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A B S T R A C T   

The energy demand and their associated costs in pressurized irrigation networks together with water scarcity are 
currently causing serious challenges for irrigation district’s (ID) managers. Additionally, most of the new water 
distribution networks in IDs have been designed to be operated on-demand complexing ID managers the daily 
decision-making process. The knowledge of the water demand several days in advance would facilitate the 
management of the system and would help to optimize the water use and energy costs. For an efficient man
agement and optimization of the water-energy nexus in IDs, longer term forecasting models are needed. In this 
work, a new hybrid model (called LSTMHybrid) combining Fuzzy Logic (FL), Genetic Algorithm (GA), LSTM 
encoder-decoder and dense or full connected neural networks (DNN) for the one-week forecasting of irrigation 
water demand at ID scale has been developed. LSTMHybrid was developed in Python and applied to a real ID. 
The optimal input variables for LSTMHydrid were mean temperature (◦C), reference evapotranspiration (mm), 
solar radiation (MJ m− 2) and irrigation water demand of the ID (m3) from 1 to 7 days prior to the first day of 
prediction. The optimal LSTMHybrid model selected consisted of 50 LSTM cells in the encoder submodel, 409 
LSTM cells in the decoder submodel and three hidden layers in the DNN submodel with 31, 96 and 128 neurons 
in each hidden layer, respectively. Thus, LSTMHybrid had a total of 1.5 million parameters, obtaining a 
representativeness higher than 94 % and an accuracy around of 20 %.   

1. Introduction 

Irrigation is regarded as one of the main adaptations to support crop 
production in response to population growth (FAO, 2016, 2015; 
Rodríguez Díaz et al., 2007). However, it must be a precision activity 
where the right amount of water is applied just when it is needed by the 
crop (Hedley et al., 2014). Thus, pressurized irrigation systems which 
are managed by irrigation districts (IDs) are one of the best options to 
increase water use efficiency (Daccache et al., 2014a, 2014b). Addi
tionally, in last two decades, the flexibility in the irrigation operation by 
farmers has been increase because of the new pressurized irrigation 
networks (after modernization process). These new water distribution 
networks for irrigation make water available to farmers 24 h a day. 
Thus, farmers can decides every day its irrigation scheduling (how and 
when to irrigate) (Playán and Mateos, 2006; Rodríguez-Díaz et al., 2011; 
Tarjuelo et al., 2015). However, this increase in the availability of water 
by farmers makes the integrated management of the ID a complex task 
(the hydraulic systems must work under a wide range of hydraulic 

operation conditions). Managers of these IDs do not know when their 
users (farmers) are going to irrigate and at what time, making it difficult 
to optimize all the system (pumping stations, failures, repairs, energy 
purchases, etc.). Thus, the uncertainty associated with irrigation water 
demands in water distribution networks which are operated on demand 
(Plusquellec, 2009) and the uncertainty of the electricity market (In 
Spain, last deep change on 1st June 2021) are generating challenges in 
the daily management of irrigation districts, mainly in arid and semiarid 
regions such as Spain. In addition, an accurate prediction of water de
mand would allow for optimal network management measures to reduce 
energy demand. Nowadays, in the new age of digitalization, ICTs (In
formation and Communication Technologies) and intelligent algorithms 
based on Artificial intelligence (AI) are essential to increase and improve 
the precision agriculture management, particularly in the control of the 
water-energy management in pressurized irrigation systems (Kamilaris 
and Prenafeta-Boldú, 2018; Wolfert et al., 2017). Traditional strategies 
to save water and energy in ID such as critical point management, sec
torization, etc. (Derardja et al., 2019; Fernández García et al., 2016; 
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González Perea et al., 2016; Rodríguez Díaz et al., 2012) frequently 
reduce farmers’ water management flexibility, diminishing the positive 
aspects of the irrigation modernization process (on-demand irrigation). 
Thus, new water and energy optimization strategies ID are necessary, 
but without reducing the decision-making power of farmers, based on 
intelligent models which forecasts this farmer behavior. Traditionally, 
one of the main drawbacks to implementing new intelligent data-driven 
models is the availability and cost of obtaining this information. How
ever, the recent revolution of the ICTs, as well as the development of 
new low-cost sensors capable to automatically collect on real time 
thousands of robust data and the exploitation of AI have modified the 
technological environment of the current irrigated agriculture. Based on 
machine learning from data, all these technologies offer new possibil
ities for water-energy nexus management in IDs leading to increased use 
efficiencies of these resources, making the IDs more sustainable, in 
environmental, social and economic aspects. 

Based on AI techniques, water demand forecasting will allow the 
entire water distribution network (from pumping station to hydrant) to 
be adapted to operate as efficiently as possible, reducing the uncertainty 
caused by on-demand irrigation, optimizing all its resources. Thus, real 
water demand forecasting could be one of the main tools to improve IDs 
operation and help managers in the daily decision-making processes but 
without reducing farmers’ degree of freedom. 

AI, ICTs and bigdata have been applied to solve some forecasting 
issues (mainly of a time series nature) in precision irrigation, IDs and 
pressurized irrigation networks. Since it was first published in its full 
version in the early 2000s (Graves and Schmidhuber, 2005), Long 
Short-Term Memory (LSTM) neural network is the most widely used 
type of artificial neural network for solving time series forecasting 
problems. Its recurrent connection adds state or memory to this neural 
network and allow it to learn and harness the ordered nature of input 
time series. Thus, LSTM has become the most cited neural network of the 
20th century. At ID scale, ground water level estimations and irrigation 
demand forecasting are two of the main topics addressed for 
water-energy optimization based on AI and bigdata. A new model based 
on LSTM neural network for water table depth forecasting in agricultural 
areas was developed by Zhang et al. (2018). This model was applied in 
five sub-areas of Hetao Irrigation District (China) using a time series of 
14 years. Results showed that the developed model can serve as an 
alternative approach (as opposed of physical models) predicting water 
table depth, especially in areas where hydrogeological data are difficult 
to obtain. A combination of LSTM neural network with ARIMA (autor
egressive integrated moving average) model was proposed by Sheikh 
Khozani et al. (2022) to predict ground water level Yazd-Ardekn Plain in 
Iran. The architecture of this hybrid model was optimized by the Salp 
Swarm Algorithm (SSA), sine cosine optimization algorithm (SCOA), 
particle swarm optimization algorithm (PSOA), and genetic algorithm 
(GA). Despite the lower values of MAE (mean absolute error) which 
ranged from 5 % to 47 %, general results indicated that an increased 
forecasting horizon reduced the accuracy of the model. This problem is 
regularly found in forecasting model based on memory such as LSTM 
and all its modifications. 

