 50%
of samples in one cycle time. The distribution of these
proteins throughout the phases of two acetification profiles was
summarized in an intersection plot shown in Figure 2A. Of
the 1,420 proteins, 950 (66.9%) were common throughout both
profiles, with 174 (12.3%) exclusive of the beer profile, and 90
(6.3%) of the fine wine profile. The amount of exclusive proteins
at each sampling time was considerably minor: 39 out of 1,420
(2.7%) exclusive proteins at FW_UL were highlighted against
21 (1.5%) at B_EL, 6 (0.4%) at FW_EL, and 5 (0.4%) at B_UL.
Then, 9 out of 1,420 (0.6%) proteins were found exclusively at
the end of the loading phase (EL) and 6 (0.4%) before unloading
(UL). The results evidenced that an important amount of the
K. europaeus proteome was stable not affected by the change of
phase or raw material.

Protein Clustering Analysis: Quantification Patterns
and Interaction Networks

The proteome of K. europaeus was grouped according to
the quantification pattern of each protein throughout each
acetification profile. First, each protein quantification value in
at least 50% of samples in all sampling times was normalized
by z-score transformation and then clustered according to its
pattern. Figure 2B shows a heatmap that summarized the
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FIGURE 2 | (A) Intersection diagram of the proteins of K. europaeus identified in at least 50% of total samples in at least one phase. The number of proteins from
each intersection group is represented on the bars. (B) Heat map showing the analysis of hierarchical clustering of the proteins identified in at least 50% of total
samples in each phase. The number on each color represents each of the seven built clusters. Fine wine (FW), beer (B), end of loading (EL), just before

unloading (UL).

Frontiers in Microbiology | www.frontiersin.org 7 April 2022 | Volume 13 | Article 840119



Roman-Camacho et al.

Unraveling Role Acetic Acid Bacteria

hierarchical clustering carried out including a total of 832
proteins classified into seven clusters with different quantification
patterns (more details can be found in Supplementary Table 2).
Cluster 1 (n = 180) was characterized by a changing pattern
throughout acetification of beer, but a marked decrease at the
end of the exhausting phase in the fine wine vinegar (FW_UL).
Cluster 2 (n = 191) was increased at the end of the loading phases,
above all at B_EL, where quantification peaks were observed.
Cluster 3 (n = 21), composed of a poor number of proteins,
showed quantification peaks at B_UL. Clusters 4 (n = 132) and
5 (n = 53) were strongly upregulated at FW_EL, and also, Cluster
4 was decreased in the beer profile. Cluster 6 (n = 104) showed a
changing pattern in the beer profile while in the fine wine profile,
an increase just before unloading (FW_UL) was appreciated as in
Cluster 7 (n = 151), where the quantification peaks were strongly
observed (FW_UL).

Proteins from each cluster were then subjected to a protein-
protein interaction analysis using the database STRING v11.0
to clarify the most relevant metabolic pathways related to each
quantification pattern. Figure 3 shows INM built from each
cluster (six out of seven are represented), and those showed more
interactions than expected (PPI enrichment p-value < 0.05):

B INM 1 (82 edges; PPI enrichment p-value, 1.71 x 1071?)
(Figure 3A) showed a high number of proteins related
to the biosynthesis of amino acids (yellow nodes),
mostly, L-glycine, L-serine, L-threonine, and L-lysine.
A group of proteins at the top-left exhibited these
proteins also involved in energy metabolism pathways
[glycolysis (red nodes) and TCA cycle (purple nodes)].
Proteins related to the metabolism of purines (blue
nodes) were found attached to it. Also, most of the
alcohol dehydrogenase [ADH] subunits were classified in
Cluster 1, even interaction groups that were not built (see
Supplementary Table 2).

B INM 2 (123 edges; PPI enrichment p-value, 1.83 x 10~%7)
(Figure 3B) exhibited a high number of proteins for the
biosynthesis of aromatic amino acids (yellow nodes) (L-
phenylalanine, L-tryptophane, and L-tyrosine), see middle-
left group. Proteins related to the TCA cycle (red nodes)
and the pyruvate metabolism (purple nodes) were also
shown and connected to fatty acid biosynthesis proteins
(light brown nodes), see middle and bottom-right groups.
The metabolism of purines (blue nodes) and pyrimidines
(light blue nodes) were observed evidencing a similarity to
INM 1, although some particular groups were appreciated
as biosynthesis of peptidoglycans (dark green nodes)
and proteins (pink nodes), see bottom-left and top-right
groups.

B INM 3 was not built because did not reach a PPI
enrichment p-value < 0.05.

B INM 4 (86 edges; PPI enrichment p-value, 1.77 x 10~%4)
(Figure 3C), similar to the previous INMs, showed groups
relating processes like metabolism of amino acids (yellow
nodes) to energy metabolism [TCA cycle (red nodes),
pyruvate pathway (purple nodes)] and the purine (blue
nodes) to pyrimidine metabolism (blue light nodes).

Particularly, a group relating the biosynthesis of proteins
(pink nodes) to aminoacyl-tRNA ligases (green nodes) was
seen at the down-right.

B INM 5 (28 edges; PPI enrichment p-value, 2.95 x 10~%)
(Figure 3D) following the trend of previous INMs,
predominated biosynthesis of amino acids (yellow nodes)
(L-alanine, L-aspartate, and L-glutamate), proteins
(pink nodes), metabolism of purines (blue nodes), and
aminoacyl-tRNA ligases (green nodes).

B INM 6 (227 edges; PPI enrichment p-value, 1.00 x 10719)
(Figure 3E) and INM 7 (353 edges; PPI enrichment
p-value, 1.00 x 10719) (Figure 3F) presented both a
highlighted central group composed mainly of ribosomal
subunits, initiation, and elongation factors (pink nodes);
ribosomal silencing and maturation factors were also
found in INM 7. Around and/or attached to the
central protein group, chaperones (dark green nodes),
stress-response proteins (oxidoreductases, metabolism of
glutathione, aldehyde dehydrogenase [ALDH] subunits,
and outer membrane efflux pumps) (light brown nodes)
were represented.

Differential Expression Analysis by Pairs: ANOVA and
HSD Tukey’s Test
A total of 141 proteins surpassed the statistical cut-off evidencing
significant differences of quantification values in at least one pair
comparison according to HSD Tukey’s test corrected by multiple
testing (g-value < 0.05) and log, fold change in absolute value
(FC) > 1: one protein for the pair B_UL/B_EL, 23 proteins
for the pair FW_EL/B_EL, 76 for the pair FW_UL/B_UL, and
108 for FW_UL/FW_EL (see Supplementary Table 3). From
these proteins, those that showed a strong significance (Tukey
corrected by g-value < 0.01 and FC > 2) were represented
in a radar chart and will be described below (see Figure 4).
This Figure is an easy way to visualize the relationship between
proteins and their abundance in each sample so that it can
be quickly seen that the protein profile depends on both the
sampling time (EL, UL) and the raw material (FW, B). Then, a
detailed description of these protein groups can be carried out.
First, proteins that exhibited quantification peaks at B_EL
(green) were mostly shown at the top-right of the radar chart.
As observed in the corresponding clusters and INMs (1 and
2; see Figures 2B, 3A,B) these proteins were involved in the
metabolism of amino acids [glutathione reductase (gorAp),
N-succinyl-transferase (dapDp)], of purines [adenine deaminase
(adep)], aminoacyl-tRNA ligases [phenylalanine-tRNA ligase
(pheSp)], and biosynthesis of proteins [riboflavin biosynthesis
protein (ribFp), RNA polymerase sigma factor [RPOD] (rpoDp)].
Between them, rpoDp (cluster 1) was strongly down-regulated
in the pairs FW_UL/B_UL and FW_UL/FW_EL (EC =~ 3).
One single protein presented the quantification peak at B_UL
(yellow), DNA topoisomerase IV (parCp; cluster 1), essential
in the segregation of chromosomes during DNA replication,
especially down-regulated in the pair FW_UL/B_UL (FC ~ 3).
Next, many proteins showed quantification peaks at FW_EL
(blue), see clusters and INMs 4 and 5 (Figures 2B, 3C,D):
acetolactate synthase [large subunit] [ALS], involved in the
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FIGURE 3 | High confidence protein-protein interaction network maps (INM) performed in K. europaeus of proteins from each cluster, shown in Figure 2B, with a
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biosynthesis of branched-chain amino acids (BCAA); other
proteins related to energy metabolism activity like the pentose
phosphate pathway (PPP) [glucose-6-phosphate dehydrogenase
[GPDH] (zwfp)] and the TCA «cycle [a-ketoglutarate
dehydrogenase [aKDH] (kdhp), 3-succinoyl-semialdehyde
dehydrogenase [SSADH] (aldp)]; flavohemoglobin and flavin
oxidoreductase [NADH] (yqiMp), known to be involved in
the biosynthesis of flavoproteins that catalyzes oxidoreduction
processes while sulfate-binding protein (sbpAp) and phospho-
methyl-pyrimidine synthase [THIC] (thiCp) may provide FeS
clusters for the electron transport chain. Most of these proteins
were upregulated in the pair FW_EL/B_EL and downregulated
in FW_UL/FW_EL; for the first one, thiCp was remarked
(FC = 4.68). Although the aforementioned proteins maintained
acceptable levels of expression in the phases described (B_EL,
B_UL, and FW_EL), all of them were characterized by a
significant decrease at FW_UL (red).

