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ABSTRACT 14 

The usage of multilayer complex networks for the analysis of correlations 15 

among environmental variables (such as 𝑂3 and 𝑁𝑂2  concentrations from the 16 

photochemical smog) is investigated in this work. The mentioned technique is 17 

called Multiplex Visibility Graphs (MVG). By performing the joint analysis of those 18 

layers, the parameters named Average Edge Overlap and Interlayer Mutual 19 

Information are extracted, which accounts for the microscopical time coherence 20 

and the correlation between the time series behavior, respectively. 21 

These parameters point to the possibility of using them independently to 22 

describe the correlation between atmospheric pollutants (which could be 23 

extended to environmental time series). More precisely the first one of them is 24 

considered to be a potential new approach to determine the time required for the 25 

correlation of 𝑁𝑂2 and 𝑂3 to be observed, since it is obtained from the correlation 26 

of the pollutants at the smallest time scale. As for the second one, it has been 27 

checked that the proposed technique can be used to describe the variation of the 28 

correlation between the two gases along the seasons. In short, MVGs parameters 29 

are introduced and results show that they could be potentially used in a future for 30 

correlation studies, supplementing already existing techniques. 31 
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1. INTRODUCTION38 

In the last years, many studies have been conducted to give some light on 39 

formation and dynamics of ground-level ozone. The important of these analyses 40 

lie on the fact that it is one of the main photochemical oxidants (due to its 41 

abundance) and it can lead to serious damage for human health and harvest for 42 

high concentrations (Doherty et al., 2009). According to Miao (Miao et al., 2017), 43 

its impact can be quantified in losses of billions of dollars from the economical 44 

point of view. 45 

The formation and destruction of this secondary pollutant is known to be 46 

governed by photochemical and nonlinear processes (Graedel and Crutzen, 47 

1993; Trainer et al., 2000) that depend highly on meteorological conditions such 48 

as temperature, wind direction and mainly solar radiation (Trainer et al., 2000). In 49 

addition to all that, O3 concentration also depends on the behavior of its chemical 50 

precursors. These are mainly nitrogen oxides (amongst them, NO2 is studied 51 

here) and volatile organic compounds produced from the urban and industrial 52 

activity (Sillman, 1999). It is because of all those factors that the analysis of the 53 

temporal evolution of ozone is a very complex task. Hence, some questions 54 

remain open such as the influence of the working time scale on these studies and 55 

the relevance of NO2 as precursor depending on the season of the year. 56 

A very recent method (called Multiplex Visibility Graph, MVG) to analyze 57 

nonlinear multivariate timeseries (Lacasa et al., 2015) is used in this work to see 58 

the relation between O3 and its precursor NO2 to answer the questions posed 59 

above. This method consists basically on turning the time series into complex 60 

networks and then forming multilayered structures that can be analyzed 61 

afterward, thanks to the last advances in this field. MVGs have shown to be useful 62 



for several applications already, from economics to neurology (Bianchi et al., 63 

2017; Lacasa et al., 2015; Sannino et al., 2017). Those works have used last 64 

developments in multilayer networks (Bianconi, 2013; Boccaletti et al., 2014; De 65 

Domenico et al., 2013; Kivela et al., 2014) to obtain information to describe and 66 

compare the signals.  67 

The reason to use this approach instead of other ways to construct functional 68 

networks is because those usually require performing a pre-processing or 69 

symbolization, associated with loss of information (Kantz and Schreiber, 2004). 70 

Also, one of the advantages of using complex networks for analyzing time series 71 

is that they are becoming powerful tools when one seeks to construct feature 72 

vectors that can be used to automatically feed classifiers with low computational 73 

cost (Lacasa et al., 2015). 74 

 75 

2. MATERIALS AND METHODS 76 

2.1. Experimental data 77 

The data of pollutant used for this analysis correspond to ozone and nitrogen 78 

oxide concentration values collected from 2010 to 2017, with a frequency of 10 79 

minutes between each measure. Then, these data were separated into the 80 

different months in order to perform the analysis. The measurements were 81 

performed at the urban station located in Lepanto, Córdoba (37.53° N, 4.47° W). 82 