No many works can be found for farmer behavior’ forecasting and so 
the real irrigation demand in IDs. The estimation of the water demand in 
an ID can be approached at different spatial and temporal scales. At 
spatial scale, farm and irrigation district scale can be distinguished. On 
the other hand, at temporal scale, short (one day), middle (around a 
week), and long (several weeks) terms scales can be recognized. At 
present, there are not long-term forecasting models either at farm or 
water user association level. However, some forecasting models have 
been developed for the rest of the spatial and temporal scales. 

At short-term time scale, Pulido-Calvo and Gutiérrez-Estrada (2009) 
developed a hybrid model combining DNNs (Dense Neural Networks), 
fuzzy logic (FL) and GA (Genetic Algorithm) to forecast one-day ahead 
daily water demand at irrigation district spatial scale. A major limitation 
of this model was the determination of the neural network architecture 

by trial and error. Consequently, the standard error prediction (SEP) of 
the model was around 25 %. This limitation was addressed by González 
Perea et al. (2015) which developed a new methodology to optimize the 
DNN architecture by GA to the short-term forecasting of daily irrigation 
water demand at irrigation district level. Results showed SEP values 
close to 10 % improving the accuracy obtained by other models to date. 
The short-term forecasting at farm level was addressed in previous 
works (González Perea et al., 2019, 2018, 2021), where three models 
addressed the forecast of the occurrence of the irrigation events 
(González Perea et al., 2019), the daily applied irrigation depth 
(González Perea et al., 2018) and the hourly distribution (according to 
electricity tariff) of the daily applied irrigation depth (González Perea 
et al., 2021). Forouhar et al. (2022) developed a hybrid framework by 
incorporating existing physical knowledge (conceptual model to un
derstood factors leading to crop water needs using observation data) of 
the system into a data-driven model to predict the irrigation water de
mand up to 7 days ahead for an irrigation district in Victoria, Australia. 
However, although results showed that the integration of physical sys
tem understanding into data-driven models can improve the perfor
mance of the predictions, the accuracy of the results are not enough for 
an integrated management of water and energy resources in IDs. Gon
zalez Perea et al. (2021) developed a model to predict the demand seven 
days ahead but at farm level. They combined AI techniques, satellite 
remote sensing and open-source climate data to optimize the irrigation 
water forecasting at farm level for a week in advance. However, 
although SEP values ranged from 17 % to 19 %, the one-week estimation 
was addressed as a single point, not distinguishing between days but for 
a whole week. 

Consequently, the accuracy of short-term forecasting models for 
different spatial scales are good but are not enough to be considered in 
the day-to-day management of IDs. Short-term forecasting models do 
not have enough time resolution for a holistic management of the IDs. 
Thus, Longer term forecasting models would be much more useful for 
managers to know in advance how much water will be required and 
hence how much energy should be needed. This will involve a more 
efficient use of water and energy resources and, a cost-effective purchase 
of the electric energy. However, the already developed models are either 
not developed yet or the accuracy achieved is not adequate for its 
incorporation into the daily management of the ID. Thus, with the main 
objective of overcoming these limitations, in this work a new hybrid 
model combining FL, GA, LSTM encoder-decoder and dense or full 
connected neural networks (DNN) for the one-week forecast of irrigation 
water demand at irrigation district scale has been developed. This 
model, called LSTMHybrid, is based on artificial memory and has been 
developed in Python programming language (v3.9) (Van et al., 2009) 
and tested in a real ID. 

2. Methodology 

2.1. Study area and data source 

The study area where the developed methodology has been applied is 
in Extremadura region, Southwest Span. Fig. 1 shows the location of this 
real ID called Canal del Zújar Irrigation District (CZID). This ID consists of 
ten independent hydraulic sectors. The methodology is applied on sector 
II of this ID. CZID applied irrigation water through a pressurized irri
gation network which is organized on-demand. CZID sector II convers a 
total irrigated area of 2691 ha and 191 hydrants. Tomato, rice and maize 
are the main crops covering more than 90 % of the total irrigated area. 
Each hydrant of CZID sector II has a flowmeter which automatically 
records the hourly volume of water applied. The complete cleaned 
dataset of the daily irrigation water demand contained a total of 1849 
measures from 2015 to 2022 irrigation seasons. This dataset was 
randomly divided into three subsets: training dataset (70 % of the total 
measures of the original dataset), validation dataset (15 % of the total 
measures of the original dataset) and testing dataset (15 % of the total 
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measures of the original dataset). The UTM coordinates of the closest 
agro-weather station are 252,468, 431,917 and 30 for x, y and zone, 
respectively. The average annual evapotranspiration and precipitation 
are 1296 mm and 390 mm, respectively. The average maximum and 
minimum temperatures range from 23 ◦C to 35.1 ◦C. 

2.2. Problem approach 

The stated problem focused on the development of a new method
ology to determinate the optimal forecasting model of water demand at 
irrigation district level one-week ahead in advance. 

To address this issue, the problem has been approached as time series 
forecasting problem. Many AI techniques, particularly in deep learning, 
can address time series prediction. However, due to the nature of their 
architecture, not all the deep learning models are specially designed for 
this issue. Typically, RNNs (Recurrent Neural Networks) are the family 
of deep learning models for processing sequential data, i.e. time series. 
Previous scientific works have highlighted that the most effective time 
series models used in practical applications are those based on LSTM 
neural networks (Afzaal et al., 2020; Ferreira and da Cunha, 2020; Yin 

et al., 2020). However, memory-based neural networks usually have 
accuracy problems as the forecasting time increases. To mitigate this 
middle-term memory leakage effect, the model developed in this work 
optimizes a hybrid architecture composed of an encoder-decoder ar
chitecture whose elementary cell includes a LSTM neural network and a 
DNN (Fig. 2). The hyperparameters of this hybrid architecture were 
optimized by the multiobjective genetic algorithm NSGA-II (Deb et al., 
2002) and the identification of the forecasting model inputs were opti
mized by FL according to the methodology developed by (Lin et al., 
1996). 

