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Abstract The ground state energy of a helium atom inside a spherical multilayer quantum dot as a function of the atomic impurity
location inside the quantum dot has been calculated. The multilayer quantum dot is modeled by a core/shell/well/shell structure
using a parabolic confinement. The Configuration Interaction method and the Diffusion Monte Carlo have been used to solve the
Schrödinger equation. Results obtained showed that the lowest energy configuration depends on the size of the different layers of the
quantum dot and agreement between Configuration Interaction and Diffusion Monte Carlo results indicates that the Configuration
Interaction approach used here would be suitable to compute excited states of this system.

1 Introduction

Quantum effects in low-dimensional structures are broadly employed in new electronic devices, therefore these structures have been
extensively studied for many years and nowadays they still attract great attention, see [1–7] and references therein. One of such
electronic structures are the quantum dots (QDs), which have gained importance owing to their unique properties that are used in
several fields as medical imaging [8], biosensing applications [9], quantum computing [10, 11], solar cells [12–14] or lasers [15,
16].

Electronic properties of an electron in a QD are similar to those of an atom because the electron is confined in all dimensions.
The study of a hydrogenic impurity inside a QD, considering both on- and off-center configurations, has been the focus of extensive
research [17–22]. This problem constitutes a useful means to understand the electronic and optical properties of low-dimensional
quantum structures and to determine the influence of the physical properties of the QD on those properties. In particular, it has been
deeply analyzed the way that the binding energy is governed by the shape of the QD or by an external field [23–29]. Recently, there
has been an increasing interest in two-electron QDs [30–35]. Thus, different properties of confined two-electron atoms like Helium
have been studied extensively [36–51].

Another field of research interest has been the study of other structures more complex than QD such as the multilayer quantum
dots (MLQDs), because they give rise to higher values of the absorption cross section [52]. Many theoretical studies have been
devoted to the characterization of optical and electronic properties of hydrogenic impurities located at the center of these structures
[53–58]. However, much less information is available in the literature for the case where the atomic impurity is not at the center of
the structure. A recent work [59] has investigated the influence of the position of the impurity in MLQDs as well as the effect of
electric and magnetic fields.

In this work, we address the problem of a Helium atom in a spherical MLQD with parabolic confinement and study the variations
in its ground state and binding energy by tuning some parameters of the MLQD structure. This system can be representative of
a two-electron MLQD with an attractive Coulomb impurity. On- and off-center configurations have been considered to study the
importance of the position of the impurity. Different reference systems can be considered for the latter, being more suitable the
partial wave expansion with the origin at the nucleus. A Configuration-Interaction approach with generalized Sturmian functions
[60] with an efficient scheme for the partial wave expansion of the non-central potential [61] has been implemented to obtain ground
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state energies and wave functions. The accuracy of the multi configuration expansion has been tested by comparing with Diffusion
Monte Carlo calculations for different representative configurations.

The paper is organized as follows: in Sect. 2, we present the theoretical approach used to describe the confined Helium atom in
a spherical MLQD; in Sect. 3, we give the numerical results of the study; finally, in Sect. 4 some conclusions are shown. Atomic
units are used throughout this work.

2 Methodology

The MLQD considered in this work consists of two quantum dots, one inside the other and separated by a shell, with the whole
system coated by another spherical layer. The multilayer spherical quantum dot can therefore be described by a core/shell/well/shell
type structure. Here we use the following parabolic confinement [55, 59]

Vc(r ) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V0
r2

1
r2 for 0 ≤ r ≤ r1

V0 for r1 < r < r2

V0
(r2−a)2 (r − a)2 for r2 ≤ r ≤ r3

and r > r3 (1)

where r1 is the core radius, Ts � r2 − r1 and Tw � r3 − r2 are the shell thickness and well width, respectively, see Fig. 1, and
a � (r2 + r3)/2.

When the atomic impurity is not at the center of the MLQD, i.e. an off-center configuration, the potential acting on each electron
is not spherically symmetric. Different partial-wave expansions can be conceived for the non-spherical part of the total potential. A
convenient choice due to its good convergence performance [61] is to place the atomic nucleus at the origin of coordinates in such
a way that the center of the confinement potential is located at a point of spherical coordinates {ROC , θc, φc}. Within this scheme,
the single electron Hamiltonian can be expressed as

H (r) � −1

2
�2

r − Z

r
+

∞∑

l�0

fl (r, ROC )Pl (cos θc), (2)

where Z is the nuclear charge, fl (r, ROC ) are the radial partial wave terms of the multipole expansion of off-centered confinement
potential [61], and Pl are the Legendre polynomials [62]. Due to the symmetry of the confinement of the MLQDs, we can take
without loss of generality θc � φc � 0. Thus, the time independent Schrödinger equation for a two-electron atom inside a MLQD is