A total of 28 proteins, mostly distributed at the half
left of the radar chart (see Figure 4), were characterized
by significant quantification peaks at FW_UL (red) against
a marked decrease in the rest of the phases, see clusters
and INMs 6 and 7 (Figures 2B, 3E,F), and most of them
were upregulated in FW_UL/B_UL and FW_UL/FW_EL pairs.
Nitrogen-fixing thioredoxin (nifUp), iron-binding nuclear pirin
(pirp), dehydrogenase PQQ (bamBp), and glyoxalase resistance

protein (catEp) are related to oxidoreductase activity and
maintain the redox balance. The outer membrane proteins
ompAp and oprMlp, acting as porin of small solutes and
efflux transport pump, respectively, and both playing a role in
the outer membrane stability and resistance to environmental
stress, were upregulated in the pair FW_UL/FW_EL (FC = 3.64
and 3.13 respectively). Other transmembrane proteins as ABC
transporter (FC = 4.17) and murein hydrolase A [MLTA] (mltAp)
(FC = 2.60) were then upregulated in the aforementioned
pair while other proteins were related to the regulation of
the translation: endoribonuclease [L-PSP] (ridAp), ribonuclease
[RPH] (rphp), ribosome hibernation promoting factor [HPF]
(yvyDp), and cold-shock protein [CSPA] (cspAlp). Acetolactate
synthase [ILVH] (ilvHp) was shown, as occurred at FW_EL, while
phospho-ribosylformylglycinamidine synthase [PURS] (purSp)
catalyzed the first steps of the biosynthesis de novo of purines,
and was one of the most upregulated proteins (FC = 5.58).

DISCUSSION

This study focused on the analysis of the acetification of
two different substrates, aimed to delve into the behavior of
the bacteria responsible for the process when the nutritional
profile of the medium offers significant differences due to its
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composition, especially, in regard to the availability of carbon
sources additional to ethanol, namely carbohydrates. Indeed, if
the microbiota responsible is able to adapt to the conditions
of the environment by modifying its metabolism and taking
advantage of the resources available in each case, it would be a
proof of its great versatility and therefore, survive in different
and particularly, aggressive environments. In previous studies
by the authors, qualitative and quantitative proteomic analysis
of one synthetic alcoholic medium acetification process were
carried out. Now, a new study is being conducted for much
more complex media (fine wine and a craft beer) from which
the differences in proteomic profiles are being disclosed. Then,
a novelty from this study is that even when using different
raw materials, the microbiota composition is similar, but its
metabolism, at a proteome level, is different. Next, a detailed
discussion about these issues will be carried out while the main
differences between both profiles and approached proposals
about the metabolic differences are made.

As it is known in the vinegar industry, the total strength of the
medium (ethanol plus acetic acid concentration), which remains
constant throughout the cycle, can affect to the cell activity and
concentration (Garcia-Garcia et al., 2007; Baena-Ruano et al,,
2010). In the present study, a mild environment offering no
special stressing conditions has been used to study some basic
aspects of the complex microbiota of the process. Here, both
media showed an initial ethanol concentration of around 10%
(v/v), and the acetic acid level could be disregarded (see section
“Raw Material”). The initial total strength [% (w/v) of acetic
acid plus % (v/v) of ethanol] is 10 total degrees. Then, in each
cycle, 3.5/4 L of medium containing 9.2 [7.9 £ 0.2% (w/v) plus
1.3 £ 0.3% (v/v)] and 8.0 [6.8 = 0.7% (w/v) plus 1.2 £ 0.1%
(v/v)] total degrees for fine wine and beer profiles, respectively,
are unloaded. The differences between the initial total strength
and unloaded product appear due to the volatile losses (around 8
and 20% in each medium, respectively). The foaming generated
in the beer medium would favor the volatile losses (20%) and
no special care was taken to avoid these losses since it would
not affect the aim of the work. Regardless, 92 and 80% of the
disappeared ethanol was used for acetic acid formation and the
rest was stripped by air or transformed by bacteria for other uses
(Jiménez-Hornero et al., 2020).

Regarding the protein composition of the microbiota, no
relevant differences were appreciated between the sampling
times of each acetification profile. This composition showed
a strong similarity to results obtained in our previous work
that characterized an alcohol vinegar profile (Roman-Camacho
et al.,, 2021). These results may be explained by the operating
mode followed in this work in which the same starter culture,
consisting of a mixed broth coming from the aforementioned
alcohol medium acetification, concretely, from the end of
the ethanol exhausting phase, was used for both acetification
profiles. Under these working conditions, in which the fine wine
and then, beer acetification were consecutively performed, the
raw material change might not modify excessively the starter
microbial composition despite the additional nutritional richness
that these natural substrates might provide. Subsequently, the
main functions of the exclusive proteins in each phase were

detailed to compare the microbiota activity in each acetification
profile. The predominant species of the microbiota exhibited a
natural behavior according to other authors that worked using
submerged biotransformation (Fernandez-Pérez et al., 2010; Qi
et al., 2014; Trcek et al., 2016) while the minor species showed
a high-stress response, probably trying to coexist along with the
better-adapted ones. Even if the protein amount that provides
each species affects its role in the metaproteome, all of them might
participate in the whole function of the microbial community
(Peng et al., 2021). K. europaeus, supplying a mean frequency
of 73.5%, far above the rest, not only shared the main GO
Terms with other species but was involved in other exclusive
ones. It is worth noting that this species was also the most
representative in our previous studies (Roméan-Camacho et al.,
2020, 2021). Therefore, a quantitative proteomic description of
K. europaeus, comparing two acetification profiles, might provide
a prediction of the microbiota role and characterize the natural
raw materials used.

K. europaeus is well-known as one of the main
microorganisms responsible for industrial vinegar production.
High ethanol-oxidizing ability, acetic acid requirement, and
tolerance to high acidity levels [10-20% (w/v)] determine its
suitability for this biotransformation (Trcek et al., 2007; Yamada
et al., 2012; Gullo et al., 2014). These capabilities allow it to
perform an efficient incomplete oxidation reaction of the ethanol
into acetic acid. This particular metabolic process consists of a
two-step reaction (see Figure 5). First, alcohol dehydrogenase
(ADH) binds to pyrroloquinoline quinone (PQQ) to oxidize
the ethanol into acetaldehyde. Next, acetaldehyde is oxidized to
acetic acid by aldehyde dehydrogenase (ALDH); both enzymes
are located on the periplasmic side of the inner cell membrane
(Adachi et al., 1980; Ameyama and Adachi, 1982). Further,
NAD™ and NADP" may be used as coenzymes by ADH-NAD
and ALDH-NADDP, located in the cytoplasm (Qin et al., 2021;
Sriherfyna et al., 2021). The acetic acid produced at the periplasm
is released into the medium increasing its external concentration
which, in turn, triggers its diffusion and accumulation in the
cytoplasm (Gullo et al., 2014; Qiu et al., 2021). The TCA cycle
may assimilate the inner acetic acid through the input of
acetyl-CoA providing biosynthetic precursors of amino acids
and nucleic acids thus replenishing cell material throughout
the loading phase and early stages of the ethanol depletion
phase. The use of raw material with sugar content, as is the case
of our craft beer, can lead to assimilating firstly, the available
glucose and draining biosynthetic precursors directly from
energy metabolic pathways as the PPP and the glycolysis. At
the final moments of acetification, cells would trigger different
membrane mechanisms dependent on proton motive force
for the acetic acid release and detoxification. This molecular
strategy, proposed in the present work, would allow K. europaeus
to prevail over other species during the acetification process.
These findings will be exhaustively detailed in the rest of the
discussion based on hierarchical clustering, protein-protein
interactions, and statistical analysis. Furthermore, it has been
sectioned to facilitate the understanding of these microbial
behavioral aspects at a quantitative level. In short, the discussion
has been organized by analyzing the results obtained for the
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two raw materials as a whole according to the most relevant
metabolic processes; and in this way, the differences existing in
both acetification profiles can be better appreciated.

