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LAYER-AVERAGED APPROXIMATION OF NAVIER–STOKES SYSTEM WITH
COMPLEX RHEOLOGIES

Enrique D. Fernández-Nieto1 and José Garres-D́ıaz2,*

Abstract. In this work, we present a family of layer-averaged models for the Navier–Stokes equations.
For its derivation, we consider a layerwise linear vertical profile for the horizontal velocity component.
As a particular case, we also obtain layer-averaged models with the common layerwise constant approx-
imation of the horizontal velocity. The approximation of the derivatives of the velocity components is
set by following the theory of distributions to account for the discontinuities at the internal interfaces.
Several models has been proposed, depending on the order of approximation of an asymptotic analysis
respect to the shallowness parameter. Then, we obtain a hydrostatic model with vertical viscous effects,
a hydrostatic model where the pressure depends on the stress tensor, and fully non-hydrostatic mod-
els, with a complex rheology. It is remarkable that the proposed models generalize plenty of previous
models in the literature. Furthermore, all of them satisfy an exact dissipative energy balance. We also
propose a model that is second-order accurate in the vertical direction thanks to a correction of the
shear stress approximation. Finally, we show how effective the layerwise linear approach is to notably
improve, with respect to the layerwise constant method, the approximation of the velocity profile for
some geophysical flows. Namely, a Newtonian fluid and some complex viscoplastic (dry granular and
Herschel–Bulkley) materials are considered.
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1. Introduction

Many efforts have been devoted to the study of geophysical flows, in particular, when they are involved
in natural hazards. An advanced understanding of these flows is essential to develop efficient early warning
systems against tsunamis, floods, storm surges, landslides, snow avalanches and volcanic eruptions among many
others. However, there are still many open questions surrounding these phenomena, where three different aspects
could be highlighted: the geophysical understanding of these flows and the definition of complex rheologies, the
mathematical modelling through more sophisticated models including these rheologies, and the design of efficient
numerical methods to approximate these complex models. Any advance in one of these fields, which are closely
interconnected, is a valuable contribution to reach a more complete knowledge of natural flows.

Keywords and phrases. Layer-averaged systems, Navier–Stokes system, energy balance, dimensional analysis, complex rheology.
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This paper focuses on the second issue, that is, the development of sophisticated models including complex
rheological terms. As starting point, it is common to consider the Navier–Stokes system [11] (or some others
related systems as the Jackson’s model [31] for two-phase flows). However, it is a known fact the prohibitive
computational cost of approximating the solution of the 3D Navier–Stokes system. For this reason, a very active
topic of research is the derivation of simplified models. A well-known strategy is to consider Shallow-Water (or
Saint-Venant) type systems (see e.g. [29]). They are reached from two main ingredients: first, an asymptotic
analysis in terms of the ratio between characteristic horizontal and vertical dimensions (called shallowness
parameter 𝜀), where vertical variations are supposed to be negligible when compared to horizontal ones; second,
a depth-averaging of the 3D system, where it is necessary to set a vertical profile of the velocity. Actually,
a constant vertical profile of the horizontal velocity component is assumed in most cases, leading to classical
Shallow Water systems. Furthermore, as a consequence of the asymptotic analysis, viscous effects are commonly
neglected and it yields to a hydrostatic definition of the pressure.

The simplifications made usually in shallow systems could be summarized as: (i) absence of viscous effects;
(ii) a hydrostatic pressure; (iii) a horizontal velocity that is constant along the vertical direction. In order to
overcome each of them, several strategies have been introduced in the literature.

Concerning the inclusion of viscous effects in Shallow-Water type models, let us mention some previous works.
In [29], the viscous Shallow Water system, which includes horizontal viscous effects in the horizontal momentum
conservation equation, was derived from an asymptotic analysis up to second order. A two-dimensional version
of that model with capillary effects was introduced in [40]. Furthermore, the existence of global weak solutions
for this model was proven in [6] where the so-called BD entropy was introduced. The model in [6] was generalized
to the bilayer (stratified flow) case in [43], and the existence of weak solutions for this model was proven in
[42]. In these works, in order to prove these results, authors needed to include capillarity or friction effects.
A generalization of these results without neither capillarity nor friction terms was introduced in [41], where
authors proved the stability of weak solutions of the barotropic compressible Navier–Stokes system. Notice that
these results for the Saint-Venant system [29] are obtained from [41] as a particular case. In [47] the existence
of global weak solutions for the compressible 3D Navier–Stokes system with degenerate viscosity was proven.

In previous works Newtonian fluids are considered. Nevertheless, viscous effects have been also included in
shallow models for non-Newtonian fluids. For instance, in [30] authors introduced a viscous Shallow-Water
type model for dry granular flows with a 𝜇(𝐼)-viscosity, where they assumed a Bagnold vertical profile for the
horizontal velocity. Other depth-averaged models for viscoplastic flows, as Bingham or Herschel–Bulkley fluids,
including viscous effects, have been also presented (see [1, 22] among others).

The second important simplification we have remarked is the hydrostatic pressure that is commonly assumed
in shallow flows. Many authors have studied the so-called dispersive models trying to go beyond this hydrostatic
framework. When looking at the literature, two different families of dispersive systems are found: Boussinesq
type and non-hydrostatic models. The main difference between these two families is the fact that Boussinesq
models have as unknowns the total fluid depth and the averaged horizontal velocity, similarly to Saint-Venant
systems (see [5,33,38,39,46] among many others), whereas non-hydrostatic models have extra unknowns related
to the pressure (see e.g. [7,9,48]), leading to larger systems. Nevertheless, the main advantage of non-hydrostatic
models with respect to Boussinesq type systems is that only first-order derivatives of the unknowns appear in
the model, while high-order derivatives have to be discretized in Boussinesq models. Actually, many well-known
Boussinesq type systems can be reformulated as non-hydrostatic models (see e.g. [7,16]), which makes possible
to design different numerical techniques to approximate them. All these models are compared in terms of their
dispersion properties, as the dispersion relation, group velocity and linear shoaling, measuring the ability of
the models to reproduce dispersive water waves of (very) high frequency. For non-Newtonian fluids, in [27] a
shallow model for dry granular flows with a non-hydrostatic pressure is derived. This model took into account
the vertical acceleration but neglected viscous effects in the pressure. Although it is not a fully non-hydrostatic
approximation for granular flows, this model is able to recover some important results, as the parabolic shape
of the front velocity in granular collapses.
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The last point we previously highlighted is the lack of vertical resolution on the velocity profile surrounding
depth-averaged models. The improvement of this vertical profile has been a very active research area in last
years. There are several approaches. Some authors used information about the vertical structure in particular
configurations to approximate some terms in their models, or to recover the vertical profile of velocity as a
post-process. In the field of non-Newtonian fluids, in [3] the analytical solution for a uniform configuration is
employed to get the averaged analytical velocity, and to deduce a lubrication model. The solution of uniform
(or quasi-uniform) flows is also employed to improve the asymptotic expansion of the horizontal velocity. For
instance, this strategy was followed in [22] to derive a shallow model. Other example is [10], where the influence
of first-order corrections was studied through a formal asymptotic expansion of the velocity with respect to
shallowness parameter 𝜀 in quasi-uniform flows. In [30], authors followed a similar strategy to approximate
some terms in their model for dry granular flows. However, in previous works the models have not a vertical
structure by themselves. Moreover, a vertical profile (for instance Bagnold type) is assumed for the velocity
and it is not possible to recover other shapes of the velocity profile, or even changes on the velocity profile in
transient problems.

Some other alternatives to recover the vertical structure of the fluid, without using a prescribed profile,
consist on developing strategies based on approximating the vertical profile of the velocity. Let us remark here
two of them. On the one hand, the so-called moment models, which were introduced for shallow flows in [35,36],
allows us to recover the vertical profile of velocity through a polynomial approximation. These models have been
used in several applications in a hydrostatic framework (see e.g. [25, 34]). On the other hand, layer-averaged
(or multilayer) models (see [2, 21]), which are explained in the following paragraph, have been developed more
widely for shallow flows, including its application to non-Newtonian fluids. Interestingly, both approaches can
be written in a common framework, as shown in [26]. In that work, authors also proposed the combination of
these methods to obtain multilayer-moment models, which are expected to be high-order accurate in the vertical
direction, although it has been developed just in the hydrostatic framework for now.

Layer-averaged models consider a partition of the domain along the vertical direction in shallow layers. At
the internal interfaces, which are not physical contrary to stratified flows, mass and momentum transference
is allowed. Moreover, some unknowns can be discontinuous at these interfaces. In this approach, a preset
vertical profile of the unknowns inside each layer is assumed to derive the model. It is worth mentioning
that the global stability of weak solutions for the system in [2] with diffusive terms was proven in [14]. In
the hydrostatic framework, several models with layerwise constant horizontal velocity have been presented,
including also complex rheologies. For instance, see [18] for dry granular flows with the 𝜇(𝐼)-rheology, [24] for
two-phase (granular-fluid) flows with dilatancy effects, or [20] for Herschel–Bulkley fluids. In particular, in [18],
the ability of layer-averaged models to change the shape of the vertical profile of velocity in transient problems
depending on the flow regime was shown. This entailed an important improvement with respect to previous
models that prescribed the vertical profile of the velocity. We must remark here that including rheological laws in
the continuum solver is an essential aspect. For complex flows including a plasticity criterion, as the commented
above, it is interesting to consider regularization methods (see [37, 44]), mainly for two reasons: they allow us
an easier writing of the model, and they lead to conceptually simpler numerical solvers, which have been shown
to be efficient in different applications (see e.g. [18, 20] among others).

Previous models only take into account some vertical viscous effects, whereas a layer-averaged hydrostatic
model including all viscous terms was introduced in [8]. Let us remark that it is a very interesting work, which
proposed a discretization of the stress tensor components that allows the model to satisfy an exact energy
balance depending on the chosen rheology. Nevertheless, this model involves third-order derivatives making
difficult its numerical approximation. Actually, numerical results has not been presented yet.

Very recently, a wide variety of non-hydrostatic layer-averaged models approximating Euler equations has
been introduced. A family of models was proposed in [23], where they assumed that the horizontal velocity
is layerwise constant. In that work, several models were presented depending on the degree of the polynomial
approximation of the vertical velocity and the non-hydrostatic counterpart of the pressure. There, discontinuities
could arise in the velocity field but not in the pressure, which is supposed to be continuous along the vertical
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direction. Furthermore, the dispersion relation of these layer-averaged models converges, when increasing the
number of vertical layers, to the exact dispersion relation of Euler system, based on the Airy theory. This family
of models were extended in [15] with an analogous procedure to the layerwise linear horizontal velocity case.
Actually, it can be seen as a second-order approximation in the vertical direction of Euler equations. In that
case, the analysis is more complicated, but it was an important improvement with respect to the previous work,
especially when looking at the dispersion properties (dispersion relation, group velocity and linear shoaling).
The results showed that, even with a very small number of vertical layers (1 or 2 layers), excellent dispersion
properties are recovered. In that model, a comparison with previous models in [23] was also performed, showing
how the layerwise linear horizontal velocity approach notably improved the results with respect to the layerwise
constant one. All the presented models in the two previous works satisfy exact dissipative energy balances. Let
us remark that these non-hydrostatic layer-averaged models did not consider viscous terms since they dealt with
Euler equations.

In this work we focus on solving the three simplifications listed above simultaneously. Concretely, we derive
non-hydrostatic layer-averaged models approximating the Navier–Stokes system, including all the viscous terms
for a general stress tensor, with layerwise linear profile of both the horizontal velocity and the viscosity coef-
ficient. As starting point, we consider the models introduced in [15] for Euler system. The inclusion of the
stress tensor involves important difficulties. For instance, we use a definition of the derivatives of the velocity
components accounting for the discontinuities at the internal interfaces, which allows us to prove an exact dis-
sipative energy balance for the resulting models. The models in this work can be also presented as a hierarchy
of models in terms of an asymptotic expansion with respect to the shallowness parameter (𝜀). Furthermore, the
models here generalize in different senses (Euler to Navier–Stokes case, layerwise constant to linear approach,
layerwise constant to linear shear stress, . . . ) many of previous models in the literature. We also give in this
work a correction for the shear stress that allows the model to be a second-order discretization in the vertical
direction of the Navier–Stokes system. It is illustrated with numerical results for some geophysical flows in
simple configurations.

The paper is organised as follows: Section 2 is devoted to the initial system and notation. In Section 3 we
detail the assumptions to approximate the variables, as well as the stress tensor. In particular Section 3.2 focuses
on the case of a stress tensor proportional to the strain rate tensor, giving all the definitions that play a key role
to get a dissipative energy balance. In Section 4, the non-hydrostatic layer-averaged models with layerwise linear
horizontal velocity are derived, and the corresponding energy balances are proven. In Section 4.2 we present a
second-order correction of the shear stress, which ensures the second-order accuracy in the approximation of
the stress tensor. The compact writing of the proposed models is presented in Section 4.4. Section 5 is devoted
to obtain and analyse a family of non-hydrostatic models from an asymptotic analysis, depending on the order
of approximation on the shallowness parameter (𝜀). Concretely, in Section 5.2 we present a hydrostatic model
with viscous dependent pressure, which is a generalization to the layerwise linear horizontal velocity case of the
model introduced in [8]. A detailed summary of the models in this work, as well as its relation with previous
models in the literature, is given in Section 5.4. Section 6 is devoted to show the accuracy of the layerwise linear
approach to reproduce vertical profiles of velocity and shear stress for some uniform geophysical flows, including
complex viscoplastic fluids. Finally, some conclusions are in Section 7.

2. Governing system and layer-averaged notation

We establish here the initial system and notation that we shall use along this work. The 2-dimensional space
is considered here, then let (𝑥, 𝑧) ∈ R2 be the space variables, with ∇ = (𝜕𝑥, 𝜕𝑧) the usual differential operators.
We consider a constant density 𝜌 ∈ R for an incompressible fluid, which flows within the domain

Ω(𝑡) =
{︀

(𝑥, 𝑧) ∈ R2 : 𝑏(𝑥) < 𝑧 < 𝑏(𝑥) +𝐻(𝑡, 𝑥)
}︀
,

being 𝑏(𝑥) and 𝐻(𝑡, 𝑥) a bottom topography and the total depth of the fluid, respectively. 𝑈 = (𝑢,𝑤)′ ∈ R2

denotes the vector velocity of the flow. Let us also denote by 𝑔 = (𝑔𝑥, 𝑔𝑧) an external force, which is usually
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defined by the gravitational acceleration. The dynamics of this flow is described by the Navier–Stokes system{︃
𝜕𝑡𝜌+∇ · (𝜌𝑈) = 0,
𝜕𝑡(𝜌𝑈) +∇ · (𝜌𝑈 ⊗𝑈) − ∇ · 𝜎 = 𝜌 𝑔,

(1)

where 𝜎 is the total stress tensor defined by

𝜎 = −𝑝𝐼 + 𝜏

with 𝑝 the total pressure, 𝐼 is the identity matrix and 𝜏 the deviatoric tensor.
Following the approach of the so-called non-hydrostatic models (see e.g. [9]), the total pressure (𝑝) is decom-

posed into hydrostatic and non-hydrostatic (𝑞) contributions

𝑝 = 𝜌(−𝑔𝑧(𝑏+𝐻 − 𝑧) + 𝑞).

Finally, the definition of the deviatoric tensor (𝜏 ) depends on the rheological law describing the considered flow.
Let us consider a general fluid (Newtonian of non-Newtonian), and define

𝜏 =
(︂
𝜏𝑥𝑥 𝜏𝑥𝑧
𝜏𝑧𝑥 𝜏𝑧𝑧

)︂
. (2)

Notice that we have not removed the time derivative of the density despite of considering an incompressible flow.
It is done for the purpose of clarity in the normal jump conditions associated to the layer-averaging approach.

One of the goals of this paper is to propose useful models to simulate geophysical flows, where local (or tilted)
coordinates are commonly used (see [3, 4] among many others). Noticing that the Navier–Stokes equations are
invariant under rotations, the only difference between these systems is the velocity direction and the definition
of the external force 𝑔.

In the case of local coordinates, the horizontal-vertical directions correspond to the downslope-normal direc-
tions to an inclined plane with constant slope tan 𝜃, with 𝜃 ∈ (−𝜋/2, 𝜋/2). For the sake of generality, let us
consider

𝑔 = (𝑔𝑥, 𝑔𝑧)′ =
{︂

(0,−𝑔)′ in Cartesian coordinates,
(−𝑔 sin 𝜃,−𝑔 cos 𝜃)′ in local coordinates,

where 𝑔 ∈ R is the gravity acceleration. We also introduce the following notation:

𝑧𝑏(𝑥) = 𝑏(𝑥)− 𝑔𝑥
|𝑔𝑧|

𝑥.

Note that the surface defined by 𝑧𝑏 represents the bottom in Cartesian coordinates, where 𝑏 is the local bottom,
which is measured in the normal direction to the reference plane. In the case of Cartesian coordinates, we
identify 𝑧𝑏 = 𝑏.

Thus, (𝑥, 𝑧) should be understood as the 𝑥− 𝑧 Cartesian system or the tilted reference system respect to the
inclined plane. For the sake of simplicity, we shall write horizontal and vertical component of the velocity for
(𝑢,𝑤), but it should be understood as downslope-normal components in the case of local coordinate systems.

As boundary conditions, we take zero atmospheric pressure and no tension at the free surface,

𝑝|𝑏+𝐻
= 𝑞|𝑏+𝐻

= 0, 𝜏 |𝑏+𝐻
𝑛𝑏+𝐻 = 0, (3)

with 𝑛𝑏+𝐻 the downward unit normal vector, as well as the usual kinematic condition

𝜕𝑡𝐻 + 𝑢|𝑏+𝐻
𝜕𝑋 (𝑏+𝐻)− 𝑤|𝑏+𝐻

= 0.
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Figure 1. Sketch of the domain and its vertical partition.

At the bottom, the non-penetration condition is taken

𝑢|𝑏𝜕𝑥𝑏 = 𝑤|𝑏 , (4)

and for the sake of generality we shall consider a friction law

𝜎 𝑛𝑏 −
(︀(︀

𝜎 𝑛𝑏
)︀
· 𝑛𝑏

)︀
𝑛𝑏 = −𝛽0𝑈 − 𝛽1

𝑈

|𝑈 |
, (5)

being 𝑛𝑏 = (𝜕𝑥𝑏,−1)/
√︁

1 + (𝜕𝑥𝑏)
2 the downward unit normal vector at the bottom and 𝛽0, 𝛽1 friction coef-

ficients. Notice that previous friction condition encompasses different boundary conditions depending on the
considered flow (or material). For instance, in the case of Newtonian fluids, we set 𝛽1 = 0 and 𝛽0 = 𝛽0(|𝑈 |) a
constant or variable coefficient.

System (1) will be discretized in the framework of the layer-averaged approach introduced in [21]. To this
aim, we consider a subdivision in the vertical direction of the domain into 𝐿 ∈ N shallow layers Ω𝛼, whose
heights are ℎ𝛼 for 𝛼 = 1, . . . , 𝐿 (see Fig. 1). Let ℒ𝛼+1/2 be the interface separating the layers Ω𝛼,Ω𝛼+1, that is
defined by the equation 𝑧 = 𝑧𝛼+1/2. Then 𝑧𝛼+1/2 = 𝑏+

∑︀𝛼
𝛽=1 ℎ𝛽 and

Ω𝛼(𝑡) =
{︀

(𝑥, 𝑧) ∈ R2 : 𝑧𝛼−1/2 < 𝑧 < 𝑧𝛼+1/2

}︀
,

being 𝑧1/2 and 𝑧𝐿+1/2 the bottom and free surface, respectively. Then, the total height of the fluid is 𝐻 =∑︀𝐿
𝛽=1 ℎ𝛽 , and it holds that ℎ𝛼 = 𝑧𝛼+1/2−𝑧𝛼−1/2. Moreover, the midpoint of each layer Ω𝛼 is 𝑧𝛼 = 𝑧𝛼−1/2+ℎ𝛼/2.

Finally, a vertical mesh is defined through the coefficients (ℓ𝛼){𝛼∈1,...,𝐿} satisfying

ℎ𝛼 = ℓ𝛼𝐻, with ℓ𝛼 ∈ [0, 1] and
𝐿∑︁
𝛼=1

ℓ𝛼 = 1.

Let us now fix the same notation as in [15] for an arbitrary function 𝑓(𝑡, 𝑥, 𝑧). We denote by 𝑓±𝛼+1/2 its
approximation at the interface ℒ𝛼+1/2, being

𝑓−𝛼+1/2 = lim
𝑧→𝑧𝛼+1/2
𝑧<𝑧𝛼+1/2

𝑓|Ω𝛼
, 𝑓+

𝛼+1/2 = lim
𝑧→𝑧𝛼+1/2
𝑧>𝑧𝛼+1/2

𝑓|Ω𝛼+1
.