2.3. Hybrid model architecture 

Typically, LSTM neural networks as other RNNs can map an input 
sequence (time series) to an output sequence of the same dimension 
(fixed size vector). However, in many real applications such as water 
irrigation forecasting in IDs, inputs and outputs sequences are not 
necessary of the same length. For example, if the aim is to forecast 
irrigation water demand one week in advance, the input variables to the 
forecast model do not necessarily have the same temporal 

Fig. 1. Location of Sector II of the Canal del Zújar Irrigation District (CZID).  

Fig. 2. Architecture of the hybrid model. LSTM: Long-short term memory model; DNN: Dense Neural Network model; nCellenc: total number LSTM cells in the 
encoder network and nCelldec: total number LSTM cells in the decoder network. 
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representativeness. Thus, precipitation could have a representative of 
two days backward, the amount of water applied a representative of four 
days previous, evapotranspiration of three days in advance, etc. This 
depends on the ID and the training set. Consequently, to generalize the 
methodology developed in this work, an LSTM encoder-decoder was 
used to address the fixed-length limitation of the LSTM neural networks. 
However, memory-based neural networks such as LSTMs have another 
major limitation related to a lack of memory and therefore a reduction in 
the accuracy of the estimations as the forecasting time increases. This 
effect is discussed in results section, but it is related to an effect of the 
chain rule. To reduce this major limitation of memory-based networks, a 
hybrid model composed of an LSTM encoder-decoder and a DNN was 
developed (Fig. 2). Thus, the LSTM encoder-decoder model was forced 
to learn only to extract the input features while the DNN model was 
responsible for interpreting these input features and providing the 
output (middle-term forecasting of irrigation water demand). 

The entire hybrid model was developed with TensorFlow v2.9.0 
(Abadi et al., 2015) and Keras v2.7.0 (Chollet, 2015) in python. Due to 
its high performance in most real-world applications, the optimization 
algorithm (training function) Adam (Adaptative momentum) was used 
for training the hybrid model (Kingma and Ba, 2015) with an expo
nential decay rate for the first and second moment of 0.9 and 0.999, 
respectively. Glorot uniform initialized algorithm (Glorot and Bengio, 
2010) was used to initialize all synaptic weights because of its high 
performance (faster convergence) when Adams training function is 
used. The loss function used during the training process was the mean 
square error (mse). This loss function was used because of its ability to 
consider anomalous behavior of some specific days. Thus, the hybrid 
model will have the ability to learn not only from usual data but some 
typical anomalies in the ID (exceptional situations such as bank holi
days, big rain events and so on…). Early stopping was used in this work 
as a form of regularization to avoid overfitting during training process. 

2.3.1. LSTM encoder-decoder architecture 
The LSTM encoder-decoder architecture is comprised of two models, 

the encoder to read and encode the input time series, and the decoder 
that reads the encoded input (Encoder features, Fig. 2) t and makes a one- 
step information extraction for each element in the output time series. 
As the forecasting was performed by the DNN model, this submodel 
(LSTM encoder-decoder) was only responsible of extracting the most 
relevant information from the input time series data. Thus, the re
sponsibility of the LSTM encoder-decoder in the final forecast focused 
on, improving the main limitation of this kind of artificial neural net
works such as lack of memory at certain times. 

Both encoder and decoder are composed of elementary cells (Fig. 2). 
Each cell of both encoder and decoder is of the LSTM neural network 
type. The number of elementary cells establishes the density of the 
encode-decoder model. The number of cells of the encoder (nCellenc) and 
the decoder (nCelldec) is not the same necessarily. The higher the density 
of both encoder and decoder, the higher the capacity of adaptation and 
feature extraction. However, deeply dense encoder-decoder models 
often show problems in the learning process, both problems of memo
rization and training time and instability of the neural network. In 
LSTMHybrid, nCellenc and nCellde were optimized by the multi-objective 
genetic algorithm NSGA-II. 

2.3.1.1. LSTM cell. Models based on Long-Short term memory neural 
networks are specially developed to solve time series forecasting issues. 
This kind of neural networks belong to the family of recurrent neural 
networks (RNNs) which adds memory to this architecture allowing to 
learn the ordered nature of time series as inputs. The state or memory 
occurs in its recurrent connections. 

Fig. 3 shows the typical architecture of a LSTM cell. A LSTM cell 
consists of a set of gates which are recurrently connected blocks 
(memory blocks). Each LSTM cell is able to read, write and reset 

information along the training phase by its input, output, forget gates and 
the cell state (memory cell). 

This kind of neural networks considers output from previous time 
steps (ht-1) offering feedback to this LSTM cell. LSTM has a feedback loop 
at every node which allows information to move in both directions and 
so learning temporal patters of widely separated events. Additionally, 
input, output and forget gates decide which information is forwarded to 
the next node. 

For a common LSTM cell architecture, the input gate (it), forget gate 
(ft), cell state (St), and output gate (ot) are described as follow: 

The behavior of the input gate (it) can be characterized according to 
Eq. (1). 

it = σ(xtUi + ht− 1Wi) (1)  

Where σ represent the sigmoid function; xt is the input vector of the cell 
at time step t; Ui is the weight matrix that connects the inputs to the 
hidden layer; ht-1 is the hidden state from previous time step t-1 and Wi is 
the recurrent connection between the previous hidden layer and current 
hidden layer. 

The forget gate, ft, decides what to forget by a mechanism of sigmoid 
function according to Eq. (2). 

ft = σ(xtUf + ht− 1Wf ) (2)  

Where Uf is the weight matrix that connects the inputs to the forget layer 
and Wf is the recurrent connection between the previous forget layer and 
the current forget layer. 