The Essential Role of the Biosynthesis of
Amino Acids and Nucleic Acids From
Metabolic Precursors Replenishing
Cellular Material Losses

The metabolism of amino acids seems to be one of the most
representative metabolic pathways of K. europaeus, as can be
appreciated in most protein clusters, above all, in those showing
quantification peaks at the end of the loading phase (Clusters 1, 2,
4, and 5). The amino acids are synthesized from intermediaries of
the TCA cycle, the glycolysis, and the PPP through L-glutamate
and L-glutamine, both acting as nitrogen sources that are self-
regulated according to the cell requirements (Yin et al., 2017;
Sankuan et al., 2020). These results suggest that AAB might use
their high nitrogen recovery capability to convert continuously
nitrogen sources like proteins, nucleic acids derived from raw

materials, and apoptotic cells into amino acids and ammonium
thus replacing their consumption and cell material losses during
the loading phase (Alvarez-Céliz et al., 2012; Kuypers et al.,
2018). In this sense, ALS is related to the synthesis of BCAA
and L-valine, L-leucine, and L-isoleucine, from pyruvate, are
strongly upregulated at FW_EL. It is also interesting to note that
ILVH was highly upregulated at FW_UL. BCAA may provide
NHj; and energy to neutralize the increase of acid final products
during the exhausting phase and support intracellular pH balance
through deamination, as proposed by other authors who reported
different isoforms of acetolactate synthase in diverse acidophilic
organisms (Santiago et al., 2012; Andrés-Barrao et al., 2016;
Yin et al., 2017). Our findings supported the essential role of
the metabolism of amino acids throughout acetification and
especially, suggest the addition of BCAA to the fermentation
culture as a possible system to protect the cellular integrity and
increase productivity.

Conversely, the biosynthesis de novo of purines and
pyrimidines requires the addition of amino acids to the
pentose-5-phosphate, coming from the PPP, and metabolic
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energy (ATP) as can be observed in INMs belonging to
clusters showing quantification peaks at EL (1, 2, 4, and 5).
To our knowledge, this pathway has been barely researched in
AAB, but here, phosphoribosyl-formyl-glycinamidine synthase
complex (FGAMS) has been found (see Supplementary Table 2).
FGAMS, composed of three subunits (PURQ, PURL, and
PURS), carries out the ATP-dependent formation of formyl-
glycinamidine ribonucleotide [FGAM] converting L-glutamine
to L-glutamate (Tanwar et al, 2012). In previous works
characterizing an alcohol vinegar microbiota (Roman-Camacho
et al., 2020, 2021), some GO Terms related to the synthesis of
organic heterocyclic aromatic compounds, concretely, nucleic
acids were identified. In the present work, the main subunits
showed quantification peaks at different phases (PURQ, B_EL;
PURL, FW_EL; PURS, FW_UL) although along with others,
most of them were highlighted at the end of the loading
phase. This fact could indicate that the synthesis of nucleic
acids is integrated with other metabolic pathways, being
part of a biological system that aims to replenish cellular
material losses caused after unloading, improving adaptability,
and ensuring the survival of the microbiota, above all,
K. europaeus.

The TCA Cycle as a Key Pathway in the
Cytoplasmatic Acetic Acid Assimilation

and Biosynthetic Precursors Source

The TCA cycle has been studied exhibiting an important function
in the metabolism of AAB (Nakano and Fukaya, 2008; Kwong
et al, 2017). The protein groups involved in this pathway
were predominant in clusters whose quantification patterns were
higher at EL phases (Clusters 1, 2, and 4). All the TCA cycle
enzymes were found in the proteome of K. europaeus (see
Supplementary Table 2) and all of them were downregulated,
mainly in the fine wine profile (see Figure 5). In this work,
aKDH, SSADH, and THIC were highlighted so they might play
a critical role. Zhang and Bryant (2011) and Lei et al. (2018)
investigated that tKDC and SSADH might form succinic acid via
succinic semialdehyde by using cofactors of thiamine phosphate
in Synechococcus sp. PCC7002. The TCA cycle can supply
a-ketoglutarate to the synthesis of L-glutamate that provides
amino groups in biosynthetic reactions, besides oxalacetate. For
this purpose, the acetyl-CoA is provided to the TCA cycle by
the conversion of pyruvate obtained in the glycolysis and of
acetic acid derived from the ethanol oxidation (Mamlouk and
Gullo, 2013; Qin et al., 2021). Because of the direct drain of
intermediates from the TCA cycle to biomass, amino acids
are partly derived from ethanol (Adler et al,, 2014). In this
sense, considering that AAB must cope with constant changes
in ethanol, acetic acid, and cellular concentration because of
the semi-continuous state of the cycles in our experiment, we
suggest that the TCA cycle might be used for assimilating
cytoplasmatic acetic acid, coming from ethanol, supplying
energy, and biosynthetic precursors according to other authors
(Ramirez-Bahena et al., 2013; Adler et al., 2014; Andrés-Barrao
etal., 2016; Zheng et al., 2017).

The Pentose Phosphate Pathway and
Glycolysis Are Used to Assimilate the
Available Glucose Obtaining Rapidly
Biomass and Energy for the Synthesis of

Precursors

The pentose phosphate pathway (PPP) is the main metabolic
route of AAB to incompletely oxidize the glucose of the medium
providing several precursor metabolites, mainly pentose-5-
phosphate, necessary for the biosynthesis of amino acids (L-
histidine) and nucleic acids (Adler et al., 2014; Garcia-Garcia
et al., 2017). Several authors have related the enhance of PPP to
the generation of NADPH + HT, also involved in biosynthetic
processes even in reducing oxidative stress (Yin et al., 2017;
Christodoulou et al., 2018; Sriherfyna et al, 2021). Although
many of the species of Acetobacter and Komagataeibacter have
demonstrated a higher preference for ethanol as a carbon
source, in this analysis, most PPP enzymes were expressed
when the ethanol concentration was higher (EL phases) (see
Supplementary Table 2). Except for GPDH, which was strongly
expressed in the fine wine profile (FW_EL), the rest of the PPP
enzymes were higher quantified in the beer profile (B_EL) (see
Figure 5). The remaining sugar content of the beer (7% before
dilution) may provide glucose as a carbon source allowing AAB,
mainly K. europaeus, to rapidly obtain biomass and energy for
the synthesis of precursors (Garcia-Garcia et al., 2017; Qin et al,,
2021). Indeed, the glycolysis enzymes were also higher expressed
in the beer profile, in this case, and mostly upregulated (B_UL).
Zheng et al. (2017) study showed that growing A. pasteurianus in
a medium containing 1% initial acetic acid, PPP was decreased,
and energy metabolism was enhanced by the production of
pyruvate. Despite its ethanol preference, K. europaeus might
assimilate, firstly, the glucose in the beer medium for rapid
biosynthesis of precursors, which are not possible to obtain
by other pathways, obtaining energy, and thus, prevail over
other species that exhibit high glucose preference. This fact
would explain the presence in our results of numerous protein
groups involved in these pathways in clusters whose patterns
showed quantification peaks during beer acetification (Clusters
1,2, 4, and 5).

The Biosynthesis of Ribosomes and
Proteins Is Regulated With the Increase

of Acetic Acid Concentration

The biosynthesis of proteins has been reported by different
authors as one of the most highlighted metabolic pathways
in AAB throughout the acetification process (Andrés-Barrao
et al, 2012; Xia et al, 2016; Romdn-Camacho et al., 2021).
Here, the most of functional groups involved in this process,
mainly composed of ribosomal subunits, showed quantification
peaks at FW_UL (Clusters 6 and 7). However, few of them
were significantly upregulated since proteins that surpassed the
statistical cut-off were related to the regulation of the translation.
Among them, L-PSP inhibits the synthesis of proteins by the
degradation of mRNAs, HPF dimerizes the bacterial functional
ribosomes into inactive 100S ribosomes (Matzov et al., 2019),
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and RPH assists the maturation of tRNAs and the degradation
of structured RNAs mainly in E. coli (Jain, 2012). Some authors
have reported a decrease in the biosynthesis of proteins when
the acidity levels increase in A. pasteurianus through functions
as the recycling of ribosomes (Andrés-Barrao et al., 2012;
Xia et al, 2016). Then, CSPA (see Figure 5), was strongly
upregulated and its function has been discussed in E. coli
as an RNA chaperone that prevents the protein refolding by
ribonucleases (Rennella et al., 2017). When the acetic acid
concentration is diluted during the loading phase the process
of protein synthesis seems to occur efficiently through the
presence of aminoacyl-tRNA ligases in Clusters 2, 4, and 5,
binding tRNAs to specific amino acids and ensuring an accurate
translation process (Romén-Camacho et al., 2021). It is worth
noting the drastic decrease of expression of initiation factors
as RPOD with the increase of acetic acid level (FW_UL). In
summary, these findings suggest that acetic acid accumulation
generates a stress response thus regulating the formation of
ribosomes and proteins.