The cited station belongs to the regional network in charge of controlling the air 83 

quality in Andalusia, co-financed by the Consejería de Medioambiente (Regional 84 

Environmental Department) and the European Union. This station is located at 85 

117 m of altitude and the average temperature and solar radiation is maximum 86 



on July and minimum on January every year. The region where it is placed is the 87 

western part of Andalusia (Spain). Since as exposed previously (Domínguez-88 

López et al., 2014), this area meets the weather conditions (high temperatures 89 

and solar radiation), orographic (the valley of the Guadalquivir river) and 90 

anthropic ones to be potentially vulnerable to pollution by ground-level ozone and 91 

nitrogen oxide. The climate of the zone of study, according to the Köppen-Geiger 92 

classification, is defined as Csa, with warm average temperatures and hot and 93 

dry summer. Furthermore, the city of Córdoba is surrounded by two main 94 

industrial parks. One of them is located at southwest, and the other is at east. 95 

Moreover, there is a highway at southeast with frequently high traffic volume from 96 

both directions. 97 

Authors have also employed the temperature, wind direction and average 98 

solar radiation in this work. They are shown further in the text (see Figure 7), were 99 

they are plotted along with the results in question, in order to illustrate their 100 

apparent relationship. These meteorological quantities have been provided by 101 

the Andalusian Agency of Energy. 102 



 103 

Figure 1: Sample time series of O3 and NO2 for four different months (year 2017). 104 

 105 

 106 

2.2. Visibility graph 107 

A graph can be defined as a set of vertices, points or nodes connected to 108 

each other by lines that are usually called edges. A tool to transform time series 109 

into a graph was presented in the last decade (Lacasa et al., 2008). This new 110 

complex network receives the name of Visibility Graph (VG) and has been proven 111 

to inherit many of the properties of the original signal (Lacasa and Toral, 2010). 112 

This means that, for instance, a periodic time series would lead to a regular graph 113 

and a fractal series to a scale-free one. 114 



In order to construct the visibility matrix which contains the information of all 115 

the nodes in the system, it is necessary to stablish a criterion to discern whether 116 

two points would be connected or not. This criterion reads as follows: two arbitrary 117 

data from the time series (𝑡𝑎, 𝑦𝑎) and (𝑡𝑏, 𝑦𝑏) have visibility (and would become 118 

two connected nodes in the graph) if any other data point (𝑡𝑐, 𝑦𝑐) between them 119 

(𝑡𝑎< 𝑡𝑐< 𝑡𝑏) fulfills the following condition: 120 

𝑦𝑐 <  𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑡𝑐 − 𝑡𝑎

𝑡𝑏 − 𝑡𝑎
 (1) 

The result of applying this visibility method is a NxN adjacency binary matrix, 121 

being N the number of points in the set. Each row of the matrix contains the 122 

information of a different node. For example, an element as 𝑎𝑖𝑗 = 1 means that 123 

the node 𝑖 and 𝑗 have visibility; whereas 𝑎𝑖𝑗 = 0 means that there is no edge 124 

between them. The resulting matrix has several properties that can be used to 125 

simplify the algorithm and thus reduce the computational required time: it is a 126 

hollow matrix (𝑎𝑖𝑖 = 0), symmetric (𝑎𝑖𝑗 = 𝑎𝑗𝑖) and all the nearest neighbors have 127 

visibility between each other (𝑎𝑖𝑗 = 1 for 𝑗 = 𝑖 ± 1). Its general form is shown 128 

below: 129 

𝐴 =  (

0 1 … 𝑎1,𝑁

1 0 1 ⋮
⋮ 1 ⋱ 1

𝑎𝑁,1 … 1 0

) (2) 