We write 𝑓𝛼+1/2 if both limits match and 𝑓 is a continuous function. Now, the average over the layer Ω𝛼 is
denoted by 𝑓𝛼 and the linear average by ̂︀𝑓𝛼, being

𝑓𝛼(𝑡, 𝑥) =
1
ℎ𝛼

∫︁ 𝑧𝛼−1/2

𝑧𝛼−1/2

𝑓(𝑡, 𝑥, 𝑧) d𝑧, and ̂︀𝑓𝛼 =
𝑓+
𝛼−1/2 + 𝑓−𝛼+1/2

2
·
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Notice that 𝑓𝛼 = ̂︀𝑓𝛼 holds when 𝑓 is linear (or constant) in the vertical variable 𝑧 in the layer Ω𝛼. It is also
useful to define the variation through the layer

(𝛿𝑓)𝛼 = 𝑓−𝛼+1/2 − 𝑓+
𝛼−1/2. (6a)

Concerning the approximations at the interface ℒ𝛼+1/2, we denote by ̃︀𝑓𝛼+1/2 and [𝑓 ]𝛼+1/2 the average value at
this interfaces and the jump across them, respectively, defined by

̃︀𝑓𝛼+1/2 =
𝑓+
𝛼+1/2 + 𝑓−𝛼+1/2

2
, and [𝑓 ]𝛼+1/2 = 𝑓+

𝛼+1/2 − 𝑓−𝛼+1/2. (6b)

3. Layerwise approximation: velocity, pressure and stress tensor closure

In this section, we detail the vertical profile for the variables in the layer-averaged framework, as in [15].
We later focus on the stress tensor approximation, also accounting for the possible discontinuous profile of the
velocity.

Let us denote by
𝑈𝛼 := 𝑈 |Ω𝛼

:= (𝑢𝛼, 𝑤𝛼)′,

the velocity in the layer Ω𝛼, where 𝑢𝛼 and 𝑤𝛼 are the horizontal and vertical components of the velocity. Then,
we assume a linear profile in 𝑧 for the horizontal velocity within each layer. That is, the horizontal velocity is
layerwise linear (𝑢𝛼 ∈ P1):

𝑢𝛼(𝑧) = 𝑢𝛼 + 𝜆𝛼
(︀
𝑧 − 𝑧𝛼

)︀
, for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2], (7)

being 𝑢𝛼 the averaged velocity and 𝜆𝛼 its slope. Consequently, the limit values at the interfaces 𝑢∓𝛼±1/2 are
given by

𝑢−𝛼+1/2 = 𝑢𝛼 +
ℎ𝛼𝜆𝛼

2
, 𝑢+

𝛼−1/2 = 𝑢𝛼 −
ℎ𝛼𝜆𝛼

2
· (8)

For the vertical velocity, looking at the incompressibility condition, we consider a layerwise parabolic profile
(𝑤𝛼 ∈ P2):

𝑤𝛼(𝑧) = 𝑤𝛼(𝑧𝛼) + 𝜙𝛼(𝑧 − 𝑧𝛼) +
𝜓𝛼
2

(𝑧 − 𝑧𝛼)2, for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2]. (9)

Previous equation can be written also as

𝑤𝛼(𝑧) = 𝑤𝛼 + 𝜙𝛼(𝑧 − 𝑧𝛼) +
𝜓𝛼
2

(︂
(𝑧 − 𝑧𝛼)2 − ℎ2

𝛼

12

)︂
, (10)

for 𝛼 = 1, . . . , 𝐿, using the averaged vertical velocity 𝑤𝛼 = 𝑤𝛼(𝑧𝛼)+ℎ2
𝛼𝜓𝛼/24. The limit values at the interfaces

are then

𝑤−𝛼+1/2 = 𝑤𝛼 +
ℎ𝛼𝜙𝛼

2
+
ℎ2
𝛼𝜓𝛼
12

, 𝑤+
𝛼−1/2 = 𝑤𝛼 −

ℎ𝛼𝜙𝛼
2

+
ℎ2
𝛼𝜓𝛼
12

· (11)

The variables 𝜙𝛼, 𝜓𝛼 defining the vertical profile (10) can be related to the variables in the horizontal velocity
(7) by means of the incompressibility condition (see [15] for details). Concretely, we obtain the constraints{︃

𝜙𝛼 = −𝜕𝑥𝑢𝛼 + 𝜆𝛼𝜕𝑥𝑧𝛼,

𝜓𝛼 = −𝜕𝑥𝜆𝛼,
(12)

for 𝛼 = 1, . . . , 𝐿. Notice that both the horizontal and vertical velocities could be discontinuous across the
interfaces ℒ𝛼+1/2.
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Concerning the non-hydrostatic pressure 𝑞, it is a layerwise cubic function (𝑞𝛼 ∈ P3) accordingly to the vertical
momentum equation. Moreover, it is assumed to be continuous across the interfaces (𝑞𝛼(𝑧𝛼±1/2) = 𝑞𝛼±1/2).
Considering the variable 𝜋𝛼 satisfying

𝜕𝑧𝑞𝛼(𝑧𝛼) =
𝜋𝛼
ℎ𝛼
,

and using the notation in (6), the vertical profile of non-hydrostatic pressure is

𝑞𝛼(𝑧) =
3𝑞𝛼 − ̂︀𝑞𝛼

2
+ 𝜋𝛼

𝑧 − 𝑧𝛼
ℎ𝛼

+ 6(̂︀𝑞𝛼 − 𝑞𝛼)
(𝑧 − 𝑧𝛼)2

ℎ2
𝛼

+ 4
(︀
(𝛿𝑞)𝛼 − 𝜋𝛼

)︀ (𝑧 − 𝑧𝛼)3

ℎ3
𝛼

,

for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2]. Notice that here we assume to be far from dry areas. In these situations 𝑞𝛼 = 0
is expected, although it is not studied here. It will be addressed in the future when studying the numerical
approximation of these models.

The main novelty with respect to previous work [15] is the fact of dealing with the Navier–Stokes system
instead of Euler equations. More concretely, we include the viscous terms. So, we need to properly approximate
the stress tensor components. To this aim, we also assume a polynomial approximation, where the coefficient
must be defined in terms of the considered rheology, in order to approximate up to second-order the viscous terms
appearing in the Navier–Stokes system (𝜕𝑥𝜏𝑥𝑥, 𝜕𝑧𝜏𝑥𝑧, 𝜕𝑥𝜏𝑥𝑧, 𝜕𝑧𝜏𝑧𝑧). Let us consider the following definition of
the layerwise stress tensor components,

𝜏𝑖𝑗,𝛼(𝑧) = 𝜏 𝑖𝑗,𝛼 + 𝜁𝑖𝑗,𝛼(𝑧 − 𝑧𝛼) + 𝜉𝑖𝑗,𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂
+ κ𝑖𝑗,𝛼

(︂
(𝑧 − 𝑧𝛼)3

3
− ℎ2

𝛼

20
(𝑧 − 𝑧𝛼)

)︂
, (13)

where 𝑖, 𝑗 ∈ {𝑥, 𝑧} and we assume 𝜏𝑥𝑧,𝛼 = 𝜏𝑧𝑥,𝛼. Let us remark that the layer-averaged approximation developed
in this paper remains valid for any application in which the deviatoric tensor is properly approximated by (13),
as long as others extra unknowns and equations do not appear in the model (for instance, some turbulence
models). Actually, our motivation to take these profiles lies in approximating a stress tensor defined as the
product of the strain rate tensor and the kinematic viscosity (see Sect. 3.2). Thus, taking into account the
hypothesis for 𝑢𝛼, 𝑤𝛼 and by considering a linear approximation of the kinematic viscosity, we suppose that
the stress tensor components are polynomials of degree 𝑑 ≤ 3.

In next section, we give some important relations for the stress tensor concerning to the normal jump con-
ditions associated to the layerwise approach. In particular, the viscous terms at the interfaces ℒ𝛼+1/2 and
boundary conditions for the stress tensor are detailed.

3.1. Jump conditions and closure of the momentum transference terms

We focus now on the jump conditions associated to the mass and the momentum equations (1). We are
looking for a particular weak solution (𝜌,𝑈 , 𝑝) of (1), which must be a regular solution within each layer Ω𝛼,
and satisfy the normal jump conditions across the internal interfaces ℒ𝛼+1/2.

As usual, from the mass conservation equation we have

[(𝜌; 𝜌𝑈)]|ℒ𝛼+1/2
·
(︀
𝜕𝑡𝑧𝛼+1/2, 𝜕𝑥𝑧𝛼+1/2,−1

)︀
= 0,

which gives the definition of the mass transfer terms Γ𝛼+1/2 at the interface ℒ𝛼+1/2:

Γ𝛼+1/2 := Γ−𝛼+1/2 = Γ+
𝛼+1/2, with Γ±𝛼+1/2 = −

(︁
𝜕𝑡𝑧𝛼+1/2 + 𝑢±𝛼+1/2𝜕𝑥𝑧𝛼+1/2 − 𝑤±𝛼+1/2

)︁
,

for 𝛼 = 1, . . . , 𝐿 − 1. For the boundary cases Γ1/2 and Γ𝐿+1/2, which account for the mass transfer with the
bottom and free surface, respectively, we set them as zero.

From previous equation, an expression for the evolution of the layer midpoint can be deduced. Concretely,

𝜕𝑡𝑧𝛼 + 𝑢𝛼𝜕𝑥𝑧𝛼 − ̂︀𝑤𝛼 = −ℎ𝛼
4
𝜆𝛼𝜕𝑥ℎ𝛼 −

Γ𝛼−1/2 + Γ𝛼+1/2

2
·
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This equation is useful for both the layer-averaging procedure and the proof of the energy balance.
For the momentum conservation equation, we have

[(𝜌𝑈 ; 𝜌𝑈 ⊗𝑈 − 𝜎)]|ℒ𝛼+1/2
·
(︀
𝜕𝑡𝑧𝛼+1/2, 𝜕𝑥𝑧𝛼+1/2,−1

)︀
= 0.

By assuming that the dynamic pressure is continuous at the interface, previous equation is written in terms of
the jump of the deviatoric tensor 𝜏 as

[𝜏 ]|ℒ𝛼+1/2
·
(︀
𝜕𝑥𝑧𝛼+1/2,−1

)︀
= −𝜌Γ𝛼+1/2 [𝑈 ]|ℒ𝛼+1/2

. (14)

Let us define

𝐾±
𝛼+1/2 =

1
𝜌

(︁
𝜏±𝑥𝑥,𝛼+1/2 𝜕𝑥𝑧𝛼+1/2 − 𝜏±𝑥𝑧,𝛼+1/2

)︁
,

𝐾±
𝑤,𝛼+1/2 =

1
𝜌

(︁
𝜏±𝑥𝑧,𝛼+1/2 𝜕𝑥𝑧𝛼+1/2 − 𝜏±𝑧𝑧,𝛼+1/2

)︁
.

Then, condition (14) is written by components as follows:

𝐾+
𝛼+1/2 −𝐾−

𝛼+1/2 = −Γ𝛼+1/2

(︁
𝑢+
𝛼+1/2 − 𝑢−𝛼+1/2

)︁
,

𝐾+
𝑤,𝛼+1/2 −𝐾−

𝑤,𝛼+1/2 = −Γ𝛼+1/2

(︁
𝑤+
𝛼+1/2 − 𝑤−𝛼+1/2

)︁
. (15)

Moreover, following [21], it is necessary to set a closure condition. We set

𝐾+
𝛼+1/2 +𝐾−

𝛼+1/2

2
= 𝐾𝛼+1/2,

𝐾+
𝑤,𝛼+1/2 +𝐾−

𝑤,𝛼+1/2

2
= 𝐾𝑤,𝛼+1/2 (16)

where 𝐾𝛼+1/2 and 𝐾𝑤,𝛼+1/2 are approximations of

1
𝜌

(︀
𝜏𝑥𝑥 𝜕𝑥𝑧𝛼+1/2 − 𝜏𝑥𝑧

)︀
|ℒ𝛼+1/2

, and
1
𝜌

(︀
𝜏𝑥𝑧,𝛼 𝜕𝑥𝑧𝛼+1/2 − 𝜏𝑧𝑧

)︀
|ℒ𝛼+1/2

,

respectively. Let us notice that other convex combination could be used in principle in (16).

Therefore, by using the jump conditions (15) and closure (16), we obtain

𝐾±
𝛼+1/2 = 𝐾𝛼+1/2 ∓

1
2

Γ𝛼+1/2

(︁
𝑢+
𝛼+1/2 − 𝑢−𝛼+1/2

)︁
, (17a)

𝐾±
𝑤,𝛼+1/2 = 𝐾𝑤,𝛼+1/2 ∓

1
2

Γ𝛼+1/2

(︁
𝑤+
𝛼+1/2 − 𝑤−𝛼+1/2

)︁
. (17b)

Then, the limits of the deviatoric tensor at the interfaces are written in terms of the averaged values and
the mass transference terms. This definition of the momentum transference terms 𝐾𝛼+1/2 deserves special
attention in order to ensure that the model satisfies a dissipative energy balance. Following [8], we consider the
approximation

𝐾𝛼+1/2 =
1
𝜌

(︂
𝜏𝑥𝑥,𝛼 + 𝜏𝑥𝑥,𝛼+1

2
𝜕𝑥𝑧𝛼+1/2 −

𝜏𝑥𝑧,𝛼 + 𝜏𝑥𝑧,𝛼+1

2

)︂
,

𝐾𝑤,𝛼+1/2 =
1
𝜌

(︂
𝜏𝑥𝑧,𝛼 + 𝜏𝑥𝑧,𝛼+1

2
𝜕𝑥𝑧𝛼+1/2 −

𝜏𝑧𝑧,𝛼 + 𝜏𝑧𝑧,𝛼+1

2

)︂
, (18a)

for 𝛼 = 1, . . . , 𝐿 − 1, where 𝜏𝑥𝑥,𝛼, 𝜏𝑥𝑧,𝛼, 𝜏𝑧𝑧,𝛼 for 𝛼 = 1, . . . , 𝐿 are the averaged stress tensor components in
(13), which must be defined appropriately.
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The values of 𝐾,𝐾𝑤 at the bottom and free surface are given by the boundary conditions (3) and (5).
Concretely, we consider

𝐾1/2 =
1
𝜌

(︀
𝜏𝑥𝑥|𝑏𝜕𝑥𝑏− 𝜏𝑥𝑧|𝑏

)︀
, 𝐾𝐿+1/2 =

1
𝜌

(︀
𝜏𝑥𝑥|𝑏+𝐻

𝜕𝑥(𝑏+𝐻)− 𝜏𝑥𝑧|𝑏+𝐻

)︀
,

𝐾𝑤,1/2 =
1
𝜌

(︀
𝜏𝑥𝑧|𝑏𝜕𝑥𝑏− 𝜏𝑧𝑧|𝑏

)︀
, 𝐾𝑤,𝐿+1/2 =

1
𝜌

(︀
𝜏𝑥𝑧|𝑏+𝐻

𝜕𝑥(𝑏+𝐻)− 𝜏𝑧𝑧|𝑏+𝐻

)︀
.

From (3) we deduce that
𝐾𝐿+1/2 = 𝐾𝑤,𝐿+1/2 = 0, (18b)

and (5) gives two conditions(︃
𝐾1/2 +𝐾𝑤,1/2𝜕𝑥𝑏

𝐾1/2𝜕𝑥𝑏+𝐾𝑤,1/2(𝜕𝑥𝑏)
2

)︃
= −1

𝜌

(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2

𝛽
(︁⃒⃒⃒

𝑈+
1/2

⃒⃒⃒)︁
𝑈+

1/2,

where
𝛽
(︁⃒⃒⃒

𝑈+
1/2

⃒⃒⃒)︁
= 𝛽0 +

𝛽1⃒⃒⃒
𝑈+

1/2

⃒⃒⃒ , with 𝑈+
1/2 =

(︁
𝑢+

1/2, 𝑤
+
1/2

)︁′
=
(︁
𝑢+

1/2, 𝑢
+
1/2𝜕𝑥𝑏

)︁′
thanks to the non-penetration condition (4), and 𝑢+

1/2 = 𝑢1 − ℎ1𝜆1
2 the horizontal velocity at the bottom. Note

that previous equation gives a linear system whose unknowns are 𝐾1/2,𝐾𝑤,1/2. Actually, the second equation
equals the first one multiplied by 𝜕𝑥𝑏. Therefore, this relation is mandatory also for the right-hand side term
in order to get a consistent (underdetermined) system. Hopefully, this holds thanks to the non-penetration
condition (4). Otherwise, is not possible to define such a friction condition.

Then, to define 𝐾1/2,𝐾𝑤,1/2, we consider any expression satisfying

𝐾1/2 +𝐾𝑤,1/2𝜕𝑥𝑏 = −1
𝜌

(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2

𝛽
(︁
𝑈+

1/2

)︁
𝑢+

1/2.

For instance, without loss of generality, we could define

𝐾1/2 = −1
𝜌

√︁
1 + (𝜕𝑥𝑏)

2
𝛽
(︁
𝑈+

1/2

)︁
𝑢+

1/2, and 𝐾𝑤,1/2 = 𝜕𝑥𝑏𝐾1/2. (18c)

In next section, we develop all the details for the common case of having the stress tensor as the product of
the strain rate tensor and the kinematic viscosity.

3.2. Stress tensor proportional to the strain rate tensor

Denoting the kinematic viscosity coefficient by 𝜈, which could be variable, we consider the stress tensor (2)
given by

𝜏 = 𝜌𝜈𝐷(𝑈) where 𝐷(𝑈) =
1
2

(∇𝑈 + (∇𝑈)′).

Therefore, its components are

𝜏𝑥𝑥 = 𝜌𝜈𝜕𝑥𝑢, 𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜌
𝜈

2
(𝜕𝑥𝑤 + 𝜕𝑧𝑢), 𝜏𝑧𝑧 = 𝜌𝜈𝜕𝑧𝑤.

Let us recall that we have set here 𝑢,𝑤 as layerwise linear and parabolic functions, respectively (see (7) and (9)).
In addition, a goal of this work is to propose models for geophysical flows, which are represented by appropriate
rheological laws. These laws can be defined through variable viscosity coefficients, which could depend, for
instance, on the velocity and pressure. Therefore, the viscosity is also a function that must be approximated
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in the layer-averaged framework. In [18], a layerwise constant viscosity is assumed for viscoplastic granular
flows. To the aim of improving the approximation of the viscosity for complex flows and reaching second-order
accuracy of the stress tensor components, in this work we go further and assume a linear approximation of the
viscosity within each layer. Thus, it is defined by

𝜈𝑖𝑗,𝛼(𝑧) = 𝜈0
𝑖𝑗,𝛼 + 𝜈1

𝑖𝑗,𝛼(𝑧 − 𝑧𝛼), for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2], 𝑖, 𝑗 ∈ {𝑥, 𝑧}, (19)

and 𝛼 = 1, . . . , 𝐿, such that 𝜈𝑖𝑗,𝛼 ≥ 0. In Section 6 we will see that this approach is appropriate for several
rheologies. Note that we are considering a different viscosity coefficient 𝜈𝑖𝑗,𝛼 for each component of the deviatoric
stress tensor, thus making broader the range of applicability of the proposed models. For instance, it is useful
in the case of turbulent flows or, in general, when having different viscosity coefficients along the horizontal and
vertical directions (see e.g. [13]). Notice also that in the case of Newtonian fluids we have a constant profile,
then 𝜈𝑖𝑗,𝛼 = 𝜈0

𝑖𝑗,𝛼 = 𝜈 being 𝜈 the constant kinematic viscosity of the fluid.
A key point in the definition of the approximation of the stress tensor components is the approximation

of 𝜕𝑥𝑢, 𝜕𝑥𝑤, 𝜕𝑧𝑢 and 𝜕𝑧𝑤 accounting for the possible discontinuities at the interfaces ℒ𝛼+1/2 of the velocity
components 𝑢 and 𝑤.

