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SP: Shortest Path; VG: Visibility Graph 

ABSTRACT 1 

A set of indicators derived from the analysis of complex networks have been 2 

introduced to identify singularities on a time series. To that end, the Visibility 3 

Graphs (VG) from three different signals related to photochemical smog (  , 4 

   concentration and temperature) have been computed. From the resulting 5 

complex network, the centrality parameters have been obtained and compared 6 

among them. Besides, they have been contrasted to two others that arise from 7 

a multifractal point of view, that have been widely used for singularity detection 8 

in many fields: the Hölder and singularity exponents (specially the first one of 9 

them). 10 

The outcomes show that the complex network indicators give equivalent 11 

results to those already tested, even exhibiting some advantages such as the 12 

unambiguity and the more selective results. This suggest a favorable position 13 

as supplementary sources of information when detecting singularities in several 14 

environmental variables, such as pollutant concentration or temperature. 15 

16 
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1. INTRODUCTION24 

Photochemical smog is a severe problem that has gain attention of the 25 

scientific community in the last years. It is compounded by several gases and 26 

particles that have complex interactions. It becomes especially dangerous in 27 

highly populated and warm cities. One of the most recently studied gases is the 28 

tropospheric ozone due to its abundance, which makes it one of the main 29 

photochemical oxidants. It is a secondary pollutant, which in high 30 

concentrations, can affect human health and crops harshly (Doherty et al., 31 

2009), as well as having a great impact on economy (Miao et al., 2017). It has 32 

been demonstrated that it does not only affect big cities, but also rural areas 33 

(Domínguez-López et al., 2014). Another interesting component of the 34 

photochemical smog is the nitrogen dioxide, which is a precursor for the 35 

mentioned ozone. It is a primary pollutant derived directly from the 36 

anthropogenic activity that arises in urban areas. It also has serious impacts on 37 

human health (Yue et al., 2018). 38 
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The World Health Organization (2005) stablished references for this kind of 39 

pollutants, in order to warn against dangerous effects. For instance, the level at 40 

which the ozone concentration is considered to be hazardous is 120 µg/m3. For 41 

that reason, the identification of singularly high episodes of pollutant 42 

concentration gains importance. 43 

Multifractal analysis has been previously used both for global behavior of the 44 

system and singularity detection in relation to pollutant dynamics (Pavón-45 

Domínguez et al., 2015). In order to identify singularities in a general signal, one 46 

of the most commonly used techniques is the so-called pointwise Hölder 47 

exponents (Shang et al., 2006). It gives an estimation of how singular a given 48 

point is within a series, although its implementation has several disadvantages, 49 

as the dependence on parameters chosen by the user and numerical instability. 50 

Another one called the singularity exponent (Dai et al., 2014) will be used as 51 

well, in order to support the results from multifractal analysis. 52 

In the last decade, a new approach designed to analyze time series was 53 

introduced by (Lacasa et al., 2008) and named Visibility Graph (VG). It is based 54 

on the transformation of those signals into a completely different mathematical 55 

object: a complex network. For the description of such new entities, the 56 

centrality parameters are very useful, as will be shown later in the text. Among 57 

the advantages of VGs, authors would like to remark the following: i) The 58 

characteristics of the original time series are inherited by the resulting network, 59 

leading to the possibility of describing the system through it. ii) They allow the 60 

analysis of various variables simultaneously, which can be used to find 61 

correlations. 62 
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In the introduced work, the VGs of three different time series related to the 63 

photochemical smog are computed. From them, the centrality measurements 64 

have been obtained and compared to multifractal indicators that are known to 65 

be useful for singularity detection. Finally, the searched purpose is to discern 66 

whether the complex network indicators can be used for the same applications 67 

that these multifractal parameters, giving equivalent results and overcoming 68 

some of their disadvantages. 69 

 70 

2. MATERIALS AND METHODS 71 

2.1. Data 72 

This manuscript has employed real data from a 1 hourly ozone and nitrogen 73 

dioxide concentration (chemical factors from photochemical smog) and 74 

temperature (physical factor) time series, all measured in 2017. They were 75 

collected at the urban station in San Fernando (36°27' N, 6°12' W), in the 76 

province of Cádiz belonging to the southern part of the Iberian Peninsula. The 77 

reason behind choosing this location was that the area presents characteristics 78 

to be potentially vulnerable to the accumulation of photochemical smog 79 

(Domínguez-López et al., 2014). These are orographic (the Guadalquivir 80 

Valley), anthropic (two relevant industrial centers such as the chemical focus of 81 