In Figure 2, the application of the VG to two arbitrary time series is shown, 130 

highlighting the connections of two given time points (nodes in the graph) for the 131 

sake of clarity. 132 

2.3. Degree centrality 133 



To study the main properties of a complex network, centrality parameters 134 

become convenient mathematical tools to take into account. This kind of 135 

parameters measure the node importance within the graph in relation to the 136 

others by different approaches (Latora et al., 2017). 137 

A very frequently used centrality parameter and an important feature of graphs 138 

in general is the degree. The degree of a node (𝑘𝑖) can be defined as the number 139 

of nodes that have reciprocal visibility (in an undirected graph) with the first one 140 

(𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗 ). In Figure 2, the degree of the node that is highlighted is 𝑘 = 6 for O3141 

and 𝑘 = 3 for NO2. 142 

From the degree of each one of the nodes present in the VG, it is possible to 143 

obtain the degree distribution of the sample 𝑃(𝑘), which is nothing but the 144 

probability that every degree has within the graph. This distribution can be 145 

analyzed to get a deep insight of the intrinsic nature of the time series, as 146 

previously demonstrated by (Lacasa et al., 2008; Mali et al., 2018; Pierini et al., 147 

2012). The degree distribution of VGs whose right tails can be fitted to a power 148 

law in the way 𝑃(𝑘) ∝ 𝑘−𝛾, are associated to fractal time series (Lacasa et al., 149 

2008). The right tails are related to hubs, which are unlikely highly-connected 150 

nodes in the graph and therefore points with large values of degree. In a log-log 151 

plot, one can fit 𝑃(𝑘) to a simple linear regression, obtaining the so-called 𝛾 152 

coefficient, which has been directly related to the Hurst exponent of the time 153 

series in the Brownian motion (Lacasa et al., 2009). 154 

2.4. Multiplex visibility graph 155 



156 

Figure 2: Time series of ozone and nitrogen dioxide concentrations (left) are 157 
transformed into complex networks through the VG algorithm (center), which is defined 158 
by an adjacency matrix (𝐴𝑂3  𝑎𝑛𝑑 𝐴𝑁𝑂2). Finally, the two of them are combined to create 159 

a two-layered MVG, called Ω (right image).160 

In the case of a multivariate time series of 𝑀 variables, it is possible to 161 

construct a 𝑀-dimensional network from the VG of each one for the description 162 

of the signals (Lacasa et al., 2015). This multilayer network is called Multiplex 163 

Visibility Graph and each one of its 𝑀 layers corresponds to the VG of one of the 164 

variables from the underlying time series (see Figure 2). The MVG is represented 165 

by a vector of adjacency matrices Ω = {𝐴
[1]

, 𝐴
[2]

, … , 𝐴
[𝑀]

}, being 𝐴
[𝛼]

 the matrix166 

corresponding to the VG of the 𝛼-dimension (or layer in the multiplex) from the 167 

multivariate time series. 168 

When it comes to analyzing the information that lies within these complex 169 

multilayer networks, there are several measures that can be used (Nicosia and 170 

Latora, 2015). Here, two quantities have been chosen. The first one is the 171 

Average Edge Overlap (𝜔), that measures the number of layers on which a given 172 

edge between two nodes is found, on average. The other one, that captures the 173 

presence of inter-layer correlations of the degree distributions between two layers 174 

𝛼 and 𝛽, is the so-called Interlayer Mutual Information (𝐼𝛼,𝛽). These layers in the 175 



presented study correspond to the VGs of O3 and its precursor NO2 concentration 176 

time series, hence the notation 𝐼O3,𝑁𝑂2
 will be used in this work.  177 

The formula for the calculation of 𝜔 is presented in Equation 3, where 178 

𝛿0,∑ 𝑎𝑖𝑗
[𝛼]

𝛼
 corresponds to a Kronecker Delta and the other quantities are already 179 

defined. 180 

 𝜔 =
∑ ∑ ∑ 𝑎𝑖𝑗

[𝛼]
𝛼𝑗>𝑖𝑖

𝑀 ∑ ∑ (1 − 𝛿0,∑ 𝑎𝑖𝑗
[𝛼]

𝛼
)𝑗>𝑖𝑖
 (3) 