Let us remind the reader that, for a fixed time 𝑡 > 0, for any vector function 𝐹 (𝑡, 𝑥, 𝑧) ∈ Ω ⊂ R2 being a
regular solution within each layer Ω𝛼, for 𝛼 = 1, . . . , 𝐿, with possible discontinuities at the internal interfaces
ℒ𝛼+1/2, for 𝛼 = 1, . . . , 𝐿− 1, we can define the divergence [𝑑𝑖𝑣(𝑥,𝑧)𝐹 (𝑡, ·, ·)] in the sense of distributions⟨︀[︀

𝑑𝑖𝑣(𝑥,𝑧)𝐹 (𝑡, ·, ·)
]︀
, 𝜑
⟩︀

=
∫︁

Ω

𝑑𝑖𝑣(𝑥,𝑧)𝐹 (𝑡, 𝑥, 𝑧)𝜑(𝑥, 𝑧) d𝑥d𝑧

+
∫︁
𝐼Ω

𝐿−1∑︁
𝛼=1

(︁
𝐹 +
𝛼+1/2 − 𝐹−

𝛼+1/2

)︁
·
(︂
−𝜕𝑥𝑧𝛼+1/2

1

)︂
𝜑
(︀
𝑥, 𝑧𝛼+1/2

)︀
d𝑥, ∀𝜑 ∈ 𝒟(Ω),

where 𝐹±
𝛼+1/2(𝑥) are the upper and lower limits of 𝐹 (𝑡, 𝑥, 𝑧) when 𝑧 tends to 𝑧𝛼+1/2, respectively. 𝒟(Ω) is

the set of functions of class 𝐶∞(Ω) with compact support, 𝐼Ω the projection of Ω over R, and the divergence
operator appearing in the double integral has to be understood in the pointwise sense.

Previous equation motivates the following definitions of the derivatives of the velocity components:

[𝜕𝑧𝑢]𝛼 = 𝜕𝑧(𝑢𝛼(𝑧))𝛼 +
1
ℎ𝛼

[𝑢]𝛼+1/2 + [𝑢]𝛼−1/2

2
= 𝜆𝛼 +

1
ℎ𝛼

[𝑢]𝛼+1/2 + [𝑢]𝛼−1/2

2
,

[𝜕𝑧𝑤]𝛼 = 𝜕𝑧(𝑤𝛼(𝑧))𝛼 +
1
ℎ𝛼

[𝑤]𝛼+1/2 + [𝑤]𝛼−1/2

2
= 𝜙𝛼 +

1
ℎ𝛼

[𝑤]𝛼+1/2 + [𝑤]𝛼−1/2

2
,

[𝜕𝑥𝑢]𝛼 = 𝜕𝑥(𝑢𝛼(𝑧))𝛼 −
1
ℎ𝛼

[𝑢]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑢]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2

= 𝜕𝑥𝑢𝛼 − 𝜆𝛼𝜕𝑥𝑧𝛼 −
1
ℎ𝛼

[𝑢]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑢]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2
,

[𝜕𝑥𝑤]𝛼 = 𝜕𝑥(𝑤𝛼(𝑧))𝛼 −
1
ℎ𝛼

[𝑤]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑤]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2

= 𝜕𝑥𝑤𝛼 − 𝜙𝛼𝜕𝑥𝑧𝛼 −
ℎ𝛼𝜓𝛼

12
𝜕𝑥ℎ𝛼 −

1
ℎ𝛼

[𝑤]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑤]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2
, (20)

for 𝛼 = 1, . . . , 𝐿, where we take the jumps [𝑢]1/2, [𝑤]1/2, [𝑢]𝐿+1/2 and [𝑤]𝐿+1/2 as zero. Let us remark that these
definitions can be seen as a partition of ⟨𝑑𝑖𝑣(𝑥,𝑧)𝐹 ,1Ω⟩ for 𝐹 = (0, 𝑢)′, 𝐹 = (0, 𝑤)′, 𝐹 = (𝑢, 0), and 𝐹 = (𝑤, 0),
respectively, satisfying then

⟨[𝜕𝑧𝑢(𝑡, ·, ·)],1Ω⟩ =
𝐿∑︁
𝛼=1

∫︁
𝐼Ω

ℎ𝛼[𝜕𝑧𝑢]𝛼 d𝑥, ⟨[𝜕𝑧𝑤(𝑡, ·, ·)],1Ω⟩ =
𝐿∑︁
𝛼=1

∫︁
𝐼Ω

ℎ𝛼[𝜕𝑧𝑤]𝛼 d𝑥,
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⟨[𝜕𝑥𝑢(𝑡, ·, ·)],1Ω⟩ =
𝐿∑︁
𝛼=1

∫︁
𝐼Ω

ℎ𝛼[𝜕𝑥𝑢]𝛼 d𝑥, ⟨[𝜕𝑥𝑤(𝑡, ·, ·)],1Ω⟩ =
𝐿∑︁
𝛼=1

∫︁
𝐼Ω

ℎ𝛼[𝜕𝑥𝑤]𝛼 d𝑥.

Remark 1. Following [45], the contribution of the jumps at the interfaces ℒ𝛼+1/2 in (20) has been equally
distributed between layers Ω𝛼 and Ω𝛼+1. In principle, any convex combination could be used, and in that case
condition (16) should be accordingly modified.

Now, we specify the expression of the variables in the approximations of the stress tensor components at each
layer (13), for which we use the definitions in (20). Taking into account the linear profile of the viscosity (19),
𝜏𝑥𝑥 is approximated at each layer by 𝜏𝑥𝑥,𝛼, where we set

𝜏𝑥𝑥,𝛼(𝑧) =
(︀
𝜈0
𝑥𝑥,𝛼 + 𝜈1

𝑥𝑥,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑥𝑢]𝛼 + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)
)︁
. (21)

Note that it can be rewritten under the form (13) with the following definition of the components:

𝜏𝑥𝑥,𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼(𝑧) d𝑧 = 𝜈0
𝑥𝑥,𝛼[𝜕𝑥𝑢]𝛼 + 𝜈1

𝑥𝑥,𝛼

ℎ2
𝛼

12
𝜕𝑥𝜆𝛼,

𝜁𝑥𝑥,𝛼 = 𝜈1
𝑥𝑥,𝛼[𝜕𝑥𝑢]𝛼 + 𝜈0

𝑥𝑥,𝛼𝜕𝑥𝜆𝛼,

𝜉𝑥𝑥,𝛼 = 2𝜈1
𝑥𝑥,𝛼𝜕𝑥𝜆𝛼,

κ𝑥𝑥,𝛼 = 0. (22)

For the approximation of 𝜏𝑥𝑧 at each layer, we consider

𝜏𝑥𝑧,𝛼(𝑧) =
𝜈0
𝑥𝑧,𝛼 + 𝜈1

𝑥𝑧,𝛼(𝑧 − 𝑧𝛼)
2

×
(︂

[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼 + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂
· (23)

Then, 𝜏𝑥𝑧,𝛼 can be defined by (13), where

𝜏𝑥𝑧,𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼(𝑧) d𝑧 =
𝜈0
𝑥𝑧,𝛼

2

(︁
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼

)︁
+
𝜈1
𝑥𝑧,𝛼ℎ

2
𝛼

24
(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼),

𝜁𝑥𝑧,𝛼 =
𝜈1
𝑥𝑧,𝛼

2

(︂
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼 +

ℎ2
𝛼

30
𝜕𝑥𝜓𝛼

)︂
+
𝜈0
𝑥𝑧,𝛼

2
(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼),

𝜉𝑥𝑧,𝛼 =
𝜈0
𝑥𝑧,𝛼

2
𝜕𝑥𝜓𝛼 + 𝜈1

𝑥𝑧,𝛼(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼),

κ𝑥𝑧,𝛼 =
3
4
𝜈1
𝑥𝑧,𝛼𝜕𝑥𝜓𝛼. (24)

Finally, we take the approximation of 𝜏𝑧𝑧 at each layer given by

𝜏𝑧𝑧,𝛼(𝑧) =
(︀
𝜈0
𝑧𝑧,𝛼 + 𝜈1

𝑧𝑧,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)
)︁
. (25)

In this case, it is written under form (13) through the components

𝜏𝑧𝑧,𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑧𝑧,𝛼(𝑧) d𝑧 = 𝜈0
𝑧𝑧,𝛼[𝜕𝑧𝑤]𝛼 + 𝜈1

𝑧𝑧,𝛼

ℎ2
𝛼

12
𝜓𝛼,

𝜁𝑧𝑧,𝛼 = 𝜈1
𝑧𝑧,𝛼[𝜕𝑧𝑤]𝛼 + 𝜈0

𝑧𝑧,𝛼𝜓𝛼,

𝜉𝑧𝑧,𝛼 = 2𝜈1
𝑧𝑧,𝛼𝜓𝛼,

κ𝑧𝑧,𝛼 = 0. (26)

In the next section we derive the non-hydrostatic layer-averaged Navier–Stokes system.
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4. Layer-averaged systems with linear horizontal velocity

As in our previous work [15], we can derive a family of models depending of the degree of approximation of
the vertical velocity. We first consider the case of a layerwise parabolic vertical velocity (𝑤𝛼 ∈ P2), where the
degree of approximation of the vertical velocity is given by the incompressibility condition. Consequently to the
vertical momentum conservation equation, the non-hydrostatic pressure is a third-order polynomial (𝑞𝛼 ∈ P3)
in that case. This model is denoted by LIN-NH2-STRESS. However, as showed in [15] this can be relaxed to
the case of layerwise linear vertical velocity (𝑤𝛼 ∈ P1 and 𝑞𝛼 ∈ P2) keeping excellent dispersion properties
(dispersion relation, group velocity and linear shoaling). We will obtain the corresponding simplified model,
denoted by LIN-NH1-STRESS, as a particular case of the LIN-NH2-STRESS model.

In next, we focus first on the more complete model (LIN-NH2-STRESS), as well as a second-order correction
for the shear stress. We later present the simplified model with linear vertical velocity.

4.1. Fully non-hydrostatic model for a general stress tensor: LIN-NH2-STRESS

In order to obtain the models, we perform here the usual layer-averaging procedure. From the mass conser-
vation law, we recover the usual layerwise mass conservation equation

𝜕𝑡ℎ𝛼 + 𝜕𝑥(ℎ𝛼𝑢𝛼) = −Γ𝛼+1/2 + Γ𝛼−1/2, 𝛼 = 1, . . . , 𝐿.

Combining previous equations, namely summing up from 1 to 𝐿, we get an equation for the total height

𝜕𝑡𝐻 + 𝜕𝑥
(︀
𝐻𝑢
)︀

= 0, with 𝑢 =
𝐿∑︁
𝛼=1

ℓ𝛼𝑢𝛼,

as well as an explicit expression for the mass transference term at the interfaces ℒ𝛼+1/2 in terms of the velocities
and the fluid depth

Γ𝛼+1/2 =
𝐿∑︁

𝛽=𝛼+1

ℓ𝛽𝜕𝑥
(︀
𝐻
(︀
𝑢𝛽 − 𝑢

)︀)︀
, for 𝛼 = 1, . . . , 𝐿− 1.

Thus, the mass transference are no more unknowns.
One can observe that we have 8L+1 unknowns. Concretely, the total height (𝐻), 5L variables for the velocity

field ({𝑢𝛼, 𝜆𝛼, 𝑤𝛼, 𝜙𝛼, 𝜓𝛼} for 𝛼 = 1, . . . , 𝐿), and 3L extra unknowns for the pressure field ({𝑞𝛼, 𝑞𝛼−1/2, 𝜋𝛼}
for 𝛼 = 1, . . . , 𝐿). First, the evolution equations for the conserved variables coming from the velocity field
({ℎ𝛼𝑢𝛼, ℎ2

𝛼𝜆𝛼, ℎ𝛼𝑤𝛼, ℎ
2
𝛼𝜙𝛼, ℎ

3
𝛼𝜓𝛼}) are obtained from the momentum conservation laws. Concretely, we need

an extra equation for the horizontal velocity and two of them for the vertical one. To do so, we consider test
functions in the basis of P2[𝑧]

𝜑𝛼(𝑧) ∈ {𝜑1,𝛼(𝑧), 𝜑2,𝛼(𝑧), 𝜑3,𝛼(𝑧)} =
{︂

1, 𝑧 − 𝑧𝛼,
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

}︂
, (27)

and we perform the layer-averaging procedure of the momentum equations multiplied by the test functions (as
much as needed). Note that it is an orthogonal basis in L2-norm, which makes easier the algebra. Second, con-
cerning the pressure variables, we use restrictions (12) together with the integrated incompressibility condition
(see [15] for details), yielding the set of 3L constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝛼 = −𝜕𝑥𝑢𝛼 + 𝜆𝛼𝜕𝑥𝑧𝛼, 𝛼 = 1, . . . , 𝐿.
𝜓𝛼 = −𝜕𝑥𝜆𝛼, 𝛼 = 1, . . . , 𝐿,

𝑤𝛼+1 − ℎ𝛼+1𝜙𝛼+1
2 + ℎ2

𝛼+1𝜓𝛼+1

12 − 𝑤𝛼 − ℎ𝛼𝜙𝛼

2 − ℎ2
𝛼𝜓𝛼

12

=
(︁
𝑢𝛼+1 − ℎ𝛼+1𝜆𝛼+1

2 − 𝑢𝛼 − ℎ𝛼𝜆𝛼

2

)︁
𝜕𝑥𝑧𝛼+1/2, 𝛼 = 1, . . . , 𝐿− 1,

𝜕𝑥𝑢1 − 𝜆1𝜕𝑥𝑧1 − ℎ1
6 𝜕𝑥𝜆1 +

𝑤1−𝑤+
1/2

ℎ1/2
= 0

(28)
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where 𝑤+
1/2 is defined by the non-penetration condition

𝑤+
1/2 =

(︂
𝑢1 −

ℎ1𝜆1

2

)︂
𝜕𝑥𝑏.

We focus now on the evolution equations for the velocity variables. As commented above, the momentum
conservation laws are multiplied by the test functions (27) and later integrated within each layer Ω𝛼. We remark
that this is the same procedure developed in [15], and the terms that differs from the models introduced there
are those coming from the stress tensor. Therefore, we focus here on these new contributions. Let us start by
the horizontal momentum equation, where we write

𝜕𝑡

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢𝛼𝜑𝑖,𝛼 d𝑧

)︃
+ 𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢2
𝛼𝜑𝑖,𝛼 d𝑧

)︃
+
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜑𝑖,𝛼𝜕𝑥𝑝𝛼 d𝑧 −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢𝛼𝜕𝑡𝜑𝑖,𝛼 d𝑧

−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢2
𝛼𝜕𝑥𝜑𝑖,𝛼 d𝑧 −

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢𝛼𝑤𝛼𝜕𝑧𝜑𝑖,𝛼 d𝑧 =
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜑𝑖,𝛼𝑔𝑥 d𝑧 + 𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼
𝜌

𝜑𝑖,𝛼 d𝑧

)︃

−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼
𝜌

𝜕𝑥𝜑𝑖,𝛼 d𝑧 −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼
𝜌

𝜕𝑧𝜑𝑖,𝛼 d𝑧 − 𝜑𝑖,𝛼|𝑧𝛼+1/2

(︁
𝐾−
𝛼+1/2 + 𝑢−𝛼+1/2Γ𝛼+1/2

)︁
+ 𝜑𝑖,𝛼|𝑧𝛼−1/2

(︁
𝐾+
𝛼−1/2 + 𝑢+

𝛼−1/2Γ𝛼−1/2

)︁
, (29)

with 𝑖 = 1, 2. Notice that, using (17), the terms at the interfaces ℒ𝛼±1/2 in (29) are written as

𝜑𝑖,𝛼|𝑧𝛼−1/2

(︀
𝐾𝛼−1/2 + ̃︀𝑢𝛼−1/2Γ𝛼−1/2

)︀
− 𝜑𝑖,𝛼|𝑧𝛼+1/2

(︀
𝐾𝛼+1/2 + ̃︀𝑢𝛼+1/2Γ𝛼+1/2

)︀
,

with

̃︀𝑢𝛼+1/2 =
𝑢−𝛼+1/2 + 𝑢+

𝛼+1/2

2
=
𝑢𝛼 + 𝑢𝛼+1

2
− ℎ𝛼+1𝜆𝛼+1 − ℎ𝛼𝜆𝛼

4
·

Thus, from (29), for 𝑖 = 1 we have

1
𝜌

[︃
𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼𝜑1,𝛼 d𝑧

)︃
−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼𝜕𝑥𝜑1,𝛼 d𝑧 −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼𝜕𝑧𝜑1,𝛼 d𝑧

]︃
= 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑥,𝛼
𝜌

)︂
,

since 𝜕𝑥𝜑1,𝛼 = 𝜕𝑧𝜑1,𝛼 = 0. For the conservation law for ℎ𝛼𝜆𝛼, taking 𝜑𝑖,𝛼 = 𝜑2,𝛼 in (29), the integrals involving
the stress tensor give

1
𝜌

[︃
1
ℎ𝛼
𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼(𝑧 − 𝑧𝛼) d𝑧

)︃
+ 𝜕𝑥𝑧𝛼𝜏𝑥𝑥,𝛼 − 𝜏𝑥𝑧,𝛼,

]︃

=
1
𝜌

[︂
𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑥,𝛼

12

)︂
+
ℎ𝛼𝜁𝑥𝑥,𝛼

12
𝜕𝑥ℎ𝛼 + 𝜕𝑥𝑧𝛼𝜏𝑥𝑥,𝛼 − 𝜏𝑥𝑧,𝛼

]︂
.

Concerning the variables related to the vertical velocity, we obtain the equations for the evolution of
ℎ𝛼𝑤𝛼, ℎ

2
𝛼𝜙𝛼, ℎ

3
𝛼𝜓𝛼 from the vertical momentum equation multiplied by the test functions in (27). In general,

we consider the equation

𝜕𝑡

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑤𝛼𝜑𝑖,𝛼 d𝑧

)︃
+ 𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢𝛼𝑤𝛼𝜑𝑖,𝛼 d𝑧

)︃
+

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜑𝑖,𝛼𝜕𝑧𝑞𝛼 d𝑧 −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑤𝛼𝜕𝑡𝜑𝑖,𝛼 d𝑧

−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢𝛼𝑤𝛼𝜕𝑥𝜑𝑖,𝛼 d𝑧 −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑤2
𝛼𝜕𝑧𝜑𝑖,𝛼 d𝑧 = 𝜕𝑥

(︃∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼
𝜌

𝜑𝑖,𝛼 d𝑧

)︃
−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼
𝜌

𝜕𝑥𝜑𝑖,𝛼 d𝑧
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−
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑧𝑧,𝛼
𝜌

𝜕𝑧𝜑𝑖,𝛼 d𝑧− 𝜑𝑖,𝛼|𝑧𝛼+1/2

(︁
𝐾−𝑤,𝛼+1/2+ 𝑤−𝛼+1/2Γ𝛼+1/2

)︁
+ 𝜑𝑖,𝛼|𝑧𝛼−1/2

(︁
𝐾+
𝑤,𝛼−1/2+ 𝑤+

𝛼−1/2Γ𝛼−1/2

)︁
,

with 𝑖 = 1, 2, 3. Note that in previous equation the hydrostatic contribution has been cancelled with the source
term 𝑔𝑧, and analogously to the horizontal case, the terms at the interfaces are rewritten as

𝜑𝑖,𝛼|𝑧𝛼−1/2

(︀
𝐾𝑤,𝛼−1/2 + ̃︀𝑤𝛼−1/2Γ𝛼−1/2

)︀
− 𝜑𝑖,𝛼|𝑧𝛼+1/2

(︀
𝐾𝑤,𝛼+1/2 + ̃︀𝑤𝛼+1/2Γ𝛼+1/2

)︀
,

with

̃︀𝑤𝛼+1/2 =
𝑤−𝛼+1/2 + 𝑤+

𝛼+1/2

2
=
𝑤𝛼 + 𝑤𝛼+1

2
− ℎ𝛼+1𝜙𝛼+1 − ℎ𝛼𝜙𝛼

4
+
ℎ2
𝛼𝜓𝛼 + ℎ2

𝛼+1𝜓𝛼+1

24
·

Following the same layer-averaging procedure as previously for each test function 𝜑𝑖,𝛼, after some straight-
forward computations we get the evolution equation for ℎ𝛼𝑤𝛼, ℎ2

𝛼𝜙𝛼 and ℎ3
𝛼𝜓𝛼 for 𝛼 = 1, . . . , 𝐿 (see (30)).