Huelva and the Bay of Algeciras, and four capitals) and weather conditions 82 

(high solar radiation and temperature). The cited station is part of the network in 83 

charge of controlling the air quality in the region of Andalusia, which is 84 

administered by the Consejería de Medioambiente (Regional Environmental 85 

Department) and co-financed by the European Union. 86 
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To work with uncorrelated data (in order to obtain independent results), 87 

authors have selected different periods of time for each time series. For the 88 

case of ozone, the amount of data corresponds to the month of July; for    , 89 

January has been chosen and, finally, for temperature data, October has been 90 

picked. Apart from the uncorrelation of the data, the choice was motivated by 91 

several reasons: in the case of ozone, the month of July presents the most 92 

suitable (and stable) conditions for the creation of this pollutant. For the nitrogen 93 

dioxide, January is the month where the photochemical reaction activity is lower 94 

and therefore its concentration depends more on the sources. Finally, October 95 

was chosen for the last series in order to see singular episodes of this quantity 96 

in a region where most of the year the oceanic influence stabilizes the 97 

temperature. This physical factor is unstable in autumn by nature in this area, 98 

as discussed in previous works (Dueñas et al., 2002). All real time series data 99 

have been represented in Figure 1. 100 
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101 

Figure 1: Ozone, nitrogen dioxide and temperature time series for each selected 102 
month. 103 

104 

2.2. Visibility Graphs 105 

As mentioned before, the VG is introduced by (Lacasa et al., 2008) and is 106 

defined as a tool that makes possible to transform a time series into a graph, 107 

i.e. it converts a signal into a set of nodes connected through lines called edges. 108 

To obtain the VG, which is associated to the time series, it is necessary to 109 

determine a criterion to establish which points (or nodes) are linked to each 110 

other, that is, have visibility. Let (  ,   ) and (  ,   ) be two arbitrary points from 111 

the time series which are chosen in order to check the mentioned criterion. One 112 

of the most commonly used is to consider that both have visibility (are 113 

connected in the graph) if any given point (  ,   ) that is situated between the 114 

first two (   <    <   ) satisfies the following: 115 
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(1) 

This visibility algorithm concludes by repeating the previous step for every 116 

pair of points in the signal. As an example, one can observe this procedure 117 

applied to a sample time series in Figure 2. 118 

119 

Figure 2: Visibility Graph obtained from a sample time series by the visibility 120 
algorithm. The nodes of the graph are the data points (red bars), while the links 121 

among them are illustrated as solid lines. 122 

123 

In practice, it is more useful to obtain a matrix representation of the graph 124 

that contains the information of the complex network: the visibility adjacency 125 

matrix. It is a     binary matrix, with   the total number of nodes. Each 126 

element of the matrix     takes the value of unit if nodes   and   have visibility; 127 

otherwise, it is null and this means that nodes are not linked to each other. 128 

The algorithm can be simplified after some factors are taken into account, 129 

leading to a visibility adjacency matrix with a general form as follows: 130 
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  (2) 

Visibility Graphs are undirected networks, since the visibility criterion is 131 

reciprocal (one node has visibility with other and vice versa). However, there 132 

are some ways of mapping a directed network where the time order can be 133 

considered and this has been used previously for reversibility studies of time 134 

series (Lacasa et al., 2012; Xie et al., 2019). Nonetheless, when selecting a 135 

direction in order to account for the time order, there is a problem that arises 136 

regarding the mapped complex network. Since the size of the series is by 137 

definition finite, the (ingoing or outgoing) degree depends on the position of the 138 

point with regard to the end and beginning of the series. Ingoing degree refers 139 

to the number of links that enter into a node, while the opposite is for the 140 

outgoing degree. This means that the first points in the series will have more 141 

outgoing degree than the last ones, and vice versa. Due to this artifact, it not 142 

suitable for being used when a pointwise description (for singularity detection, 143 