The maximum possible value of this quantity is 𝜔 = 1, and corresponds to the 181 

case where all the layers are identical. On the other hand, the minimum value is 182 

𝜔 = 1/𝑀 (being 𝑀 the number of layers), meaning that a case with each edge in 183 

the multiplex existing just in one layer. 184 

In Equation 4, 𝐼𝛼,𝛽 is defined: 185 

 𝐼𝛼,𝛽 = ∑ ∑ 𝑃(𝑘[𝛼], 𝑘[𝛽]) log
𝑃(𝑘[𝛼], 𝑘[𝛽])

𝑃(𝑘[𝛼])𝑃(𝑘[𝛽])
𝑘[𝛽]𝑘[𝛼]

 (4) 

Where 𝑃(𝑘[𝛼], 𝑘[𝛽]) is the joint probability of finding a node having a degree of 186 

𝑘[𝛼] in the layer 𝛼 and 𝑘[𝛽] in the layer 𝛽. This joint probability is computed as 187 

follows:  188 

 𝑃(𝑘[𝛼], 𝑘[𝛽]) =
𝑁𝑘[𝛼],𝑘[𝛽]

𝑁
 (5) 

With 𝑁𝑘[𝛼] ,𝑘[𝛽] being the number of nodes that have the corresponding degree 189 

of 𝑘[𝛼] and 𝑘[𝛽] in layers 𝛼 and 𝛽, respectively. Since 𝑁 is the total amount of 190 

nodes, it must be fulfilled that it is equal to the sum over all the possible  𝑁𝑘[𝛼],𝑘[𝛽] 191 

values. 192 

 193 



3. RESULTS AND DISCUSSION194 

3.1. Exploratory analysis 195 

Before applying the MVG methodology, authors have performed a 196 

preliminary analysis of the data employed in this work. To do so, the first 197 

feature to consider has been the distribution of the degree of the independent 198 

VGs obtained from each time series. Some examples of these distributions 199 

can be regarded at Figure 3 (a and b). In these plots, only four months (the 200 

same ones for both) are depicted for illustrative purposes: January, April, July 201 

and October. The reason for choosing these months is that they are equally 202 

spaced through the year, each one represents a different season and they 203 

have been used in previous works in the same location (Carmona-Cabezas 204 

et al., 2019a; Jiménez-Hornero et al., 2010a). The year shown in this case is 205 

2017, the most recent one that has been used here. All data used has not 206 

undergone any deseasonalizing because, as it has been previously 207 

discussed, VGs are not suitable for this kind of preprocessing approaches 208 

(Lange et al., 2018). 209 

Looking at the mentioned figures, it can be noticed that both pollutants 210 

present a power-law behavior in the tail of the degree distribution obtained 211 

from their respective VGs, which points to fractal behavior of the time series. 212 

As commented in Section 0, from the linear regression in the log-log plot of 213 

this tail, one is able to obtain the 𝛾 coefficient. At plain sight, it can be already 214 

seen Figure 3a and b how the distribution of the degree for ozone varies more 215 

along the year than those of the nitrogen dioxide in the given examples. 216 

Authors have computed the 𝛾 coefficient of each month from 2010 to 2017 217 

and shown their average monthly value in Figure 3c and d; where the previous 218 



statement is checked. The error bars correspond to the standard deviation of 219 

that quantity along the studied years. Therefore, the ozone concentration has 220 

a different behavior along the seasons, being the mean values of the 221 

coefficients between 2 and 4.25. Moreover, it can be appreciated that those 222 

are also irregular from one year to another, as the standard deviation is higher 223 

in comparison to the second gas by looking at Figure 3c and d. This was 224 

already seen in a previous work by the authors (Carmona-Cabezas et al., 225 

2019a). On the other hand, NO2 coefficients do not vary as much as the 226 

previous one, being always its value between 2.5 and 3.25. These results 227 

seem to indicate a different trend in the likeliness of hubs coming from VGs of 228 

