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Abstract
Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity
that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are
produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke
production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing
wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds,
like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a
clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for
wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds.
This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential
application in bioremediation of industrial cyanide-containing wastes.
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Introduction: Cyanide in the environment.
Forms, toxicity, sources and remediation

Chemical compounds that contain the cyano group (−C≡N)
are usually called Bcyanides.^ In the environment, these com-
pounds may be found in different forms including volatile
hydrogen cyanide (HCN), simple inorganic salts (NaCN,
KCN), metal-cyanide complexes with different stability and
chemical composition, cyanate (OCN−), thiocyanate (SCN−),
and organic cyanides (nitriles and cyanohydrins). Free forms
of cyanide (HCN and CN−) are extremely toxic compounds;

cyanate, thiocyanate, and nitriles are less toxic forms; and
toxicity of metal-cyanide complexes depends on their capacity
to break down releasing free cyanide (Baxter and Cummings
2006; Kumar et al. 2016). Cyanide acts as a potent metabolic
poison because it tightly binds to metals, provoking the inac-
tivation of metalloenzymes. In aerobic organisms, cyanide
inhibits the cytochrome c oxidase, blocking the respiratory
electron transport chain, and in animals, cyanide also reacts
with methemoglobin in the bloodstream (Solomonson 1981;
Jaszczak et al. 2017). Anaerobic microorganisms, especially
methanogens, are evenmore sensitive to cyanide because they
contain many relevant metalloproteins that are also inhibited
in the presence of this toxic compound (Smith et al. 1985;
Gijzen et al. 2000). Thus, cyanide toxicity threshold may be
as low as 2 ppm for some anaerobes whereas is about 200 ppm
for most aerobic microorganisms (Kuyucak and Akcil 2013).

Cyanide is usually found as pollutant in wastewaters from
mining, jewelry, steel and metal industrial activities, produc-
tion of chemicals, and food processing, among other process-
es. In addition, these industrial residues often contain impor-
tant cyano-derivatives like cyanate, which results from cya-
nide oxidation, and thiocyanate, which is formed by the
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reaction between cyanide and reduced sulfur species (Akcil
2003; Luque-Almagro et al. 2016). Nitriles (R−C≡N) are
also produced in the manufacture of feedstock, solvents,
pharmaceuticals, and organic chemicals (Banerjee et al.
2002). Accumulation of cyanide-containing wastewaters
in the environment becomes a potential risk to ecosystems
and human health. Therefore, these industrial residues need
to be treated by physical and/or chemical methods before
discharging the effluents into the environment. These
physical-chemical treatments operate predominantly under
aerobic conditions, and they are expensive, require com-
plex infrastructures, need hazardous reagents or generate
toxic by-products, and are usually ineffective for stable
metal-cyanide complexes (Akcil, 2003; Dash et al. 2009;
Novak et al. 2013; Park et al. 2017).

Despite its toxicity, cyanide is a natural compound syn-
thesized by a variety of organisms, including bacteria,
fungi, plants, and animals, in which cyanogenesis may
serve as defensive or offensive mechanism (Luque-
Almagro et al. 2016). The HCN synthase required for
bacterial cyanogenesis is expressed during transition from
exponential to stationary phase of growth under oxygen
limitation in response to the FNR-like anaerobic regulator
ANR (Laville et al. 1998). On the other hand, many mi-
croorganisms have evolved enzymatic pathways for cya-
nide degradation, transformation, or tolerance, and many
of them are even able to use cyanide as a nitrogen source
for growth. Therefore, cyanide biodegradation has be-
come an efficient economically interesting alternative to
the physical-chemical treatments of cyanide-containing
industrial residues (Ebbs 2004; Baxter and Cummings
2006; Dash et al. 2009; Kumar et al. 2016; Luque-
Almagro et al. 2016; Park et al. 2017).