for instance) is desired. 144 

2.3. Complex networks indicators 145 

Once the new complex network is retrieved, there are some parameters 146 

which can be studied to characterize its nodes importance, such as centrality 147 

measures. This concept was firstly used in the study of social networks to turn 148 

out to be introduced into other fields of knowledge (Agryzkov et al., 2019; Joyce 149 

et al., 2010; Liu et al., 2015). Some of these centrality measures that are used 150 

in this work will be further explained next. 151 

2.3.1. Degree 152 
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The degree of a node (  ) in a graph or complex network is defined as the 153 

number of other nodes with which it is linked (        ). As authors exposed 154 

in the section 2.2, in the context of the visibility algorithm, two points having 155 

visibility means that they are linked because they fulfill the given criterion (see 156 

Equation 1). After computing the degree for each node, one can retrieve the 157 

probability or distribution for each result by using a histogram. This outcome is 158 

called degree distribution of the sample     . There are some points with a 159 

singularly high degree, called hubs, that are of great importance in this 160 

distribution. 161 

As it is shown in previous works, the degree distribution obtained from the 162 

VG can characterize the nature of the time series involved (Lacasa et al., 2008; 163 

Mali et al., 2018). For example, it is possible to make a distinction among 164 

fractal, random or periodic signals. 165 

2.3.2. Closeness 166 

In the previous sections, centrality parameters have been defined by 167 

considering the number of edges and the adjacency matrix properties. 168 

Nevertheless, it is necessary to specify the meaning of another property within a 169 

graph in order to carry on with next definitions, which is the so-called shortest 170 

path (SP). In a network, one can observe a different number of edges (as a 171 

measurement of length) passing through any (in general, distant) pair of nodes. 172 

Two distant nodes       will have different number of edges and paths between 173 

them, but there will be some of these paths where the number of edges will be 174 

minimum; this quantity is named as the SP. 175 



10 

If one takes all pairs of nodes, it is possible to obtain a matrix, the so-called 176 

distance matrix  , where each element      contains the SP from node   to  . 177 

One usually sets diagonal elements as zero. For an undirected graph, this 178 

matrix will be symmetric, as in the adjacency matrix case (see Section 2.2). 179 

After the explanation of this graph property, it is possible to define the 180 

closeness centrality of a node   as the inverse of the sum of distances from this 181 

node to the others: 182 

   
 

     
 
   

(3) 

Where      is the element       from the corresponding distance matrix of the 183 

graph. 184 

2.3.3. Betweenness 185 

The main idea behind betweenness parameter is to focus on the centrality 186 

as a measurement of how a node is between many others. That is, how much a 187 

node is passed through by shortest paths of other pairs of nodes. Therefore, the 188 

equation that defines this quantity for a node   is the following: 189 

     
      

   

 

   
     

 

   
   

(4) 

Where     is the number of SP’s from   to   (notice that these paths can be 190 

degenerated), whereas        is the number of SP’s that contains the node  . 191 

2.4. Multifractal indicators 192 

2.4.1. Pointwise Hölder exponent method 193 
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The Hölder exponent is a measure used in the context of multifractal 194 

analysis to characterize the singularities which are present in a signal. A 195 

function or a time series is fractal when it exhibits some local properties as self-196 

similarity, irregularity, fine structure and fractional dimension; if they are variable 197 

at different points, then this function is multifractal. Consequently, multifractal 198 

analysis describes the singularities implicated in a time series. 199 

A commonly used method for multifractal analysis of a signal is to compute 200 

the pointwise Hölder exponent. This parameter is defined as a local 201 

characteristic of a function which is computed at every point of its domain. It 202 

refers to the decay rate of the amplitude of the function fluctuations in the 203 

neighborhood of the data point when the size of the neighborhood shrinks to 204 

zero, that is, the function singularities. The Hölder exponent at a point   of      205 

can be expressed as: 206 

          
   

   
                

      
 (5) 