Membrane Mechanisms of Response to
Acetic Acid Stress Derived From the

Incomplete Oxidation of Ethanol

The incomplete oxidation of the ethanol of the medium
is carried out by membrane-bound systems directly coupled
to respiratory chains and allowing that oxidation reaction
to take place in the periplasm without a requirement of
transport across the membrane (Qin et al, 2021; Qiu et al,
2021). In this work, numerous subunits of PQQ-ADH and
ALDH were identified and mainly expressed at UL phases
(see Supplementary Table 2), but in general, these enzymes
were stable indicating that the oxidation of ethanol could
be constantly active throughout acetification. The acetic acid
produced in the periplasm is released into the medium, thus
increasing its external concentration. However, when it occurs,
this compound can diffuse and accumulate into the cytoplasm
along with that generated inside by the activity of ADH-NAD
and ALDH-NADP (Adler et al., 2014; Gullo et al., 2014). In
this sense, some systems acting to detoxify the cell might be
participating through the upregulated proteins at FW_UL. First,
those related to redox homeostasis maintenance, particularly,
implicated the maturation of iron-sulfur (FeS) clusters acting
as cofactors in the electron transfer (nifUp), cell apoptosis
(pirp), and detoxification (catEp) (Benoit et al., 2018). To our
knowledge, this set of proteins had never been reported in
AAB. Secondly, outer membrane proteins, as permeable porins
of small solutes (OMPA) and efflux pumps (OPRM, putative
ABC-transporter) (see Figure 5), might control the cellular
output of acetic acid, whose concentration increases during
the fermentation phase (Nakano and Fukaya, 2008; Confer and
Ayalew, 2013). MLTA, participating in the maintenance of the
peptidoglycan layer under these conditions, show even more
evidence of the importance of the cell surface as an efficient
mechanism against the acetic acid stress used by the species
of Komagataeibacter, as other authors have well-studied (Wang
et al., 2015; Andrés-Barrao et al., 2016).

CONCLUSION

A comparison of two acetification profiles using different
raw materials was established to study the natural behavior
of the involved microbiota through the metaproteome and,
exhaustively, since it is the prevalent species, the quantitative
proteomic profile of K. europaeus. Although the use of different
raw materials seems not to affect the microbial composition,
the microbiota behaved differently by significant changes in
the expression of the proteome. In this work, it has been
suggested that the inner acetic acid coming from the oxidation
of ethanol might be assimilated in the TCA cycle providing
biosynthetic precursors along with other metabolic pathways
(PPP and glycolysis) if glucose is available, as is the case
of one of the fermentation media studied (craft beer). These
processes replenish the cell material losses (amino acids and
nucleic acids) after unloading, throughout the loading phase. The
excess of acetic acid in the cytoplasm would also be released
to the medium by some cell membrane mechanisms proton
motive-force dependent at the final stages of the acetification.
This complete strategy has been reported in Figure 5,
highlighting the phase at which each protein had a higher
quantification value. The differences in the metabolic behavior
throughout each acetification profile were more accentuated in
the fine wine vinegar than in the craft beer vinegar. In this
profile, FW_UL was a period significantly differentially based
on statistical analysis. Metabolomic assays that would allow
clarifying the differences between the associated metabolites
to these raw materials, in more detail, are underway. These
findings may lay the groundwork of a vinegar microbiota
profile, at a protein level, under smooth operating conditions.
Future studies might be undertaken to evaluate the effect
on the microbiota of media with higher levels of ethanol
and acetic acid and even comparatives studies to achieve a
multi-omics integrative profile. This work might increase the
knowledge of the use of diverse raw materials and optimize the
operating conditions.
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3. Results and Discussion

3.2. Chapter 1V. Metagenomics and protein fingerprinting for the characterization
of the microbiota of diverse vinegars obtained by submerged culture: the use
of the “omics” tools 16S rRNA Amplicon Sequencing and MALDI-TOF MS

Once the microbiota present throughout the acetification of the three working media
was described by metaproteomics (see section 3.1.), the confirmation of the previous
results using other omics tools was considered necessary. In the present work, the
composition of a starter microbiota propagated on and subsequently developing the
three acetification profiles (synthetic alcohol-based medium, craft beer, and fine wine),
was characterized and compared. For this purpose, a metagenomic tool, such as the 16S
gene rRNA amplicon sequencing, and another proteomic tool based on the protein
fingerprinting, such as matrix-assisted laser desorption/ionization-time of flight mass
spectrometry (MALDI-TOF MS), were used. The combination of a culture-independent
technique with a culture-dependent method was implemented for the first time to
identify the microbiota members inhabiting the submerged vinegar production.

A total of 12,443 unique amplicon sequence variants (ASVs) were obtained of which,
after clustering and chimera filtering, remained 6,187 as unique operational taxonomic
units (OTUs) at 97% identity in, at least, one out of a total of 26 samples. A
metagenomic qualitative analysis provided the number and distribution of unique OTUs
within samples for each acetification process. The high number of OTUs of the starting
inoculum samples was highlighted along with variations among the sampling times in
the three acetification profiles. Higher biodiversity of OTUs was also appreciated in the
inoculum samples. These findings evidenced that the nutritional composition of each
raw material may influence the number and distribution of OTUs in the vinegar
metagenome and, particularly, in the original inoculum before undergoing diverse
environmental changes because of the switch to the different media. To perform a
taxonomic study to facilitate an accurate identification of the microbiota, 16S rRNA
amplicon sequencing and MALDI-TOF MS were applied. 16S rRNA amplicon
sequencing revealed that throughout the time courses of the three acetifications,
numerous taxa from 30 different phyla were found highlighting Proteobacteria and
Fusobacteria, among others. Of them, the AAB genus Komagataeibacter, which
dramatically outnumbered the rest of the taxa, and a minor fraction of microorganisms
including the AAB genus Acetobacter, other bacteria groups (such as Cetobacterium,

Rhodobacter, Bacillus, and Sphingomonas) and others belonging to archaea, mainly
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Nitrososphaeraceae, were the main representatives. MALDI-TOF MS analysis allowed
confirming the presence of Komagataeibacter in vinegar by the identification of the
species K. intermedius in addition to reporting another bacteria species, Lysinibacillus

fusiformis.

The use of the “omics” tools implemented in this work has allowed: first, to confirm the
composition of the predominant microbiota obtained in our previous metaproteomic
approaches (section 3.1.), mainly the AAB groups Komagataeibacter and Acetobacter;
second, to identify some taxonomic groups never to date found in vinegar produced by
the submerged culture method. However, further assays will be necessary to clarify the
role of these microorganisms in the microbial community present during acetification;
third, new insights on the characterization of the raw materials used have been obtained.
This point again highlights the need for metabolomic studies to describe in more detail
the differences in the composition of both the raw materials and vinegars during their
submerged production (section 3.3.). The results obtained from this study may
contribute to improving the understanding of the behavior of the vinegar microbiota and

may have biotechnological interest in the vinegar-making industry.

This work has been accepted in the journal Frontiers in Microbiology with the title
“Combining omics tools for the characterization of the microbiota of diverse vinegars
obtained by submerged culture: 16S rRNA Amplicon Sequencing and MALDI-TOF
MS”, see section 6.1.1., appendix. It is currently in the production phase for online

publication.
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3.3. Chapter V. Study of the influence of the acetification process of synthetic
(alcohol-based) and natural media (fine wine and craft beer) on the

characterization of the vinegars “volatilome”
3.3.1. Introduction

The organoleptic properties of vinegar are influenced by acetic acid although many
other metabolites are released into the medium because of the metabolic reactions
taking place throughout the acetification process. Among them, the volatile compounds
are essential precursors for the aroma that may be transferred from the raw material to
the final product. In this work, the aim was to study the effect of the acetification of
synthetic (alcohol-based) and natural (fine wine and craft beer) media on the whole of
the minor volatile compounds or “volatilome” throughout the course of vinegar-making.
For the characterization of the volatilome, minor volatile compounds were differentiated
by gas chromatography coupled to mass spectrometry (GC-MS) both in the raw
materials and phases of the elaboration of vinegar by submerged culture and working in

a semi-continuous mode.

