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Abstract: In this work, we propose the use of non-homogeneous grids in 1D and 2D for the study of
various nonlinear physical equations using spectral methods. As is well known, the use of spectral
methods allow a faster resolution of the problem via the application of the ubiquitous Fast Fourier
Transform (FFT) algorithm. We will center our investigation on the search of fast and accurate
schemes to solve the spectral operators in the Fourier space. In particular, we will use the Conjugate
Gradient (CG) iterative method, with a preconditioning matrix to accelerate the inversion process of
the non-uniform Fast Fourier Transform (NFFT). As it will be shown, the results obtained are in good
agreement with the expected values.

Keywords: spectral methods; nonlinear optics; non-uniform fast Fourier transform; Julia language;
conjugate gradient algorithm

1. Introduction

As is well known, nonlinear equations have analytical solutions only in some specific
cases, therefore, a numerical approach to solving these is the most common scenario.
In order to apply our proposed spectral scheme, we choose two equations, in the 1D
case, the Nonlinear Schrodinger Equation (NLSE) [1] and the Gross–Pitaevskii Equation
(GPE) [2] to model a Bose–Einstein condensate (BEC) in 2D.

Amongst these techniques, the pseudo-spectral methods are of special relevance [3],
the Split-Step being one of the most applied [4]. The basic idea behind this algorithm is
to work separately with the linear and the nonlinear parts of the equation; thus, all the
temporal derivatives are solved in the frequency domain and the nonlinear terms in the
time one, the Fast Fourier Transform (FFT) is the numerical tool that allow us to go forth
and backward between both domains at a low computational cost [5,6].

One of the main limitations of this algorithm is the definition of the FFT as an evenly
spaced transform. Since there are a lot of problems that cannot be reduced to an uniform
grid, the employment of an non-uniform Fourier transform (NFFT) would be mandatory.
We want to remark that there is a wide range of application for this kind of non-uniform
spectral methods, from medical imaging [7,8] to the analysis of astronomical data [9,10],
to cite some of them. Several packages have been developed through the years to that end,
all of them based on the same algorithm of the FFT [11–15] . However, the main problem
that arises working with the NFFT is the nonexistence of an inverse form of it.

To solve this issue, several approaches have been proposed, being the conjugate
gradient (CG), in all its different implementations, one of the most extensive [16,17]. It is a
general method that, applied to that concrete problem, calculates the inverse transform as
the result of a series of iterations over the direct transform until a refined proof function
coincides with the original simulation at that stage; the correction of the proof function
over the iterations is based on a gradient of the error, hence the name of the method.

In this paper, we present a comparison of different implementations of the CG method
working over the FINUFFT library, developed by the FLATIRON institute in the Julia
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language [18,19].This library also presents great possibilities for future development, for ex-
ample, as support for GPU programming [20]. We also introduce a preconditioning matrix
that significantly reduces the error in the calculus, which allows us to obtain greater
precision with less iterations and speed up the method.

However, we not only introduce this improvement of the CG algorithm for non-
uniform problems, we also present a wavelet transform-based method to filter a function to
obtain its more sensitive points to work with [21,22]. Its reduction of points also contributes
to reducing the computational cost of a given problem once we are able to work with
non-uniform grids without a problem.

To show the benefits of using these two techniques, preconditioned CG and wavelet
filtering, the aforementioned NLSE and BCE equations have been solved. As said before,
both are extensively studied systems that can be modeled over uniform space grids, but we
will take advantage of the wavelet filtering to reduce the number of nodes and solve the
system with the NFFT.

As a summary, Section 2 will introduce the CG method, the proposed preconditioning
matrix and serve as a brief reminder of how the wavelet filtering works. Section 3 is
devoted to showing the results of applying the previous techniques to the simulation of
the NLSE and the GPE. In the conclusions, the impact of both techniques will be presented
together with future possible studies related to them. Finally, two appendices have been
added: the first refers to the conjugate gradient algorithms used (Appendix A) and the
second accounts for the generation of the grid through wavelet filters (Appendix B).