[

H (r1) + H (r2) +
1

r12
− E

]

�α(r1, r2) � 0, (3)

where α stands for the quantum numbers of the stationary state and 1/r12 is the Coulomb potential between the electrons.
Here, the following Configuration-Interaction (CI) expansion of the wave function is employed

�α(r1, r2) �
∑

ν

aα,νψν(r1, r2), (4)

where

ψν(r1, r2) � 1√
2

(
Sn1,l1,m1 (r1)Sn2,l2,m2 (r2)

Fig. 1 Potential profile in the
radial coordinate of a MLQD
with parabolic confinement
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+(−1)S Sn1,l1,m1 (r2)Sn2,l2,m2 (r1)
)
, (5)

with S as the total spin of the state and ν represents the orbital quantum numbers {ni , li ,mi } (i � 1, 2), with 0 ≤ l1, l2 ≤ Lmax

and the usual conditions for the magnetic quantum numbers. The value of Lmax sets the size of the multipole expansion of the
non-spherically symmetric part. The analysis done in previous work [61], shows that Lmax � 5 provides accurate results.

The single particle wave functions of Eq. (5) can be written as

Sn,l,m(r) � sn,0(r )

r
Ylm(r̂), (6)

where Ylm are the spherical harmonics, while the radial part is given by the Sturminan functions, obtained by solving an eigenvalue
equation of the form[63]

[

−1

2

d2

dr2 + U (r ) − Es

]

sn,0(r ) � −βn,0V (r )sn,0(r ), (7)

where Es is a parameter, β is the eigenvalue and U(r) and V (r) are the auxiliary and generating potentials, respectively, which
can be used to incorporate some features of the problem leading to improved convergence [63, 64]. For the He atom we have used
U (r ) � −2/r . We could also introduce, for example, the s-wave term f0(r, ROC ) in the right-hand side of Eq. (7) which would
give us better energies for a given fixed value of ROC . Since this value is going to be changed in the calculations, that would be
computationally demanding. Using V (r ) � 1/r , Eq. (7) gives rise to the Coulomb Sturmian Functions which are a suitable choice
[65] for bound state calculations.

Once the energies of the system are known, the one-electron binding energy of the He atom inside the MLQD is computed as
[66]

EB (He) � E0 + E(He+) − E(He), (8)

where E0, E(He+) and E(He) are the ground state energy of one electron, the He+ ion and the He atom inside the MLQD, respectively.
If EB > 0, the electron is bound.

The accuracy of the CI expansion of this work has been studied by comparing the ground state energy with the results of a
Diffusion Monte Carlo (DMC) calculation for some selected configurations. Here, we briefly outline the basic ideas of the method;
for further details see, for example, ref. [67]. The starting point of the DMC method is the time-dependent Schrödinger equation
in imaginary time. This is a diffusion equation, solved by using random walks. In the DMC method a short time approximation is
invoked to compute the Green’s function. A guiding function, which is an approximate wave function for the ground state of the
system, is employed to bias the random walk towards those regions where the probability is larger. A large number of configurations,
called walkers, are employed in the simulation. Each step of the random walk consists of an anisotropic diffusion and branching of
the walkers. After a very large number of time steps, the excited state contributions are projected out and the ground state energy
can be obtained from the simulation. The time step error can be eliminated by extrapolating the results to zero time steps. If the
nodes of the exact wave function are known, as it is the case of the nodeless ground state here, the method provides the exact energy
within the numerical error. The role of the guiding function here is only to improve the convergence of the algorithm, therefore we
employ a guiding function written as the product of two single electron wave functions. These orbitals are obtained by solving the
radial equation of the He+ confined either by a square-well or by a finite barrier, depending on the position of the He atom in the
MLQD. The analytic continuation method (ACM) is used here to solve the corresponding radial Schödinger equation [68–70].

3 Results and discussion

We study the effect of the size of the core, r1, and the effect of the position of the atom inside the MLQD, ROC , on the ground state
energy of the system and its corresponding binding energy. For this purpose, we consider different values for the parameters of the
MLQD structure which are of the same order as those used in other two-electron QDs studies [50].