3.3.2. Materials and methods

Acetifications were performed from three different alcoholic substrates: first, a synthetic
alcoholic-based medium (AW) and then, two natural raw materials, a dry fine wine
(FW) from the Montilla-Moriles region (Bodegas Alvear S.A., Montilla, Cérdoba,
Spain) and a high-sugar craft beer (B) (Mahou-San Miguel, Cérdoba, Spain). The first
acetification (AW) was started using an inoculum consisting of a mixed culture coming
from a fully active operating industrial tank (UNICO Vinagres y Salsas, S.L.L.,
Cordoba, Spain) making wine vinegar. A sample harvested at the final moments of this
process was used as a starter culture for the subsequent acetifications (FW, B). The
operating conditions were established according to the methodology developed by our
group as can be found in our published works (see previous chapters of this report).
Sampling was carried out at three different moments; first, directly from the raw
materials without the inoculum, before starting the acetification (AW.S, FW.S, B.S);
second, when the loading phase was finished, reaching the bioreactor working volume
(AW.EL, FW.EL, B.EL); third, just before the unloading phase, when the acetic acid
concentration was the highest throughout the cycle (AW.UL, FW.UL, B.UL).
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The minor volatile compounds (< 10 mg/L) were identified and quantified in a two-step
process following the methodology described by Dumitriu et al. (2020). The first step
involved an extraction procedure by using a twister (0.5 mm film thickness and 10 mm
length, Gerstel GmbH, Mulheim an der Ruhr, Germany) which was placed in a vial
containing 10 mL of each 1:10 diluted sample and 0.1 mL of ethyl nonanoate (0.45
mg/L) as internal standard. After 100 min of stirring at 1500 rpm, the twister was
removed and transferred into a desorption tube for chromatographic analysis. The
second step involved the determination of the volatile compounds in a GC-MS equipped
with a Gerstel TDS 2 thermodesorption system. Desorption tubes were heated at 280 °C
for 10 min to release the minor volatile compounds attached to the twister and retained
in a TENAX adsorption tube. The adsorption tube was maintained at 25 °C throughout
the desorption and then, was subjected to a temperature increase until 280 °C. GC-MS,
equipped with an Agilent-19091S capillary column (30 m x 0.25 mm i.d. and 0.25 pum
film thickness), was operated at 50 °C for 2 min and then, until 190 °C for 10 min.
Helium was used as carrier gas at a flow rate of 1 mL/min. The mass detector worked in
scan mode at 1850 V and checked the mass from 39 to 300 m/z.

The identification of the volatile compounds was carried out by using retention times of
standards injected under the same chromatographic conditions, as the samples as well as
the Wiley N7 spectral library. Quantification was performed using calibration curves of
the standard.

STATGRAPHICS Centurion XV1.I software was applied to perform statistical analyses
including the detection of significant differences by analysis of variance both univariate
(ANOVA) and multivariate (MANOVA), hierarchical clustering (by Ward's method),

and principal component analysis (PCA).

3.3.3. Results and discussion
3.3.3.1L Determination of minor volatile compounds

Minor volatile compounds of diverse vinegars were characterized and differentiated by
performing qualitative and quantitative analyses. A total of 50 different minor volatile
compounds were found: for the acetification samples of the synthetic alcohol-based
medium (AW) were 24 (AW.S, 11; AW.EL, 21; AW.UL, 22; see Table 4) while for the
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acetification samples of fine wine (FW) and craft beer (B), were 45 (FW.S, 39; FW.EL,
40; FW.UL, 39; see Table 5) and 47 (B.S, 46; B.EL, 39; B.UL, 39; see Table 6),
respectively. Of the total, 9 volatile compounds were present in all samples throughout
the three acetification processes and 22 in those of the final products (AW.UL, FW.UL,
B.UL). Vinegar volatile compounds were distributed in 8 different chemical groups:

acids, alcohols, aldehydes, ketones, esters, lactones, terpenes, and phenols.

Table 4. Minor volatile compounds identified in the samples of the acetification of the synthetic
alcohol-based medium (AW). The letter shift throughout the process indicates significant
differences at 95% confidence according to the analysis of variance (ANOVA) performed.
AW.S, substrate; EL, at the end of the loading phase; UL, just before the unloading phase.

Source: own work.

VOLATILE COMPOUNDS AW.S AW.EL AW.UL
(ug/L) X c X c X c
ACIDS
Pentanoic acid 0.00 0.00 C|547.60 5151 A|428.66 2330 B
Hexanoic acid 0.00 0.00 B|21529 10.68 A|0.00 000 B
Octanoic acid 0.00 0.00 B|490.17 9.23 A|49551 3594 A
Decanoic acid 0.00 0.00 B|181.24 12.06 A|159.61 1558 A
Dodecanoic acid 3090 212 C|7392 534 A|5098 267 B
Tetradecanoic acid 176.50 10.61 A|143.53 10.19 B|109.26 850 C
Hexadecanoic acid 608.00 33.94 A|302.22 22.05 B|298.03 13.62 B
Octadecanoic acid 0.00 0.00 B|0.00 0.00 B|6.74 053 A
ALCOHOLS
4-Vinylphenol 000 000 C|8757 760 A|6993 330 B
ALDEHYDES
Benzaldehyde 0.00 0.00 C|31045 24.19 B|91158 91.09 A
Decanal 0.00 000 C|254 021 A|171 016 B
3,5-Dimethylbenzaldehyde 14598 3.22 C|40453 23.77 B|594.09 40.82 A
ESTERS
Ethyl acetate 0.00 0.00 B|0.00 0.00 B|156.44 9.68 A
Isobutyl acetate 000 000 cCj|201 0.14 B |5.32 040 A
2-phenylethanol acetate 0.00 0.00 C|3.08 011 B|16.02 114 A
Ethyl butanoate 23853 0.83 A|37.22 277 B|3398 264 B
Ethyl pentanoate 12.02 033 A|0.00 0.00 B |0.00 000 B
Ethyl benzoate 1873 023 B|1820 126 B|[2633 053 A
Ethyl octanoate 173 013 A|172 0.11 A|170 014 A
Ethyl phenylpropanoate 997 086 C|11435 10.28 B|161.73 1485 A
Methyl trans-dihydrojasmonate 0.00 0.00 C|5.40 0.15 B|8.44 077 A
PHENOLS
Guaiacol 000 000 B|3799 236 A|4285 359 A
LACTONES
g-Nonalactone 565 051 A|6.02 021 A|6.15 030 A
TERPENES
Limonene 2214 109 B|2559 159 A|2397 051 AB
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3. Results and Discussion

Table 5. Minor volatile compounds found in the samples of the acetification of fine wine (FW).
The letter shift throughout the process indicates significant differences at 95% confidence based
on the analysis of variance (ANOVA) performed. FW.S, substrate; FW.EL, at the end of the

loading phase; FW.UL, just before the unloading phase. Source: own work.