2. Spectral Methods for the NFFT

As it is widely known, spectral methods are based on the representation of the differ-
ential operators in the Fourier space. The use of the NFFT, as we propose here, allows us to
deal with non-uniform grids that can be the only possible option in some cases. In addition,
the simulation of physical problems using spectral methods demands the inversion of the
NFFT operation to complete a resolution step.

Under these premises, this section is dedicated to explaining the method used to
calculate the inverse of the NFFT operation and the generation of the non-uniform grid
using wavelet filters.

2.1. The Algebraic Problem: Conjugate Gradient Approach

As we exposed in the introduction, the use of non-uniform grids does not allow us to
resolve the proposed evolution equations, using the FFT algorithm, in a spectral scheme.
To make it possible, the usual approach for the NFFT is to apply an oversampled grid and
an interpolation process to the calculation of the Fourier representation [23].

In general, two different mathematical transformations appear, known as type 1 and
type 2 non-uniform FFTs [11,12]. In the FINUFFT library, the definitions of types 1 and 2
are, starting with type 1:

fk =
M

∑
j=1

cje
ikxj , for k ∈ Z, −N/2 ≤ k ≤ N/2− 1 (1)

therefore, type 1 calculates N complex equispaced outputs fk, from M non-equispaced
inputs, those can be viewed as a set of Fourier coefficients due to sources with strengths cj
at the arbitrary locations xj.

On the other hand, the type 2,

cj = ∑
k∈K

fke±ik·xj for j = 1, . . . M (2)

evaluates the Fourier series summation with coefficients fk at the locations xj. For a non-
uniform point distribution, the type 2 is not the inverse of the type 1, but its adjoint [11,12].
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This result makes impossible the use of a direct combination of these two transforms in an
iterative scheme, such as the one we propose here.

Considering that the FINUFFT type 2 transform just computes the Fourier summa-
tion once we know the Fourier coefficients fk, our objective reduces to calculating these
coefficients from xj and cj. In this sense, we want to solve the following linear system of
equations, in matrix-vector notation:

A f = y, (3)

being A the type 2 transformation matrix, and where y is the column vector whose elements
are cj. It is important to note that there are, of course, more implementations of the NFFT
algorithm, such as NFFT3 [24]. In our case, we have chosen the FINUFFT library, we have
chosen it for reasons of speed and precision [18,19].

We could use any of the algebraic methods for solving linear systems of complex
equations, but we are limited to using those ones that do not require knowing the explicit
form of the matrix A. In addition, as we want to benefit from the fast computations of
FINUFFT library, our method limits itself to making matrix-vector multiplications of A,
using a CG iterative scheme. The two algorithms, i.e., the Normal Equations Residue
Normalization (CGNR)[16] (Algorithm A1) and the Preconditioned Biconjugate Gradient
Stabilized Method [17] (Algorithm A2), used for the CG are detailed in Appendix A.

The computational effort of the FINUFFT algorithm is O(NlogN + Mlogd(1/ε)),
where N is the number of Fourier frequencies, M—the number of spatial points, d—the
dimension of the problem and ε—the tolerance of the system.

Since the number of spatial non-uniform points is smaller than the Fourier uniform
frequencies, it can easily be seen that the predominant term is the one of the frequencies and,
thus, the overall computational cost very similar to the FFT. However, we must perform
several steps of the conjugate gradient before we achieve the desired precision as shown in
Figures 1 and 2, so this number of iterations would be the determinant factor that would
make the FINUFFT slower than the homogeneous FFT.

Figure 1. Relative error for the different conjugate gradients algorithms used, with and without the
preconditioner weight matrix W , measured as the relative L2 error obtained in the process of direct
and inverse Fourier transformation of the initial state input for the 1D Raman case.
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Figure 2. Relative error for the two different conjugate gradients algorithms used, with and without
the preconditioner weight matrix W , measured as the relative L2 error obtained in the process of
direct and inverse Fourier transformation of the initial state input for the BEC asymmetric case.
The Delaunay triangulation is the weight generator for W .