Hence, the final non-hydrostatic layer-averaged Navier–Stokes system LIN-NH2-STRESS comprises 8L+1
equations together with restrictions (28). Namely, it reads

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0, (30a)

𝜕𝑡(ℎ𝛼𝑢𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢

2
𝛼 +

ℎ3
𝛼𝜆

2
𝛼

12

)︂
+ |𝑔𝑧|ℎ𝛼𝜕𝑥(𝑧𝑏 +𝐻) + 𝜕𝑥(ℎ𝛼𝑞𝛼) = 𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2

− 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2 + 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑥,𝛼
𝜌

)︂
+𝐾𝛼−1/2 −𝐾𝛼+1/2 + ̃︀𝑢𝛼−1/2Γ𝛼−1/2 − ̃︀𝑢𝛼+1/2Γ𝛼+1/2, (30b)

𝜕𝑡

(︂
ℎ2
𝛼𝜆𝛼
12

)︂
+ 𝜕𝑥

(︃
ℎ2
𝛼𝜆𝛼𝑢𝛼

12
+
ℎ𝛼
(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
20

+
ℎ𝛼𝜋𝛼

30

)︃
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑢𝛼 + 𝑞𝛼𝜕𝑥𝑧𝛼

= −
(︂

(𝑞𝛼+1/2 − 𝑞𝛼−1/2)
20

+
𝜋𝛼
30

)︂
𝜕𝑥ℎ𝛼 +

1
2
(︀
𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑥,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑥,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑥,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑥𝑧,𝛼)− 1
2
(︀
𝐾𝛼+1/2 +𝐾𝛼−1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜆𝛼

12
−
𝑢𝛼 − ̃︀𝑢𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜆𝛼

12
+
𝑢𝛼 − ̃︀𝑢𝛼+1/2

2

)︂
, (30c)

𝜕𝑡(ℎ𝛼𝑤𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢𝛼𝑤𝛼 +

ℎ3
𝛼𝜙𝛼𝜆𝛼

12

)︂
= 𝑞𝛼−1/2 − 𝑞𝛼+1/2

+ 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑧,𝛼
𝜌

)︂
+𝐾𝑤,𝛼−1/2 −𝐾𝑤,𝛼+1/2 + ̃︀𝑤𝛼−1/2Γ𝛼−1/2 − ̃︀𝑤𝛼+1/2Γ𝛼+1/2, (30d)

𝜕𝑡

(︂
ℎ2
𝛼𝜙𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜙𝛼𝑢𝛼

12
+
ℎ4
𝛼𝜆𝛼𝜓𝛼
360

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑤𝛼 −
ℎ4
𝛼𝜓

2
𝛼

720
+
ℎ3
𝛼𝜆𝛼𝜓𝛼
360

𝜕𝑥ℎ𝛼

+
𝑞𝛼+1/2 + 𝑞𝛼−1/2

2
− 𝑞𝛼 = 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)

− 1
2
(︀
𝐾𝑤,𝛼−1/2 +𝐾𝑤,𝛼+1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜙𝛼

12
−
𝑤𝛼 − ̃︀𝑤𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜙𝛼

12
+
𝑤𝛼 − ̃︀𝑤𝛼+1/2

2

)︂
, (30e)

𝜕𝑡

(︂
ℎ3
𝛼𝜓𝛼
720

)︂
+ 𝜕𝑥

(︂
ℎ3
𝛼𝜓𝛼𝑢𝛼
720

+
ℎ3
𝛼𝜙𝛼𝜆𝛼
360

)︂
− ℎ2

𝛼𝜆𝛼𝜙𝛼
120

𝜕𝑥ℎ𝛼 +
ℎ3
𝛼𝜓𝛼𝜙𝛼
240

= −
(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
− 𝜋𝛼

30

+ 𝜕𝑥

(︂
ℎ3
𝛼𝜉𝑥𝑧,𝛼
720𝜌

)︂
+
ℎ2
𝛼𝜉𝑥𝑧,𝛼
360𝜌

𝜕𝑥ℎ𝛼 +
ℎ𝛼
12𝜌

(𝜁𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜁𝑧𝑧,𝛼) +
𝜏𝑥𝑧,𝛼
12𝜌

𝜕𝑥ℎ𝛼
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− 1
12
(︀
𝐾𝑤,𝛼+1/2 −𝐾𝑤,𝛼−1/2

)︀
− Γ𝛼−1/2

(︂
ℎ2
𝛼𝜓𝛼
360

− ℎ𝛼𝜙𝛼
24

+
𝑤𝛼 − ̃︀𝑤𝛼−1/2

12

)︂
+ Γ𝛼+1/2

(︂
ℎ2
𝛼𝜓𝛼
360

+
ℎ𝛼𝜙𝛼

24
+
𝑤𝛼 − ̃︀𝑤𝛼+1/2

12

)︂
, (30f)

for 𝛼 = 1, . . . , 𝐿, combined with the following constraints,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝛼 = −𝜕𝑥𝑢𝛼 + 𝜆𝛼𝜕𝑥𝑧𝛼, 𝛼 = 1, . . . , 𝐿.
𝜓𝛼 = −𝜕𝑥𝜆𝛼, 𝛼 = 1, . . . , 𝐿,

𝑤𝛼+1 − ℎ𝛼+1𝜙𝛼+1
2 + ℎ2

𝛼+1𝜓𝛼+1

12 − 𝑤𝛼 − ℎ𝛼𝜙𝛼

2 − ℎ2
𝛼𝜓𝛼

12

=
(︁
𝑢𝛼+1 − ℎ𝛼+1𝜆𝛼+1

2 − 𝑢𝛼 − ℎ𝛼𝜆𝛼

2

)︁
𝜕𝑥𝑧𝛼+1/2, 𝛼 = 1, . . . , 𝐿− 1,

𝜕𝑥𝑢1 − 𝜆1𝜕𝑥𝑧1 − ℎ1
6 𝜕𝑥𝜆1 +

𝑤1−𝑤+
1/2

ℎ1/2
= 0.

(31)

This model satisfies the following energy balance.

Theorem 1. Let us consider the LIN-NH2-STRESS model defined by (30) and (31), with the stress tensor
components defined by (13), and the terms 𝐾𝛼±1/2,𝐾𝑤,𝛼±1/2 given by (18). The following energy balance is
satisfied

𝜕𝑡

(︃
𝑁∑︁
𝛼=1

𝐸𝛼

)︃
+ 𝜕𝑥

[︃
𝑁∑︁
𝛼=1

(︂
𝑢𝛼

(︂
𝐸𝛼 + |𝑔𝑧|ℎ𝛼

ℎ

2
+
ℎ3
𝛼𝜆

2
𝛼

12
+ ℎ𝛼𝑞𝛼

)︂
+
ℎ3
𝛼𝜆𝛼𝜙𝛼𝑤𝛼

12
+
ℎ5
𝛼𝜆𝛼𝜙𝛼𝜓𝛼

360
+ 𝜆𝛼

ℎ2
𝛼𝜋𝛼
30

+ 𝜆𝛼
ℎ2
𝛼(𝑞𝛼+1/2 − 𝑞𝛼−1/2)

20
− 1
𝜌

(︂
ℎ𝛼𝑢𝛼𝜏𝑥𝑥,𝛼 +

ℎ3
𝛼𝜆𝛼𝜁𝑥𝑥,𝛼

12
+ ℎ𝛼𝑤𝛼𝜏𝑥𝑧,𝛼 +

ℎ3
𝛼𝜙𝛼𝜁𝑥𝑧,𝛼

12
+
ℎ5
𝛼𝜓𝛼𝜉𝑥𝑧,𝛼

720

)︂)︂]︂
≤ −1

𝜌

𝑁∑︁
𝛼=1

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

[︂
𝜏𝑥𝑥,𝛼(𝑧)

(︁
[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)

)︁
+ 𝜏𝑥𝑧,𝛼(𝑧)

(︂
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤] + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂
+ 𝜏𝑧𝑧,𝛼(𝑧)

(︁
[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)

)︁]︂
d𝑧 − 1

𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2(︁

𝑢+
1/2

)︁2

(32)

where

𝐸𝛼 := ℎ𝛼

(︃
𝑢2
𝛼 + 𝑤2

𝛼

2
+

(ℎ𝛼𝜆𝛼)2 + (ℎ𝛼𝜙𝛼)2

24
+

(︀
ℎ2
𝛼𝜓𝛼

)︀2
1440

+ |𝑔𝑧|
(︂
𝑧𝑏 +

ℎ

2

)︂)︃
.

Note that in previous result we do not claim that the right-hand side is non-positive. Actually, it is a general
energy balance, and we need to consider a specific rheology defining the stress tensor in order to prove that it is
indeed dissipative. It means that any definition of the stress tensor that leads to a non-positive right-hand side
in (32) would be appropriate, from the point of view of the energy conservation. Before proving this theorem, let
us introduce the result that is achieved in the particular case developed in Section 3.2, where the stress tensor
is proportional to the strain rate tensor.

Corollary 1. Let us consider a stress tensor proportional to the strain rate tensor, defined by (21), (23) and
(25). Then, LIN-NH2-STRESS model satisfies the dissipative energy balance (32), where the right-hand side is
non-positive, being

− 1
𝜌

𝑁∑︁
𝛼=1

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

[︂(︀
𝜈0
𝑥𝑥,𝛼 + 𝜈1

𝑥𝑥,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)
)︁2
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+

(︀
𝜈0
𝑥𝑧,𝛼 + 𝜈1

𝑥𝑧,𝛼(𝑧 − 𝑧𝛼)
)︀

2

(︂
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤] + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂2

+
(︀
𝜈0
𝑧𝑧,𝛼 + 𝜈1

𝑧𝑧,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)
)︁2
]︂

d𝑧 − 1
𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2(︁

𝑢+
1/2

)︁2

≤ 0.

Proof of Corollary 1. The proof follows from Theorem 1 and the definitions of the stress tensor components
(21), (23) and (25). �

Proof of Theorem 1. We remark that model (30) and (31) differs from the LIN-NH2 model introduced in [15],
for which a exact energy balance was proven, only in the terms related to the deviatoric stress tensor. Therefore,
we detail here how the inclusion of viscous terms leads to the energy balance above.

Defining

𝐸𝛼 = ℎ𝛼

(︃
𝑢2
𝛼 + 𝑤2

𝛼

2
+

(ℎ𝛼𝜆𝛼)2 + (ℎ𝛼𝜙𝛼)2

24
+

(︀
ℎ2
𝛼𝜓𝛼

)︀2
1440

+ |𝑔𝑧|
(︂
𝑧𝑏 +

ℎ

2

)︂)︃
,

the energy balance is written

𝜕𝑡𝐸𝛼 + 𝜕𝑥

(︂
𝐸𝛼𝑢𝛼 + 𝑔ℎ𝛼

ℎ

2
𝑢𝛼 +

ℎ3
𝛼𝜆

2
𝛼𝑢𝛼

12
+
ℎ3
𝛼𝜙𝛼𝜆𝛼𝑤𝛼

12
+
ℎ5
𝛼𝜙𝛼𝜆𝛼𝜓𝛼

360

)︂
+ 𝑃NH,𝛼

= 𝑉𝛼 + MT𝛼 +
|𝑔𝑧|
2

(ℎ𝜕𝑡ℎ𝛼 − ℎ𝛼𝜕𝑡ℎ),

where

𝑃NH,𝛼 = 𝜕𝑥

(︃
ℎ𝛼𝑞𝛼𝑢𝛼 + 𝜆𝛼

(︃
ℎ2
𝛼

(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
20

+
ℎ2
𝛼𝜋𝛼
30

)︃)︃
+ 𝑞𝛼+1/2

(︀
𝜕𝑡𝑧𝛼+1/2 − Γ𝛼+1/2

)︀
− 𝑞𝛼−1/2

(︀
𝜕𝑡𝑧𝛼−1/2 − Γ𝛼−1/2

)︀
are the non-hydrostatic contributions, satisfying that

𝑁∑︁
𝛽=1

𝑃NH,𝛽 =
𝑁∑︁
𝛽=1

𝜕𝑥

(︃
ℎ𝛽𝑞𝛽𝑢𝛽 + 𝜆𝛽

(︃
ℎ2
𝛽(𝛿𝑞)𝛽

20
+
ℎ2
𝛽𝜋𝛽

30

)︃)︃
,

when summing up to 𝛼. The terms involving mass transference MT𝛼 are

MT𝛼 = −
Γ𝛼+1/2

2

(︁
𝑢−𝛼+1/2𝑢

+
𝛼+1/2 + 𝑤−𝛼+1/2𝑤

+
𝛼+1/2

)︁
+

Γ𝛼−1/2

2

(︁
𝑢−𝛼−1/2𝑢

+
𝛼−1/2 + 𝑤−𝛼−1/2𝑤

+
𝛼−1/2

)︁
− |𝑔𝑧|(𝑧𝑏 + ℎ)

(︀
Γ𝛼+1/2 − Γ𝛼−1/2

)︀
,

where one can check that

𝑁∑︁
𝛽=1

MT𝛽 = 0, and
|𝑔𝑧|
2

𝑁∑︁
𝛽=1

(ℎ𝜕𝑡ℎ𝛼 − ℎ𝛼𝜕𝑡ℎ) = 0.

Finally, the viscous terms are

𝜌 𝑉𝛼 = 𝑢𝛼𝜕𝑥(ℎ𝛼𝜏𝑥𝑥,𝛼) + 𝜆𝛼𝜕𝑥

(︂
ℎ3
𝛼𝜁𝑥𝑥,𝛼

12

)︂
+ ℎ𝛼𝜆𝛼(𝜏𝑥𝑥,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑥𝑧,𝛼) + 𝑤𝛼𝜕𝑥(ℎ𝛼𝜏𝑥𝑧,𝛼) + 𝜙𝛼𝜕𝑥

(︂
ℎ3
𝛼𝜁𝑥𝑧,𝛼
12

)︂
+ ℎ𝛼𝜙𝛼(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼) + 𝜓𝛼𝜕𝑥

(︂
ℎ5
𝛼𝜉𝑥𝑧,𝛼
720

)︂
+
ℎ3
𝛼𝜓𝛼
12

(𝜁𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜁𝑧𝑧,𝛼) +
ℎ2
𝛼𝜓𝛼
12

𝜏𝑥𝑧,𝛼𝜕𝑥ℎ𝛼
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− 𝜌𝑢−𝛼+1/2𝐾𝛼+1/2 + 𝜌𝑢+
𝛼−1/2𝐾𝛼−1/2 − 𝜌𝑤−𝛼+1/2𝐾𝑤,𝛼+1/2 + 𝜌𝑤+

𝛼−1/2𝐾𝑤,𝛼−1/2,

where 𝐾𝛼±1/2,𝐾𝑤,𝛼±1/2 are defined by (18) and 𝑢∓𝛼±1/2, 𝑤
∓
𝛼±1/2 by (8) and (11), respectively. We focus now

on the terms appearing at each layer Ω𝛼 when summing up 𝛼. In particular, when adding 𝑉𝛼 + 𝑉𝛼+1, it makes
appear the term

[𝑢]𝛼+1/2𝐾𝛼+1/2 + [𝑤]𝛼+1/2𝐾𝑤,𝛼+1/2.

Notice now that the definitions (18a) makes these jumps at the interfaces to be equally distributed to the upper
(Ω𝛼+1) and lower (Ω𝛼) layers.

Thus, the viscous term at each layer Ω𝛼 is divided as

𝑉𝛼 = 𝑉1,𝛼 + 𝑉2,𝛼,

where 𝑉1,𝛼 is the conservative term

𝜌 𝑉1,𝛼 = 𝜕𝑥

(︂
ℎ𝛼𝑢𝛼𝜏𝑥𝑥,𝛼 +

ℎ3
𝛼𝜆𝛼𝜁𝑥𝑥,𝛼

12
+ ℎ𝛼𝑤𝛼𝜏𝑥𝑧,𝛼 +

ℎ3
𝛼𝜙𝛼𝜁𝑥𝑧,𝛼

12
+
ℎ5
𝛼𝜓𝛼𝜉𝑥𝑧,𝛼

720

)︂
,

and 𝑉2,𝛼 collects the rest of terms, including those at the interfaces. This second term takes the form

𝜌 𝑉2,𝛼 = −ℎ
3
𝛼

12
(𝜁𝑥𝑥,𝛼𝜕𝑥𝜆𝛼 + 𝜁𝑧𝑧,𝛼𝜓𝛼)− ℎ3

𝛼𝜁𝑥𝑧,𝛼
12

(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)− ℎ5
𝛼𝜉𝑥𝑧,𝛼
720

𝜕𝑥𝜓𝛼

− 𝜏𝑥𝑥,𝛼

(︂
ℎ𝛼𝜕𝑥𝑢𝛼 − ℎ𝛼𝜆𝛼𝜕𝑥𝑧𝛼 −

[𝑢]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑢]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2

)︂
− 𝜏𝑧𝑧,𝛼

(︂
ℎ𝛼𝜙𝛼 +

[𝑤]𝛼+1/2 + [𝑤]𝛼−1/2

2

)︂
− 𝜏𝑥𝑧,𝛼

(︂
ℎ𝛼𝜆𝛼 +

[𝑢]𝛼+1/2 + [𝑢]𝛼−1/2

2

)︂
− 𝜏𝑥𝑧,𝛼

(︂
ℎ𝛼

(︂
𝜕𝑥𝑤𝛼 −

ℎ𝛼𝜓𝛼
12

𝜕𝑥ℎ𝛼

)︂
− ℎ𝛼𝜙𝛼𝜕𝑥𝑧𝛼 −

[𝑤]𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + [𝑤]𝛼−1/2𝜕𝑥𝑧𝛼−1/2

2

)︂
,

where we immediately recognize the definitions given for the derivatives [𝜕𝑥𝑢]𝛼, [𝜕𝑥𝑤]𝛼, [𝜕𝑧𝑢]𝛼 and [𝜕𝑧𝑤]𝛼 (see
(20)). It is now convenient to split 𝑉𝛼 as the sum

𝑉2,𝛼 = 𝑉2,𝑥𝑥,𝛼 + 𝑉2,𝑥𝑧,𝛼 + 𝑉2,𝑧𝑧,𝛼,

where each term on the right-hand side accounts for a component of the stress tensor. We can prove now, taking
into account the definition of the stress tensor components, that each of the previous addends gives us one of
the right-hand side terms in (32). Let us detail each of them. First, considering (22), we see that

𝜌𝑉2,𝑥𝑥,𝛼 = −ℎ
3
𝛼

12
𝜁𝑥𝑥,𝛼𝜕𝑥𝜆𝛼 − ℎ𝛼𝜏𝑥𝑥,𝛼[𝜕𝑥𝑢]𝛼

= −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

(︂
𝜏𝑥𝑥,𝛼 + 𝜁𝑥𝑥,𝛼(𝑧 − 𝑧𝛼) + 𝜉𝑥𝑥,𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂(︁
[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)

)︁
d𝑧

= −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑥,𝛼(𝑧)
(︁

[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)
)︁

d𝑧.

Second, with (26) we reach

𝜌𝑉2,𝑧𝑧,𝛼 = −ℎ
3
𝛼

12
𝜁𝑧𝑧,𝛼𝜓𝛼 − ℎ𝛼𝜏𝑧𝑧,𝛼[𝜕𝑧𝑤]𝛼

= −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

(︂
𝜏𝑧𝑧,𝛼 + 𝜁𝑧𝑧,𝛼(𝑧 − 𝑧𝛼) + 𝜉𝑧𝑧,𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂(︂
[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)

)︂
d𝑧
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= −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑧𝑧,𝛼(𝑧)
(︁

[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)
)︁

d𝑧.

Third, we obtain, thanks to (24),

𝜌𝑉2,𝑥𝑧,𝛼 = −ℎ
3
𝛼𝜁𝑥𝑧,𝛼
12

(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)− ℎ5
𝛼𝜉𝑥𝑧,𝛼
720

𝜕𝑥𝜓𝛼 − 𝜏𝑥𝑧,𝛼ℎ𝛼

(︁
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼

)︁
= −

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

(︂
𝜏𝑥𝑧,𝛼 + 𝜁𝑥𝑧,𝛼(𝑧 − 𝑧𝛼) + 𝜉𝑥𝑧,𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂
+ κ𝑖𝑗,𝛼

(︂
(𝑧 − 𝑧𝛼)3

3
− ℎ2

𝛼

20
(𝑧 − 𝑧𝛼)

)︂)︂
×
(︂

[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤] + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂
d𝑧

= −
∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼(𝑧)
(︂

[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤] + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂
d𝑧.

A special attention deserves the first layer Ω1, where we get the term

𝑢+
1/2𝐾1/2 + 𝑤+

1/2𝐾𝑤,1/2,

which using the non-penetration condition and the friction condition (18c), is written as the dissipative term

𝑢+
1/2

(︀
𝐾1/2 +𝐾𝑤,1/2𝜕𝑥𝑏

)︀
= −1

𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2(︁

𝑢+
1/2

)︁2

,

what concludes the proof. �

4.2. Second-order approximation of the stress tensor

We remind the reader that the main goal of this work is to extend the models presented in [15] to the Navier–
Stokes system. An important remark is the fact that, whereas the proposed models for Euler equations in the
previous work are second-order accurate in the vertical direction, a layerwise linear horizontal velocity is not
enough to ensure the second-order accuracy in the Navier–Stokes case.