In practice, one can only obtain discrete time series and so some different 207 

methods for computing the Hölder exponent has been elaborated to solve this 208 

problem. (Peng-Jian and Jin-Sheng, 2007; Shang et al., 2006) developed an 209 

algorithm for numerical evaluation of Hölder exponent based on the previous 210 

equation. This method takes     points from a signal equally spaced, 211 

             and calculates the intensity of its Hölder exponent at a specific 212 

point   . This computation considers a number of preceding and following 213 

points,  , which is named as the window width and is set by the user (in total,    214 

values around the point are taken). Each value in the window has got a different 215 

weight controlled by other parameter,  , known as regression coefficient and 216 
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whose values are in the interval      . This last parameter reduces the weight 217 

for each point in the window as they are further from the center. Their influence 218 

over the ultimate computation of the Hölder exponent must be greater for close 219 

points than those which are more distant. 220 

Once values for   and   are selected, it is necessary to obtain the next 221 

quantity for each integer     from    to   in each window: 222 

     
    

       
  

 

    
   
  

(6) 

Where    and   are the normalizing parameters which are chosen for the 223 

convenience of computation (Peng-Jian and Jin-Sheng, 2007) and   must fulfill 224 

       . For points which are at the very beginning or end of the signal, 225 

where the   index falls out of the domain, the window width   is properly shrunk. 226 

Next, for each integer  ,      , it must be computed: 227 

        
 
              (7) 

This last equation is related to take the lim inf as in the Equation 5 for the 228 

case of a continuous function. Finally, the local Hölder exponent,   , is retrieved 229 

by the computation of the weighted average of the approximations     : 230 

   
   

    
                   

           

(8) 

Where the most important factors are those which are close enough to ith 231 

point. 232 

2.4.2. The singularity exponent method 233 
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In an effort to get better results for the singularities of traffic data from a 234 

highway, (Dai et al., 2014) proposed another approach to analyze this property 235 

through the “singularity exponents”, as they named in the paper. 236 

The algorithm takes a given time series data of length  ,            , 237 

uniformly spaced, and requires choosing two window widths    (     ). Next, 238 

one must compute the following quantities: 239 

   
 

 
   

 

   

(9) 

      
        

 

     
     

  

     

(10) 

                 
            (11) 

Where    is the average of the whole signal, whereas       
        and          240 

denotes the average volume in the field and the absolute errors between    and 241 

      
        in         , respectively. It must be noticed that Equation 10 must satisfy 242 

         . 243 

Finally, the singularity exponents at each point      are obtained by 244 

computing the fluctuations in each of the previously defined scales: 245 

       
 

   
           

       

       

       
    (12) 

       
 

  
           

       

       

       
    (13) 

Assuming that           , then, one can get: 246 
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(14) 

Finally, a usual way of checking the Hölder exponent method is to take the 247 

generalized Weierstrass function as a test function. In this work, authors have 248 

proven the implemented algorithm of both multifractal indicators. The selected 249 

Weierstrass function is the following: 250 

                     

 

   

 (15) 

Where      is the seed function, whose values are contained in the interval 251 

     . As (Daoudi et al., 1998) shows,            for all   and so, one can 252 

compare theorical values of the Hölder exponent (given by     ) with the 253 

numerical results. 254 
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255 

Figure 3: Time series obtained from the Weierstrass function for an interval 256 

        (a) and the Hölder and singularity exponents   and   (b and c, 257 
respectively). 258 

259 

This analysis can be observed in the Figure 3 for both algorithms, where the 260 

chosen seed function is                      . As expected, the Hölder 261 

exponent method fits well the theorical value, while the singularity exponent 262 

method does it as well. However, in the last case, shown in Figure 3c), the level 263 

of singularity of the data can be understood as the deviation from 0, which is 264 

independent of the sign. For this reason, authors have decided to plot the 265 

absolute value of the results. 266 

267 

3. RESULTS AND DISCUSSION268 
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In this section, the parameters previously introduced in the last part are 269 

tested on different real time series of environmental variables related to 270 

photochemical smog (see Section 2.1). As it was mentioned before, these three 271 

time series have been chosen based on the fact that they are different in nature, 272 

in order to test the proposed indicators for distinct scenarios. All the complex 273 

network indicators shown in the plots are normalized to the maximum value of 274 

each one of them. 275 

In order to evaluate these quantities, the widely used Hölder exponents 276 

have been obtained following the approach described in the former section. The 277 

parameters set for the calculation have been in all the cases      ,      , 278 

       and     . Moreover, the other exponent proposed in order to 279 

overcome some of the shortcomings of the Hölder exponents (Dai et al., 2014) 280 

has been analyzed (the singularity exponent). For this indicator, the chosen 281 

parameters were      and     . 282 

In Figure 4, all these indicators are shown for the case of the ozone 283 

concentration time series. For the other series, the results are similar and 284 

therefore the same considerations are taken into account. It must be pointed out 285 

that the complex network ones are univocal for a given time series, since the 286 