It is clear that the FINUFFT algorithm would require more computational cost to
reach the solution of a system than the FFT case, but the importance of our work is that
there are problems that, by their own nature, cannot be solved with a uniform grid and
the use of a non-uniform one is mandatory. Furthermore, the determination and use of
the preconditioning matrices allows us to achieve good precision values in relatively few
iterations. This is evident in the results section where the values obtained are in good
agreement with what was expected.

2.2. The Preconditioning Matrix

To make the convergence of the CG algorithm faster and stable, it is common to
incorporate a real diagonal weight matrix W as preconditioner, applying AHWA as similar
to a diagonal matrix as possible; compensating for the clustering effect that could appear
during the wavelet filter process that we will explain, later on, at the end of this section.

It is important to note that A is not in general an Hermitian matrix, which must be
taken into account to solve the linear system via numerical methods. To overcome this
problem, we solved the following equivalent preconditioned system:

AHWA f = AHWy , (4)

where AH is the conjugate transpose matrix of A, i.e., the type 1 matrix, and W is the
aforementioned preconditioning diagonal real matrix.

To determine the elements of the W matrix, we could use any quadrature scheme,
but we will use the trapezoidal quadrature weights in 1D and a Delaunay triangulation
in 2D, where the grid nodes obtained in the filtering process are used as the seeds of
the partition.

In this way, in the 1D case, the weight wj associated to a node xj is:

w1 =
1
2
· (x2 − x1) ,

wj =
1
2
·
(
xj+1 − xj−1

)
, j = 2, . . . , M− 1 (5)

wM =
1
2
· (xM − xM−1)
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However, in the bidimensional case, it is not simple to choose a quadrature scheme
which works with any set of scattered points in the plane. To overcome this issue, we have
inspired ourselves in a Delaunay triangulated 2D domain.

We can think about a quadrature scheme that approximates the integral of a function
y(x) over a Delaunay triangle Ti

r , as the area A(Ti
r) of the triangle multiplied by the mean

value of the function evaluated at the triangle vertices. In this sense, it is direct to obtain
that the weight wj associated to a node xj is one-third of the sum of the areas of the triangles
it belongs to:

wj =
1
3 ∑

Ti
r | xj∈Ti

r

A(Ti
r) (6)

we compute the areas A(Ti
r) using Heron’s formula, which allows us to calculate the area

of a triangle knowing the lengths of its sides.
The results for the 1D and 2D cases can be seen in Figures 1 and 2, respectively; the

impact of the preconditioning matrix in the convergence of the process is clear, we can
achieve in few iterations a low level of error, comparing to the case without preconditioning
matrix, which allows us the resolution of the problems proposed with good accuracy
and lesser computational effort, thus reducing the total simulation time. More concretely,
with the preconditioning matrix, we can achieve the same accuracy that we can without it
in a quarter of the simulations or gain one order of magnitude with half the simulations.

Although this work limits itself to 1D and 2D cases, the generalization of (6) to higher
dimensions could be achieved in 3D constructing a tetrahedralization of the domain.

2.3. Wavelet Grid Generation and Evolution

To generate the non-uniform grid, we will use the Discrete Wavelet Transform (DWT)
that can be viewed, analogously to the FFT, as a matrix linear operator that transforms the
power of two length vectors in vectors of the same length but numerically different and is
the basis for the wavelet filter process [25].

The effect of the DWT matrix over a column vector looks like the application of
two different filters that corresponds to the odd and even rows in the DWT matrix [26].
The odd rows generate a convolution with the data, which, due to the characteristics of the
coefficient set, performs some kind of a moving average, a smoothing filter. On the other
hand, the even rows, due to a different combination of signs, for the same values of the
coefficients, have an opposite effect; in fact, this combination of coefficients is designed to
generate a response near to zero as possible for a smooth data vector, performing. therefore,
like a detail filter. In our work, we will use the Daubechies wavelets [21], particularly, the
set of coefficients DAUB4.