Concretely, the vertical derivative of the horizontal velocity (𝜆𝛼) is layerwise constant. Then, we only get a
first-order approximation of 𝜏𝑥𝑧 = 𝜈𝑥𝑧(𝜕𝑧𝑢+ 𝜕𝑥𝑤)/2. In the next, we explain some strategies to overcome this
problem.

A first option is to develop a more complicated model considering a parabolic vertical profile for the horizontal
velocity. That would leads to a more complex model. An interesting second option is to keep the linear profile
of 𝑢𝛼 but improving only the approximation of 𝜏𝑥𝑧,𝛼 by using an external approximation. Let us develop this
second alternative in what follows.

Let us remark that the approximation in Ω𝛼 of the rest of components of 𝜏 do not need to be modified since
they already are second-order approximations of each component (𝜕𝑥𝑢𝛼 and 𝜕𝑧𝑤𝛼 are linear, and 𝜕𝑥𝑤𝛼 is a
parabolic function). The problem is the fact that here 𝜕𝑧𝑢𝛼 is constant. Then, in order to get a second-order
approximation of 𝜈𝑥𝑧,𝛼𝜕𝑧𝑢𝛼, we consider its Taylor expansion on 𝑧 = 𝑧𝛼:

(𝜈𝑥𝑧,𝛼𝜕𝑧𝑢𝛼)(𝑧) = (𝜈𝑥𝑧,𝛼𝜕𝑧𝑢𝛼)|𝑧=𝑧𝛼
+ (𝜕𝑧𝜈𝑥𝑧,𝛼𝜕𝑧𝑢𝛼 + 𝜈𝑥𝑧,𝛼𝜕𝑧𝑧𝑢𝛼)|𝑧=𝑧𝛼

(𝑧 − 𝑧𝛼) +𝒪
(︀
ℎ2
𝛼

)︀
.

Then, looking at (23) and taking into account that 𝜈1
𝑥𝑧,𝛼 = 𝜕𝑧𝜈𝑥𝑧,𝛼(𝑧)|𝑧=𝑧𝛼

, in order to get the second-order
approximation of 𝜏𝑥𝑧,𝛼 we need to include the term (𝜈𝑥𝑧,𝛼𝜕𝑧𝑧𝑢𝛼)|𝑧=𝑧𝛼

in the definition of 𝜁𝑥𝑧,𝛼. Thus, in this
case, the corrected stress tensor component, that we will denote by ̃︀𝜏𝑥𝑧,𝛼 hereinafter, is defined by (13) with
(24), where the term 𝜁𝑥𝑧,𝛼 is replaced by

̃︀𝜁𝑥𝑧,𝛼 = 𝜈1
𝑥𝑧,𝛼

2

(︂
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼 + ℎ2

𝛼

30 𝜕𝑥𝜓𝛼

)︂
+ 𝜈0

𝑥𝑧,𝛼

2 (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼 + ̃︀𝜒𝛼), (33a)
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being ̃︀𝜒𝛼 an external approximation of the second-order derivative of 𝑢𝛼. For instance, we can choose

̃︀𝜒𝛼 =
[𝜕𝑧𝑢]𝛼+1 − [𝜕𝑧𝑢]𝛼−1

ℎ𝛼 + 1
2 (ℎ𝛼+1 + ℎ𝛼−1)

for 𝛼 = 2, . . . , 𝑁 − 1, (33b)

where one should pay attention to the case 𝛼 = 1, 𝑁 . By simplicity, we consider here a second-order upwind
finite difference approximation. Note that model (30) and (31) does not change, just the definition of 𝜁𝑥𝑧,𝛼 must
be modified.

In this case, the model does not satisfy an exact dissipative balance as in Corollary 1. However, one can prove
that the term that is not controlled is proportional to ℎ3

𝛼. Concretely, this term written on the right-hand side
is

−ℎ3
𝛼𝜈

0
𝑥𝑧,𝛼

24
̃︀𝜒𝛼(𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼).

Taking into account that 𝐸𝛼 is proportional to ℎ𝛼, the corrected model, that uses (33), satisfies a dissipative
energy balance up to second order.

In Section 6 the key role of this correction will be shown for some well-known geophysical flows in simple
configurations.

4.3. Simplified model: LIN-NH1-STRESS

As showed in [15], simplified models can be deduced by simplifying the vertical profile of the vertical velocity
in the momentum conservation law. Remark that, in those models, this vertical profile is not simplified in the
incompressibility equation, as explained in that previous work. There, the cases of linear and constant vertical
velocity were presented and analysed. Two simplified non-hydrostatic models were presented, both satisfying
a dissipative energy balance. However, only the one with layerwise linear vertical velocity (actually 𝑢𝛼 ∈ P1,
𝑤𝛼 ∈ P1, 𝑞𝛼 ∈ P2), denoted there LIN-NH1 kept the good dispersive properties. Therefore, we present here the
extension of this model to the Navier–Stokes case, denoted here as LIN-NH1-STRESS.

For the sake of brevity we summarize here the main hypothesis of this model. The horizontal velocity is still
linear (see (7)) while the vertical velocity and the non-hydrostatic pressure at the layer Ω𝛼 are given in this
case by

𝑤𝛼(𝑧) = 𝑤𝛼 + 𝜙𝛼(𝑧 − 𝑧𝛼), for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2],

and

𝑞𝛼(𝑧) =
3𝑞𝛼 − ̂︀𝑞𝛼

2
+ 𝜋𝛼

𝑧 − 𝑧𝛼
ℎ𝛼

+ 6(̂︀𝑞𝛼 − 𝑞𝛼)
(𝑧 − 𝑧𝛼)2

ℎ2
𝛼

,

for 𝑧 ∈ [𝑧𝛼−1/2, 𝑧𝛼+1/2]. Note that this simplification of the vertical velocity makes the stress tensor components
to be also simplified. Let us consider the stress tensor in the form of Section 3.2. Namely, 𝜏𝑥𝑧,𝛼 and 𝜏𝑧𝑧,𝛼 are
now parabolic and linear, respectively, whereas 𝜏𝑥𝑥,𝛼 does not change its definition. Concretely, they are defined
by (13) with (24), (26) and taking κ𝑥𝑧,𝛼 = 𝜉𝑧𝑧,𝛼 = 0 and 𝜓𝛼 = 0. Let us detail them. Their profiles are

𝜏𝑥𝑧,𝛼(𝑧) = 𝜏𝑥𝑧,𝛼 + 𝜁𝑥𝑧,𝛼(𝑧 − 𝑧𝛼) + 𝜉𝑥𝑧,𝛼

(︃
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︃
,

𝜏𝑧𝑧,𝛼(𝑧) = 𝜏𝑧𝑧,𝛼 + 𝜁𝑧𝑧,𝛼(𝑧 − 𝑧𝛼), (34a)

with

𝜏𝑥𝑧,𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑥𝑧,𝛼(𝑧) d𝑧 =
𝜈0
𝑥𝑧,𝛼

2

(︁
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼

)︁
+
𝜈1
𝑥𝑧,𝛼ℎ

2
𝛼

24
𝜕𝑥𝜙𝛼,

𝜁𝑥𝑧,𝛼 =
𝜈1
𝑥𝑧,𝛼

2

(︁
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤]𝛼

)︁
+
𝜈0
𝑥𝑧,𝛼

2
𝜕𝑥𝜙𝛼,
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𝜉𝑥𝑧,𝛼 = 𝜈1
𝑥𝑧,𝛼𝜕𝑥𝜙𝛼, (34b)

and

𝜏𝑧𝑧,𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝜏𝑧𝑧,𝛼(𝑧) d𝑧 = 𝜈0
𝑧𝑧,𝛼[𝜕𝑧𝑤]𝛼,

𝜁𝑧𝑧,𝛼 = 𝜈1
𝑧𝑧,𝛼[𝜕𝑧𝑤]𝛼. (34c)

The final LIN-NH1-STRESS model is obtained analogously to the previous model, taking into account these
assumptions. However, it can also be deduced directly from (30) and (31) by making 𝜓𝛼 = 0, 𝜋𝛼 = 𝑞𝛼+1/2 −
𝑞𝛼−1/2 and removing the last equation in (30), and accordingly rewriting the constraints. It comprises 6L+1
equations and unknowns ({𝐻,𝑢𝛼, 𝜆𝛼, 𝑤𝛼, 𝜙𝛼, 𝑞𝛼, 𝑞𝛼−1/2} for 𝛼 = 1, . . . , 𝐿), and reads

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0, (35a)

𝜕𝑡(ℎ𝛼𝑢𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢

2
𝛼 +

ℎ3
𝛼𝜆

2
𝛼

12

)︂
+ |𝑔𝑧|ℎ𝛼𝜕𝑥(𝑧𝑏 +𝐻) + 𝜕𝑥(ℎ𝛼𝑞𝛼) = 𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 − 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

+ 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑥,𝛼
𝜌

)︂
+𝐾𝛼−1/2 −𝐾𝛼+1/2 + ̃︀𝑢𝛼−1/2Γ𝛼−1/2 − ̃︀𝑢𝛼+1/2Γ𝛼+1/2 (35b)

𝜕𝑡

(︂
ℎ2
𝛼𝜆𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜆𝛼𝑢𝛼

12
+
ℎ𝛼(𝑞𝛼+1/2 − 𝑞𝛼−1/2)

12

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑢𝛼 + 𝑞𝛼𝜕𝑥𝑧𝛼 = −
(𝑞𝛼+1/2 − 𝑞𝛼−1/2)

12
𝜕𝑥ℎ𝛼

+
1
2
(︀
𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑥,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑥,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑥,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑥𝑧,𝛼)

− 1
2
(︀
𝐾𝛼+1/2 +𝐾𝛼−1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜆𝛼

12
−
𝑢𝛼 − ̃︀𝑢𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜆𝛼

12
+
𝑢𝛼 − ̃︀𝑢𝛼+1/2

2

)︂
(35c)

𝜕𝑡(ℎ𝛼𝑤𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢𝛼𝑤𝛼 +

ℎ3
𝛼𝜙𝛼𝜆𝛼

12

)︂
= 𝑞𝛼−1/2 − 𝑞𝛼+1/2 + 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑧,𝛼
𝜌

)︂
+𝐾𝑤,𝛼−1/2 −𝐾𝑤,𝛼+1/2 + ̃︀𝑤𝛼−1/2Γ𝛼−1/2 − ̃︀𝑤𝛼+1/2Γ𝛼+1/2, (35d)

𝜕𝑡

(︂
ℎ2
𝛼𝜙𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜙𝛼𝑢𝛼

12

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑤𝛼 +
𝑞𝛼+1/2 + 𝑞𝛼−1/2

2
− 𝑞𝛼 = 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼

+
1
𝜌

(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)− 1
2
(︀
𝐾𝑤,𝛼−1/2 +𝐾𝑤,𝛼+1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜙𝛼

12
−
𝑤𝛼 − ̃︀𝑤𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜙𝛼

12
+
𝑤𝛼 − ̃︀𝑤𝛼+1/2

2

)︂
, (35e)

for 𝛼 = 1, . . . , 𝐿, with the velocities at the interfaces

̃︀𝑢𝛼+1/2 =
𝑢𝛼 + 𝑢𝛼+1

2
− ℎ𝛼+1𝜆𝛼+1 − ℎ𝛼𝜆𝛼

4
, ̃︀𝑤𝛼+1/2 =

𝑤𝛼 + 𝑤𝛼+1

2
− ℎ𝛼+1𝜙𝛼+1 − ℎ𝛼𝜙𝛼

4
,

combined with the following constraints, where 𝜓𝛼 = −𝜕𝑥𝜆𝛼 has been replaced on the averaged incompressibility
in (31), ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜙𝛼 = −𝜕𝑥𝑢𝛼 + 𝜆𝛼𝜕𝑥𝑧𝛼, 𝛼 = 1, . . . , 𝐿,

𝑤𝛼+1 − ℎ𝛼+1𝜙𝛼+1
2 − ℎ2

𝛼+1
12 𝜕𝑥𝜆𝛼+1 − 𝑤𝛼 − ℎ𝛼𝜙𝛼

2 + ℎ2
𝛼

12 𝜕𝑥𝜆𝛼

=
(︁
𝑢𝛼+1 − ℎ𝛼+1𝜆𝛼+1

2 − 𝑢𝛼 − ℎ𝛼𝜆𝛼

2

)︁
𝜕𝑥𝑧𝛼+1/2, 𝛼 = 1, . . . , 𝐿− 1,

𝜕𝑥𝑢1 − 𝜆1𝜕𝑥𝑧1 − ℎ1
6 𝜕𝑥𝜆1 +

𝑤1−𝑤+
1/2

ℎ1/2
= 0.

(36)
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This model also satisfies a dissipative energy balance, whose proof is analogous to that of Theorem 1:

Theorem 2. Let us consider the LIN-NH1-STRESS model ((35), (36)), with the stress tensor components
defined by (22) and (34), and the terms 𝐾𝛼±1/2,𝐾𝑤,𝛼±1/2 given by (18). The following dissipative energy balance
is satisfied

𝜕𝑡

(︃
𝑁∑︁
𝛼=1

𝐸𝛼

)︃
+ 𝜕𝑥

[︃
𝑁∑︁
𝛼=1

(︂
𝑢𝛼

(︂
𝐸𝛼 + |𝑔𝑧|ℎ𝛼

ℎ

2
+
ℎ3
𝛼𝜆

2
𝛼

12
+ ℎ𝛼𝑞𝛼

)︂
+
ℎ3
𝛼𝜆𝛼𝜙𝛼𝑤𝛼

12
+
ℎ2
𝛼𝜆𝛼

(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
12

− 1
𝜌

(︂
ℎ𝛼𝑢𝛼𝜏𝑥𝑥,𝛼 +

ℎ3
𝛼𝜆𝛼𝜁𝑥𝑥,𝛼

12
+ ℎ𝛼𝑤𝛼𝜏𝑥𝑧,𝛼 +

ℎ3
𝛼𝜙𝛼𝜁𝑥𝑧,𝛼

12

)︂)︂]︂
≤ −1

𝜌

𝑁∑︁
𝛼=1

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

[︂(︀
𝜈0
𝑥𝑥,𝛼 + 𝜈1

𝑥𝑥,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)
)︁2

+
(︀
𝜈0
𝑧𝑧,𝛼 + 𝜈1

𝑧𝑧,𝛼(𝑧 − 𝑧𝛼)
)︀(︁

[𝜕𝑧𝑤]𝛼
)︁2

+

(︀
𝜈0
𝑥𝑧,𝛼+ 𝜈1

𝑥𝑧,𝛼(𝑧 − 𝑧𝛼)
)︀

2

(︁
[𝜕𝑧𝑢]𝛼+ [𝜕𝑥𝑤]+ 𝜕𝑥𝜙𝛼(𝑧 − 𝑧𝛼)

)︁2
]︂

d𝑧− 1
𝜌

(︂
𝛽0+

𝛽1

|𝑈 |

)︂(︁
1+ (𝜕𝑥𝑏)

2
)︁3/2(︁

𝑢+
1/2

)︁2

where

𝐸𝛼 := ℎ𝛼

(︃
𝑢2
𝛼 + 𝑤2

𝛼

2
+

(ℎ𝛼𝜆𝛼)2 + (ℎ𝛼𝜙𝛼)2

24
+ |𝑔𝑧|

(︂
𝑧𝑏 +

ℎ

2

)︂)︃
·

4.4. Compact form of LIN-NH𝑘-STRESS models

The models presented in this work have to be analyzed before discretizing them. For instance, the ideas of
[14], where a multilayer model with hydrostatic pressure, layerwise constant velocity and a simpler definition of
the viscous terms is considered, may be followed to study the global stability of weak solutions. It is also useful to
study the structure of the resulting PDE systems, especially in order to address their numerical approximation.
In this subsection we rewrite the LIN-NH2-STRESS model in a compact way. The LIN-NH1-STRESS model is
also written in this compact form as a particular case, as we explain at the end of this subsection.

Let us consider the notation introduced in [15],

Λ𝛼 =
ℎ𝛼𝜆𝛼

2
√

3
, Φ𝛼 =

ℎ𝛼𝜙𝛼

2
√

3
, Ψ𝛼 =

ℎ2
𝛼𝜓𝛼

12
√

5
,

and we set the following notation for the stress tensor components,

𝒵𝑥𝑥,𝛼 =
ℎ𝛼𝜁𝑥𝑥,𝛼

2
√

3
, 𝒵𝑥𝑧,𝛼 =

ℎ𝛼𝜁𝑥𝑧,𝛼

2
√

3
, ℛ𝑥𝑧,𝛼 =

ℎ𝛼𝜉𝑥𝑧,𝛼

12
√

5
·

Then, system (30) and constraints (31) may be written in the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0,

𝜕𝑡(ℎ𝛼X𝛼) + 𝜕𝑥(ℎ𝛼X𝛼𝑢𝛼) + F𝛼 +∇NHQ𝛼 = S𝛼𝜕𝑥(𝑧𝑏 +𝐻) + 𝜕𝑥D𝜏,𝛼

+ Γ𝛼+1/2G+
𝛼 − Γ𝛼−1/2G−

𝛼 + G+
𝜏,𝛼 −G−

𝜏,𝛼,

∇NH ·X𝛼 = 0,

where the vectors of unknowns are

X𝛼 = (𝑢𝛼,Λ𝛼, 𝑤𝛼,Φ𝛼,Ψ𝛼)′, Q𝛼 =
(︀
𝑞𝛼, 𝑞𝛼−1/2, 𝜋𝛼

)︀′
,
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the vectors F𝛼, S𝛼 and G±
𝛼 are defined as in [15] for LIN-NH2 model, i.e. S𝛼 = (−𝑔ℎ𝛼, 0, 0, 0, 0)′,

F𝛼 =

⎛⎜⎜⎜⎜⎜⎝
𝜕𝑥
(︀
ℎ𝛼Λ2

𝛼

)︀
ℎ𝛼Λ𝛼𝜕𝑥𝑢𝛼
𝜕𝑥(ℎ𝛼Λ𝛼Φ𝛼)

2
√

5
5 𝜕𝑥(ℎ𝛼Λ𝛼Ψ𝛼)− 2

√
3Ψ2

𝛼 + ℎ𝛼Λ𝛼𝜕𝑥𝑤𝛼 + 2
√

5
5 Λ𝛼Ψ𝛼𝜕𝑥ℎ𝛼

2
√

5
5 𝜕𝑥(ℎ𝛼Λ𝛼Φ𝛼)− 6

√
5

5 Λ𝛼Φ𝛼𝜕𝑥ℎ𝛼 + 6
√

3Φ𝛼Ψ𝛼

⎞⎟⎟⎟⎟⎟⎠,

G±
𝛼 =

⎛⎜⎜⎜⎜⎜⎝
−̃︀𝑢𝛼±1/2

Λ𝛼 ±
√

3
(︀
𝑢𝛼 − ̃︀𝑢𝛼±1/2

)︀
− ̃︀𝑤𝛼±1/2

Φ𝛼 ±
√

3
(︀
𝑤𝛼 − ̃︀𝑤𝛼±1/2

)︀
2Ψ𝛼 ±

√
15Φ𝛼 +

√
5
(︀
𝑤𝛼 − ̃︀𝑤𝛼±1/2

)︀

⎞⎟⎟⎟⎟⎟⎠,

and the terms related to the stress tensor components are defined as follows:

D𝜏,𝛼 =
1
𝜌

⎛⎜⎜⎜⎜⎝
ℎ𝛼𝜏𝑥𝑥,𝛼
ℎ𝛼𝒵𝑥𝑥,𝛼
ℎ𝛼𝜏𝑥𝑧,𝛼
ℎ𝛼𝒵𝑥𝑧,𝛼
ℎ𝛼ℛ𝑥𝑧,𝛼

⎞⎟⎟⎟⎟⎠, G±
𝜏,𝛼 =

1
𝜌

⎛⎜⎜⎜⎜⎜⎝
−𝜌𝐾𝛼±1/2

𝒵𝑥𝑥,𝛼𝜕𝑥𝑧𝛼±1/2 ±
√

3
(︀
(𝜏𝑥𝑥,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑥𝑧,𝛼)− 𝜌𝐾𝛼±1/2

)︀
−𝜌𝐾𝑤,𝛼±1/2

𝒵𝑥𝑧,𝛼𝜕𝑥𝑧𝛼±1/2 ±
√

3
(︀
(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)− 𝜌𝐾𝑤,𝛼±1/2

)︀
2ℛ𝑥𝑧,𝛼 ±

√
15(𝒵𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 −𝒵𝑧𝑧,𝛼) +

√
5
(︀
𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼±1/2 − 𝜌𝐾𝑤,𝛼±1/2

)︀

⎞⎟⎟⎟⎟⎟⎠,

where (𝜕𝑥D𝜏,𝛼) corresponds to diffusive terms, with second order derivatives of the velocity components in the
case of a viscous stress tensor (see Sect. 3.2). G±