VG constructed does not depend on any numerical parameter. On the other 287 

hand, the multifractal indicators depend substantially on the chosen parameters 288 

when running the algorithm (see Sections 2.4.1 and 2.4.2). 289 
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290 

Figure 4: Different indicators computed from the whole ozone concentration 291 
time series: (a – d) Centrality parameters from the Visibility Graph and (e - f) 292 

Hölder and singularity exponents.293 

In order to make Figure 4 more intelligible, the followed process is 294 

explained next. What has been done in practice is computing firstly the 295 

betweenness centrality of the total time series. Afterwards, a dynamic criterion 296 

has been stablished in order to select the most important central nodes from 297 

this quantity. It consisted on searching the relative maxima which are above a 298 

given percentage of the absolute one. After several tests, it has been found that 299 

the identification of singularities holds down to a 5%, which could be used as a 300 

rule of thumb for future works. Nonetheless, with this value, a considerable 301 

amount of peaks are chosen and for practical reasons, from this point only the 302 

five most central nodes will be shown in the figures. These points correspond to 303 

the five main skyline hubs (Carmona-Cabezas et al., 2019b) in the series (i.e. 304 

the nodes with the highest singular values of betweenness). The reason for 305 

choosing this term was the similarity to the skyline drawn by the skyscrapers in 306 

a city from the point of view of other nodes. 307 

Once those nodes are selected, authors have investigated the values of the 308 

rest of the indicators around them. The reason for choosing the betweenness 309 
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centrality as a first reference is the more distinguished and smoother results 310 

that it provides for some specific important nodes from the VG, as depicted in 311 

Figure 4a). Furthermore, the multifractal measurements are built upon 312 

parameters chosen by the user for the convenience of the computation. This 313 

might lead to problems and ambiguities in the outcomes. 314 

Firstly, the results obtained for the ozone concentration time series can be 315 

regarded in Figure 5, where five different betweenness peaks (skyline hubs) 316 

from b) were closely studied (numbers 1 - 5).  The different complex network 317 

indicators have positive pronounced peaks in the same temporal points of the 318 

series. When it comes to the Hölder and singularity exponents from multifractal 319 

analysis, they present minima and maxima values respectively at those same 320 

points as well. 321 

In order to understand the relation of this parameter to the photochemical 322 

pollution (ozone in this case), authors would like to point out a recent study 323 

(Carmona-Cabezas et al., 2019b). In that work, betweenness centrality peaks 324 

have been related with the values of the series that store most of the 325 

information about the upper envelope. Considering this, a skyline hub can be 326 

regarded as a singular episode of ozone concentration in the sense that it 327 

indicates a change of the tendency with respect to the previous maxima. For 328 

instance, if the maximal concentration of ozone of several days is steadily 329 

increasing and then starts to decrease, that critical point is identified by a 330 

betweenness peak.  331 

In Figure 5c1), the peaks selected by the authors for their higher 332 

betweenness are magnified and superposed in the same plot. This has been 333 

done in order to compare with the rest of parameters. As it could be seen as 334 
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well in Figure 4, betweenness centrality gives the clearest signal and therefore 335 

its peaks are sharper. 336 

The next indicator (see Figure 5c2) from the VG is the degree of the nodes, 337 

which has been widely used in many studies of this kind (Carmona-Cabezas et 338 

al., 2019a; Pierini et al., 2012; Zhou et al., 2017). Before studying its usefulness 339 

for ozone description, it is easily regarded at a glance that all the positions 340 

selected correspond as well to very pronounced peaks in the degree (hubs). It 341 

is known that a high degree implies a high concentration of ozone (Carmona-342 

Cabezas et al., 2019b), while the opposite is not always true. Therefore, when a 343 

point is identified as a singularity from the degree, it means that the ozone 344 

concentration at that particular time is especially high in magnitude within a time 345 

interval around it. It suggests that the conditions for its production would be 346 

optimal at that time. The correspondence with the betweenness peaks is due to 347 

the fact that when ozone concentration reaches a singular maximum before a 348 

downwards trend, this peak magnitude will be as well singularly high, locally. 349 