The process to generate the non-homogeneous grid starts with the application of the
detail filter; this operation highlights the changes that can appear in the different parts of
the data. The value obtained with this operation, if exceeding a previously determined
threshold, allows us to adapt the spacing between the nodes of the grid [22], selecting the
areas that overcome the threshold and deleting the others. In this way, the filter is applied
consecutively to different uniform grids, each of which has twice the point density of the
previous one, these uniform grid parts define the layers of our initial non-homogeneous
grid as can be seen in Figure 3.

Finally, as we are interested in the evolution of our model, we must ensure the adapta-
tion of the grid to the changes that may appear. We will use interpolation methods [27,28]
to refill the areas with a less dense grid; later on, we will apply again the generation
scheme to adapt dynamically the grid to possible location changes in the relevant zones of
the problem.
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Figure 3. Results obtained after filtering a order two solitonic pulse, ψ(z, t) = 2sech(z, t), using
the wavelet filter (DAUB4, threshold = 0.0002), details in Appendix B. The values have a similar
appearance for the different homogeneous grids (right up inset), their size is inversely proportional
to the density of each one of them.The selected coordinates are those for which the result of applying
the filter is above the dotted line (left up inset). The selection for every layer is shown on the bottom.
The less dense grid is the basis to build the interpolation process when the pulse evolves.

3. Results

In this section, we present the physical equations to simulate, i.e., the NLSE and the
GPE together with the results obtained. We will use the NLSE to illustrate the process of
the grid formation and its adaptation to the evolution of the problem in 1D and the GPE
for a 2D example of our scheme.

3.1. NLSE. 1D Raman Scattering

The NLSE has two main terms, each one of these accounting for the two different
physical effects this equation applies for: Group Velocity Dispersion (GVD) and Self-Phase
Modulation (SPM) [29,30]. With this example, we want to apply our spectral scheme to
a challenging nonlinear problem.

The NLSE has the form:

∂ψ(z, t)
∂z

= (L̂ + N̂)ψ(z, t) (7)

here, ψ represents the slowly varying envelope of the solution, z is the propagation distance
and L̂ and N̂ are the differential operators for the linear (GVD) and the nonlinear (SPM)
parts of the equation, respectively.

The separation between both terms is the basis of the time-splitting spectral methods.
We start with the linear operator L̂ :

L̂ =
i
2

∂2

∂t2 (8)

in a dispersive medium, the GVD term is a result of the differences in group velocity
in a material with respect to the different frequencies that compound the pulse. For a
time-splitting spectral approach, this linear part is resolved in the Fourier space.

The nonlinear operator N̂, related to the SPM

N̂ = i|ψ|2 (9)
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accounts for the variation in the refractive index of the medium due to the Kerr effect.
This change produces a phase shift in the pulse, leading to a change of the pulse’s fre-
quency spectrum.

The addition of the Raman term to the NLSE makes the soliton fission process appear,
splitting a high-order pulse in his solitonic components [31], therefore, the non-uniform
grid must adapt to the pulse breaking and the propagation scheme must be able to address
a problem with a strong non-linearity.

The intrapulse Raman scattering can be considered as one of the most important higher-
order nonlinear effects in the NLSE [32], which was firstly observed by Mitschke et al. [33];
since then, it has been investigated profusely [34,35].

For the Raman scattering, the term added to the right side of the NLSE is:

Tr = iσRψ
∂|ψ|2

∂t
(10)

the coefficient σR represents the self-induced Raman effect, which produces a downshift
in the central frequency of the pulse. In our propagation scheme, the operator associated
with the Raman effect is included within the nonlinear operator N̂. In this case, we use
an order-one propagation scheme:

ψ(x, t + ∆t) ≈ (e−∆tN̂e−∆tL̂)ψ(x, t) (11)

In Figure 4, we can observe the rupture of the grid in different parts, each one of them
accompanying the different components in which the soliton breaks [36]. Furthermore,
the results obtained in the propagation process are in good agreement with the expected val-
ues, so we can conclude that the complete scheme, including the linear operator developed
in the previous section, is capable of simulating problems of a certain complexity.