𝜏,𝛼 is the momentum transference terms between the layers
related to the stress tensor approximation. Actually, one may observe the similar structure of vectors G±

𝜏,𝛼 and
G±
𝛼 , corresponding the latter to the momentum transference associated to convective terms.
Concerning non-hydrostatic contributions, as stated in [15],∇NHQ𝛼 and∇NH ·X𝛼 are the following operators:

∇NHQ𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜕𝑥(ℎ𝛼𝑞𝛼)− (𝛿(𝑞𝜕𝑥𝑧))𝛼√
3

5

[︁
𝜕𝑥

(︁
ℎ𝛼

(︁
(𝛿𝑞)𝛼

2 + 𝜋𝛼

3

)︁)︁
+ 10𝑞𝛼𝜕𝑥𝑧𝛼 +

(︁
(𝛿𝑞)𝛼

2 + 𝜋𝛼

3

)︁
𝜕𝑥ℎ𝛼 − 10(̂𝑞𝜕𝑥𝑧)𝛼

]︁
(𝛿𝑞)𝛼

2
√

3(̂︀𝑞𝛼 − 𝑞𝛼)
2
√

5
5 ((𝛿𝑞)𝛼 − 𝜋𝛼)

⎞⎟⎟⎟⎟⎟⎟⎠,

for 𝛼 ∈ {1, . . . , 𝐿},

∇NH ·X𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ𝛼𝜕𝑥𝑢𝛼 + 2
√

3Φ𝛼 − 2
√

3Λ𝛼𝜕𝑥𝑧𝛼

𝑤𝛼 − 𝑤𝛼−1 − (𝑢𝛼 − 𝑢𝛼−1)𝜕𝑥𝑧𝛼−1/2 −
√

3(Φ𝛼 + Φ𝛼−1)

+ 2
√

5
5 (Ψ𝛼 −Ψ𝛼−1) +

√
3(Λ𝛼 + Λ𝛼−1)𝜕𝑥𝑧𝛼−1/2

+
√

3
10 (Λ𝛼𝜕𝑥ℎ𝛼 − ℎ𝛼𝜕𝑥Λ𝛼 − Λ𝛼−1𝜕𝑥ℎ𝛼−1 + ℎ𝛼−1𝜕𝑥Λ𝛼−1)

1
5

[︁
2
√

5Ψ𝛼 +
√

3
3 (ℎ𝛼𝜕𝑥Λ𝛼 − Λ𝛼𝜕𝑥ℎ𝛼)

]︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for 𝛼 ∈ {2, . . . , 𝐿} and

∇NH ·X1 =

⎛⎜⎜⎝
ℎ1𝜕𝑥𝑢1 + 2

√
3Φ1 − 2

√
3Λ1𝜕𝑥𝑧1

𝑤1 − 𝑢1𝜕𝑥𝑧𝑏 +
√

3(Λ1𝜕𝑥𝑧𝑏 − Φ1) +
√

3
10 (Λ1𝜕𝑥ℎ1 − ℎ1𝜕𝑥Λ1) + 2

√
5

5 Ψ1

2
√

5
5 Ψ1 +

√
3

15 (ℎ1𝜕𝑥Λ1 − Λ1𝜕𝑥ℎ1)

⎞⎟⎟⎠,
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These definitions of the NH-gradient and the NH-divergence operators satisfy the duality relation

𝐿∑︁
𝛼=1

X𝛼 · (∇NHQ𝛼) = −
𝐿∑︁
𝛼=1

Q𝛼 · (∇NH ·X𝛼) + 𝜕𝑥

(︃
𝐿∑︁
𝛼=1

ℎ𝛼

[︃
𝑞𝛼𝑢𝛼 +

√
3

5
Λ𝛼

(︂
(𝛿𝑞)𝛼

2
+
𝜋𝛼
3

)︂]︃)︃
. (38)

Notice that LIN-NH1-STRESS model may be also written in a compact form. For the vectors of unknowns X𝛼

and Q𝛼, and the vectors related to the stress tensor, D𝜏,𝛼 and G±
𝜏,𝛼, the last component is removed. The rest

of vectors are defined as in [15] for LIN-NH1 model.

Remark 2. Concerning the numerical approximation of non-hydrostatic layer-averaged models, in [17] authors
introduced a specific method for LDNH models (see [23]), which consider a layerwise constant horizontal velocity
to approximate Euler system. It consists of a projection method based on a duality relation, which is similar to
(38). In principle, the method introduced there could be adapted to the LIN-NH𝑘-STRESS models, combining
it with an appropriate discretization of the viscous terms. However, it deserves especial attention and will be
addressed in the future.

5. Layer-averaged models based on asymptotic analysis

In this section we derive several layer-averaged models that approximate the Navier–Stokes system, for
different orders of approximation in the shallow parameter 𝜀. It is motivated by the application of these models
to geophysical flows. In particular, we consider here the usual asymptotic hypothesis for dry granular flows (see
e.g. [19, 30]), although any other could be chosen in principle.

We define the parameter 𝜀 = ℋ/𝐿, where ℋ and 𝐿 are the characteristic height and length of the domain,
respectively. The shallow water hypothesis considers the ratio 𝜀≪ 1, which implies that vertical variations are
less important than horizontal ones. Denoting by 𝜌0 and 𝑈 the characteristic density and velocity, and with
tildes (̃︀) the non-dimensional variables, we consider

(𝑥, 𝑧, 𝑡) =
(︀
𝐿̃︀𝑥,ℋ̃︀𝑧, (𝐿/𝑈)̃︀𝑡)︀, 𝐻 = ℋ ̃︀𝐻, 𝜌 = 𝜌0̃︀𝜌, (𝑢,𝑤) = (𝑈̃︀𝑢, 𝜀𝑈 ̃︀𝑤),

𝑝 = 𝜌0𝑈
2̃︀𝑝, (𝜏𝑥𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑧) = 𝜌0𝑈

2(𝜀̃︁𝜏𝑥𝑥, ̃︁𝜏𝑥𝑧, 𝜀̃︁𝜏𝑧𝑧).
Furthermore, by defining the Froude number 𝐹𝑟 = 𝑈2/

√︀
|𝑔𝑧|ℋ (𝐹𝑟 = 𝑈2/

√
𝑔ℋ in Cartesian and 𝐹𝑟 =

𝑈2/
√
𝑔 cos 𝜃ℋ in local coordinates), the pressure is decomposed as

̃︀𝑝 = ̃︀𝜌(︂ 1
𝐹𝑟2

(︁̃︀𝑏+ ̃︀𝐻 − ̃︀𝑧)︁+ 𝜀̃︀𝑞)︂,
where the non-hydrostatic counterpart is supposed to be small with respect to the hydrostatic one. Finally, we
assume a flow regime where |𝑔𝑥|/

(︀
𝐹𝑟2|𝑔𝑧|

)︀
∼ 𝒪(1).

The non-dimensional form of the Navier–Stokes system (1) reads (tildes are dropped for the sake of simplicity)⎧⎪⎨⎪⎩
𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜀
(︀
𝜕𝑡𝑢+ 𝜕𝑥

(︀
𝑢2
)︀

+ 𝜕𝑧(𝑢𝑤)
)︀

+ 𝜀
𝐹𝑟2 𝜕𝑥(𝑏+𝐻) + 𝜀2𝜕𝑥𝑞 = 𝑔𝑥

𝐹𝑟2|𝑔𝑧| + 1
𝜌

(︀
𝜀2𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑧𝜏𝑥𝑧

)︀
,

𝜀2
(︀
𝜕𝑡𝑤 + 𝜕𝑥(𝑢𝑤) + 𝜕𝑧

(︀
𝑤2
)︀)︀

+ 𝜀𝜕𝑧𝑞 = 𝜀
𝜌 (𝜕𝑥𝜏𝑥𝑧 + 𝜕𝑧𝜏𝑧𝑧),

(39a)

where the hydrostatic pressure has been cancelled with the gravitational force in the vertical momentum equa-
tion. Now, the layer-averaging approach is applied to the previous system, as it is done in Section 4, and the
following non-dimensional layer-averaged system is reached:

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0, (40a)
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𝜀

[︂
𝜕𝑡(ℎ𝛼𝑢𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢

2
𝛼 +

ℎ3
𝛼𝜆

2
𝛼

12

)︂]︂
+

𝜀

𝐹𝑟2
ℎ𝛼𝜕𝑥(𝑏+𝐻) + 𝜀2𝜕𝑥(ℎ𝛼𝑞𝛼) =

𝑔𝑥ℎ𝛼
𝐹𝑟2|𝑔𝑧|

+ 𝜀2
(︀
𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 − 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
+ 𝜀2𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑥,𝛼
𝜌

)︂
+ 𝜀
(︀
𝐾𝜀,𝛼−1/2 −𝐾𝜀,𝛼+1/2

)︀
+ 𝜀
(︀̃︀𝑢𝛼−1/2Γ𝛼−1/2 − ̃︀𝑢𝛼+1/2Γ𝛼+1/2

)︀
, (40b)

𝜀𝜕𝑡

(︂
ℎ2
𝛼𝜆𝛼
12

)︂
+ 𝜕𝑥

[︃
𝜀
ℎ2
𝛼𝜆𝛼𝑢𝛼

12
+ 𝜀2

(︃
ℎ𝛼
(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
20

+
ℎ𝛼𝜋𝛼

30

)︃]︃
+ 𝜀

ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑢𝛼 + 𝜀2𝑞𝛼𝜕𝑥𝑧𝛼

= −𝜀2
(︃(︀

𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
20

+
𝜋𝛼
30

)︃
𝜕𝑥ℎ𝛼 +

𝜀2

2
(︀
𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
+ 𝜀2𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑥,𝛼
12𝜌

)︂
+ 𝜀2

ℎ𝛼𝜁𝑥𝑥,𝛼
12𝜌

𝜕𝑥ℎ𝛼 +
1
𝜌

(︀
𝜀2𝜏𝑥𝑥,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑥𝑧,𝛼

)︀
− 𝜀

2
(︀
𝐾𝜀,𝛼+1/2 +𝐾𝜀,𝛼−1/2

)︀
− 𝜀Γ𝛼−1/2

(︂
ℎ𝛼𝜆𝛼

12
−
𝑢𝛼 − ̃︀𝑢𝛼−1/2

2

)︂
+ 𝜀Γ𝛼+1/2

(︂
ℎ𝛼𝜆𝛼

12
+
𝑢𝛼 − ̃︀𝑢𝛼+1/2

2

)︂
, (40c)

𝜀2
[︂
𝜕𝑡(ℎ𝛼𝑤𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢𝛼𝑤𝛼 +

ℎ3
𝛼𝜙𝛼𝜆𝛼

12

)︂]︂
= 𝜀
(︀
𝑞𝛼−1/2 − 𝑞𝛼+1/2

)︀
+ 𝜀𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑧,𝛼
𝜌

)︂
+ 𝜀
(︀
𝐾𝜀,𝑤,𝛼−1/2 −𝐾𝜀,𝑤,𝛼+1/2

)︀
+ 𝜀2

(︀ ̃︀𝑤𝛼−1/2Γ𝛼−1/2 − ̃︀𝑤𝛼+1/2Γ𝛼+1/2

)︀
, (40d)

𝜀2
[︂
𝜕𝑡

(︂
ℎ2
𝛼𝜙𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜙𝛼𝑢𝛼

12
+
ℎ4
𝛼𝜆𝛼𝜓𝛼
360

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑤𝛼 −
ℎ4
𝛼𝜓

2
𝛼

720
+
ℎ3
𝛼𝜆𝛼𝜓𝛼
360

𝜕𝑥ℎ𝛼

]︂
+ 𝜀

(︂
𝑞𝛼+1/2 + 𝑞𝛼−1/2

2
− 𝑞𝛼

)︂
= 𝜀

[︂
𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)
]︂
− 𝜀

2
(︀
𝐾𝜀,𝑤,𝛼−1/2 +𝐾𝜀,𝑤,𝛼+1/2

)︀
− 𝜀2Γ𝛼−1/2

(︂
ℎ𝛼𝜙𝛼

12
−
𝑤𝛼 − ̃︀𝑤𝛼−1/2

2

)︂
+ 𝜀2Γ𝛼+1/2

(︂
ℎ𝛼𝜙𝛼

12
+
𝑤𝛼 − ̃︀𝑤𝛼+1/2

2

)︂
, (40e)

𝜀2
[︂
𝜕𝑡

(︂
ℎ3
𝛼𝜓𝛼
720

)︂
+ 𝜕𝑥

(︂
ℎ3
𝛼𝜓𝛼𝑢𝛼
720

+
ℎ3
𝛼𝜙𝛼𝜆𝛼
360

)︂
− ℎ2

𝛼𝜆𝛼𝜙𝛼
120

𝜕𝑥ℎ𝛼 +
ℎ3
𝛼𝜓𝛼𝜙𝛼
240

]︂
+ 𝜀

(𝑞𝛼+1/2 − 𝑞𝛼−1/2)− 𝜋𝛼

30

= 𝜀𝜕𝑥

(︂
ℎ3
𝛼𝜉𝑥𝑧,𝛼
720𝜌

)︂
+ 𝜀

ℎ2
𝛼𝜉𝑥𝑧,𝛼
360𝜌

𝜕𝑥ℎ𝛼 + 𝜀
ℎ𝛼
12𝜌

(𝜁𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜁𝑧𝑧,𝛼) + 𝜀
𝜏𝑥𝑧,𝛼
12𝜌

𝜕𝑥ℎ𝛼

− 𝜀

12
(︀
𝐾𝜀,𝑤,𝛼+1/2 −𝐾𝜀,𝑤,𝛼−1/2

)︀
− 𝜀2Γ𝛼−1/2

(︂
ℎ2
𝛼𝜓𝛼
360

− ℎ𝛼𝜙𝛼
24

+
𝑤𝛼 − ̃︀𝑤𝛼−1/2

12

)︂
+ 𝜀2Γ𝛼+1/2

(︂
ℎ2
𝛼𝜓𝛼
360

+
ℎ𝛼𝜙𝛼

24
+
𝑤𝛼 − ̃︀𝑤𝛼+1/2

12

)︂
, (40f)

for 𝛼 = 1, . . . , 𝐿, combined with the set constraints (31) written in non-dimensional form. In the previous
system, the viscous terms at the interfaces are

𝐾𝜀,𝛼+1/2 =
1
𝜌

(︂
𝜀
𝜏𝑥𝑥,𝛼 + 𝜏𝑥𝑥,𝛼+1

2
𝜕𝑥𝑧𝛼+1/2 −

1
𝜀

𝜏𝑥𝑧,𝛼 + 𝜏𝑥𝑧,𝛼+1

2

)︂
,

𝐾𝜀,𝑤,𝛼+1/2 =
1
𝜌

(︂
𝜏𝑥𝑧,𝛼 + 𝜏𝑥𝑧,𝛼+1

2
𝜕𝑥𝑧𝛼+1/2 −

𝜏𝑧𝑧,𝛼 + 𝜏𝑧𝑧,𝛼+1

2

)︂
.

In the next, we see how several layer-averaged models approximating system (1) are deduced, depending on
the order of approximation in 𝜀 that is considered in the layer-averaged system (40). Let us notice that all the
models presented in the next subsections satisfy an energy balance.
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5.1. Fully non-hydrostatic pressure systems

When considering the full system without simplifications, we obtain the models presented in Section 4. Such
systems are fully non-hydrostatic models, and they are the more general cases in the framework of the asymptotic
analysis. Thus, when no simplifications are made in system (40), we recover system LIN-NH2-STRESS ((30),
(31)) once we come back to dimensional variables. Similarly, we could perform the layerwise lineal vertical
velocity case in the layer-averaging procedure and we would obtain system LIN-NH1-STRESS ((35), (36)).

5.2. Systems with viscous dependent pressure: LIN-H-STRESS

Here we see the following level in the asymptotic analysis to obtain a model that approximates the Navier–
Stokes system with a dissipative energy balance. It consists of neglecting terms up to order 𝜀2 in the vertical
momentum equation in (40),

Thus, from the equations related to the vertical velocity variables (𝑤𝛼, 𝜙𝛼𝜓𝛼) in (40), we obtain (in dimen-
sional variables)

𝑞𝛼+1/2 − 𝑞𝛼−1/2 = 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑧,𝛼
𝜌

)︂
+𝐾𝑤,𝛼−1/2 −𝐾𝑤,𝛼+1/2,

𝑞𝛼+1/2 + 𝑞𝛼−1/2

2
− 𝑞𝛼 = 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)− 1
2
(︀
𝐾𝑤,𝛼−1/2 +𝐾𝑤,𝛼+1/2

)︀
,(︀

𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
− 𝜋𝛼

30
= 𝜕𝑥

(︂
ℎ3
𝛼𝜉𝑥𝑧,𝛼
720𝜌

)︂
+
ℎ2
𝛼𝜉𝑥𝑧,𝛼
360𝜌

𝜕𝑥ℎ𝛼 +
ℎ𝛼
12𝜌

(𝜁𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜁𝑧𝑧,𝛼) +
𝜏𝑥𝑧,𝛼
12𝜌

𝜕𝑥ℎ𝛼

− 1
12
(︀
𝐾𝑤,𝛼+1/2 −𝐾𝑤,𝛼−1/2

)︀
. (41)

These expressions allow us to write the non-hydrostatic terms in the model in terms of the stress tensor
components. From the first equation, taking into account that 𝑞𝑁+1/2 = 0, we find the value of 𝑞𝛼−1/2, for
𝛼 = 𝐿,𝐿− 1, . . . , 1, which are used to obtain

𝑞𝛼 = −

⎛⎝ 𝑁∑︁
𝛽=𝛼+1

𝜕𝑥

(︂
ℎ𝛽𝜏𝑥𝑧,𝛽

𝜌

)︂
+ 𝜕𝑥

(︂
ℎ𝛼𝜏𝑥𝑧,𝛼

2𝜌

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼 + 𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼

⎞⎠.
Then, it is used in the second equation in (40) to write the non-hydrostatic terms (on the right-hand side) as

𝑄𝑢 = −𝜕𝑥(ℎ𝛼𝑞𝛼) + 𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 − 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2 = 𝜕𝑥𝑥

(︂
ℎ3
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+ 𝑧𝛼+1/2

𝑁∑︁
𝛽=𝛼+1

𝜕𝑥𝑥

(︂
ℎ𝛽𝜏𝑥𝑧,𝛽

𝜌

)︂

− 𝑧𝛼−1/2

𝑁∑︁
𝛽=𝛼

𝜕𝑥𝑥

(︂
ℎ𝛽𝜏𝑥𝑧,𝛽

𝜌

)︂
+ 𝜕𝑥𝑥

(︂
ℎ𝛼𝜏𝑥𝑧,𝛼

𝜌
𝑧𝛼

)︂
− 𝜕𝑥

(︂
ℎ𝛼𝜏𝑧𝑧,𝛼

𝜌

)︂
+𝐾𝑤,𝛼−1/2𝜕𝑥𝑧𝛼−1/2

−𝐾𝑤,𝛼+1/2𝜕𝑥𝑧𝛼+1/2. (42)

Moreover, defining

𝑄𝜆,1 =
(𝑞𝛼+1/2 − 𝑞𝛼−1/2)

20
+
𝜋𝛼
30

= −𝜕𝑥
(︂
ℎ3
𝛼𝜉𝑥𝑧,𝛼
720𝜌

)︂
− ℎ2

𝛼𝜉𝑥𝑧,𝛼
360𝜌

𝜕𝑥ℎ𝛼 −
ℎ𝛼
12𝜌

(𝜁𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜁𝑧𝑧,𝛼) + ℎ𝛼𝜕𝑥

(︂
𝜏𝑥𝑧,𝛼
12𝜌

)︂
,

and

𝑄𝜆,2 = −𝑞𝛼𝜕𝑥𝑧𝛼 +
1
2
(︀
𝑞𝛼+1/2𝜕𝑥𝑧𝛼+1/2 + 𝑞𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
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= 𝜕𝑥

(︂
ℎ𝛼𝜏𝑥𝑧,𝛼

4𝜌

)︂
𝜕𝑥ℎ𝛼 +

(︂
𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑧,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑧,𝛼

12𝜌
𝜕𝑥ℎ𝛼 +

1
𝜌

(𝜏𝑥𝑧,𝛼𝜕𝑥𝑧𝛼 − 𝜏𝑧𝑧,𝛼)
)︂
𝜕𝑥𝑧𝛼

− 1
2
(︀
𝐾𝑤,𝛼+1/2𝜕𝑥𝑧𝛼+1/2 +𝐾𝑤,𝛼−1/2𝜕𝑥𝑧𝛼−1/2

)︀
,

the non-hydrostatic contribution in the third equation in (on the right-hand side) is

−𝜕𝑥(ℎ𝛼𝑄𝜆,1)−𝑄𝜆,1𝜕𝑥ℎ𝛼 +𝑄𝜆,2.