VOLATILE FW.S FW.EL FW.UL

COMPOUNDS (pg/L) | x c X c X c
ACIDS
Pentanoic acid 0.00 0.00 C|15181.92 71040 B |34464.07 2557.85 A
Hexanoic acid 1116.88 101.82 C|1412.37 69.22 B [2121.92 12936 A
Octanoic acid 10082.56 577.48 A |642855 303.00 C |7577.37 42040 B
Decanoic acid 164.87 11.17 B |[172.92 11.97 B |203.10 8.90 A
Dodecanoic acid 36.57 297 C|53.88 4.88 B |75.67 6.78 A
Tetradecanoic acid 79.43 342 C|121.18 9.55 B |18247 465 A
Hexadecanoic acid 324.22 11.27 B|311.81 27.77 B [597.95 4399 A
Octadecanoic acid 0.00 0.00 B |0.00 0.00 B |28.02 0.87 A
ALCOHOLS
Isoamy| alcohols 407.85 29.76 A |160.22 13.39 B |83.77 6.83 C
Furfuryl alcohol 755.65 61.58 B |797.26 42.62 B |1560.71 11592 A
Hexanol 1163.40 7572 A |[365.25 1.95 B (0.00 0.00 C
2-Phenylethanol 75.29 3.80 A|47.07 1.43 B |50.30 3.15 B
4-Vinylphenol 149.64 49.05 A|140.27 13.90 A 19934 17405 A
2-Methoxy-4-vinylphenol 81.31 5293 A|45.22 2.25 A |51.89 3.00 A
ALDEHYDES
Benzaldehyde 39.10 784 B|37.00 2.89 B |82.84 2.12 A
Phenylacetaldehyde 14.04 233 A|7.09 0.55 C |10.60 0.73 B
Octanal 0.77 0.09 A|0.00 0.00 B (0.00 0.00 B
Decanal 1.33 025 B|0.61 0.05 C |1.76 0.13 A
3,5-Dimethylbenzaldehyde 444.16 1.08 B |[677.09 47.96 A 74359 6024 A
KETONES
6-Methyl-5-hepten-2-one 0.00 0.00 A|9.62 0.20 B |15.90 0.67
ESTERS
Ethyl acetate 64.74 475 A|43.83 2.78 B |50.31 3.84 B
Isobutyl acetate 5.20 0.52 C | 145.40 12.33 B 126993 2156 A
Hexyl acetate 0.00 0.00 B|15.62 1.10 A ]0.00 0.00 B
2-phenylethanol acetate 171.65 245 C|1652.71 16405 B |2706.41 255.03 A
Ethyl propanoate 228.84 1537 A|175.30 10.54 B |140.73 8.12 Cc
Ethyl isobutyrate 15.27 0.66 B|21.12 0.21 A |19.48 1.25 A
Ethyl butanoate 348.46 30.84 A |93.26 1.94 B |55.88 4.96 B
Ethyl hexanoate 363.58 3481 A|0.00 0.00 B |0.00 0.00 B
4-OH-ethyl butanoate 7.94 136 A|[3.10 0.30 B |2.06 0.13 B
4-OH-ethyl hexanoate 19.04 071 A|13.18 0.89 B |14.38 1.31 B
Ethyl benzoate 28.88 512 A|19.75 1.10 B |19.11 1.59 B
Diethyl succinate 51843.90 4898.5 A|28015.37 1315.05 B |28096.73 2294.46 B
Ethyl octanoate 56.60 057 A|4.64 0.17 B |3.96 0.31 B
Ethyl phenyl acetate 210.94 8.73 B |848.53 38.15 A 94679 9226 A
Ethyl phenylpropanoate 0.00 0.00 B|0.00 0.00 B |6.68 2.20 A
Ethyl isopentenyl succinate 3476.39 259.96 A |835.64 10.06 B |330.74 872 C
2-OH-3-ethyl 15510 214 A|96.73 922 B |10525 494 B
phenylpropanoate
Methyl trans-dihydrojasmonate | 6.09 021 A|5.66 0.54 A |6.52 0.40 A
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3. Results and Discussion

VOLATILE FW.S FW.EL FW.UL
COMPOUNDS (ug/L) |x G X c X c

PHENOLS

Guaiacol 0.00 0.00 C|23.92 2.05 B |60.40 2.70 A
p-ethylguaiacol 145.98 2453 A |81.06 3.56 B |0.00 0.00 C
KETONES

5-Valerolactone 35.97 6.97 A|22.64 1.23 B |3331 1.66 A
g-Nonalactone 18.09 052 A|14.35 1.18 B |16.28 1.15 A
TERPENES

Limonene 22.20 140 B|[25.23 2.32 AB | 26.88 0.16 A
Nerol 6.55 237 A|0.00 0.00 B |0.00 0.00 B
Geranyl acetone 12.52 0.73 A|11.34 0.22 A (1233 0.96 A

Table 6. Minor volatile compounds detected in the samples of the acetification of the craft beer

(B). The letter shift throughout the process indicates significant differences at 95% confidence
based on the analysis of variance (ANOVA) performed. B.S, substrate; B.EL, at the end of the

loading phase; B.UL, just before the unloading phase. Source: own work.

VOLATILE COMPOUNDS |B.S B.EL B.UL

(Mg/L) X c X c X c
ACIDS
Pentanoic acid 952.47 7831 C|5408.13 177.61 B [8562.40 523.33 A
Hexanoic acid 184526 7446 A|946.27 3753 C |121420 8022 B
Octanoic acid 13268.49 423.32 A|4717.10 29447 B |2065.95 150.26 C
Decanoic acid 1018.86 62.28 A|172.74 9.23 B [136.48 9.48 B
Dodecanoic acid 89.19 334 A|8243 5.73 A |61.68 1.10 B
Tetradecanoic acid 221.34 6.97 A|21227 1654 A |160.07 1033 B
Hexadecanoic acid 224160 46.76 A |112354 4578 B |902.19 2586 C
Octadecanoic acid 41.74 327 B|20.72 1.95 C |50.74 3.78 A
ALCOHOLS
Isoamy! alcohols 178.00 479 A|33.88 2.52 B |14.11 1.38 C
2, 3-Butanediol 583.54 30.95 A|127.80 8.78 B |0.00 0.00 C
Furfuryl alcohol 1562.92 110.94 A|2081.34 217.65 A |1681.23 146.97 A
2-Phenylethanol 103.12 6.96 A |39.13 4.02 B |4341 3.79 B
4-Vinylphenol 866.54 7096 A|[380.26 3290 C |[398.72 475 B
2-Methoxy-4-vinylphenol 1917.00 6420 A|680.80 86.95 B |626.60 6.94 Cc
ALDEHYDES
Benzaldehyde 35.71 1.94 C|246.15 577 B |[558.15 36.04 A
Phenylacetaldehyde 163.69 16.09 A|57.10 3.63 B |50.86 3.43 B
Octanal 3.76 030 A|0.00 0.00 B |0.00 0.00 B
Decanal 1.75 0.09 B|2.80 014 A |182 0.07 B
3,5-Dimethylbenzaldehyde 44226 30.67 A|18594 2314 B |404.02 1576 A
KETONES
6-Methyl-5-hepten-2-one 11.72 112 B |13.76 1.12 B |23.09 1.75 A
ESTERS
Ethyl acetate 11.26 042 C|53.02 4.13 A |[32.15 3.12 B
Isobutyl acetate 48.56 206 C|133.92 8.17 B [256.28 1331 A
2-phenylethanol acetate 2548.63 171.90 B |1522.29 68.60 C |3309.62 22358 A
Ethyl propanoate 11986 866 A|104.16 5.77 B |81.85 7.85 C
Ethyl isobutyrate 1.32 012 C|3.83 0.13 A [2.60 0.12 B
Ethyl butanoate 684.36  26.34 A |82.26 1.87 B |32.54 1.04 C
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VOLATILE COMPOUNDS |B.S B.EL B.UL

(Mg/L) X c X c X c
ESTERS (continued)
Ethyl pentanoate 59.58 3.06 A|0.00 0.00 B [0.00 0.00 B
Ethyl 2-methyl-2-butenoate 8.52 0.06 A|0.00 0.00 B |0.00 0.00 B
Ethyl hexanoate 72859 1268 A|0.00 0.00 B (0.00 0.00 B
Ethyl Cis-4-hexenoate 190.01 389 A|9.76 0.68 B |0.00 0.00 C
4-OH-ethyl butanoate 31.81 185 A|9.09 0.30 B |7.05 0.44 C
Ethyl benzoate 265.45 23.62 A |60.90 3.52 B |42.05 2.64 B
Diethyl succinate 36131 584 A|(316.35 17.66 B [30290 2121 B
Ethyl octanoate 25398 262 A|3.19 0.25 B |[3.22 0.21 B
Ethyl phenyl acetate 336.88 2455 B |[508.87 4211 A |[463.35 3448 A
Ethyl phenylpropanoate 330.64 1484 A|52.33 2.63 B |33.30 2.14 Cc
Ethyl isopentenyl succinate 26.84 148 A|28.79 2.30 A |7.95 0.55 B
2-OH-3-ethyl phenylpropanoate 26.45 415 A |0.00 0.00 C |13.28 0.79 B
Methyl trans-dihydrojasmonate 10.57 083 A|10.78 0.91 A |8.73 0.76 B
PHENOLS
Guaiacol 0.00 0.00 C|84.08 2.84 B [129.54 5.05 A
p-ethylguaiacol 229.05 13.76 A|0.00 0.00 C |9281 8.63 B
LACTONES
5-Valerolactone 23.29 0.60 B |41.10 4.08 A 4292 265 A
g-Nonalactone 211.21 772 A|16954 1081 B |161.18 997 B
TERPENES
Limonene 23.35 0.09 A|21.65 127 AB|20.14 140 B
Nerol 20.80 1.04 A |0.00 0.00 B |0.00 000 B
Geranyl acetone 13.60 117 A|11.79 078 B [12.95 064 AB
OTHERS
2,5,5-Trimethyl-2,6-heptadiene 279.05 111 A |0.00 0.00 B |0.00 000 B

In general, the acetification samples of the synthetic alcohol-based medium (AW) were
characterized by a lower presence and content of minor volatile compounds, particularly
in the raw material (AW.S). The composition of the raw material was largely distilled
ethanol which was subsequently diluted in distilled water just starting the acetification.
Throughout the distillation of ethanol, most of the higher alcohols, acids, esters, and
aldehydes are removed, which may explain this fact. Some of these volatile compounds
appeared during acetification and at the end of the process (AW.EL, AW.UL), which
might be attributed to the enzymatic activity of the acetic acid bacteria (AAB), as they
can oxidize several components present in the medium to organic acids, thus enhancing
the metabolomic profile of vinegars (Callején et al., 2008; Mamlouk and Gullo, 2013;
Pinu et al., 2016; Sriherfyna et al., 2021).