O3 and NO2 and so distinct unlikely large values variation. Although in some 229 

cases the physical meaning of those coefficients has been related to fractal 230 

parameters such as the Hurst exponent (see Section 0 for more details), 231 

authors have employed these as a preliminary study before going deeper into 232 

the analysis with MVGs.  233 



 234 

Figure 3: Degree distributions of four example months in 2017 for O3 (a) and NO2 (b) 235 
and the actual values of the γ coefficient obtained for every studied month and 236 
averaged from 2010 to 2017 (c and d). The error bars come from the standard 237 

deviation of the values obtained for all the years. 238 

From the degree computed for each node of a given VG, it is possible to obtain 239 

also its total average value, which has been used in previous papers to describe 240 

the behavior of the maxima in the series (Carmona-Cabezas et al., 2019b; 241 

Donner and Donges, 2012). As in previous studies, a clear seasonal pattern is 242 

observed for both pollutants in Figure 4. The values of this figure correspond to 243 

the average obtained over the whole period from 2010 to 2017, while the error 244 

bars come from their standard deviation. This seasonality is less intense in the 245 

case of NO2, which is in accordance to what was discussed in Figure 3.  246 

In both cases, the maxima of the average degrees correspond to summer 247 

months. It was expected in ozone, since those months have the most favorable 248 

conditions for its creation and therefore there will be a higher number of maximal 249 



values (hubs) that increase the average degree. Nevertheless, the behavior of 250 

nitrogen dioxide is not as acute during summer. This difference might be due to 251 

the different factors that influence on both pollutants. Results point to the 252 

possibility that this quantity could be used to identify the known correlations 253 

between the two pollutants, and hence, authors have tested this hypothesis by 254 

using the MVG parameters. More precisely, 𝐼𝛼,𝛽 that is directly based on the 255 

degree of the two time series. 256 

257 

Figure 4: Monthly average degree values for each pollutant from 2010 to 2017. Again, 258 
the standard deviation along the different years is reflected through the error bars. 259 

260 

3.2. MVG analysis 261 

After applying the VG algorithm to transform the O3 and NO2 concentration 262 

time series into complex networks, the MVGs for each month were built. With 263 

these multilayer networks, it was possible to compute 𝜔 and 𝐼O3,𝑁𝑂2
 for all the264 

months considered. Figure 5a shows that 𝜔 values obtained are very similar for 265 

all the months and during the different studied years. This is clearly seen, as it 266 

has been averaged over the different studied years (2010-2017) and the standard 267 

deviation is as well remarkably low. 268 



269 

270 

 As 𝜔 accounts for the overall coherence of the original time series, high 271 

values of it indicates a strong correlation in the microscopic structure and vice 272 

versa (Lacasa et al., 2015). In the context of VGs applied to time series, the 273 

microscopic structure can be understood as the most likely scale of the edges of 274 

the graph. This scale can be considered as the time resolution of the recorded 275 

signal. For that reason, a study was performed to see how the 𝜔 parameter 276 

behaves when the minimal size of the edges of the concentration of O3 and NO2 277 

is changed (see Figure 5b). 278 

The result is that the edge overlap increases rapidly as the number of points 279 

in the sample is decreased (the VGs become smaller and their edges bigger) and 280 

then it starts to saturate around 𝜔 ≈ 0.65 for scales greater than 400 minutes per 281 

measured point (about 6 hours). On the other hand, for the original scale of the 282 

Figure 5: a) Parameter 𝜔 is computed for each month and then 
averaged over all the analyzed years (2010-2017), first with the original 
time scale (purple) and finally with a bigger one (orange) derived from 

the analysis shown in b). In this one, 𝜔 is recalculated with several 
scales for constructing the MVGs. The selected scale is taken from the 

point where the saturation starts. The white area between the grey 
zones corresponds to all the possible values that 𝜔 can have for MVGs 

with two layers. 