The cell state (St) represents the “memory” of the LSTM cell (Eq. (3)) 
and information from the earlier time steps can travel to later time steps, 
reducing the effect of short-term memory. 

St = σ(ftSt− 1 + it S̃t) (3)  

Where S̃t is the candidate hidden state that is computed based on the 
current input and the previous hidden state (Eq. (4)) and St-1 represents 
the internal memory at the time step t-1. 

S̃t = tanh(xtUs + ht− 1Ws) (4)  

Where tanh represents de tanh function; Us is the weight matrix that 
connects the inputs to the candidate hidden layer and Ws is the recurrent 
connection between the previous candidate hidden layer and the current 
candidate hidden layer. 

Finally, the output gate (ot) which behavior is defined in Eqs. (5) and 
(6) defines the new cell state (St) and the hidden state at time step t. 

ot = σ(xtUo + ht− 1Wo) (5)  

Fig. 3. General architecture of a LSTM cell. LSTM cell: Long-short term 
memory cell; St-1: cell state at time t-1; St: cell state at time t; ft: forget gate at 
time t: it: input gate at time t; ot: output gate at time t; S`

t: candidate hidden state 
at time t; ht-1: output from previous time step; ht: output at time t and xt input 
model at time t. 
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Where U◦ is the weight matrix that connects the inputs to the output gate 
and W◦ is the recurrent connection between the previous candidate 
hidden layer and the current candidate hidden layer at output gate. 

ht = tanh(St) • ot (6) 

The aim of the training process in LSTM cells and therefore in LSTM 
encoder-decoder model is to find the sets of U and W matrixes that 
minimize the global forecasting error. After finishing the training pro
cess, the forget gate can decide what is relevant to keep from prior steps. 
The input gate decides what information is relevant to add from the 
current step and the output gate determines what the next hidden state 
should be. 

2.3.2. DNN architecture 
DNN is a multilayer perceptron network (Rumelhart et al., 1986) 

responsible for the interpretation of each time step in the output time 
series provided by LSTM encoder-decoder and for giving the prediction 
values in its last layer. Fig. 4 shows a shallow DNN architecture which is 
mainly composed of three blocks: input layer, hidden layers and output 
layer. In LSTMHybrid, the output layer (and hence the DNN model) has 
been designed to forecast a single step in the output time series, not all 
days defined in the middle-term time scale. Consequently, the same DNN 
model has been used to process each time step provided by the LSTM 
encoder-decoder model. To achieve this, wrapped the DNN model in a 
time distributed wrapper that allows the wrapped layers to be used for 
each time step from the LSTM encoder-decoder model. 

The block of hidden layers is frequently made up of two or more 
layers. Each layer is made up of several nodes or neurons, which are 
connected to the next layer’s nodes. Similarly, to the LSTM encoder- 
decoder model, these connections are called synaptic weights and 
each layer has a synaptic weights matrix which connect the previous 
layer to the next one. In contrast to the LSTM encoder-decoder, all 
connections of the DNN model are fed forward, and therefore, the in
formation is only allowed to move from a previous layer to the next one. 
During the training process all these synaptic weights are determined to 
minimize the global forecasting error. Each neuron of the hidden layers 
is activated by an activation function which defines the exited state of 
each neuron for each input vector. The activation function used in this 
work in all hidden layers is known as RELU (rectified linear unit acti
vation function) (Eq. (7)), as it is one of the best activation functions in 
terms of performance (Isola et al., 2016; Karras et al., 2020). The 
number of neurons of the input layer is defined by the number of input 
variables. In this work, the number of neurons of the input layer was 

determined by the number of outputs of the decoder model. 

outputneuron = max(0, inputneuron) (7)  

Where inputneuron and outputneuron is the input and output values of each 
neuron of the hidden layers, respectively. 

As with the LSTM encoder-decoder, both the number of the hidden 
layers and the number of neurons of each of them define the density of 
the DNN model and must be determined by each problem. These 
hyperparameters are often adjusted by trial and error, but this does not 
ensure the achievement of an optimal forecasting model. Thus, in this 
work, all this hyperparameters were optimized by the NSGA-II 
algorithm. 

2.4. Optimization of the hybrid model 

The hybrid model proposed in this work was optimized by NSGA-II 
GA. Fig. 5 shows the flow chart of the optimization process of the 
hybrid model previously described. The optimization process starts by 
randomly generating a set of solutions. This initial set is called initial 
population and has a size of iPop solutions. Each of these solutions are 
known as individuals or chromosomes (Ch) of the initial population and 
are made up of a set of genes or decision variables (numGEN). In this 
work, each gene represents one hyperparameters of the hybrid model to 
be optimized. 

Table 1 shows the genes considered in this work, as well as the value 
range and the data type that each variable can take during the optimi
zation process. The first and second gene (numGEN1 and numGEN2) 
defined the number of LSTM cells of the encoder and decoder model of 
the LSTM encoder-decoder model, respectively. Thus, these two genes 
determined the density of the LSTM encoder-decoder model. The last 
three genes (numGEN3, numGEN4 and numGEN5) determined the density 
of the DNN model defining the number of hidden layers as well as the 
number of neurons of theses layer. While numGEN4 and numGEN5 
ranged from 0 to 200, numGEN3 ranged from 1 to 200. Thus, the min
imum and maximum number of hidden layers of the DNN model was 1 
and 3, respectively. 

After initialization of the initial population, each chromosome (each 
hybrid model with different architecture) was trained. After that, each of 
these trained models were tested and the objective function OF1 and OF2 
were computed. In this work, OF1 maximized the average of the R2 

(determination coefficient) of the output hybrid model (output time 
series of irrigation water demand). OF2 minimized the average of the 
standard error prediction (SEP) (Ventura et al., 1995) Then, it was 
necessary to sort the initial population according to its aptitude, i.e., the 
forecast capacity of each hybrid model (objective functions). The best 
iPop/2 chromosomes were then selected as the best individual of the 
initial population. In the remaining stages, the iPop/2 chromosomes 
were modified (crossover and mutation), and a new population of iPop 
individuals was generated. The process was repeated for numGEN gen
erations. Finally, the set of iPop optimal chromosomes (optimal hybrid 
models) obtained in the last generation defined the Pareto front. 