Figure 4. Intensity plots for different evolution lengths of a order two solitonic pulse input,
i.e., ψ(z, t) = 2sech(z, t); a Raman term with value σR = 0.003 has been added to the NLSE in
this case. The fission process is clear and in the same way, it is appreciated how the grid is split
following each one of the components. Considering a number of 2048 nodes available, base grid of
256 and four layers, the percentage of points used was about 20%.
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3.2. GPE. 2D Anisotropic Trap

In some conditions, we can consider the GPE as an NLSE with an extra term accounting
for the harmonic trap [37]. In this case, the equation becomes:

ih̄
∂ψ(x, t)

∂t
= − h̄

2m
∇2ψ(x, t) +

m
2
(ω2

xx2 + ω2
yy2 + ω2

z z)2ψ(x, t) + NU0 | ψ(x, t) |2 ψ(x, t) (12)

where x is the spatial coordinate vector, m is the atomic mass, h̄ is the Planck constant, N is
the number of atoms in the condensate, and ωx, ωy and ωz are the trap frequencies in three
spatial directions. If all three frequencies are equal, the trap is isotropic. U0 accounts for the
interaction between atoms and has the form:

U0 =
4πh̄2a

m
(13)

being a the so-called, s-wave scattering length.
In this dimensionless form, according with the notation used in [38] for the 3D case

we obtain:

iε
∂ψ(x, t)

∂t
= − ε2

2
∇2ψ(x, t) + V(x)ψ(x, t) + δε

5
2 | ψ(x, t) |2 ψ(x, t) (14)

where:
V(x) =

1
2
(x2 + γ2

yy2 + γ2
z z2) (15)

and:
ε =

h̄
ωxmx2

s
= (

a0

xs
)2; γy =

ωy

ωx
; γz =

ωz

ωx
(16)

the ε parameter represents the ratio between the length of the harmonic oscillator ground
state in the x-direction (a0) and the characteristic length of the condensate xs and γ is the
ratio between the trap frequencies.

The other main coefficient in the GPE dimensionless equation is κ, the nonlinearity
coefficient, being:

κ = δε
5
2 =

4πaN
a0

(
a0

xs
)5 (17)

in our study, we will use, without loss of generality, the dimensionless version of GPE [38]
to simulate the BEC.

In this case, we will use the separation of the operators as it appears in the refer-
ence [38], in addition, we will take for each step in the evolution of the operators the
approach known as Strang splitting that is an order-two algorithm, which is also cited in
the previous reference.

In this approach, we have:

iε
∂ψ(x, t)

∂t
+ (L̂ + N̂) = 0 (18)

where:

L̂ = − ε2

2
∇2ψ(x, t) (19)

and
N̂ = V(x)ψ(x, t) + δε

5
2 | ψ(x, t) |2 ψ(x, t) (20)

The temporal steps are resolved using the aforementioned splitting:

ψ(x, t + ∆t) ≈ (e−
∆tN̂

2 e−∆tL̂e−
∆tN̂

2 )ψ(x, t) (21)

From the earliest stages in the BEC research, shape oscillations are a well-known
phenomenon both theoretical and experimentally [39,40]. In this example, we will use it to
study the feasibility and accuracy of our method in 2D.
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In this example, the parameters used to measure the evolution of the solution are:
the surface plot of the position density, i.e., | ψ(x, t) |2 and the condensate widths in the
different axis.