The last of the VG indicators is the closeness centrality. This quantity has 350 

been used before to describe VGs with interesting results, although in 351 

theoretical point of view (Bianchi et al., 2017; Iacovacci and Lacasa, 2019). 352 

Closeness centrality of a given time point is related to the values at its left and 353 

right (Donner and Donges, 2012). Thus, authors attribute a singular peak in the 354 

closeness to a rarely high episode surrounded by a concave up tendency (since 355 

it favors connectivity) in the surrounding concentrations of this pollutant. As 356 

depicted in Figure 5c3), the betweenness peaks coincide as well with singular 357 

high values of closeness, in every one of the selected points. Nevertheless, the 358 
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obtained curves are rather noisy (compared to the degree and betweenness), 359 

although the peaks can be inferred without problem. 360 

Finally, the multifractal indicators are shown in Figure 5c4) and c5). On the 361 

one hand, the Hölder exponent plot displays minimal values around the 362 

positions used as reference. It was expected, since highly irregular points 363 

exhibit Hölder exponents closer to zero, whereas smoother regions present 364 

greater values (Jaffard, 1997; Safonov et al., 2002). On the other hand, the 365 

singularity exponents, as explained before in Section 2.4.2, show maximal 366 

values on singular points. That is as well corroborated in the reference peaks 367 

positions, in a clearer way than the Hölder exponents in this case. In any case, 368 

neither of the multifractal indicators show peaks as acute as the complex 369 

network ones. It should be pointed out as well the noise embedded within the 370 

singularity exponent curves, that makes more difficult to identify the searched 371 

maxima for some of the peaks (for instance, peak 1 and 2). 372 

When it comes to the underlying tropospheric ozone pollution concentration, 373 

all of these singularities correspond to unusual episodes of especially steep 374 

accumulation of that gas. More precisely, the selected peaks coincide with 3rd, 375 

12th, 18th, 24th and 26th of July, all of them located between 2 PM and 6 PM 376 

(GMT+2), which is the time period when the radiation and temperature reach 377 

their maxima. I every case, the corresponding concentrations are above or 378 

reaching the dangerous threshold stablished by the World Health Organization. 379 

What is significant about the selected ones is that, as can be regarded in Figure 380 

5a), they are placed before a change in the tendency of the previous maxima or 381 

daily concentrations of ozone. It corresponds to what was previously discussed 382 

for betweenness, as the peaks are selected by looking at this quantity. The 383 
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utility of this is that once the highly irregular   concentration that diverge 384 

abruptly from the trend are detected, it would be possible to perform a deeper 385 

study in order to find the origin of it and act accordingly to prevent future similar 386 

episodes. 387 

388 

Figure 5: Ozone concentration time series (a) with the betweenness values 389 
computed from it below (b). Plots from c1) to c3) show the complex network 390 

indicators: betweenness, degree, closeness (in appearance order). c4) and c5) 391 

display the Hölder and singularity exponents (respectively).  392 

393 

In Figure 6, the same parameters as in the previous case are studied for the 394 

   concentration time series. The same procedure was followed in order to 395 

obtain the plots. It can be regarded that equivalent behaviors are present here: 396 

all peaks from the complex network indicators identify quite well the singularities 397 
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found in betweenness; whereas the multifractal ones (which coincide as well) 398 

have wider shapes, with less accuracy. Nonetheless, the Hölder exponent 399 

minima (see Figure 6c4) are much clearer than above. The curves 400 

corresponding to the singularity exponent exhibit again a considerable level of 401 

noise. 402 

As in the previous case, looking at the physical meaning of the series, the 403 

peaks where authors focus accord with unusual maxima of     throughout the 404 

month. In detail, the days corresponding to these pollutant concentration 405 

singularities are 3rd, 11th, 17th, 21st and 28th of January. In this case, the singular 406 

hours are not as consistent as in the ozone. Authors attribute this irregularity to 407 

the fact that the main source for     is human activity, which in many cases 408 

might vary. Hence this could be used to identify singular acute activity from 409 

industry or traffic, as well as meteorological unexpected events, that could lead 410 

to unanticipated concentrations derived from transport of this pollutant. 411 
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412 