In order to assess the accuracy of the CI expansion employed in this work, the energies for some representative configurations are
compared with the results of a DMC calculation. We have considered a MLQD modeled with parameters V0 � 0.5, r1 � 1.0, r2 �
5.0, r3 � 6.0 and two different positions of the atom, ROC � 2.6 and ROC � 5.5. The energy provided by the CI wave function
of Eq. (4) is E1 � −1.9079 for ROC � 2.6 and E2 � −2.3983 for ROC � 5.5. The DMC values are E1 � −1.906 ± 0.002 and
E2 � −2.397±0.002, respectively, both in excellent agreement. In the DMC we use a guiding function for the importance sampling
built in terms of atomic orbitals. The atomic orbitals are obtained by solving the single electron radial Schrödinger equation using
the ACM method for the He+ confined by a finite barrier of width 	 � Ts � 4.0 and height V0 � 0.5 for the case of ROC � 2.6,
while for ROC � 5.5 the orbitals are those of He+ confined by a well of width 	 � Tw � 1.0 and height V0 � 0.5.

In Fig. 2 we show the ground state energy of the He atom as a function of the radius of the spherical core, r1, for constant depth
of the barrier, V0 � 0.5, and widths of the shell and the well, Ts � Tw � 1.0. We have considered three different nuclear positions:
on-center atom, ROC � 0.0, and ROC � 2.5, 5.0. It is seen that the energy presents a number of maxima and minima as a function
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Fig. 2 Electronic ground state
energy, E, as a function of the core
radius, r1, for constant depth,
V0 � 0.5, and widths,
Ts � Tw � 1.0, of the MLQD and
for different atom locations,
ROC � 0.0, 2.5, 5.0

of r1 which depends on the position of the nucleus inside the MLQD. The energy decreases as the core radius increases, approaching
the free atom energy in the case of the on-center configuration.

For the on-center atom, the behavior of the energy with the core size is similar to that found for a MLQD with a hydrogenic
impurity [55]. The energy increases for small r1 values and a maximum at r1 � 0.3 is found. Then the energy decreases reaching
the free atom value for very large cage sizes. For very small core sizes, as r1 increases, the electronic charge approaches the nucleus
leading to lower values of potential energy but larger values of the kinetic energy in such a way that the effect on the total energy
depends on the balance between both effects. For core radii smaller than 0.3 the energy rises, while the opposite holds for larger
sizes of the core. As r1 increases, both the potential energy and kinetic energy are reduced because the charge is less confined.
For very large core sizes, the effect of the MLQD becomes less important and the energy approaches that of the free atom. For
the two off-center situations considered, ROC � 2.5, 5.0, we find a local minimum of the energy as a function of the core size,
one local maximum and one absolute maximum for r1 � 0. The value of the minimum energy is very similar in both cases and it
corresponds to a configuration where the atomic nucleus is located in the center of the well of the MLQD. The energy is minimum
in this configuration because of the contribution of the potential energy; the MLQD favors the charge to be close to the nucleus. This
configuration is not possible when the nucleus is at the center of the MLQD, and this is the reason why no local minimum is found
for that case. The value of the local maxima is also very similar and also very close to the maximum obtained for the on-center
atom. In the off-center cases, this corresponds to a configuration where the nucleus is located in the first shell, so the center of
the Coulomb force is in the barrier leading to two opposite contributions to the potential energy and the total energy is ≈ −2.1
with the electron cloud distributed between the core and the shell. The global maximum corresponds to a configuration where the
nucleus lies within the second shell, so the Coulomb attraction with the electrons is shielded by the shell. For larger core sizes, the
electronic charge is almost completely inside the core, so that contributions from the shells become less important and the energy
of the system decreases. Finally, it is worth to stress here that the lowest energy configuration does not necessarily correspond to an
impurity located at the center of the MLQD.

In Fig. 3 we study the ground state energy as a function of the position of the atomic impurity for different sizes of the MLQD. The
energy presents a similar structure in all the cases: there is a first minimum for the on-center atom and a second one for an off-center
position which corresponds to the atom inside the well. For the lowest core size here considered, (r1 � 1.0, r2 � 2.0, r3 � 3.0) and
(r1 � 1.0, r2 � 5.0, r3 � 6.0), the global minimum corresponds to an off-center configuration with the electron density located in
the well; while for wider core values, (r1 � 10.0, r2 � 11.0, r3 � 12.0), the lowest energy configuration is with the atom in the
center of the MLQD. In this case, the energy and the electronic charge distribution are close to that of the free atom. The plateau
regions correspond to the nucleus inside the shells: in first region the nucleus is in the first shell while in the second region the
nucleus lies in the second shell. The size of the ROC domain where the energy is maximum and constant depends on the width of
the shells.

In order to assess the influence of the height of the shells on the energy we have considered a fixed MLQD structure with three
different V0 values. In Fig. 4 we plot the ground state energy of the He atom as a function of the distance from the nucleus to the
center of the MLQD for r1 � 1.0, r2 � 5.0 and r3 � 6.0 and three different values of V0. These results show that the structure of
the energy curve is very similar. The quantitative differences in the energy values are due to the different V0 values: the higher the
shell barrier height, the larger the energy.