In order to minimize the computational cost during the optimization 
process. All hybrid models are trained with restriction of training 
epochs. Once the optimization process is finished, the hybrid models 
that form the pareto front are re-trained without restrictions, obtaining 
the optimal values for all the synaptic weights of the gates of the LSTM 
encoder-decoder as well as the synaptic weights of the DNN model. 

2.5. Identification of the hybrid model inputs 

The optimal determination of the number of inputs to the hybrid 
model developed in this work is a key element. The input space reduc
tion is essential both to achieve good generalization during the hybrid 
model production phase and to reduce the computational cost (memory 
and time) during the training phase. This dimension reduction must 

Fig. 4. Architecture of a DNN with two hidden layers. it: the total number of 
inputs of the DNN; n1t and n2t: the total number of neurons of the first and 
second hidden layers, respectively. 
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identify the significant inputs from the set of possible inputs (potential 
inputs) for the forecasting hybrid model. 

PCA (Principal Component Analysis) or PLS (partial least square) 
cardinal components methods are widely used to achieve this feature 
space reduction of the hybrid model. However, when the significant 
features resulting from these techniques are used in nonlinear models, 
very poor results are usually obtained (Lin et al., 1996). Therefore, in 
this work, fuzzy curves and fuzzy surfaces have been used to 

automatically identify the main features as inputs in the developed 
hybrid model by adapting the methodology developed by Lin et al. 
(1996). This methodology is described as follow: 

For a potential input variable v, PotIv, a fuzzy curve beam, cbv, was 
created (Eq. (8)). Each curve determined the relationship between v and 
the output variable of the forecasting model (target variable), which in 
this work was the daily irrigation water demand (IWD) of the ID. 

Fig. 5. Flowchart of the optimization process. iPop: size of the initial population; numGEN: total number of generations; ngen: number of gen or decision variables; 
LSTMenc-dec: Long-short Term memory cells in the encoder and decoder model; DNN model: Dense Neural Network model; GEN: current generation; i: current in
dividual or chromosome; OF1: objective function 1 and OF2: objective function 2. 
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cbv(PotIv) =

∑M

k=1
IWDk • μv,k(PotIv)

∑M

k=1
μv,k(PotIv)

(8)  

Where µv, k is the fuzzy membership function of point k in the space v- 
IWD, which relates the potential input variable v and the daily irrigation 
water demand of the entire ID and is defined by Eq. (9); M is the total 
number of points in the space PotIv- IWD and IWDk is the daily irrigation 
water demand of the entire ID in point k of the space PotIv- IWD. 

μv,k(PotIv) = exp

(

−

(
PotIv,k − PotIv

b

)2
)

(9)  

Where PotIv,k is the value of PotIv at point k in the space PIv-IWD and b 
takes a value close to two (Lin et al., 1996). 

Hereafter, the mean square error values, MSE, of each cbv curve were 
computed and sorted in ascending order according to Eq. (10). If there 
was a fully random relationship between the input variable v and the 
IWD, the fuzzy curves were flat, and the MSEcbv was large. Otherwise, 
MSEcbv took small values when the relationship in the space PotIv-IWD 
was more significant. 

MSEcbv =
1
M

∑M

k=1
(cbv

(
PotIv,k

)
− IWDk)

2 (10) 

According to Lin et al. (1996a), a fuzzy surface is a space with a 
two-dimensional fuzzy curve. This fuzzy surface, fsiv,ij, is defined in Eq. 
(11). 

fsv,ij
(
PotIv,PotIij

)
=

∑M

k=1
IWDk • μv,k(PotIv) • μij,k

(
PotIij

)

∑M

k=1
μv,k(PotIv) • μij,k

(
PotIij

)
(11)  

Where PotIv and PotIij are two potential input variables. 
Then, like Eq. (10), the MSE was computed for each fuzzy surface, 

MSEfsv,ij
. Thus, fuzzy curves were initially used to rank all the potential 

input variables in ascending order. The PotI variable with the smallest 
MSEcbv was the most important input variable. Fuzzy surfaces were then 
used to find the independent input variables and to eliminate the related 
input in each step (20 % according to Lin et al., 1996). Therefore, in each 
step, new fuzzy surfaces were computed, and 20 % of the potential input 
variable with the largest MSEfsv,ij 

was eliminated. 
Once the most important features were automatically identified, the 

final dataset composed of input variables- target was determined. 
Finally, the dataset was split into three subsets (training set, validation 
set and testing set) to achieve a good generalization of the hybrid model. 
This division of the original dataset was computed by a Monte Carlo 
algorithm maintaining the same mean and standard deviation in the 
three subsets as the original dataset (Ballesteros et al., 2016). 

3. Results and discussion 

The LSTMHybrid model was applied to CZID for the irrigation sea
sons from 2015 to 2022, with the aim of predicting the water demand at 
irrigation district level seven days in advance. 

3.1. Inputs of the hybrid model 

The significant inputs were determined by a combination of fuzzy 
curves and fuzzy surfaces according to Lin et al. (1996). The potential 
inputs evaluated and selected are shown in Table 2. A total of 18 po
tential inputs were assessed in a temporal frame which ranged from 1 to 
10 days before the forecasting day, i.e. each of these 18 potential input 
variables were evaluated in a combination from 1 to 10 days (from t-1 to 
t-10, in a step of 1 day, being t the forecasted day) previous to the 
forecasted day. After applying the methodology described in Section 
2.5., only four input variables were finally selected: IWD, Tave, Rad, ETo. 
The representativeness of all these input variables over the target vari
able (IWD) were maximum in a temporal frame of 7 days. Thus, the 
input space of the hybrid model consisted of four time series input 
variables. The time series ranged from t-1 to t-7, for the four input 
variables. 