The acetification samples of natural raw materials (FW, B) showed a higher presence,
diversity, and content of volatile compounds. After a previous alcoholic fermentation of

the sugars within the raw materials, a decrease in the presence and content of alcohols,
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consumed by AAB, with a concomitant increase in acids presence and content could be
expected throughout acetification. FW samples showed no general loss of alcohols but a
significant increase in acids content at the final moments of acetification (FW.UL). For
B samples, the highest richness of volatile compounds was found in the raw material
(B.S). Despite significant losses in the concentration of several volatile compounds,
most of them may be transferred from the substrate to the final product which, although
maintaining its particularities, may acquire unique organoleptic properties from these
raw materials (Palacios et al., 2002; Grierson, 2009; Ubeda et al., 2011).

These findings evidenced the need for further studies deepening the interrelationships,
in this case, between the microbiota responsible for the process and differential volatile
compounds to get a better understanding of the behavior of these complex systems.

3.3.3.2. Cluster analysis by Ward's method

The cluster analysis method aims at minimizing heterogeneity by assigning profiles to
the clusters thereby facilitating the understanding of the relationship between them
(Majerova and Nevima, 2017). Ward's method was used to discriminate among the
clustering levels of vinegar samples. The presence of volatile compounds, determined
by stir bar sorptive extraction (SBSE) coupled to GC-MS (see section 3.3.2.), was used

as a classifying variable, thereby grouping samples based on their similarity (Figure 11).

For clustering of the samples from the three acetification processes (AW, FW, B), four
different clusters can be observed, see Figure 11A. The first two clusters corresponded
to the samples from the acetification of AW (AW.S, AW.EL, AW.UL) and FW (FW.S,
FW.EL, FW.UL). Within them, the AW.UL and FW.S samples established subgroups
differentiating them from the rest of their profile. The third cluster comprised the B.EL
and B.UL samples, quite different from those of the fourth cluster, which comprised the
B.S samples. Indeed, it can be appreciated that the third cluster (B.EL, B.UL) shared
more features with the AW and FW samples than with those of its raw material (B.S),
showing that this sampling time was particularly diverse in terms of the presence of
volatile compounds. Moreover, it can be observed that samples of fine wine vinegar
(FW.UL) and beer vinegar (B.UL) shared more features with each other than with those
of alcohol wine vinegar (AW.UL), evidencing a higher similarity among the volatilome

of the natural vinegars, see Figure 11B.
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Figure 11. Cluster analysis by Ward's method of all the samples from (A) the complete three acetification
processes (AW, FW, B) and (B) the three final products (AW.UL, FW.UL, B.UL). AW, synthetic
alcohol-based medium; FW, fine wine; B, craft beer; S, substrate; EL, at the end of the loading phase;

UL, just before the unloading phase. Source: own elaboration.

3.3.3.3. Principal component analysis (PCA)

Principal component analysis (PCA) is used to synthesize information by reducing the
number of variables. Original variables are combined resulting in other new factors or
principal components (Wold et al., 1987). Here, PCA was carried out using determined
minor volatile compounds as the variable. Three principal components were identified

explaining, as a whole, 82.98% of the variability of the observed data (Figure 12).

Figure 12A shows the bidimensional distribution of the selected component 1 (42.67%
of the total variance) along with component 2 (22.55% of the total variance). These
components displayed differences in the B.S samples against those of B.EL and B.UL.
Differential variables were: 4-OH-ethyl butanoate, phenylacetaldehyde, 4-vinylphenol,
ethyl phenylpropanoate, ethyl benzoate, and 2-methoxy-4-vinylphenol for component 1;
and ethyl isobutyrate, 4-OH-ethyl hexanoate, 2-OH-3-ethyl phenylpropanoate, diethyl
succinate, and ethyl propanoate for component 2. Figure 12B shows the bidimensional
distribution of the selected component 1 (42.67% of the total variance) and component 3
(17.76% of the total variance). Component 3 presented differences in the FW.S samples
against those of FW.EL and FW.UL, as well in the B.S samples against those of B.EL
and B.UL. Differential variables for component 3 were guaiacol, 6-methyl-5-hepten-2-

one, isobutyl acetate, 2-phenylethanol acetate, octadecanoic acid, and furfuryl alcohol.
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Figure 12. Principal component analysis (PCA) of all the samples from the three acetification processes
(AW, FW, B) according to three components: component 1 (42.67%), component 2 (22.55%), and
component 3 (17.76%). The determined minor volatile compounds were used as a variable. AW,
synthetic alcohol-based medium; FW, fine wine; B, craft beer; S, substrate; EL, at the end of the loading
phase; UL, just before the unloading phase. Source: own elaboration.
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3.3.34. Multivariate analysis of variance (MANOVA)

The results of the MANOVA performed for the total minor volatile compounds found in
all the vinegar samples showed significant differences based on three variables: the raw
material or substrate used, the sampling time, and the interaction between both variables
(Table 7). In general, the total minor volatile compounds were highly influenced by the
raw material and sampling time, which means that the concentrations of these volatile

compounds were significantly different in all the samples.

Table 7. Multivariate analysis of variance (MANOVA) performed for the total minor volatile
compounds identified in all the samples of the three acetifications (AW, synthetic alcohol-based
medium; FW, fine wine; B, craft beer). *, significant p-values < 0.05; **, significant p-values <

0.01; ***, significant p-values < 0.001; ns, non-significant values. Source: own work.

VOLATILE COMPOUNDS |SUBSTRATE | SAMPLING TIME | INTERACTION
ACIDS
Pentanoic acid Kk —_— -
Hexanoic acid Kk —_— -
Octanoic acid ok Hekk -
Decanoic acid ok Hokk -
Dodecanoic acid Fokk Hokk —_—
Tetradecanoic acid Fx ns Fhx
Hexadecanoic acid i Hekk -
Octadecanoic acid i Hekk -
ALCOHOLS
Isoamyl alcohols Hokk Hokk -
2, 3-Butanediol Kk — .
Furfuryl alcohol Hokk Hokk -
Hexanol Hdkek S ok
2-Phenylethanol Hokeok Fokeok i
4-Vinylphenol Hokeok Hok i
2-Methoxy-4-vinylphenol Fkk sk -
ALDEHYDES
Benzaldehyde ke Fokeok i
Phenylacetaldehyde *kk ek -
Octanal Hodkek - -
Decanal Hodkek - -
3,5-Dimethylbenzaldehyde *xx *kk N—_—
KETONES
6-Methyl-5-hepten-2-one Sk ek -
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VOLATILE COMPOUNDS |SUBSTRATE |SAMPLING TIME | INTERACTION
ESTERS
Ethyl acetate ek - Tk
Isobutyl acetate Hokex — sk
Hexyl acetate Hokk - -
2-phenylethanol acetate . —_— .
Ethyl propanoate Hekk - .
Ethyl isobutyrate ok ke —
Ethyl butanoate Fokk Hokk Sk
Ethyl pentanoate Hkk Hokek —_—
Ethyl 2-methyl-2-butenoate Fkk Hokek -
Ethyl hexanoate Fokk Hokk Sk
Ethyl Cis-4-hexenoate Fokk Hokk -
4-OH-ethyl butanoate Hkk Fkk -
4-OH-ethyl hexanoate Hkk Fkk -
Ethyl benzoate Fkk - sk
Diethyl succinate Fhk Hkk ——
Ethyl octanoate Fhk Hkk —
Ethyl phenyl acetate Hkk Hkek —
Ethyl phenylpropanoate Hkok Hokok Hokok
Ethyl isopentenyl succinate Hkk Hkek —
2-OH-3-ethyl phenylpropanoate folall ok falaa
Methyl trans-dihydrojasmonate ok ok .
PHENOLS
Guaiacol Fokk - sk
p-ethylguaiacol Fhk Hkk —
LACTONES
5-Valerolactone Hkk * -
g-Nonalactone Hkek S .
TERPENES

Limonene ok ns *ke
Nerol Fokk ok ——
Geranyl acetone Hkk * ns
OTHERS
2,5,5-Trimethyl-2,6-heptadiene Hkk Hkk ——

3.3.4. Conclusions

The volatilome throughout the acetification processes from three different raw materials
was characterized, qualitatively and quantitatively, at different moments of the process.
A detailed description of the main conclusions obtained from this work can be found in

section 4, just those that deal with specific Objective 3.
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4. CONCLUSIONS

To characterize and compare the development of three acetification profiles to study
the evolution of operating conditions and the effect of diverse raw materials used
(synthetic alcohol-based medium, fine wine, and craft beer) on the composition and

the behavior of the microbiota responsible for the process.