In Fig. 5a we show the ground state energy of He+ and in Fig. 5b we plot EB , the binding energy of one electron calculated
according to Eq. (8), for a MLQD with V0 � 0.5, r1 � 1.0, r2 � 2.0 and r3 � 3.0 for different atomic positions. An important
dependence of the binding energy with the location of the atom inside the MLQD is found. This shows that larger binding energies
are obtained for configurations with lower atomic energies. The energy profile of the cation, He+, inside the MLQD is the same as
that of the neutral atom, but the minima and maxima are more pronounced for He, see Fig. 5a. Thus, the lowering in the energy when
the atom is inside the well with respect to the energy of the atom in the second shell is more important for the He atom than for He+,
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Fig. 3 Electronic ground state
energy, E, as a function of the
distance from the nucleus to the
center of the MLQD, ROC , for
V0 � 0.5 and different radii of the
MLQD

Fig. 4 Electronic ground state
energy, E, as a function of the
distance from the nucleus to the
center of the MLQD, ROC , for
r1 � 1.0, r2 � 5.0, r3 � 6.0 and
V0 � 0.5, 1.5, 2.5

Fig. 5 a Ground state energy of
the He+ ion, E(He+), in terms of
the distance from the nucleus to
the center of the MLQD, ROC , for
V0 � 0.5, r1 � 1.0, r2 �
2.0, r3 � 3.0; b same for the
ground state binding energy, EB

and the same happens for the rise in the first shell, in such a way that the lower the energy of the atom, the larger the binding energy
of the electron, as it is shown in Fig. 3. For ROC � r3, the atom and the cation are located at the second shell and an approximately
constant contribution to the energy per electron of V0 is obtained for both He and He+, and the energy of the single electron is also
equal to V0, in such a way that EB tends to 0.9, i.e. the ionization energy of the free atom as ROC increases.

In Fig. 6 we plot: the ground state energy of one electron, E0 (Fig. 6a), the ground state energy of the cation, E(He+) (Fig. 6b),
and the binding energy, EB (Fig. 6c), as a function of the core radius for three different atomic positions. An important dependence
of the binding energy with the position of the atom within the MLQD and with the core size is found. The binding energy presents an
oscillatory behavior, with a series of maxima and minima, as a function of the core radius. Again, the lower the energy of the atom,
the larger the binding energy. For greater values of r1, confinement effects are less important for He and He+ and their energies tend
to the free values, while in the case of the single electron, it is still bound to the MLQD, so larger values of r1 are needed to obtain
that the binding energy also tends to the ionization energy of the free atom.
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Fig. 6 a Ground state energy of
one electron, E0, as a function of
the core radius, r1, for V0 � 0.5,
Ts � Tw � 1.0; b same for the
ground state energy of the He+

ion, E(He+), for different atom
locations, ROC � 0.0, 2.5, 5.0;
c same for the ground state
binding energy, EB

4 Conclusions

In this work, the ground state energy of one atomic impurity of one He atom within a spherical multilayer quantum dot is studied. A
core/shell/well/shell structure with parabolic confinement is considered to model the MLQD. Different sizes of this structure have
been analyzed and different atomic positions within the quantum dot have been considered. A Configuration-Interaction approach
has been employed with the atomic radial orbitals built in terms of Sturmian functions. The accuracy of the CI approximation has
been addressed by comparing with Diffusion Monte Carlo calculations for some representative configurations.

In the cases where the position of the atomic nucleus is off-centered from the spherical layers of the material, the spherical
symmetry of the two electron Hamiltonian is broken. In this contribution we have exploited a technique, proposed in a recent
contribution for H2 [61], which to the best of our knowledge has not been previously employed for the He atom. Off-center
configurations are studied by placing the center of the coordinate system at the atomic nucleus and performing a multipole expansion
of the confining potential. This approach presents the conceptual advantage that the exact treatment is maintained for the Coulomb
potential, whereas the approximate treatment induced by the loss of spherical symmetry is applied to the confining potential, which
is a model of the MLQD. Furthermore, it presents faster convergence than expanding the Coulomb potential.

An important dependence of the energy and the binding energy of the impurity with the atomic position has been found. The
energy as a function of the distance from the nucleus to the center of the MLQD increases as the atom is separated from the center
and presents a series of maxima and minima that corresponds to configurations with the atom located in the shells and in the well,
respectively. These maxima and minima depend on V0 and the size of the core. We have found that, depending on the MLQD
parameters, the lowest energy configuration does not necessarily correspond to the atom located at the center, but for large core
sizes such that confinement effects are small, the global minimum of the energy corresponds to an on-center impurity. The binding
energy also presents an oscillatory behavior and a strong dependence on the nuclear position and increases when the atomic energy
decreases.
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