Microorganisms utilize different metabolic pathways to
degrade or to assimilate cyanide. In general, these degra-
dative routes are based in four types of enzymatic process-
es: hydrolytic, oxidative, reductive, and substitution/
transfer reactions (Ebbs 2004; Huertas et al. 2006; Dash
et al. 2009; Gupta et al. 2010; Park et al. 2017). These
enzymatic degradation pathways are summarized in
Fig. 1. The hydrolytic reactions are catalyzed by two dif-
ferent enzymes: the cyanidase (cyanide dihydratase) that
transforms cyanide into formic acid and ammonia (Fig. 1;
reaction 8), or the cyanide hydratase that produces form-
amide, which is further hydrolyzed by a formamidase (Fig.
1; reactions 9 and 10) (Martínková et al. 2015). The oxi-
dative reactions generate carbon dioxide and ammonia ei-
ther directly by the cyanide dioxygenase (Fig. 1; reaction
1) or in two-step reactions, via cyanate, catalyzed by the
cyanide monooxygenase and the cyanase, respectively
(Fig. 1; reactions 2 and 3) (Raybuck 1992; Ebbs 2004).
The reductive pathway involves the nitrogenase required
for biological nitrogen fixation, an oxygen-sensitive

enzyme that also utilizes various substrates containing
carbon-nitrogen triple bonds, such as hydrogen cyanide,
nitriles, and isonitriles. Both molybdenum- and vanadium-
nitrogenases carry out the six electrons reaction that con-
verts HCN into methane and ammonia (Fig. 1; reaction 4)
(Fisher et al. 2006; Seefeldt et al. 2013). Cyanide is also
metabolized by the 3-cyanoalanine synthase (Fig. 1;
reaction 12), which uses cysteine or O-acetylserine as sub-
strate. The 3-cyanoalanine formed in this reaction can be
further hydrolyzed to ammonia and aspartate in one-step
reaction or with asparagine as intermediate (Fig. 1; reac-
tions 13–15) (Howden et al. 2009). Finally, the rhodanese
(thiosulfate:cyanide sulfurtransferase) catalyzes the reac-
tion between cyanide and thiosulfate to form thiocyanate
and sulfite (Fig. 1; reaction 16) (Cipollone et al. 2007).
Another sulfur t ransferase family enzyme, the 3-
mercaptopyruvate sulfurtransferase, also transforms cya-
nide into thiocyanate but coupled to the conversion of
mercaptopyruvate into pyruvate (Park et al. 2017).

Thiocyanate, a compound much less toxic than cyanate,
can be used by different bacteria as a source of energy,
carbon, sulfur, or nitrogen (Sorokin et al. 2001).
Thiocyanate is degraded to ammonia, carbon dioxide,
and sulfide, which may be oxidized to sulfate by
chemolithotrophic sulfur-oxidizing bacteria. Two different
hydrolytic degradative pathways, involving either carbon-
yl sulfide (COS) or cyanate as intermediates, have been
proposed (Kelly and Baker 1990; Sorokin et al. 2014). In
the COS pathway, the initial hydrolytic cleavage of the
C≡N bond by the thiocyanate hydrolase generates ammo-
nia and carbonyl sulfide as first products (Fig. 1, reaction
17). COS is further hydrolyzed to carbon dioxide and sul-
fide (Fig. 1; reaction 18), which is finally oxidized to sul-
fate. In the cyanate pathway, it was initially proposed that
an uncharacterized enzyme hydrolyzes the C−S bond
converting thiocyanate into cyanate and sulfide. Then, cy-
anate can be hydrolyzed to ammonia and carbon dioxide
by the cyanase, whereas sulfide can be oxidized to sulfate.
However, very recently it has been described that the ini-
tial step of the thiocyanate degradation pathway via cya-
nate is an oxidation reaction catalyzed by the thiocyanate
dehydrogenase (thiocyanate:cytochrome c oxidoreduc-
tase), a copper-containing enzyme that converts thiocya-
nate into cyanate and elemental sulfur with cytochrome c
acting as electron acceptor (Fig. 1; reaction 19) (Berben
et al. 2017).