Thus, we get the system LIN-H-STRESS, which reads (in dimensional form)

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0, (43a)

𝜕𝑡(ℎ𝛼𝑢𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢

2
𝛼 +

ℎ3
𝛼𝜆

2
𝛼

12

)︂
+ |𝑔𝑧|ℎ𝛼𝜕𝑥(𝑧𝑏 +𝐻) = 𝑄𝑢 + 𝜕𝑥

(︂
ℎ𝛼
𝜏𝑥𝑥,𝛼
𝜌

)︂
+𝐾𝛼−1/2 −𝐾𝛼+1/2

+ ̃︀𝑢𝛼−1/2Γ𝛼−1/2 − ̃︀𝑢𝛼+1/2Γ𝛼+1/2, (43b)

𝜕𝑡

(︂
ℎ2
𝛼𝜆𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜆𝛼𝑢𝛼

12

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑢𝛼 = −𝜕𝑥(ℎ𝛼𝑄𝜆,1)−𝑄𝜆,1𝜕𝑥ℎ𝛼 +𝑄𝜆,2 + 𝜕𝑥

(︂
ℎ2
𝛼𝜁𝑥𝑥,𝛼
12𝜌

)︂
+
ℎ𝛼𝜁𝑥𝑥,𝛼

12𝜌
𝜕𝑥ℎ𝛼

+
𝜏𝑥𝑥,𝛼
𝜌

𝜕𝑥𝑧𝛼 −
𝜏𝑥𝑧,𝛼
𝜌

− 1
2
(︀
𝐾𝛼+1/2 +𝐾𝛼−1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜆𝛼

12
−
𝑢𝛼 − ̃︀𝑢𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜆𝛼

12
+
𝑢𝛼 − ̃︀𝑢𝛼+1/2

2

)︂
, (43c)

for 𝛼 = 1, . . . , 𝑁 . Notice that the vertical velocity is not an unknown of the model, therefore, it is computed
from the incompressibility condition as

𝑤𝛼(𝑧) = 𝑤𝛼 + (−𝜕𝑥𝑢𝛼 + 𝜆𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼)− 𝜕𝑥𝜆𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂
, (44)

where

𝑤𝛼 = 𝑢𝛼𝜕𝑥𝑧𝛼 −
𝛼−1∑︁
𝛽=1

𝜕𝑥(ℎ𝛽𝑢𝛽)− 𝜕𝑥(ℎ𝛼𝑢𝛼)
2

+ 𝜕𝑥

(︂
ℎ2
𝛼𝜆𝛼
8

)︂
− ℎ2

𝛼

24
𝜕𝑥𝜆𝛼.

Let us remark that it is no more than the layer-integrated incompressibility condition together with the profile
of 𝑤𝛼(𝑧) (10) and restrictions (12).

It is worth noticing that we have obtained system (43) by means of some simplifications, related to the
shallowness parameter (𝜀), in our layer-averaged LIN-NH2-STRESS model. However, it has not been proven
that this model (43) is a layer-averaged approximation of the corresponding continuous model with viscous
dependent pressure. Actually, it holds. Let us detail it. Consider now model (39) and keep first-order terms in
the vertical momentum equation (39a), therefore neglecting the vertical acceleration. That is, 𝐷𝑡𝑤, the material
derivative of the vertical velocity, is neglected. In that case, we get the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜀
(︀
𝜕𝑡𝑢+ 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤)

)︀
+

𝜀

𝐹𝑟2
𝜕𝑥(𝑏+ ℎ) + 𝜀2𝜕𝑥𝑞 =

𝑔𝑥
𝐹𝑟2|𝑔𝑧|

+
1
𝜌

(︀
𝜀2𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑧𝜏𝑥𝑧

)︀
,

𝜀𝜕𝑧𝑞 =
𝜀

𝜌
(𝜕𝑥𝜏𝑥𝑧 + 𝜕𝑧𝜏𝑧𝑧).

(45a)

(45b)

Now, equation (45b) is integrated in 𝑧 and its result is put in the horizontal momentum equation (45a). It gives

𝜀
(︀
𝜕𝑡𝑢+ 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤)

)︀
+

𝜀

𝐹𝑟2
𝜕𝑥(𝑏+ ℎ) =

𝑔𝑥
𝐹𝑟2|𝑔𝑧|

+ 𝜀2𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑧𝜏𝑥𝑧 + 𝜀2𝜕𝑥

(︃∫︁ 𝑏+ℎ

𝑧

(𝜕𝑥𝜏𝑥𝑧 + 𝜕𝑧𝜏𝑧𝑧) d𝑧

)︃
.
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The following result is obtained, whose proof, that is analogous to computations in Section 5 in [8], is omitted
with the purpose of brevity.

Theorem 3. System LIN-H-STRESS (43) is a layer-averaged discretization with layerwise linear horizontal and
parabolic vertical velocities (𝑢𝛼 ∈ P1, 𝑤𝛼 ∈ P2) of the Navier–Stokes system with viscous dependent pressure
given by{︃

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,

𝜕𝑡𝑢+ 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤) + |𝑔𝑧|𝜕𝑥(𝑧𝑏 + ℎ) = 1
𝜌

(︁
𝜕𝑥𝜏𝑥𝑥 + 𝜕𝑧𝜏𝑥𝑧 + 𝜕𝑥

(︁∫︀ 𝑏+ℎ
𝑧

(𝜕𝑥𝜏𝑥𝑧 + 𝜕𝑧𝜏𝑧𝑧) d𝑧
)︁)︁
.

In addition, previous model satisfies the following energy balance:

Theorem 4. Let us consider the LIN-H-STRESS model defined by (43) and definitions (41), (44), with the
stress tensor components defined by (22), (24), (26), and the terms 𝐾𝛼±1/2,𝐾𝑤,𝛼±1/2 given by (18). The fol-
lowing energy balance is satisfied

𝜕𝑡

(︃
𝑁∑︁
𝛼=1

𝐸𝛼

)︃
+ 𝜕𝑥

[︃
𝑁∑︁
𝛼=1

(︂
𝑢𝛼

(︂
𝐸𝛼 + 𝑔ℎ𝛼

ℎ

2
+
ℎ3
𝛼𝜆

2
𝛼

12
+ ℎ𝛼𝑞𝛼

)︂
+ 𝜆𝛼

(︃
ℎ2
𝛼𝜋𝛼
30

+
ℎ2
𝛼

(︀
𝑞𝛼+1/2 − 𝑞𝛼−1/2

)︀
20

)︃

− 1
𝜌

(︂
ℎ𝛼𝑢𝛼𝜏𝑥𝑥,𝛼 +

ℎ3
𝛼𝜆𝛼𝜁𝑥𝑥,𝛼

12
+ ℎ𝛼𝑤𝛼𝜏𝑥𝑧,𝛼 +

ℎ3
𝛼𝜙𝛼𝜁𝑥𝑧,𝛼

12
+
ℎ5
𝛼𝜓𝛼𝜉𝑥𝑧,𝛼

720

)︂)︂]︂
≤ −1

𝜌

𝑁∑︁
𝛼=1

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

[︂
𝜏𝑥𝑥,𝛼(𝑧)

(︁
[𝜕𝑥𝑢] + 𝜕𝑥𝜆𝛼(𝑧 − 𝑧𝛼)

)︁
+ 𝜏𝑧𝑧,𝛼(𝑧)

(︁
[𝜕𝑧𝑤]𝛼 + 𝜓𝛼(𝑧 − 𝑧𝛼)

)︁
+ 𝜏𝑥𝑧,𝛼(𝑧)

(︂
[𝜕𝑧𝑢]𝛼 + [𝜕𝑥𝑤] + (𝜕𝑥𝜙𝛼 − 𝜓𝛼𝜕𝑥𝑧𝛼)(𝑧 − 𝑧𝛼) + 𝜕𝑥𝜓𝛼

(︂
(𝑧 − 𝑧𝛼)2

2
− ℎ2

𝛼

24

)︂)︂]︂
d𝑧

− 1
𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂(︁
1 + (𝜕𝑥𝑏)

2
)︁3/2(︁

𝑢+
1/2

)︁2

,

where

𝐸𝛼 := ℎ𝛼

(︃
𝑢2
𝛼

2
+

(ℎ𝛼𝜆𝛼)2

24
+ 𝑔

(︂
𝑧𝑏 +

ℎ

2

)︂)︃
.

Proof. The proof is analogous to proof of Theorem 1. �

When considering a stress tensor proportional to the strain rate, as in Section 3.2, a dissipative energy balance
is satisfied, analogously to Corollary 1.

In addition, let us remark that analogously to what is done in Section 4.3, a simplified version of the model
presented in this section with linear vertical velocity (𝑤𝛼 ∈ P1, 𝑞𝛼 ∈ P2) can be deduced.

5.3. System with hydrostatic pressure and vertical diffusion: LIN-H

In this section we consider the model that is obtained by neglecting terms up to order 𝜀2 in the horizontal
momentum equation in (40). It is equivalent to consider a hydrostatic pressure

𝑝 = 𝜌
1
𝐹𝑟2

(𝑏+𝐻 − 𝑧).

We obtain the hydrostatic LIN-H model

𝜕𝑡𝐻 + 𝜕𝑥(𝐻 ¯̄𝑢) = 0, (46a)
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𝜕𝑡(ℎ𝛼𝑢𝛼) + 𝜕𝑥

(︂
ℎ𝛼𝑢

2
𝛼 +

ℎ3
𝛼𝜆

2
𝛼

12

)︂
+ |𝑔𝑧|ℎ𝛼𝜕𝑥(𝑧𝑏 +𝐻) = 𝐾𝛼−1/2 −𝐾𝛼+1/2 + ̃︀𝑢𝛼−1/2Γ𝛼−1/2

− ̃︀𝑢𝛼+1/2Γ𝛼+1/2, (46b)

𝜕𝑡

(︂
ℎ2
𝛼𝜆𝛼
12

)︂
+ 𝜕𝑥

(︂
ℎ2
𝛼𝜆𝛼𝑢𝛼

12

)︂
+
ℎ2
𝛼𝜆𝛼
12

𝜕𝑥𝑢𝛼 = −𝜏𝑥𝑧,𝛼
𝜌

− 1
2
(︀
𝐾𝛼+1/2 +𝐾𝛼−1/2

)︀
− Γ𝛼−1/2

(︂
ℎ𝛼𝜆𝛼

12
−
𝑢𝛼 − ̃︀𝑢𝛼−1/2

2

)︂
+ Γ𝛼+1/2

(︂
ℎ𝛼𝜆𝛼

12
+
𝑢𝛼 − ̃︀𝑢𝛼+1/2

2

)︂
, (46c)

for 𝛼 = 1, . . . , 𝐿, where the vertical velocity is again defined from the incompressibility condition, taking the
form (44), and the viscous terms at the interfaces are

𝐾𝛼+1/2 = −1
𝜌

𝜏𝑥𝑧,𝛼 + 𝜏𝑥𝑧,𝛼+1

2
, and 𝐾1/2 = −1

𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂
𝑢+

1/2. (47)

In this case we also obtain that this model is a layer-averaged approximation of the Navier–Stokes system up
to first order, where the horizontal momentum equation is

𝜀
(︀
𝜕𝑡𝑢+ 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤)

)︀
+ 𝜀

1
𝐹𝑟2

𝜕𝑥(𝑏+𝐻) =
𝑔𝑥

𝐹𝑟2|𝑔𝑧|
+

1
𝜌
𝜕𝑧𝜏𝑥𝑧.

Theorem 5. System LIN-H (46) is a layer-averaged discretization with layerwise linear horizontal and parabolic
vertical velocities (𝑢𝛼 ∈ P1, 𝑤𝛼 ∈ P2) of the hydrostatic system{︃

𝜕𝑥𝑢+ 𝜕𝑧𝑤 = 0,
𝜕𝑡𝑢+ 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤) + |𝑔𝑧|𝜕𝑥(𝑧𝑏 +𝐻) = 1

𝜌𝜕𝑧𝜏𝑥𝑧.

Proof. It is analogous to the proof of Theorem 3.
Let us develop the model for the case 𝜏 = 𝜌𝜈𝐷 (see Sect. 3.2). The strain rate tensor is written in non-

dimensional form (without tildes for simplicity) as

𝐷(𝑈) =
𝑈

ℋ
1
2

(︂
2𝜀𝜕𝑥𝑢 𝜕𝑧𝑢+ 𝜀2𝜕𝑥𝑤

𝜕𝑧𝑢+ 𝜀2𝜕𝑥𝑤 2𝜀𝜕𝑧𝑤

)︂
.

Notice that it implies that

𝜏𝑥𝑥 = 𝜌 𝜈𝜕𝑥𝑢, 𝜏𝑥𝑧 = 𝜌
𝜈

2
(︀
𝜕𝑧𝑢+ 𝜀2𝜕𝑥𝑤

)︀
, 𝜏𝑧𝑧 = 𝜌 𝜈𝜕𝑧𝑤.

Focusing on the LIN-H model, only the term 𝜏𝑥𝑧 appears. By neglecting terms of order 𝜀2, we obtain

𝜏𝑥𝑧 = 𝜌
𝜈

2
𝜕𝑧𝑢,

which is approximated in the layer-averaged framework as

𝜏𝑥𝑧,𝛼(𝑧) = 𝜏𝑥𝑧,𝛼 + 𝜁𝑥𝑧,𝛼(𝑧 − 𝑧𝛼),

with

𝜏𝑥𝑧,𝛼 =
𝜈0
𝛼

2
[𝜕𝑧𝑢]𝛼, 𝜁𝑥𝑧,𝛼 =

𝜈1
𝑥𝑧,𝛼

2
[𝜕𝑧𝑢]𝛼, (48)

and [𝜕𝑧𝑢]𝛼 given by (20). Note that the term 𝜁𝑥𝑧,𝛼 has no influence on this model and we only need the average
𝜏𝑥𝑧,𝛼 in the hydrostatic LIN-H model. �
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This model also satisfies an energy balance:

Theorem 6. Let us consider the LIN-H model defined by (46), with the stress tensor components defined by
(47) and (48). The following dissipative energy balance is satisfied:

𝜕𝑡

(︃
𝑁∑︁
𝛼=1

𝐸𝛼

)︃
+𝜕𝑥

[︃
𝑁∑︁
𝛼=1

(︂
𝑢𝛼

(︂
𝐸𝛼 + |𝑔𝑧|ℎ𝛼

ℎ

2
+
ℎ3
𝛼𝜆

2
𝛼

12

)︂)︂]︃
≤ −1

𝜌

𝑁∑︁
𝛼=1

𝜈0
𝑥𝑧,𝛼ℎ𝛼

2

(︁
[𝜕𝑧𝑢]𝛼

)︁2

d𝑧− 1
𝜌

(︂
𝛽0 +

𝛽1

|𝑈 |

)︂(︁
𝑢+

1/2

)︁2

where

𝐸𝛼 := ℎ𝛼

(︃
𝑢2
𝛼

2
+

(ℎ𝛼𝜆𝛼)2

24
+ |𝑔𝑧|

(︂
𝑧𝑏 +

ℎ

2

)︂)︃
·

Proof. The proof is analogous to proof of Theorem 1. �

5.4. Summary of models and relation with precedent models

For the sake of clarity, in this section we summarise all the models introduced in this work, as well as
their relation with previous models proposed by our group and others. Actually, the models presented here are
generalisations of plenty of previous models in the literature. That is, by making appropriate simplifications in
a certain way over the assumed profiles for the velocity profile, one is able to recover all the family of layer-
averaged models that are summarised below. An important remark is that, for all models obtained as particular
(or simplified) cases of the LIN-NH2-STRESS model, their energy balances (and respective proofs) are obtained
making the same assumptions over the general proof of Theorem 1. That is, the energy balance for the more
complete model, and its proof, reduce well to the energy balance of each simplified model.

The presented models are related to previous ones in the literature as follows:

(i) LIN-NH2-STRESS model, presented in Section 5.1, is a generalisation of LIN-NH2 model proposed in [15]
from the Euler to Navier–Stokes case. Analogously for LIN-NH1-STRESS with respect to LIN-NH1.
Furthermore, if previous models are simplified by assuming a layerwise constant horizontal velocity (𝑢𝛼 ∈
P0), the obtained models are generalisations of the models LDNH𝑘 (𝑘 = 0, 2 depending on the choice for
the profile of 𝑤𝛼, constant or linear) introduced in [23] toward the Navier–Stokes case. That is, LIN-NH1,2-
STRESS are generalisations of the models LDNH0,2 [23] to the Navier–Stokes case and layerwise linear
horizontal velocity.

(ii) LIN-H-STRESS model (43), presented in Section 5.2, is a generalisation of the model introduced in [8] to the
layerwise linear horizontal velocity, and also layerwise linear viscosity. Note that, in [8], both horizontal and
vertical velocities are supposed to be layerwise constant functions. Then, assuming that 𝜆𝛼 = 0, removing
last equation in system LIN-H-STRESS (43) and taking 𝜏𝑥𝑧,𝛼(𝑧) = 𝜏𝑥𝑧,𝛼 layerwise constant (𝑢𝛼, 𝑤𝛼 ∈ P0),
we recover the layer-averaged model proposed in [8].
Moreover, we can consider 𝑢𝛼 ∈ P0 as in [8] but 𝑤𝛼 ∈ P1 and the resulting model is also an extension of the
model in that work to the case of non-layerwise constant shear 𝜏𝑥𝑧,𝛼. In particular, the difference between
considering 𝑤𝛼 layerwise linear or constant is the fact of including the term involving 𝜁𝑥𝑧,𝛼 in 𝑄𝑢 (42).
Notice that the methodology employed in that work is different from the one considered here. We first apply
the layer-averaged discretization to system (45), and later use the definitions of 𝑞𝛼, 𝑞𝛼+1/2, 𝜋𝛼 to write non-
hydrostatic contributions in terms of the viscous terms. However, in [8] authors first integrate the vertical
momentum equation in (45) to obtain the non-hydrostatic pressure 𝑞, and then it is replaced in the hori-
zontal momentum equation. Finally, the layer-averaged discretization is applied to the resulting horizontal
momentum equation. Here, our result (Thm. 3) proves that these are indeed equivalent procedures.

(iii) LIN-H model (46), presented in Section 5.3, is the generalisation of the model used in [18], to the case of
layerwise linear horizontal velocity.
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Table 1. Summary of models introduced in this work and in [15], discrete spaces for
𝑢𝛼(𝑧), 𝑤𝛼(𝑧), 𝑞𝛼(𝑧), unknowns, maximum degree of the derivatives appearing in each model
and the original model that is approximated.

Model Disc. spaces Dimension Unknowns Max. Approximated
(𝑢𝛼, 𝑤𝛼, 𝑞𝛼) degree of model

derivatives

LIN-NH2-STRESS (P1, P2, P3) 8L+1
𝐻, {𝑢𝛼, 𝜆𝛼}, {𝑤𝛼, 𝜙𝛼, 𝜓𝛼}

{𝑞𝛼, 𝑞𝛼−1/2, 𝜋𝛼}
2 Navier–Stokes

LIN-NH1-STRESS (P1, P1, P2) 6L+1
𝐻, {𝑢𝛼, 𝜆𝛼}, {𝑤𝛼, 𝜙𝛼}

{𝑞𝛼, 𝑞𝛼−1/2}
2 Navier–Stokes

LIN-H-STRESS (P1, P2, P3) 2L+1 𝐻, {𝑢𝛼, 𝜆𝛼} 4
Navier–Stokes
(𝐷𝑡𝑤 neglected)

LIN-NH2 (P1, P2, P3) 8L+1
𝐻, {𝑢𝛼, 𝜆𝛼}, {𝑤𝛼, 𝜙𝛼, 𝜓𝛼}

{𝑞𝛼, 𝑞𝛼−1/2, 𝜋𝛼}
1 Euler

LIN-NH1 (P1, P1, P2) 6L+1
𝐻, {𝑢𝛼, 𝜆𝛼}, {𝑤𝛼, 𝜙𝛼}

{𝑞𝛼, 𝑞𝛼−1/2}
1 Euler

Notice that LIN-NH2-STRESS and LIN-H-STRESS models use the same spaces of approximation for the
variables, but the LIN-H-STRESS model neglects the vertical acceleration. It allows us to write the pressure
unknowns in terms of the stress tensor components, and therefore in terms of {𝑢𝛼, 𝜆𝛼}. They are collected in the
terms 𝑄𝑢, 𝑄𝜆,1, 𝑄𝜆,2. Thus, the unknowns of the LIN-H-STRESS model are only the total height and the ones
related to the horizontal velocity profile, but it involves high order derivatives of the variables. For instance, in
term 𝑄𝑢 it appears the term 𝜕𝑥𝑥𝜏𝑥𝑧,𝛼, which involves (among others) the term 𝜕𝑥𝑤𝛼, being this one computed
in terms of 𝜕𝑥𝑢𝛼. As conclusion, fourth-order space derivatives appear in that model.