Figure 6:     concentration time series (a) with the betweenness values 413 
computed from it below (b). Plots from c1) to c3) show the complex network 414 

indicators: betweenness, degree, closeness (in appearance order). c4) and c5) 415 
display the Hölder and singularity exponents (respectively). 416 

417 

Finally, a different type of time series has been analyzed through all the 418 

indicators shown up to this point. In this case, this series corresponds to the 419 

hourly average temperature measured, which as expected, displays a more 420 

regular behavior (see Figure 7a). The complex networks parameters identify in 421 

a similar way the same singular points. Moving to the multifractal parameters, 422 

the singularity exponent behaves as in the previous series (see Figure 7c5), in 423 

contrast to the Hölder exponent, that shows maxima instead of the expected 424 

minima (see Figure 7c4). Authors attribute this anomaly to some of the 425 
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disadvantages of the computation of this parameter by the algorithm, which 426 

under some circumstances may provide non-finite or misleading values. 427 

As mentioned for the previous variables, the actual meaning of these peaks 428 

resides on unexpected values of high temperature that occur on the 6th, 13th, 429 

26th, 27th and 28th of October. Now, the singularities encountered on 430 

temperature might be associated to unpredicted meteorological events. 431 

 432 

Figure 7: Temperature time series (a) with the betweenness values computed 433 
from it below (b). Plots from c1) to c3) show the complex network indicators: 434 

betweenness, degree, closeness (in appearance order). c4) and c5) display the 435 

Hölder and singularity exponents (respectively). 436 

 437 

 438 

4. CONCLUSION 439 
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After discussing the proposed indicators, authors consider that these 440 

complex network parameters can be properly used to identify relevant points 441 

in environmental time series, such as the ones analyzed here. It has been 442 

demonstrated how indicators that are different in nature, can obtain 443 

complementary results that can be employed to characterize the behavior of 444 

experimental signals from pollutants and temperature in the context of 445 

photochemical smog. They have been compared to widely known singularity 446 

indicators from multifractal analysis, showing some advantages as well. This 447 

opens a bridge between complex networks and multifractal studies for local 448 

singular behavior of time series. 449 

Finally, it can be argued that some of the shortcomings of the Hölder and 450 

singularity exponents are overcome with the proposed methodology. On the 451 

one hand, the multifractal indicators depend on a number of parameters that 452 

rely on the nature of the series, giving different ambiguous results. By 453 

contrast, complex network ones are univocal for a time series. No matter 454 

how one runs the algorithm, the result would be the same. On the other 455 

hand, the way Hölder exponents are defined gives complications for certain 456 

cases derived from the logarithm in its expression. Conversely, the centrality 457 

parameters do not have such problems, since their computation is based on 458 

simple arithmetic calculations from graph theory. Also, based on the 459 

properties of each parameter, they seem to be able to describe different 460 

properties of the pollutant dynamics at the selected times. For instance, 461 

betweenness is found to be related to a change in the tendency of the upper 462 

envelope of the signal; degree identifies singularly high concentrations or 463 

temperature episodes; while closeness characterizes the behavior of the 464 



26 

concentrations surrounding the detected singularity. Taking all these facts 465 

into account, it is possible to consider the proposed indicators as a future 466 

additional information source. 467 

For future works, it remains open a wide range of possible applications for 468 

these local studies. For instance, in the field of environmental analysis, 469 

authors would like to stress the possibility to employ these indicators to 470 

relate singular events of different variables, such as the ozone and some of 471 

its precursors (both chemical and physical). Also, based on the use of the 472 

Hölder exponent for predictive purposes (Shang et al., 2006), it might be 473 

investigated the usefulness of VGs for the same aim. 474 

475 
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HIGHLIGHTS 1 

- Visibility Graphs can be used to identify singularities in pollutant series. 2 

- Peaks from complex network indicators coincide with the multifractal ones. 3 

- Hölder and singularity exponents give ambiguous results due to parameter 4 

selection. 5 

- Betweenness and degree give the clearest signal for identifying singular points. 6 

- Among VG indicators, eigenvector centrality gives the least accordance. 7 
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