Microbial degradation of nitriles usually requires hydrolyt-
ic reactions that generate ammonia and the corresponding car-
boxylic acid. Nitrilases catalyze this conversion in a single
reaction (Fig. 1; reaction 5), while nitrile hydratases generate
an amide intermediate that is further hydrolyzed by an ami-
dase (Fig. 1; reactions 6 and 7) (Kobayashi and Shimizu 1998,
2000; Park et al. 2017).
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Anaerobic degradation of cyanide

Cyanide is usually biodegraded through aerobic routes, ac-
cording to the different pathways described above. However,
microorganisms are also able to degrade cyanide under anaer-
obic conditions, although much more slowly and less
successfully. The first description of an anaerobic cyanide
biodegradation process was reported by Fedorak and Hrudey
(1989) in methanogenic semicontinuous batch cultures. Since
then, various applications based on anaerobic reactors or com-
bining both aerobic and anaerobic processes have been devel-
oped for the treatment of different cyanide-containing waste-
waters (Gijzen et al. 2000; Akcil and Mudder 2003;
Chakraborti and Veeramani 2006; Novak et al. 2013; Joshi
et al. 2016), although in general the anaerobic cyanide degra-
dation process is not well understood and there is little knowl-
edge about the microbial communities involved. In addition,
abiotic anaerobic cyanide degradation may also occur when
cyanide spontaneously hydrolyzes generating formic acid. In
fact, a combination of simultaneous biotic and abiotic process-
es seems to contribute to the successful removal of cyanide in
an upflow anaerobic sludge blanket (UASB) reactor (Novak
et al. 2013).

Anaerobic biological treatments of wastewaters are attrac-
tive technologies that allow production of biogas with reduced
biological oxygen demand (BOD) and low sludge volume and
energy requirements, thus resulting in more cost-effective and
energy-saving systems than aerobic procedures. In addition,

anaerobic environments are not uncommon in nature, and in
fact anaerobiosis prevails in most wastewater and polluted
groundwater. Therefore, the identification of microorganisms
able to produce methane in the presence of cyanide and the
better understanding of the mechanisms involved in the anaer-
obic treatments of cyanide may convert this process into a
feasible and efficient removal technology.

The chemical nature of the cyanide biodegradation reac-
tions accounts for the fact that only the reductive or hydrolytic
pathways may operate under anaerobic conditions (Fallon
1992). The reductive conversion of cyanide into methane
and ammonia catalyzed by the nitrogenase has been described
in resting cells of Klebsiella oxytoca, but not in cell-free ex-
tracts, probably due to the inactivation of the enzyme by ox-
ygen exposure during cell disruption (Kao et al. 2003).
Application of alginate and cellulose triacetate immobilized
cells of K. oxytoca for the treatment of a cyanide-containing
wastewater resulted in a more effective cyanide degradation,
with higher tolerance to cyanide at wider ranges of pH, than
when using free cells (Chen et al. 2008). This bacterium was
a l so ab le to degrade the meta l -cyano complex
tetracyanonickelate (II) under anaerobic conditions, and nitro-
genase was proposed to be the sole enzyme involved in this
degradative process (Kao et al. 2004; Chen et al. 2009).
However, the amount of cyanide removed by the nitrogenase
in the environment is believed to be relatively small because
this enzyme is rarely found in microbial populations (Gupta
et al. 2010). On the other hand, it has been also demonstrated