In Table 1 the main characteristics of the models introduced in this work and in [15] are summarized.

6. Numerical examples for uniform geophysical flows

In this section, we illustrate the advantage of using the proposed layer-averaged model with layerwise linear
horizontal velocity. In particular, we consider some geophysical flows with constant (Newtonian fluids) and
variable (viscoplastic fluids) viscosity in a uniform configuration over an inclined slope (𝜃 > 0). We choose this
regime because we want to evaluate the vertical approximation, so we neglect horizontal variations, and then it
is possible to obtain analytical solutions for the velocity and shear stress.

Our goal is showing how the proposed approach (layerwise linear horizontal velocity) allows us to significantly
improve, with respect to the layerwise constant velocity approach, the approximation of the analytical vertical
profiles of the uniform flow solution. The design of an efficient numerical scheme for the full non-hydrostatic
model is a key but hard problem, which in particular is necessary to make these models usable from the practical
point of view. Then, due to the difficulty of such schemes, they deserve special attention (see [17]) and it is out
of the scope of this work.

The procedure to obtain the analytical solution is similar for all the cases considered. We write the Navier–
Stokes system (1) in local coordinates, and the uniform flow assumption leads to

𝜕𝑧𝑝 = −𝜌𝑔 cos 𝜃, 𝜕𝑧𝜏𝑥𝑧 = 𝜌𝑔 sin 𝜃,

with boundary conditions 𝑝|𝑧=𝐻
= 𝜏𝑥𝑧|𝑧=𝐻

= 0, where 𝐻 denotes the height of the fluid. Let us consider 𝜌 = 1
for simplicity. The integration of the first condition gives us the hydrostatic regime

𝑝(𝑧) = 𝑔 cos 𝜃(𝐻 − 𝑧).
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The second one implies that the stress tensor, defined as in Section 3.2, is

𝜏𝑥𝑧(𝑧) =
(︁𝜈

2
𝜕𝑧𝑢
)︁

(𝑧) = 𝑔 sin 𝜃(𝐻 − 𝑧), (49)

where 𝜈 is again the kinematic viscosity coefficient that must be defined by the particular rheology in each
case. Note that for this flow configuration the shear stress is a linear function, so we can correctly assess the
accuracy of the proposed approach and the correction in Section 4.2. Let us also remark that (49) holds for all
the considered flows.

Let us denote by 𝑢an(𝑧) is the analytical velocity profile for the considered uniform flow. Then, define

𝑢𝛼 =
1
ℎ𝛼

∫︁ 𝑧𝛼+1/2

𝑧𝛼−1/2

𝑢an(𝑧) d𝑧, and 𝜆𝛼 = (𝜕𝑧𝑢an(𝑧))|𝑧=𝑧𝛼
,

so we have
𝑢𝛼(𝑧) = 𝑢𝛼 + 𝜆𝛼(𝑧 − 𝑧𝛼).

The viscosity (subscripts 𝑥𝑧 are neglected for the sake of clarity) is given by

𝜈𝛼(𝑧) = 𝜈0
𝛼 + 𝜈1

𝛼(𝑧 − 𝑧𝛼)

with
𝜈0
𝛼 = 𝜈an|𝑧=𝑧𝛼

, and 𝜈1
𝛼 = (𝜕𝑧𝜈an(𝑧))|𝑧=𝑧𝛼

,

being 𝜈an the corresponding viscosity depending on the chosen rheology. The shear stress 𝜏𝑥𝑧,𝛼, whose analytical
expression (𝜏𝑥𝑧,an) is (49), will be computed following (23) and (24) as

𝜏𝑥𝑧,𝛼(𝑧) = 𝜏𝑥𝑧,𝛼 + 𝜁𝑥𝑧,𝛼(𝑧 − 𝑧𝛼), (50)

with

𝜏𝑥𝑧,𝛼 =
𝜈0
𝛼

2
[𝜕𝑧𝑢]𝛼 and 𝜁𝑥𝑧,𝛼 =

𝜈1
𝛼

2
[𝜕𝑧𝑢]𝛼,

whereas for the second-order correction of this term, ̃︀𝜏𝑥𝑧,𝛼, we need to replace 𝜁𝑥𝑧,𝛼 in previous equation by

̃︀𝜁𝑥𝑧,𝛼 =
𝜈1
𝛼

2
[𝜕𝑧𝑢]𝛼 +

𝜈0
𝛼

2
̃︀𝜒𝛼,

for ̃︀𝜒𝛼 defined by (33b).
In the following, we show the accuracy of the proposed approach for three different rheologies. We start by

a simple Newtonian fluid and later two viscoplastic fluids.

6.1. Newtonian fluids

Let us consider a Newtonian fluid, for which 𝜈an = 𝜈0 constant. From (49) we get

𝜕𝑧𝑢an(𝑧) =
2𝑔 sin 𝜃
𝜈0

(𝐻 − 𝑧), 𝑢an(𝑧) =
𝑔 sin 𝜃
𝜈0

(︁
𝐻2 − (𝐻 − 𝑧)2

)︁
.

Let us consider a flow with height 𝐻 = 1, viscosity 𝜈an = 10−2 and a slope 𝜃 = 5∘. Figure 2 shows the
comparison between the analytical solution and the layerwise approximations with only 3 vertical layers for the
velocity, its vertical derivative and the shear stress 𝜏𝑥𝑧. We also show the results of the previous layer-averaged
model with layerwise constant velocity. In Figure 2a we see that the linear approach allows us to have a more
accurate approximation of the velocity profile, even with a few layers. In Figure 2b we can observe the profile
of 𝜕𝑧𝑢, that is layerwise constant. Special attention deserves Figure 2c, where the shear stress 𝜏𝑥𝑧 is shown.
Here, we see the key role of the second-order correction of the shear stress ̃︀𝜏𝑥𝑧,𝛼. Actually, we can see that the
approximation without the correction matches with the approximation by a layerwise constant velocity. It is
due to the fact that the slope 𝜁𝑥𝑥,𝛼 in (50) is zero in this case, since 𝜈 = 𝜈0 constant. However, it is not the
case for ̃︀𝜏𝑥𝑧,𝛼 where now we recover the correct slope of 𝜏𝑥𝑧,an. Concretely, we see that the lines corresponding
to ̃︀𝜏𝑥𝑧,𝛼 and 𝜏𝑥𝑧,an overlap, as expected.
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Figure 2. Comparison between the analytical vertical profiles (grey circles) and layerwise
approximations with constant (solid red lines) and linear (dot-dashed blue and dotted green
lines) horizontal velocity, and 3 layers: (a) Horizontal velocity (𝑢); (b) vertical derivative (𝜕𝑧𝑢);
(c) stress tensor component 𝜏𝑥𝑧, where ̃︀𝜏𝑥𝑧,𝛼 denotes the second-order correction of 𝜏𝑥𝑧,𝛼 (33).

6.2. Dry granular flows

For the case of dry granular flows, where the 𝜇(𝐼)-rheology (see [32]) is considered, the stress tensor is only
defined if |𝜕𝑧𝑢| > 0, otherwise the tensor is multivalued. In order to deal with this difficulty, a well-known
technique is to use a regularised viscosity coefficient (see e.g. [18, 20]), with a small regularisation parameter
𝛿 > 0. In practice, we set 𝛿 = 10−5.

In the case of granular flows, we consider the viscosity

𝜈an(𝑧) =
𝑔 sin 𝜃(𝐻 − 𝑧)√︁
|𝜕𝑧𝑢|2/4 + 𝛿2

,
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Figure 3. Comparison between the analytical vertical profiles (grey circles) and layerwise
approximations with constant (solid red lines) and linear (dot-dashed blue and dotted green
lines) horizontal velocity, and 3 layers: (a) Horizontal velocity (𝑢); (b) vertical derivative (𝜕𝑧𝑢);
(c) viscosity coefficient (𝜈); (d) stress tensor component 𝜏𝑥𝑧, where ̃︀𝜏𝑥𝑧,𝛼 denotes the second-
order correction of 𝜏𝑥𝑧,𝛼 (33).

and the following profiles are obtained (see [28,37])⎧⎪⎨⎪⎩
𝑢an(𝑧) = 2

3𝐼𝜃

(︁
𝐻3/2 − (𝐻 − 𝑧)3/2

)︁
,

𝜕𝑧𝑢an(𝑧) = 𝐼𝜃
√
𝐻 − 𝑧,

𝜏𝑥𝑧,an(𝑧) = 𝑔 sin 𝜃(𝐻 − 𝑧),

with

𝐼𝜃 =
𝐼0
𝑑𝑠

(︂
tan 𝜃 − 𝜇𝑠
𝜇2 − tan 𝜃

)︂√︀
𝜙𝑠𝑔 cos 𝜃,

being 𝑑𝑠, 𝜙𝑠, 𝐼0, 𝜇𝑠, 𝜇2 constant parameters depending on the granular material.
Let us consider a test as in [37], where a flow with height 𝐻 = 1 is considered. The slope is taken as

𝜃 = 0.43 ≈ 23.3∘. The rheological parameters are 𝑑𝑠 = 0.04, 𝜙𝑠 = 0.62, 𝐼𝑜 = 0.279, 𝜇𝑠 = 0.38 and 𝜇2 = 0.62.
Figure 3 shows the agreement between the layerwise linear approach and the analytical solutions for this case,

also with 3 vertical layers. We also show here the approximation of the viscosity coefficient. We observe that
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using a layerwise constant coefficient leads to an important loss of accuracy in this case. Similar conclusions as
in the Newtonian case are obtained. Let us remark again the importance of the correction in ̃︀𝜏𝑥𝑧,𝛼 with respect
to 𝜏𝑥𝑧,𝛼, making possible to perfectly approximate the analytical solution 𝜏𝑥𝑧,an. Note that 𝜏𝑥𝑧,𝛼 with layerwise
linear velocity is not able to properly approximate the slope of 𝜏𝑥𝑧,an, although it is no more layerwise constant
as in the Newtonian case. Moreover, it is not solved by increasing the number of vertical layers.

6.3. Herschel–Bulkley viscoplastic fluids

Concerning Herschel–Bulkley fluids, the regularised viscosity coefficient is given by

𝜈an(𝑧) =
𝜏𝑦 +𝐾|𝜕𝑧𝑢|𝑛√︁
|𝜕𝑧𝑢|2/4 + 𝛿2

,

with 𝜏𝑦, 𝐾 and 𝑛 constant rheological parameters. These flows are characterised by a top (pseudo-)plug layer
of material, where the stress tensor is not defined. Actually, we only know that |𝜕𝑧𝑢| = 0 and |𝜏 | < 𝜏𝑦 there.
Then, the flow can be split into a lower sheared layer with height ℎ𝑐 defined by

ℎ𝑐 = 𝐻 − 𝜏𝑦
𝑔 sin 𝜃

,

and the (pseudo-)plug top layer, with thickness 𝐻 − ℎ𝑐. Then, from (49), the analytical solution reads (see
[10,12]) for 𝑧 < ℎ𝑐 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢an(𝑧) = 𝑢plug

(︂
1−

(︁
1− 𝑧

ℎ𝑐

)︁(𝑛+1)/𝑛
)︂
,

𝜕𝑧𝑢an(𝑧) =
(︁
𝑔 sin 𝜃
𝐾

)︁1/𝑛

(ℎ𝑐 − 𝑧)1/𝑛,

𝜏𝑥𝑧,an(𝑧) = 𝜌𝑔 sin 𝜃(𝐻 − 𝑧),

and we have
𝑢an(𝑧) = 𝑢plug, 𝜕𝑧𝑢an = 0, and |𝜏𝑥𝑧,an(𝑧)| ≤ 𝜏𝑦,

for 𝑧 ≥ ℎ𝑐 with

𝑢plug =
𝑛

(𝑛+ 1)

(︂
𝑔 sin 𝜃
𝐾

)︂1/𝑛

ℎ(𝑛+1)/𝑛
𝑐 .

In this case we consider a test as in [20], where a material with height 𝐻 = 0.05 and a slope with angle
𝜃 = 20∘ are taken. The rheological parameters are 𝜏𝑦 = 0.033, 𝐾 = 0.026 and 𝑛 = 0.33. Figure 4 shows the
results, in this case for 4 vertical layers.

Let us mention that this case involves some important difficulties related to the existence of the pseudo-plug
layer. In particular, non-physical values for the viscosity (𝜈𝛼(𝑧) < 0) are obtained due to the strong transition
occurring at 𝑧 = ℎ𝑐 (see the inner figure in Fig. 4c). Therefore, some limiters are needed in order not to have
this kind of meaningless behaviour. Concretely, we make the following corrections when needed (in practice, it
is only necessary in the layer containing the level 𝑧 = ℎ𝑐 and/or the layer below):

(i) The signs of [𝜕𝑧𝑢]𝛼 and 𝜆𝛼 must be the same. If it does not hold, the vertical derivative is redefined as
[𝜕𝑧𝑢]𝛼 = 𝜆𝛼.

(ii) Negative values of the viscosity coefficient are physically meaningless, so if 𝜈𝛼(𝑧0) < 0 for 𝑧𝛼−1/2 ≤ 𝑧0 ≤
𝑧𝛼+1/2, the viscosity is taken as constant with the averaged value 𝜈𝛼(𝑧) = 𝜈0

𝛼 > 0.
(iii) The signs of 𝜏𝑥𝑧,𝛼(𝑧) and [𝜕𝑧𝑢]𝛼 must be equals. If this condition is violated somewhere, we again remove

the slope of 𝜏𝑥𝑧,𝛼(𝑧) in that layer by setting 𝜏𝑥𝑧,𝛼(𝑧) = 𝜏𝑥𝑧,𝛼 > 0 constant. The same applies for ̃︀𝜏𝑥𝑧,𝛼.
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Figure 4. Comparison between the analytical vertical profiles (grey circles) and layerwise
approximations with constant (solid red lines) and linear (dot-dashed blue and dotted green
lines) horizontal velocity, and 4 layers: (a) Horizontal velocity (𝑢); (b) vertical derivative (𝜕𝑧𝑢);
(c) viscosity coefficient (𝜈); (d) stress tensor component 𝜏𝑥𝑧, where ̃︀𝜏𝑥𝑧,𝛼 denotes the second-
order correction of 𝜏𝑥𝑧,𝛼 (33). Dot dashed cyan lines represent the thickness of the sheared layer
𝑧 = ℎ𝑐.

Note that the idea behind conditions (ii) and (iii) is to reduce the complexity by going to a constant profile,
but it is different from a layerwise constant approach, since the information related to the slope 𝜆𝛼 is taken into
account for 𝜈0

𝛼 and [𝜕𝑧𝑢]𝛼, and therefore for 𝜏𝑥𝑧,𝛼, ̃︀𝜏𝑥𝑧,𝛼.
Figures 4a and 4b show the profiles of 𝑢(𝑧) and 𝜕𝑧𝑢(𝑧). We can distinguish the sheared and pseudo-plug

layers connected at the level 𝑧 = ℎ𝑐. In Figure 4c the viscosity profile is depicted. Note that this is a zoom
of the sheared layer, and the inner figure there shows the global profile. One can see there the effect of the
regularisation method, which makes the viscosity quickly increase in the top pseudo-plug layer. It is due to
the fact that we have 𝜕𝑧𝑢 = 0 in this layer. This behaviour of the viscosity has a great impact on the shear
stress 𝜏𝑥𝑧, as we see in Figure 4d. As in previous cases, we see how the corrected shear stress ̃︀𝜏𝑥𝑧,𝛼 is able to
approximate the linear profile of 𝜏𝑥𝑧 much better than 𝜏𝑥𝑧,𝛼, although the accuracy seems to be lost close to
𝑧 = ℎ𝑐.

In Figure 5 we see the same comparison for the shear stress when increasing the number of vertical layers.
Concretely, we use 8 and 16 layers. We see that the profile of 𝜏𝑥𝑧 is properly approximated by ̃︀𝜏𝑥𝑧,𝛼 (and not
by 𝜏𝑥𝑧,𝛼) in the sheared layer when increasing the vertical resolution, whereas the accuracy is only lost close
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Figure 5. Comparison between the analytical vertical profiles (grey circles) and layerwise
approximations with constant (solid red lines) and linear (dot-dashed blue and dotted green
lines) horizontal velocity for the stress tensor component 𝜏𝑥𝑧, where ̃︀𝜏𝑥𝑧,𝛼 denotes the second-
order correction of 𝜏𝑥𝑧,𝛼 (33). (a) 8 layers; (b) 16 layers.

to the interface at 𝑧 = ℎ𝑐. Here we see again the key role of the second-order correction in ̃︀𝜏𝑥𝑧,𝛼, since 𝜏𝑥𝑧,𝛼
cannot reproduce the linear profile despite increasing the number of layers. It means that this lack of accuracy
is associated with the definition of 𝜏𝑥𝑧,𝛼 and not with the vertical resolution.

7. Conclusions

Several layer-averaged models with layerwise linear horizontal velocity and non-hydrostatic pressure for the
Navier–Stokes system are derived in this paper. We focus on an appropriate definition of the terms that come
from viscous contributions for a general stress tensor. In particular, we give detailed definitions of all components
of the stress tensor when it is proportional to the strain rate tensor, which is very common in fluid dynamics. In
that case, the approximations of the derivatives of the velocity (20) are inspired by the theory of distributions,
in order to account for the possible discontinuities of the velocity at the internal interfaces ℒ𝛼+1/2, for 𝛼 =
1, . . . , 𝐿 − 1. Following the usual layer-averaging procedure, the LIN-NH2-STRESS model is derived, as well
as its simplified version LIN-NH1-STRESS. Both models have been also written in a compact form, where we
observe two terms related to the stress tensor approximation. The first one is a diffusion term, which includes
second order derivatives of the velocity components in the case of a viscous stress tensor, and the second one
corresponds to the momentum transference terms at the interfaces. LIN-NH𝑘-STRESS models are the extension
of those models introduced in [15], denoted by LIN-NH𝑘 with 𝑘 = 1, 2, to the Navier–Stokes case. These models
satisfy a dissipative energy balance, where the right-hand side is written in integral form. An important remark
is the fact that all terms in these models are approximated to second-order accuracy, except for 𝜏𝑥𝑧,𝛼. Concretely,
it is a first-order approximation, due to the fact that 𝜕𝑧𝑢 is layerwise constant. However, we also propose a
correction allowing us to obtain the second-order accuracy. This corrected model satisfies a dissipative energy
balance up to second order.

These and other models are also obtained from an asymptotic analysis of the Navier–Stokes system, for
different orders of magnitude of the shallowness parameter (𝜀). An interesting model, denoted here LIN-H-
STRESS, is obtained when removing the vertical acceleration but keeping viscous terms in the pressure. The
resulting model in this case is closely related to the one introduced in [8], where both horizontal and vertical
velocities are layerwise constant. Actually, it is a generalisation of that model to the layerwise linear velocity
and viscosity. We have also introduced a hydrostatic version of these models with the vertical diffusion term.
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In conclusion, the models presented in this paper are generalisations of plenty of previous models in the litera-
ture, in the framework of depth(and layer)-averaged models for geophysical flows, as explained in Section 5.4.
Let us mention that all these models satisfy dissipative energy balances. We also remark that the presented
non-hydrostatic models with layerwise linear horizontal velocity have the same excellent dispersion properties
(dispersion relation, velocity group and linear shoaling) as LIN-NH𝑘 models (see [15]).

We have also shown how the proposed layerwise linear approach is effective for some geophysical flows,
including complex viscoplastic fluids, in the uniform configuration, where it is possible to get analytical solutions.
This approach allows us to notably improve the approximation of the vertical profile of velocity with respect to
the layerwise constant approach. Accurate approximations are reached by using just a few layers with this novel
approach. Interestingly, we have also seen that the second-order correction for the shear stress 𝜏𝑥𝑧 is essential to
be able to recover the linear profile of its analytical solution. Actually, it is not possible without this correction,
even for simple Newtonian fluids.

The models presented in this work have to be analyzed before discretizing them, for instance following the
results introduced in [14] for a multilayer model with a simpler definition of the viscous terms. In the future,
it would be also interesting to develop efficient numerical schemes, following the strategies introduced in [17],
as well as the extension of this framework to approximate 3D Navier–Stokes systems and more general stress
tensor definitions, such as the case of turbulent models.
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