measure 𝜔 ≈ 0.53, which is very close to the minimum value that quantity can 283 

hold (𝜔 = 0.5).  From that, this result can be understood as follows: the correlation 284 

between the O3 and the NO2 concentrations is very weak at a scale of 10 min 285 

(the order of magnitude of the smallest edges in the graphs). Nevertheless, this 286 

correlation becomes greater as the minimal size of these edges (the microscopic 287 

scale) is increased, until this rising saturates. Authors attribute this effect to the 288 

time needed for the two systems (gases) to reach coupling, so that it affects the 289 

correlation between their concentrations. The posterior saturation would 290 

correspond to the fact that they are already coupled for higher scales, so there is 291 

no increase on 𝜔 due to physical processes. The slight increase observed would 292 

be due to the reduction of the number of nodes of the VGs (mathematical artifact). 293 

Hence, this approach to determine the time scale at which the saturation starts 294 

could be used to determine the effective time of a given reaction. This could be 295 

useful for later works describing the relationship between some other pollutants. 296 

As a previous step before introducing the computed 𝐼O3,𝑁𝑂2
, authors have297 

depicted in Figure 6 the quantity 𝑃(𝑘𝑂3, 𝑘𝑁𝑂2). Again, the same months as before 298 

are used in these plots as an example, for the sake of clarity. Also, only one year 299 

is taken (2017, the most recent), since the results have been found to be 300 

equivalent and the same conclusions could be drawn for different years. The 301 

meaning of these figures can be interpreted as combined degree distributions, 302 

where the colors indicate the probability of the two VGs having degree 𝑘𝑂3 and 303 

𝑘𝑁𝑂2, simultaneously.  It is regarded how the most likely combinations of values 304 

of k are those of the lowest values of the degree (𝑘 ∈ [0, 50]). By contrast, as the 305 

degree increases, the joint probability becomes less and less significative. 306 



It must be pointed out that the probability approaches asymptotically to both 307 

X and Y axis. It means that as the degrees increase, the probability of 308 

encountering relatively similar both 𝑘𝑂3 and 𝑘𝑁𝑂2, decreases exponentially. This 309 

translates into the alternation between the hubs of the two time series. The 310 

reason behind this is the time shift that exists between both NO2 and O3 maximal 311 

concentrations throughout the day (previously mentioned). One of the reactions 312 

that governs the ozone creation and destruction is 𝑁𝑂2 + 𝑂2 ↔ 𝑂3 + 𝑁𝑂 (Graedel 313 

and Crutzen, 1993). According to this one, when the ozone reaches a maximum, 314 

the concentration of nitrogen dioxide decreases in general, leading to what has 315 

been argued here. 316 

Another characteristic of the plot is that as the year advances, the distribution 317 

of the joint probability changes, being more concentrated around the  𝑘𝑁𝑂2 axis 318 

for January, while in July it is more equally distributed (April and October present 319 

an intermediate behavior). Since the value of the degree and concentration are 320 

related (Carmona-Cabezas et al., 2019b; Pierini et al., 2012), the interpretation 321 