Fig. 1 Biochemical pathways for
the biodegradation of cyanide and
its derivatives. The cyano-
compounds are boxed and
highlighted in bold. Symbols: R-
CN, nitrile (organic cyanide); R,
organic compound; [H],
hydrogen atom (e− + H+); βCA,
β-cyanoalanine. Enzymes: 1,
cyanide dioxygenase; 2, cyanide
monooxygenase; 3, cyanase; 4,
nitrogenase; 5, nitrilase; 6, nitrile
hydratase; 7, amidase; 8,
cyanidase (cyanide dihydratase);
9, cyanide hydratase; 10,
formamidase; 11, formate
dehydrogenase; 12, β-
cyanoalanine synthase; 13, β-
cyanoalanine nitrilase; 14, β-
cyanoalanine hydratase; 15,
asparaginase; 16, rhodanese; 17,
thiocyanate hydrolase; 18,
carbonyl sulfide (COS)
hydrolase; 19, thiocyanate
dehydrogenase
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that hydrolytic reactions were responsible for anaerobic cya-
nide degradation in an upflow anaerobic fixed-bed reactor
with activated carbon, transforming cyanide into ammonia
and formic acid, which subsequently generated bicarbonate
(Fallon et al. 1991; Fallon 1992). However, it was not possible
to distinguish whether cyanide hydrolyzed directly or through
the formation of formamide as an intermediate (Fallon 1992).
Therefore, cyanide transformation analogous to hydrolytic re-
actions described for aerobes also occur in anaerobic systems.
These hydrolytic pathways are probably the most attractive for
biotechnological applications.

Nitrilases carry out the hydrolysis of the nitrile group to
produce the corresponding carboxylic acid. Bacterial
nitrilases show activities toward a wide range of nitriles,
and are also able to degrade cyanide into ammonia and
formate (Park et al. 2017). In addition, cyanide reacts chem-
ically with different oxoacids to form cyanohydrins
(hydroxynitriles), which may be hydrolyzed to ammonia
and a carboxylic acid by a nitrilase enzyme, as described
for the cyanide-degrading bacterium Pseudomonas
pseudoalcaligenes CECT5344 (Estepa et al. 2012). Thus,
nitrilases could be also good candidates for both aerobic
and anaerobic cyanide remediation.

Cyanide biodegradation andmethanogenesis

Methanogenesis can be maintained under a variety of feed
medium conditions, which include ethanol, methanol, phenol,
and toxic compounds as the primary reduced carbon sources.
Many industrial wastewaters contain cyanide and related com-
pounds, but cyanide has been usually considered highly toxic
for anaerobes, especially for methanogens, resulting in mini-
mal attention to the anaerobic treatments.

In an UASB reactor using a synthetic wastewater con-
taining starch and fatty acids, sludge was successfully ac-
climatized to high cyanide concentrations (up to 125 mg/L),
allowing an elevated methane production with high cyanide
degradation efficiency. Cyanide inhibition on methanogen-
ic activity was more pronounced for acetoclastic than for
hydrogenotrophic methanogens, suggesting that enzymes
and cofactors involved in hydrogenotrophic methane pro-
duction are less sensitive to cyanide (Gijzen et al. 2000).
Acclimatization of anaerobic microbes to cyanide was also
used to improve the degradation rates in an anaerobic batch
reactor with sludge from a wastewater treatment plant and
fresh cow dung (Gupta et al. 2016). In this study, it was also
observed that hydrogen-utilizing methanogens were more
tolerant to cyanide than acetate-utilizing methanogens
(Gupta et al. 2016). Successful biogas production and cya-
nide removal without methanogenesis inhibition was also
reported in an UASB reactor for brewery wastewater treat-
ment (Novak et al. 2013). Anaerobic cyanide degradation

resulted from a combination of both biotic and abiotic pro-
cesses, and again, the hydrogenotrophic community was
less sensitive to cyanide than the acetoclastic methanogens.
The phylogenetic analyses carried out by 16S rRNA se-
quences allowed the identification of the bacterial phylum
Firmicutes and the archaeal genus Methanosarcina as rele-
vant microbial groups involved in the anaerobic cyanide
degradation associated to methane production (Novak
et al. 2013).