The hybrid model is designed to forecast the real behavior of the 
farmers within the ID but not the aggregation of the crop irrigation 
needs. The main difference (but not a small one) between the two ap
proaches is the irrigation water management by each farmer. Logically, 
those farmers with better management of their irrigation systems show a 
smaller gap between the water applied and the actual crop needs. 
However, due to many other factors such as socio-cultural practices, 
farmers’ perception based on their experience, or peculiarities of the 
irrigation system, there are farmers who are far from the best irrigation 
practices. According to the methodologies developed by González Perea 
et al. (2018, 2019) the wind chill temperature (determined mainly by 
temperature, wind speed and relative humidity) is essential to obtain a 
good estimation of the daily irrigation water demand in an irrigation 
district. This effect of the wind chill of each farmer seems to be blurred 
when aggregated to a larger spatial scale such as the entire irrigation 
district. This was highlighted by González Perea et al. (2015) who 
developed a forecasting system of the daily water demand at the irri
gation district level. In that model, the farmer’s wind chill did not 

Table 1 
Decision variables to be optimized during the optimization process of the hybrid 
model.  

Decision 
variable 

Range 
values 

Type 
value 

Description 

numGEN1 1–500 Integer Number of LSTM cells of the encoder 
model. 

numGEN2 1–500 Integer Number of LSTM cells of the decoder 
model. 

numGEN3 1–200 Integer Number of neurons of the first hidden 
layer of the DNN model. 

numGEN4 0–200 Integer Number of neurons of the second hidden 
layer of the DNN model. 

numGEN5 0–200 Integer Number of neurons of the third hidden 
layer of the DNN model.  

Table 2 
Potential and selected inputs for the hybrid model.  

Potential 
Inputs 

Units Description(1) 

Tmax 
◦C Maximum temperature 

Tmin 
◦C Minimum temperature 

Tave+ ◦C Average temperature 
RHmax % Maximum relative humidity 
RHmin % Minimum relative humidity 
RHave % Average relative humidity 
Rad+ MJ m− 2 Solar radiation 
WSmax m s− 1 Maximum wind speed 
WSave m s− 1 Average wind speed 
Prec mm Rainfall 
Eprec mm Effective rainfall computed according to Penman 

Monteith methodology 
Precbin - Boolean variable that defines the occurrence or non- 

occurrence of precipitation. 0: no rainfall; 1: rainfall 
Radnet MJ m− 2 Net solar radiation 
ETo+ mm Reference evapotranspiration 
IWD+ m3 Irrigation water demand of the irrigation district 
Holy - Boolean holidays. This variable is equal to 1 for bank 

holidays and vacation days and 0 otherwise. 
Wday - Weekday 
DOY - Day of the year 

(1) All potential inputs were considered in a time frame from 1 to 10 days before 
the forecasting day. 
+Selected inputs. 
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appear so clearly in the main input variables of the daily forecasting 
model (time series with a time frame of 2 days of irrigation water de
mand and reference evapotranspiration and average temperature and 
solar radiation for the day to predict). 

Table 2 (selected inputs) shows that this tendency of dilution of the 
effect of the farmer’s wind chill when the spatial scale increases is 
maintained what coincides with previous works’ findings. Moreover, as 
the forecasting period increases, the previous days of the input variables 
considered are also longer. In this work, this time frame for the input 
variables was of seven days. 

3.2. Optimization process 

The density, which influences the learning and adaptation capacity 
of the hybrid model (both LSTM encoder-decoder and DNN), was opti
mized by the NSGA-II. The initial population consisted of 50 chromo
somes(iPop = 50). The value of numGEN (number of generations) is 
determined by the stabilization of the two objective functions. This 
stabilization was reach at generation number 100 (numGEN = 100). The 
probabilities for mutation and crossover were set to 10 % and 90 %, 
respectively. 

Fig. 6 shows the Pareto front which was obtained in the last gener
ation of the optimization process as well as the initial population. Both 
populations (initial and Pareto front) were characterized by their 
objective function, OF1 and OF2. which were always computed over the 
test set. The aim of the optimization process carried out by the NSGA-II 
was the maximization of OF1 and the minimization of OF2. In this type of 
optimization problems where the two objective functions are opposed, it 
is usual to find an initial population located in the upper left corner 
(Fig. 6). However, when the initial population at generation 0 was 
randomly generated, the values of their objective functions were closer 
to the pareto front. 

The LSTMHybrid model was based on the LSTM encoder-decoder 
which extracts the characteristics of the inputs and the DNN model 
which interpretates these characteristics to provide an estimation. The 
density of both submodels, so their capacity to learn, were optimized. 
However, other essential hyperparameters of the hybrid model such as 
the training function (Adam), activation function (RELU) and loss 

function (MSE) were previously fixed. These hyperparameters were 
previously set (according to previous research works’ findings) to solve 
the problem addressed in this work (memory-based time series fore
casting). Consequently, a certain part of the hybrid model was already 
optimized generating an initial population located in the region of the 
OF1-OF2 space showed in Fig. 6. This increased the performance of the 
genetic algorithm, reducing both the size of the initial population and 
the number of generations. 

For the initial population, the values of OF1 and OF2 ranged from 
67.69 % to 93.05 % and from 23.23 % to 52.69 %, respectively. The 
variation of both objective function values in this population was 4.97 % 
and 6.23 %, respectively. After optimization process, the population of 
the last generation (Pareto front) was in the right lower corner of the 
OF1-OF2 space (Fig. 6), usual behavior of a two-opposite objective 
functions Pareto front. The values of OF1 and OF2 for the Pareto front 
ranged from 93.39 % to 94.15 % and from 20.49 % to 25.29 %, 
respectively. However, the variance of this population was 0.17 % for 
OF1 and 1.15 % for OF2. Although the initial population was close to the 
Pareto front, the optimization process involved a smaller dispersion 
(variance) of the Pareto front compared to that of the initial population, 
also improving the values of the objective functions. In addition, when 
the input variables of a forecasting model are temporally correlated (as 
in this work where even the variable to be forecasted also appears as 
input variable of the hybrid model), its R2 value is usually high. How
ever, this effect does not appear in the estimation’s accuracy, providing 
models that are not very accurate if they are not well optimized, 
although with a relatively high R2 value. Thus, the Pareto front 
improved in the OF2 direction much more than in the OF1 direction, 
which means that the improvement in the accuracy was higher than in 
representativeness. In other words, as inputs were correlated because of 
their temporal correlation, the optimization of the density made it 
possible to find much more accurate hybrid models (although it also 
improved their representativeness). 