The conclusions obtained from the specific Objective 1 “To characterize and compare
the metaproteome, qualitatively and quantitatively, of the microbiota responsible for
three acetification profiles (synthetic alcohol-based medium, fine wine, and craft
beer) and evaluate the differential variables throughout the process” are divided into

each of the three aspects approached in the respective publications:

“The study of the variations of system variables, as well as of the composition and
main functions of the microbiota present throughout the evolution of an
acetification process using a reference raw material (synthetic alcohol-based
medium) through a qualitative metaproteomic approach” which was discussed in
the work “Metaproteomics of microbiota involved in submerged culture production
of alcohol wine vinegar: A first approach”, published in the journal “International

Journal of Food Microbiology”, allowed to draw the following conclusions:

= The acetic acid bacteria genus Komagataeibacter contributed to the highest fraction
of the metaproteome, more than 80%, throughout the acetification of the synthetic
alcohol-based medium.

= The acetic acid bacteria species Komagataeibacter europaeus was the predominant
species of the microbiota of alcohol-based vinegar, providing almost 75% of the
total proteins, followed by other closely related species of Komagataeibacter.

= Metaproteomics revealed a minor fraction of the microbiota composed of species
from other typical genera of acetic acid bacteria (Acetobacter, Gluconacetobacter,
and Gluconobacter) and others, not before described in industrially made vinegar.

= GO Term enrichment analysis highlighted the presence of proteins involved in
catalytic activity and binding, as well as some metabolic and biosynthesis processes

throughout the acetification of synthetic alcohol-based medium.
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“The analysis of the quantitative differences of the metaproteome, especially on
the particular proteome of the predominant microbiota, and its interactions with
the non-abundant community throughout the acetification profile of synthetic
alcohol medium” which was approached in the work “Functional metaproteomic
analysis of alcohol vinegar microbiota during an acetification process: A
quantitative proteomic approach”, published in the journal “Food Microbiology”,
allowed to establish these conclusions:

The characterization of the synthetic alcohol-based medium has allowed the
establishment of a reference acetification substrate to compare with other alcoholic
raw materials for making vinegar.

The quantitative proteomic profile of the most abundant species, K. europaeus,
allowed to predict the main aspects of the microbial community function.

The protein activity underwent variations throughout the acetification of alcohol-
based medium: the metabolism of amino acids, the biosynthesis of proteins, and
energy production-related pathways prevailed during the loading phase, and then,

processes related to acetic acid stress came into play at the final periods of the cycle.

“The characterization of two acetification processes from natural raw materials
(fine wine and craft beer) and comparison of the influence of each one on the
metaproteome of both the predominant and minor microbiota, especially, through
the molecular strategies used for adaptation and survival” which was dealt in the
work “Unraveling the role of acetic acid bacteria comparing two acetification
profiles from natural raw materials: a quantitative approach in Komagataeibacter
europaeus”, published in the journal “Frontiers in Microbiology”, led to the

approach of these conclusions:

The use of different raw materials demonstrated that neither of them barely modified
the composition of the microbiota among the corresponding profiles of acetification.
The use of a different raw material influenced the protein abundance in diverse key
biological processes during the acetification process.

The characterization of two natural acetification substrates: craft beer, a highly

sugary medium, and fine wine, with a higher acetification rate, allowed suggesting a
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molecular strategy of K. europaeus for surviving through the use of the different
resources.

= The metabolization of the acetic acid, coming from ethanol oxidation, by the TCA
cycle along with other energy related pathways (PPP and glycolysis), providing
biosynthetic precursors, as well as membrane mechanisms for acetic acid release

may be processes of biotechnological interest for the submerged vinegar production.

The conclusions obtained from the specific Objective 2 “Confirm the composition of
the microbiota obtained through metaproteomics by applying metagenomics tools, as
well as the collection and characterization of isolates from the samples taken
throughout the acetification of the three working media: synthetic alcohol-based
medium, fine wine, and craft beer” are compiled in the article “Combining omics tools
for the characterization of the microbiota of diverse vinegars obtained by submerged
culture: 16S rRNA Amplicon Sequencing and MALDI-TOF MS”, published in the

journal “Frontiers in Microbiology:

= The combination of different omics tools may be suitable for the more accurate
identification of microorganisms, allowing for the achievement of a broader picture
of the production of vinegar.

= Metagenomics revealed that the starter inoculum presented a higher diversity that
the samples from the acetification processes.

= Komagataeibacter was confirmed as the main genus throughout the production of
diverse vinegars by submerged culture both by metagenomics and metaproteomics.

= This omics approach allowed for the identification of taxonomic groups never to
date found in vinegar made by submerged culture, highlighting the presence of

archaea.

The conclusions achieved from the specific Objective 3 “Characterization of the
“volatilome” and differentiation of the key volatile compounds throughout the
evolution of the acetification of the three raw materials: synthetic alcohol-based

medium, fine wine, and craft beer” were as follows:
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= The acetification profiles obtained from the natural raw materials provided more
volatile compounds than that of the synthetic alcohol medium, both qualitatively and
quantitatively.

= Although the acetification profiles from the natural raw materials showed a similar
number of volatile compounds, the volatilome composition differed among them in
qualitative and quantitative terms.

= Craft beer was a raw material particularly rich in minor volatile compounds.

= The cluster analysis by Ward’s method revealed that the volatilome from the
acetification profiles of fine wine and craft beer shared more features among them
than with that of the synthetic alcohol medium, especially at the final of the process.

= Principal component analysis (PCA) allowed for obtaining three unique components
explaining, in their combination, around 83% of the observed variability. A total of

17 minor volatile compounds were the main variables of the system.

General Conclusions and Future Perspectives

The research conducted in this Doctoral Thesis has allowed for characterizing diverse
acetification profiles using several alcoholic raw materials as substrates for vinegar
production by submerged culture. The use of different omics tools allowed to describe
and confirm the composition of these microbiota, mainly comprised of the AAB genus
Komagataeibacter, with the species K. europaeus as the main representative, and a less-
abundant microbiota composed of closely related species, other species from typical
AAB genera, numerous groups of bacteria, other than AAB, and even archaea groups.
Some of these groups of microorganisms have been for the first time described in
vinegar obtained in the present Doctoral Thesis. From a quantitative protein approach, it
has been demonstrated that the use of different raw materials barely modified the
composition of the microbiota, but it did cause significant variations in the activity,

behavior, and molecular strategies used throughout the acetification.

This work, which identifies the microbiota of the process as well as multiple volatile
compounds, important for the sensory properties of the final products, is a preliminary,
fundamental stage before being able to approach, in the most rigorous way possible, the
study of the interrelationships existing in complex systems such as this one. It is

providing new relevant findings that contribute both to the improvement of the existing
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current knowledge on the role of the microbial community members as well as expand
the use of diverse raw materials in industrial vinegar-making. In the medium-long term,
these achievements might lead to the improvement of operating conditions allowing to
obtain of new types of vinegar with improved organoleptic properties and high quality.
The use of improved starter cultures from the selection of species or strains with a
crucial role during acetification might contribute to this purpose. Progress in the field of
obtaining vinegar isolates, their phenotypic characterization, and biotechnological
enhancement will be crucial in this regard. Among new types of vinegar, the study of
those with a high presence of gluconic acid, which may confer to the final product
greater stability and an acid flavor with a mild sweetness, is currently carried out by our
group. Finally, it is worth noting that, from the general omics studies performed in this
Doctoral Thesis, future work focused on obtaining marker genes, proteins, and
metabolites during vinegar production might lead to the use of more specific strategies

for the improvement of the operating conditions.
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