In the x axis, we have:
σx =

√
〈(x− 〈x〉)2〉 (22)

with:
〈x〉 =

∫
x | ψ(x, t) |2 dx (23)

brackets denoting space averaging with respect to the position density.
When the value of the γy parameter is different from 1, the frequencies on the trap

are non-degenerate, therefore, we can consider the trap as asymmetric. We will use the 2D
approximation with the parameters:

ε = 1.0, γy = 2.0, κ2 = 2.0(γz = 10.0, δ = 1.586) (24)

and the initial value:

ψ(x, y, 0) =
γ1/4

y√
πε

exp(−(x2 + γyy2)/(2ε)) (25)

The results for the position density show consecutive contractions in the axes, as well
as a distinct time period for the σx and σy widths, in accordance with the experimental
observations, these effects are shown in Figure 5. The evolution of the wavelet grid reflects
all these differences and is displayed in Figure 6. The concordance of the simulation with
the experiment proves the ability of the 2D proposed simulation approach to catch the
changes during the evolution of a complex model.

Figure 5. Contour plot of the position density for the BEC condensate in the asymmetric trap potential
with the condition γy = 2, for different evolution times. In the lower panel, the standard deviation for
the same times is shown. In this asymmetric case, the condensate contracts and expands alternately
on both axes.
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Figure 6. Evolution of the wavelet-generated grid for the BEC asymmetric case, displaying shape
fluctuations according to the position density changes as it is shown in Figure 5. Darker-colored areas
indicate denser zones in a four-layer grid. Considering a number of 512 × 512 nodes available, a base
grid of 64 × 64 and four layers, the percentage of points used was about 4%.

4. Conclusions

In this work, two conjugate gradient algorithms that allow us the iterative use of the
NFFT are developed. A considerable speedup, when a preconditioner matrix is added, can
be reached in the calculation of the spectral process. In addition, we show the possibility of
using a wavelet filter as generator of a non-homogeneous grid that can be used alongside
the aforementioned algorithms to create a solver scheme valid for a wide range of physical
problems, obtaining accurate results in 1D and 2D. In particular, the developed precondi-
tioning matrices allow accelerations in the convergence process of two orders of magnitude
in the error obtained for the same iterations number.

In this way, this study could be a valid approach for solving problems where the data
do not appear homogeneously, e.g., astronomical data series, medical imaging, etc., and it
is also applicable to problems with an initial homogeneous mesh that can be adapted using
wavelet filters in order to reduce the number of nodes without loss of accuracy.

In future studies, we consider that it could be appropriate to extend the proposed
scheme to Graphic Processor Units (GPU) platforms, finally, a generalization to three
dimensions, for the case of a rotating dipolar BEC, is beginning to be tested.

Author Contributions: P.R. and M.R. designed the simulations; A.O.-M and A.M.D.-S. developed
the theoretical part. All authors contributed to the analysis and writing of the results of the work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. We would like to thank the SICOMFI-TIC176
group of the Physics Department of the University of Córdoba for their support during the research-
ing process.

Data Availability Statement: We are considering the possibility of creating a git-hub type repository
with the developed material. On the other hand, we are willing to supply any part of our work to
whoever requests it.

Acknowledgments: The authors appreciate the support of C. Quesada Padilla with the grammatical
corrections of the final document.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 47 11 of 14

Abbreviations
The following abbreviations are used in this manuscript:

FFT Fast Fourier Transform
NFFT Non-uniform Fast Fourier Transform
CG Conjugate Gradient
GPE Gross–Pitaevskii Equation
NLSE Nonlinear Schrodinger Equation
GVD Group Velocity Dispersion
SPM Self-Phase Modulation
BEC Bose Einstein Condensate
GPU Graphic Processor Units

Appendix A. Conjugate Gradient Algorithms

As is well known, the conjugate gradient method is based on iterative procedures to de-
crease, in a generic way, the vector of residues. In this work, the two algorithms used have
been the Conjugate Gradient for the Normal Equations Residue Normalization (CGNR) [16]
and the Preconditioned Biconjugate Gradient Stabilized Method (BiCGSTAB) [17]. The gen-
eralities of the method can be found in the reference [16] and the algorithm BiCGSTAB,
also used here, are particular realization of it.