During the production of cassava starch, large amounts of
cyanide are released from cyanoglycosides by hydrolytic en-
zymes present in the raw cassava peel, leading to a cyanide
concentration in the wastewater as high as 200 mg/L. Thus,
linamarase hydrolyzes the cyanoglycoside linamarin releasing
cyanide, which is detoxified to 3-cyanoalanine by the 3-
cyanoalanine synthase (Cuzin and Labat 1992). When a cas-
sava root wastewater was fermented in an anaerobic fixed-bed
methanogenic reactor to produce biogas, up to 150 mg/L cy-
anide could be removed after biofilm establishment. All nitro-
gen derived from cyanide was converted into organic nitrogen
by the biomass (Siller and Winter 1998a). Anaerobic degra-
dation of this cyanide-rich agroindustrial wastewater was op-
timized in a two-step process with an equilibration/pre-
acidification reactor followed by a methane reactor. Cell sus-
pensions from the microbial community in the reactor gener-
ated similar amounts of ammonia and formic acid from cya-
nide, with little formamide accumulation. Optimal cyanide
removal took place at pH 6–7.5 and temperature 25–37 °C
(Siller and Winter 1998b). Sludge from an anaerobic lagoon
has been also used in an UASB reactor for successful treat-
ment of a cyanide-containing tapioca starch wastewater. High
gas productivity and up to 98% cyanide removal was achieved
for 25 m/L cyanide in the feed, requiring 15 days for the
complete recovery of the reactor (Annachhatre and
Amornkaew 2001).

Industrial wastewaters from steel manufacturing, fuel pro-
cessing, coal conversion, and coking, which contain high con-
centrations of ammonia, phenol, thiocyanate, and cyanide, are
also amenable to biodegradation by methanogenic consortia
(Fedorak and Hrudey 1989). Thus, up to 98% cyanide was
successfully removed during methanogenic degradation of
phenol in an UASB reactor fed with 20 mg/L cyanide
(Kumar et al. 2011). Sequential anaerobic-aerobic bioreactors
have been also used for the treatment of complex mixtures of
phenol, ammonia, thiocyanate, and cyanide (Chakraborti and
Veeramani 2006). In a combined anaerobic-aerobic system
treating coking wastewater with hydraulic retention time of
114 h, 81.8% chemical oxygen demand (COD), 85.6% total
organic carbon (TOC), 99.9% total phenols, 98.2% thiocya-
nate, and 85.4% cyanide were removed (Joshi et al. 2016).
Microbial diversity in both anaerobic and aerobic reactors
was also analyzed resulting that phenol-degrading and hydro-
lyt ic bacteria such as Ottowia , Soehngenia , and
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Corynebacterium were predominant in the anaerobic sludge,
whereas thiocyanate and phenol degraders belonging to
Thiobacillus, Diaphorobacter, and Comamonas genera were
most abundant in the aerobic sludge.Methanosarcinawas the
dominant archaea in the anaerobic reactor (Joshi et al. 2016).
Similar removal efficiencies were obtained in a previous study
using a combination of anaerobic-aerobic-anoxic bioreactors
for the treatment of coke wastewater (Sharma and Philip
2015), highlighting the feasibility to apply successfully this
sequential anaerobic-aerobic operation to treat complex phe-
nol and cyanide-containing wastewaters.

The cyanidation process used for extraction of gold and
other metals from ores in mining activities generates large
amounts of cyanide-containing wastes that require treatment
before they can be released to the environment (Luque-
Almagro et al. 2016; Mekuto et al. 2016). Different ap-
proaches have been applied to remove cyanide from
cyanidation and electroplating wastewater, but they operate
basically under aerobic conditions (Akcil and Mudder 2003;
Sirianuntapiboon et al. 2008; Kuyucak and Akcil 2013;
Mekuto et al. 2016). However, laboratory and engineered wet-
land experiments based on aerobic and anaerobic processes
have been used for the construction of a pilot field-scale pas-
sive system at a gold mine in northern Spain (Álvarez et al.
2013). In a laboratory test with two anaerobic columns oper-
ating in a continuous flow-through mode, one filled from bot-
tom to the top with a 20-cm layer of limestone and a 100-cm
layer of compost, and the other with the same content but
including grained iron particles mixed with the compost sub-
strate, the cyanidation wastewater was remediated with a 60–
70% reduction of weak acid dissociable cyanides.
Remediation of cyanide was slightly higher in the column
with iron, probably due to the formation of complexes that
could be adsorbed in the compost. In addition, the compost-
based constructed wetlands detoxify the cyanidation effluents,
successfully removing both weak acid dissociable cyanide
and metals like copper (more than 90%). Therefore, aerobic/
anaerobic wetland-based passive systems can be considered as
a suitable technology for remediation of mining cyanidation
effluents (Álvarez et al. 2013). However, the role of biodeg-
radation in this system was not analyzed and probably the
main mechanisms involved in cyanide removal were of
physical/chemical nature, like complexation to solid phases
and photodegradation.