Fig. 7 shows the histogram for the number of LSTM cells in the LSTM 
encoder-decoder submodel for the initial population (Fig. 7a) and the 
Pareto front (Fig. 7b). The number of LSTM cells of encoder and decoder 
is controlled by the gen numGEN1 and numGEN2, whose values could 
range from 1 to 500 (Table 1). As the initial population was randomly 

Fig. 6. Pareto front and initial population of the optimization process for the test dataset. HMselected: hybrid model selected; OF1: objective function 1 and OF2: 
objective function 2. 
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created using a uniform distribution so that all values had the same 
probability of occurrence, the frequencies of the number of the LSTM 
cells were similar for encoder and decoder (Fig. 7a). After optimization 
process, the optimal LSTM cells in both encoder and decoder models 
were found (Fig. 7b). The number of LSTM cells of the encoder model for 

all individuals was 50 cells. Hence, all individuals with more or fewer 
LSTM cells than 50 were eliminated during the optimization process. 
With a density of 50 LSTM cells, for the irrigation district studied in this 
work, it is enough to encode all its input variables with losing relevant 
information. Although this methodology can be applied to other 

Fig. 7. Histogram for the number of LSTM cells in the encoder and decoder of the LSTM encoder-decoder submodel for the initial population (a) and the Pareto 
front (b). 
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irrigation districts and other input variables, the density of the encode 
model will be different and specific for each irrigation district. The 
density of the decoder model ranged from 400 to 450 LSTM cells in 45 
individuals and from 350 to 400 LSTM cell in 5 individuals. However, all 
individuals of the Pareto front had a density in the decoder model which 

ranged from 391 to 410 LSTM cells. Therefore, the density of the 
decoder model is deeper that the encoder model. According to these 
results of the optimization process, while encoder model needed only 50 
LSTM cells to encode the input information, decoder model required at 
least 391 LSTM cells to decode this information and pass it to the 

Fig. 8. Histogram for the number of neurons of the first, second and third hidden layer in the DNN submodel for the initial population (a) and the Pareto front (b).  
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interpreter (DNN submodel). This large difference in densities was due 
to the DNN submodel, which needed the information as atomized as 
possible to make an accurate estimation. 

Similarly to the density of the LSTM encoder-decoder submodel,  
Fig. 8 shows the histogram for the number of neurons of the first, second 
and third hidden layers of the DNN model for both initial population 
(Fig. 8a) and Pareto front (Fig. 8b). The number of neurons of the first, 
second and third hidden layers were controlled during the optimization 
process by the genes numGEN3, numGEN4 and numGEN5, respectively. 
While the number of the first hidden layer ranged from 1 to 200, the 
neurons of the second and third hidden layer ranged from 0 to 200, i.e. 
the minimum number of the hidden layers of the DNN submodel was 1, 
and maximum number of hidden layers in this submodel was 3. As the 
initialization of the first two genes, numGEN3, numGEN4 and numGEN5 
were randomly initialized with a uniform distribution. Thus, the density 
of the DNN submodel in the initial population was uniformly distributed 
between all their individuals (Fig. 8a). After optimization process, all 
individuals needed three hidden layers (no individual with 0 neurons in 
genes numGEN4 and numGEN5 were found) to optimize the estimations 
of irrigation water demand for 7 days ahead (Fig. 8b). No hidden layers 
in the individuals of the Pareto front showed neuron numbers close to 
the established lower and upper limits (minimum 0 or 1 neuron and 
maximum 200 neurons). If any of these distributions were close to the 
lower or upper limit, it could mean that the range of neurons of some 
hidden layer was not well selected. This would have required increasing 
this range to complete its optimization process properly. The number of 
neurons of the three hidden layers were gradually increased. Thus, all 
individuals showed a density in the first hidden layer that ranged from 
30 to 37 neurons, getting 28 individuals with 33 neurons in this hidden 
layer. The density of the second hidden layer was increased in all in
dividuals of the Pareto front ranged their neurons from 87 to 96. A total 
of 28 individuals of the Pareto front had a density of 90 neurons in its 
second hidden layer, although the density variance of this layer was 
higher than the other two hidden layers. The number of neurons in the 
third hidden layer ranged from 124 to 130. 30 individuals of the Pareto 
front had 127 neurons in this hidden layer. 

According to results shown in Figs. 7 and 8, the LSTMHybrid model 
was made up of 50 LSTM cells in encoder model, around 400 LSTM cells 
in decoder model, three hidden layers in the DNN submodel with a range 
of neurons of 30–37, 87–96 and 124–130, respectively. The optimal 
hybrid model forecasted a time series of irrigation water demand at 
irrigation district spatial scale and middle term temporal scale (7 days 
ahead). This is a complex task, considering the uncertainty associated 
with the decisions that each farmer makes every day on his farm and the 
aggregation of all the farmers’ behavior at ID level. Consequently, all the 
optimal hybrid models (those included in the Pareto front) found by the 
genetic algorithm were rather dense with millions of parameters in each 
of them. This fact gives an idea of the complexity of the problem to be 
solved, especially in comparison with the models shown in the intro
duction which had only several thousands of parameters. 

3.3. Optimal hybrid model 

After the optimization process, the optimal hybrid model was 
selected according to its objective function values (HMselected). Thus, 
Fig. 6 shows the hybrid model with the higher OF1 value (0.9415) and 
lower OF2 value (0.2049) and so selected as the best optimal hybrid 
model. Table 3 shows the values of the decision variables (numGEN1, …, 
numGEN5) for HMselected as well as R2 and SEP values. HMselected had 50 
and 409 LSTM cells in the encoder and decoder models, respectively, of 
the LSTM encoder-decoder submodel. Three hidden layers of 31, 96 and 
128 neurons were implemented in the DNN submodel. Hence, HMselected 
had a total of 1.5 million of parameters. With this density, the HMselected 
was able to forecast the daily irrigation water demand at a real ID, for 7 
days ahead with an average representativeness value in the test dataset 
of 94.15 % and an accuracy of 20.49 %. To achieve these mean forecast 

values, the HMselected required four time series of input variables. These 
time series were composed of data from seven days, prior to the first 
forecast day of Tave, Rad, ETo and IWD. 