Algorithm A1: Preconditioned conjugate gradients for the normal equations,
Residual minimisation (CGNR)

Input: y ∈ CM, f̂0 ∈ C|IN |

r0 = y− A f̂0 ;
ẑ0 = AHWr0;
p̂0 = ẑ0 ;
for l = 0, 1, . . . do

vl = Ap̂l ;

αl =
ẑH

l ẑl
vH

l Wvl
;

f̂l+1 = f̂l + αl p̂l ;
rl+1 = rl − αl vl ;
ẑl+1 = AHWrl+1 ;

βl =
ẑH

l+1 ẑl+1

ẑH
l ẑl

;

p̂l+1 = βl p̂l + ẑl+1 ;
end
Result: f̂l+1
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Algorithm A2: Preconditioned biconjugate gradient stabilized method
(BiCGSTAB)

Input: y ∈ CM, f̂0 ∈ C|IN |

r̂0 = AHW
(

y− A f̂0

)
;

ŝ0 = r̂0 ;

Choose ẑ0 ∈ C|IN | such that δ̂0 = ẑH
0 r̂0 6= 0 and φ̂0 =

ẑH
0 AHWA ŝ0

δ̂0
6= 0 ;

σ̂0 = AHWA ŝ0 ;
for l = 0, 1, . . . do

ω̂l = 1/φ̂l ;
ŵl+1 = r̂l − ω̂l+1 σ̂l ;
θ̂l+1 = AHWA ŵl+1 ;

χ̂l =
θ̂H

l+1 ŵl+1

||θ̂l+1||2
;

r̂l+1 = ŵl+1 − χ̂l θ̂l+1 ;
f̂l+1 = f̂l + ω̂n ŝn + χ̂l ŵl+1 ;
δ̂l+1 = ẑH

0 r̂l+1 ;

ψ̂l+1 = − ω̂l δ̂l+1
δ̂l χ̂l

;

ŝl+1 = r̂l+1 − ψ̂l+1 (ŝl − χ̂l σ̂l) ;
σ̂l+1 = AHWA ŝl+1 ;

φ̂l+1 =
ẑH

0 σ̂l+1
δ̂l+1

;

end
Result: f̂l+1

Appendix B. Wavelet Grid Generation

As it has been explained in Section 2, the generation of the non-homogeneous grid is
one of the main parts of our work. In this appendix we want to explain in more detail how
this process is carried out.

In the reference [22] the use of wavelet filters as grid generators is proposed. The al-
gorithm is based on the refinement of a homogeneous base with a thicker separation on
which the combination that highlights the details of the data vector is applied by zones. In
our case, the set of coefficients used is DAUB4, therefore the application area has a size of
four grid points.

The well-known DAUB4 coefficients are:

c0 = (1 +
√

3)/4
√

2 c1 = (3 +
√

3)/4
√

2

c2 = (3−
√

3)/4
√

2 c3 = (1−
√

3)/4
√

2

In this case, the combination of coefficients in a zone of the data vector [25]:

c3yn−2 − c2yn−1 + c1yn − c0yn+1 (A1)

results in a response close to zero for a smooth data vector. The inset in the up-left
corner of the Figure 3 show the results for the different grids used and the dotted line the
threshold value.

Therefore, by setting a certain threshold we select those positions xn of the grid where
the most relevant changes occur, i.e., those that overcome the threshold value, and we
will proceed to place an intermediate point in the center of the segment. In this way, we
will have modified the base grid by adding points that belong to a grid twice as dense.
The process continues with the newly formed grid. The number of times this algorithm is
carried out is set by the number of refinements as it is shown in Figure A1.
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Figure A1. In this figure we can see the flow diagram corresponding to the generation of the non-
homogeneous grid. The application of the filter to the different areas of the homogeneous grid
produces areas of greater or lesser density.
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