Under anaerobic conditions, sulfate-reducing bacteria
could be also used for an efficient biodegradation of cyanide
and metal-containing wastewaters (Song et al. 1998; Quan
et al. 2004). Thus, it has been demonstrated that removal of
both free cyanide and metal-cyanide complexes (mainly with
zinc, nickel, or copper) may occur under sulfate reduction
conditions using a granular sludge from an UASB reactor
fed with brewery wastewater and enriched with sludges from
electroplating and industrial wastewater plants. Analysis of

the microbial community revealed that a bacterial consortium
composed of three major phylotypes including Desulfovibrio
was responsible of cyanide degradation during sulfate reduc-
tion. In addition, sulfate-reducing bacteria were found to be
less sensitive to cyanide than methanogenic bacteria (Quan
et al. 2004). Therefore, sulfate reduction conditions may be
used for a plausible treatment of industrial wastewaters con-
taining cyanide and metal-cyanide complexes.

Biodegradation of thiocyanate and nitriles

Anaerobic biodegradation of cyanide in the presence of sul-
fide can produce thiocyanate. In addition, most sulfide min-
erals have the potential to generate thiocyanate, a process ac-
celerated in anaerobiosis and low alkaline conditions, usually
generating cyanate, nitrate, and ammonium as breakdown
products (Kuyucak and Akcil 2013). Thiocyanate can be also
formed by the transfer of sulfur from thiosulfate to cyanide in
the reaction catalyzed by the rhodanese. It has been described
that an extracellular rhodanese from Coprothermobacter is
involved in anaerobic cyanide metabolism (Tandishabo et al.
2007).

Bacteria able to degrade thiocyanate have been isolated
from various aerobic and anaerobic environments like soils,
soda lakes, gold mine tailing, and activated sludge. These
organisms can use thiocyanate as an energy, carbon, sulfur,
or nitrogen source (Sorokin et al. 2001; Gould et al. 2012;
Watts and Moreau 2016). Most thiocyanate-degrading
chemolithotrophic bacteria oxidize aerobically the sulfide re-
leased in thiocyanate degradation, but some species like
Thioalkalivibrio thiocyanodenitrificans are facultative anaer-
obes capable of growth anaerobically with thiocyanate as elec-
tron donor and with nitrate or nitrite as electron acceptor
(Sorokin et al. 2004). Heterotrophic bacteria are also capable
of thiocyanate degradation, using this compound as a source
of nitrogen (Watts and Moreau 2016). There are two mecha-
nisms for thiocyanate degradation, the carbonyl sulfide and
the cyanate pathways (Fig. 1), and both are essentially aerobic.
Therefore, the different systems developed for thiocyanate
biodegradation are usually aerobic, like the activated sludge
tailing effluent remediation (ASTER™) process (Huddy et al.
2015; Kantor et al. 2015). Most of these bioremediation sys-
tems rely onmicrobial co-cultures or consortia that metabolize
undesirable by-products or establish potential syntrophic
links, increasing the robustness of the system (Gould et al.
2012; Watts and Moreau 2016). However, the development
of novel bioreactor designs, such as the utilization of several
aerobic/anaerobic/anoxic reactors in series, and the better un-
derstanding of the microbial populations and processes in-
volved in the biodegradation processes, using modern tech-
niques of global analysis that provides a holistic view, will
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allow the development of more efficient and effective biore-
mediation approaches.