can be seen as follow: 322 

• In January, 𝑃(𝑘𝑂3, 𝑘𝑁𝑂2) is more concentrated to specific combinations 323 

of degrees of the gases, specially, low 𝑘𝑂3 and higher 𝑘𝑁𝑂2. This 324 

translates into fewer values of the temporal series that are 325 

considerably correlated and thus, the overall correlation will decrease 326 

(Figure 7). As a result, high concentrations of NO2 will not necessarily 327 

lead to greater production of ozone, as can be regarded in Figure 1; 328 

where there are many days with extreme values of nitrogen dioxide 329 

concentration, whereas the ozone levels remain at  minima with 330 

respect to the rest of the year. The reason is that although high 331 



concentrations of NO2 are available, there is not enough solar 332 

radiation to make the optimal interaction possible. 333 

• In July, the concentration of ozone rises, as it widely known. In Figure334 

6, 𝑃(𝑘𝑂3, 𝑘𝑁𝑂2) is in this case more homogeneous and non-null for the335 

values of k where the vast majority of points are located: 𝑘 ∈ [0, 50]. 336 

The result of this will be an increase in the 𝐼𝑂3,𝑁𝑂2
 that is shown on 337 

average in Figure 7. In contrast to January, now the extreme 338 

concentrations of NO2 coincide with those of O3, for instance in  Figure 339 

1 for July, from 1.5 · 104 to 2 · 104 minutes both reach their highest 340 

concentrations (taking into account that there exist a time delay 341 

between both quantities). 342 

• Lastly, April and October are intermediate cases, where the343 

distribution of 𝑃(𝑘𝑂3, 𝑘𝑁𝑂2) is neither as acute as in January, nor as344 

regular as July. In both cases, the probability is higher for finding low 345 

𝑘𝑂3 when 𝑘𝑁𝑂2 is greater. 346 



347 

Figure 6: Graphical representation of the joint probability distribution of the degrees of 348 
both layers for four sample months in 2017, the most recent year. Each point 349 

represents the probability that degree is exactly 𝑘𝑂3 in the ozone VG, while is 𝑘𝑁𝑂2 in 350 
the nitrogen dioxide case, at the same time node.351 

The monthly computed values of 𝐼O3,𝑁𝑂2
 are presented in Figure 7a, where the 352 

different years are indicated by several colors. Figure 7b shows the monthly 353 

average value (over all the mentioned years) and the standard deviation along 354 

with the temperature, the average global radiation (normalized for the sake of 355 

clarity) and wind direction. 356 



357 

Figure 7: a) Seasonal pattern obtained for 𝐼𝑂3,𝑁𝑂2
 for each one of the studied months 358 

and years. b) Averaged 𝐼𝑂3,𝑁𝑂2
 over the whole period (2010-2017) for every month and 359 

normalized temperature, solar radiation and wind direction for comparison. 0, 90, 180 360 
and 240 degrees correspond to winds coming from the East, North, West and South 361 

directions, respectively. 362 

363 

It can be appreciated that there is a sensible increase of the mutual 364 

information between O3 and NO2 from May to September, coinciding with the 365 

period of highest temperature and radiation. By definition, 𝐼𝛼,𝛽 describes the 366 

average correlation of the degree distributions and these can be used to describe 367 

the nature of the time series (Lacasa et al., 2008; Mali et al., 2018). From that, it 368 

could be inferred that the greater this parameter is, the more similarly are 369 

expected to behave the signals underlying the VGs studied. Therefore, in this 370 

case the degree distributions of the two pollutants are more correlated during the 371 

summer months and the opposite during winter. It might indicate that they will 372 

have a more similar behavior in the first case. For instance, O3 is known to have 373 

multifractal nature (Carmona-Cabezas et al., 2019a; He et al., 2017; Jiménez-374 

Hornero et al., 2010a; Pavon-Dominguez et al., 2013), hence NO2 could be 375 

expected to have higher multifractality in the summer months, being in 376 

accordance with the findings reported in a prior work for the same area (Jiménez-377 



Hornero et al., 2010b). A higher multifractality is understood as a greater degree 378 

of multifractal behavior, which is usually related to complex systems with 379 

fluctuations appearing at different scales (Kantelhardt, 2011). 380 

The reason for this clear seasonal pattern seems obvious looking at the 381 

distribution of solar radiation and temperature, which change greatly along the 382 

seasons in the study area (both maximal in summer and vice versa in winter). 383 

The first one of them (solar radiation) is the main source of energy for the 384 

photochemical reaction needed for the formation of O3 in the troposphere 385 

(Graedel and Crutzen, 1993), since nitrogen dioxide (𝑁𝑂2) and oxygen (𝑂2) are 386 

recombined and produce ozone gas in the presence of ultraviolet light. The 387 

second one has been found to have relation as well with the production of ozone 388 

from nitrogen oxides in previous works in the same area (Pavón-Domínguez et 389 

al., 2015). Many of the previous studies are based on multifractal approaches to 390 

analyze time series, which have some disadvantages such as the need for 391 

choosing a scale interval where the searched behavior holds, leading to errors in 392 

the computation and some undesired ambiguities of the results. On the other 393 

hand, VGs are univocal for a given time series and their computation do not have 394 