The average values of representativeness and accuracy of the 
HMselected were enough for a proper daily management of the irriga
tion district. Moreover, the resolution of the hybrid model allowed the 
almost real-time management of the energy demand of the water dis
tribution network. When these results were disaggregated by forecast 
days, the R2 and SEP values changed. R2 decreased while SEP increased 
when the time horizon was higher. Fig. 9 shows the scatterplots between 
the observed (real IWD) and estimated IWD for seven days ahead (t-1, 
…, t-7) of the HMselected applied over the test dataset. Although the 
average of the R2 value of HMselected was 94.15 %, the representative
ness of the HMselected varied considerably as the forecast time increased. 
The R2 value ranged from 97.06 % for t-1 to 85.49 % for t-7. Similarly, 
the accuracy of the HMselected decreased as forecast time increased. The 
SEP value of the HMselected ranged from 16.42 % for t-1 to 22.31 % to t-7. 
Thus, the HMselected forecast capability diminished when the forecast 
time increased. 

It should be noted that the hybrid model developed in this work is 
based on memory. Although this type of model architecture is optimal 
for time series forecast, a very large number of LSTM cells are chained in 
both encoder and decoder models. The training process of the hybrid 
model used backpropagation method to update the neural networks 
weights in the direction in which the error function decreases most 
rapidly, the negative of the gradient. Therefore, the correction of all 
weights of the hybrid model (both LSTM encoder-decoder submodel and 
DNN submodel) is backward. When this backpropagation method is 
applied to architectures with memory, a memory leakage effect appears 
in the initial LSTM cells. This effect, caused as a vanishing of the error 
gradient and the chain rule, makes the hybrid model more insensitive to 
the inputs of the time series further back in time (the first to enter in the 
hybrid model), causing a loss of memory. In this work, the hybrid ar
chitecture attempted to reduce this effect by limiting the workload of the 
part of the hybrid model based on memory (LSTM encoder-decoder). 
The full workload was divided into the LSTM encoder-decoder and the 
DNN submodels. However, this ‘Alzheimer’s’ effect of the neural net
works based on memory is still present, albeit with a lower impact. 
Future work on this approach should look at new artificial neural 
network architectures currently under development, such as those based 
on attention (based on Transformer models) rather than memory, which 
eliminate this problem completely. This will improve the accuracy and 
representativeness of newly developed models. 

4. Conclusions 

Several works for short-term forecast of daily irrigation water de
mand at two spatial resolutions (farm and irrigation district levels) were 
previously developed. However, although some of them offered very 
accurate forecasts, the temporal resolution is not wide enough to 
properly manage an ID. In this work a novel methodology to develop a 
hybrid model based on memory to forecast the daily irrigation water 
demand at middle term time scale (7 days ahead) was presented. The 
hybrid model was optimized by the genetic algorithm NSGA-II to 

Table 3 
Values of the decision variables for the optimal hybrid model as well as R2 and 
SEP values of the test set.   

HMselected 

Number of LSTM cells of the encoder model 50 
Number of LSTM cells of the decoder model 409 
Number of neurons of the first hidden layer 31 
Number of neurons of the second hidden layer 96 
Number of neurons of the third hidden layer 128 
R2 94.15 
SEP (%) 20.49  
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maximize and minimize the representativeness and accuracy of their 
estimations applied to a real ID. The model inputs were also optimized 
by fuzzy curves and fuzzy surfaces, obtaining four input variables (Tave, 
Rad, ETo and IWD) as times series in a frame of seven days for the 
developed hybrid model. 

Results showed that the irrigation water demand forecast for seven 
days in advance in an irrigation district is a complex task, requiring a 
dense hybrid model. The hybrid model selected after the optimization 
process had more than 1.5 million of parameters. This hybrid model 
selected as optimum consisted of 50 LSTM cells and 409 LSTM cells in 
the LSTM encoder-decoder submodels and three hidden layers with 31, 
96, 128 neurons, respectively, in the DNN submodel. The average 
representativeness of the model was greater than 94 % with an average 
accuracy in their estimations of around 20 %. 

To date, the forecast model developed in this work is the most ac
curate at the spatio-temporal scale addressed. However, this hybrid 
model is memory-based and often shows memory leakage effects as the 
forecast time increases. Although an attempt was made to minimize this 
memory leakage effect by reducing the workload of the memory part of 
the forecast model (LSTM encoder-decoder submodel) and expanding 
with a DNN submodel, this ‘Alzheimer’ effect could be observed in the 
results obtained. Nevertheless, thanks to the hybrid model, this memory 
leakage effect is minimum. This model can be very useful for managers 
since it offers accurate predictions of water demand, which plays an 
essential role for water management and energy contracting in irrigation 
districts considering current and expected scenarios of water scarcity 
and high energy prices. 
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Ventura, S., Silva, M., Pérez-Bendito, D., Hervás, C., 1995. Artificial neural networks for 
estimation of kinetic analytical parameters. Anal. Chem. 67, 1521–1525. 

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.J., 2017. Big data in smart farming – a 
review. Agric. Syst. 153, 69–80. https://doi.org/10.1016/J.AGSY.2017.01.023. 

Yin, J., Deng, Z., Ines, A.V.M., Wu, J., Rasu, E., 2020. Forecast of short-term daily 
reference evapotranspiration under limited meteorological variables using a hybrid 
bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 242. 
https://doi.org/10.1016/j.agwat.2020.106386. 

Zhang, J., Zhu, Y., Zhang, X., Ye, M., Yang, J., 2018. Developing a Long Short-Term 
Memory (LSTM) based model for predicting water table depth in agricultural areas. 
J. Hydrol. 561, 918–929. https://doi.org/10.1016/J.JHYDROL.2018.04.065. 
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