A system with two trains (A and B) of four-stage moving
bed biofilm reactors, with an anoxic operating reactor in the
train B, was designed for thiocyanate, cyanate, and ammonia
biodegradation of gold extraction wastewater (Villemur et al.
2015). These three contaminants were completely removed
and Thiobacillus strains were identified as the predominant
bacteria in all reactors, although the higher content of
anammox-related bacteria in train B suggests that the nitrogen
dissimilation process takes place by this route (Villemur et al.
2015). A set of two continuous culture reactors, the first main-
tained aerobic and the second operating anaerobically, was
applied at the low temperature typical for boreal climate for
using the thiocyanate and thiosulfate present in a gold extrac-
tion wastewater as denitrification electron donors.
Interestingly, the anaerobic reactor showed a higher diversity
of microbial genera than the aerobic-operating reactor
(Broman et al. 2017).

Meta-omics (metagenomics and metaproteomics) applied
to study the microbial communities degrading thiocyanate and
cyanide in aerobic continuous-flow bioreactors revealed the
dominance of Thiobacillus strains capable of thiocyanate deg-
radation (Kantor et al. 2015; Rahman et al. 2016; Kantor et al.
2017). A large portion of bioreactor community was autotro-
phic, relying on the energy generated from oxidation of sulfur
compounds produced during thiocyanate degradation. Genes
involved in ammonium oxidation and denitrification, as re-
quired for complete nitrogen removal, were also detected
(Kantor et al. 2015).

Nitrilases, enzymes that convert organic cyanides into
their respective carboxylic acid and ammonia, have acquired
a relevant position in industry because they have been ap-
plied in the synthesis of numerous compounds, and are con-
sidered an economic and environmental friendly alternative
to chemical methods (Gong et al. 2012; Luque-Almagro
et al. 2016; Park et al. 2017). Nitrilase substrates can be
aliphatics, like glutaronitrile, or aromatics, like benzonitrile
(Estepa et al. 2012). Most nitrilases works aerobically under
mesophilic conditions, and therefore, microbial degradation
of a wide range of nitriles, using free or immobilized cells, in
batch or continuous-flow bioreactors, was investigated un-
der aerobic conditions (Kobayashi and Shimizu 2000; Kao
et al. 2006; Chen et al. 2010; Maniyan et al. 2013).
Nevertheless, several nitrilases can also function anaerobi-
cally at elevated temperatures. Thus, a termostable nitrilase
from the hyperthermophile Pyrococcus sp. M24D13, which
was isolated under strict anaerobic conditions from soil sam-
ples from Antarctica, has been purified and characterized.
This nitrilase showed optimal activity at 85 °C and pH 7.5
with benzonitrile and butyronitrile, its major substrates. The
enzyme also showed cyanidase activity (Dennet and
Blammey 2016).

Conclusions and future perspectives

Industrial wastewaters containing cyanide and related com-
pounds like nitriles and thiocyanate may be bioremediated
under aerobic conditions, but very little information is avail-
able about anaerobic cyanide biodegradation. Reductive or
hydrolytic pathways may operate under anaerobic conditions,
although cyanide degradation occurs more slowly and less
successfully in comparison with the aerobic biodegradation.
Biogas production associated to anaerobic biological treat-
ments of wastewaters is an attractive technology. Anaerobic
environments are found in nature, and cyanide-containing
spills may occur where anaerobiosis is established. Isolation
of novel microorganisms able to tolerate and degrade cyanide
from both aerobic and anaerobic zones, application of micro-
bial co-cultures or consortia, and acclimatization of the micro-
bial communities to cyanide are approaches that could im-
prove the degradation rates of food industry, gold mining,
and other industrial effluents. Development of novel bioreac-
tor designs utilizing sequential aerobic/anaerobic/anoxic sys-
tems and application of metagenomics and metaproteomics
global analysis techniques that provide a holistic view for a
better understanding of the mechanisms involved in the bio-
degradation processes and the composition and dynamics of
microbial populations will contribute to develop more effi-
cient and effective removal technologies.
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