any error associated, since their results are based on basic graph theory 395 

arithmetic. 396 

Furthermore, regarding the average wind direction that can be seen in Figure 397 

7b, it is clearly seen how the direction is roughly ~220° when the correlation 398 

between 𝑁𝑂2 and 𝑂3 reaches it maximal value for summer, as commented 399 

before. This corresponds to wind coming as an average from the South-West. 400 

This fact has been previously described for the Guadalquivir Valley (Guardans 401 

and Palomino, 1995), where the pressure and temperature differences make 402 



more predominant the wind coming from South-West direction when the 403 

temperature is maximum (summer). The reason behind this phenomenon is that 404 

the air mass moves from the plain areas towards the upper parts of the valley 405 

(North-East). The opposite case occurs in winter following an equivalent 406 

reasoning. 407 

It must be pointed out the fact that in that predominant direction, the main 408 

sources of 𝑁𝑂2 in the vicinities of Cordoba are located, since there are two of the 409 

main industrial parks of the city. Also, the most populated capital of the region 410 

(Sevilla) is situated in that direction, as well as the main highway that connect the 411 

two cities, which is one of the most transited roadways in Spain. This fact further 412 

corroborates the adequation of the correlation results, as was seen with the 413 

temperature and solar radiation previously. 414 

4. CONCLUSION415 

All the stated results confirm the capability of the two parameters provided by 416 

the MVGs for describing the interaction between ozone and nitrogen dioxide in 417 

the troposphere. On the one hand, authors consider that the first studied 418 

parameter (𝜔) may be used to infer the time shift in the coupling of the two 419 

systems, represented by the two layers. Given that the value of this parameter 420 

does not vary significatively neither in the different seasons, nor along the years, 421 

it means that 𝜔 does not depend on any external factors, such as meteorological 422 

features. Authors believe that this quantity might be used to check theoretical 423 

models of O3 - NO2 interaction, although further investigation will be needed. 424 

On the other hand, 𝐼O3,𝑁𝑂2
 and 𝑃(𝑘𝑂3, 𝑘𝑁𝑂2) could be used to have an insight 425 

of the correlation in the behavior of the series (from the degree, which is 426 



associated to the concentration itself). Regarding the first one, one can obtain an 427 

overall look of how the NO2 and O3 are correlated depending on the 428 

concentration. For instance, it is possible to see how great values of NO2 correlate 429 

with large or low ones of O3, and vice versa. Furthermore, the second quantity 430 

corresponds to a numerical value that measures the correlation of the whole set 431 

of series that are transformed into the different layers of the MVG. 432 

To authors’ mind, the outcomes of this research support the capability of 433 

multilayer complex networks for looking at the relation between several variables 434 

such as atmospheric pollutants. By using this approach, one can take advantage 435 

of some of its assets, as the computation efficiency or the univocity of the results. 436 

All this situates MVG as a suitable complementary technique for tackling analyses 437 

within the environmental problem. It as well compatible with others that have 438 

demonstrate to give satisfactory results, such as multifractal algorithms, as it has 439 

been demonstrated (Carmona-Cabezas et al., 2019a; Mali et al., 2018; P. Pavón-440 

Domínguez et al., 2017). Hence one possible application of MVGs in this context 441 

could be the enlargement of databases used for predictive techniques that rely 442 

on data mining and machine learning. For this aim, it remains open the study of 443 

more pollutants and other variables through the methodology analyzed here. 444 

Since it is possible to focus MVGs on only two variables or to see the correlation 445 

of many of them at the same time, it allows a flexible analysis. All these 446 

considerations could come in handy for describing the many mechanisms 447 

involved in the dynamics of the photochemical smog for future works. 448 

449 

450 
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HIGHLIGHTS 1 

- Multiplex visibility graphs are used to check correlations between NO2 and O3. 2 

- NO2 and O3 have different behavior of their degree distributions along the year. 3 

- Average edge overlap between the two pollutants remains constant in every 4 

case. 5 

- Interlayer mutual information evolves with a seasonal behavior every year. 6 
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