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Abstract The total mean curvature functional for submanifolds into the Riemannian product space
Sn × R is considered and its �rst variational formula is presented. Later on, two second order di�erential
operators are de�ned and a nice integral inequality relating both of them is proved. Finally we prove our
main result: an integral inequality for closed stationary H-surfaces in Sn × R, characterizing the cases
where the equality is attained.
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1. Introduction

Along the last decades, integral inequalities have become an interesting tool for the study
of rigidity results for closed submanifolds immersed in Riemannian spaces. In this setting,
we point out that the �rst contribution in this thematic was given at 60's by Simons [22]
who computed the Laplacian of the squared norm of the second fundamental form σ of a
minimal submanifold in the sphere. As a consequence, he showed that if Σm is a closed
minimal submanifold in Sn, the following integral inequality holds:∫

Σ

|σ|2
(
|σ|2 − c(n,m)

)
dΣ ⩾ 0 with c(n,m) =

m(n−m)

2(n−m)− 1
, (1.1)

where dΣ is the volume element on Σm. Simons noticed that the inequality (1.1) provides
a natural gap concerning the size of the squared norm of the second fundamental form.
Indeed, if the second fundamental form satis�es 0 ⩽ |σ|2 ⩽ c(n,m) then either |σ|2 = 0,
and Σm is totally geodesic, so a sphere Sm, or |σ|2 = c(n,m). This last equality was
studied by Chern, do Carmo and Kobayashi [6], who concluded that in this case Σm is
necessarily a Cli�od torus or a Veronese surface in S4. It is worth pointing out that the
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2 A.L. Albujer, S.F. da Silva and F.R. dos Santos

case of codimension 1 was also studied simultaneous and independently by Lawson [16].
Nowadays, the inequality (1.1) is known as the Simons integral inequality.
On the other hand, an interesting line of research is to study which submanifolds are

critical points of certain geometric functionals. In this scenario, let us highlight three
classical di�erent functionals. Firstly, Chen considered in [4] the following functional for
closed surfaces Σ2 in R3:

W̃(Σ) =
1

2

∫
Σ

|ϕ|2dΣ =

∫
Σ

(H2 −K)dΣ, (1.2)

where ϕ = A−HI is the umbilicity tensor of Σ, A denotes the shape operator of Σ and
H and K stand for the mean and Gaussian curvature of Σ, respectively. Closely related
to (1.2) we can consider the well-known Willmore energy or Willmore functional given
by:

W(Σ) =

∫
Σ

H2dΣ. (1.3)

In fact, because of the classical Gauss-Bonnet theorem, both functionals W̃ and W have
the same critical points in the set of closed surfaces in R3. Associated to (1.3), there is
the famous Willmore conjecture, proposed in 1965 by Willmore [24] and solved in 2014
by Marques and Neves [19], which guarantees that the value of W(Σ) is at least 2π2

when Σ2 is an immersed torus into R3.
Finally, another interesting functional, the total mean curvature functional, was

introduced by Chen [3] for any closed submanifold Σm in the Euclidean space Rn:

H(Σ) =

∫
Σ

HmdΣ. (1.4)

Chen proved that H is bounded from below by the volume of the unitm-sphere, being the
equality attained precisely when the submanifold is the unit m-sphere. The total mean
curvature functional has also been considered for submanifolds in other ambient spaces.
In the case of closed submanifolds in the sphere Sn, H is bounded from below by zero
and the equality is attached at all closed minimal submanifolds of Sn. Considering the
variational problem associated to such functional, it is said that a submanifold Σm is an
H-submanifold if it is a stationary point for the functional H. In this context, Guo and
Yin [15] established an integral inequality relating the total umbilicity tensor and the
Euler characteristic χ(Σ) of a closed H-surface Σ2 immersed in Sn:∫

Σ

{
|ϕ|2

(
1−

(
2− 1

n− 2

)
|ϕ|2

)
+ 2

}
dΣ ⩽ 4πχ(Σ), (1.5)

being the equality achieved if and only if Σ2 is either a totally geodesic 2-sphere, a Cli�ord
torus in S3 or a Veronese surface in S4.
Considering more general ambient spaces, recently the �rst and third authors computed

in [1] the Euler-Lagrange equation of a suitable Willmore functional for closed immersed
surfaces in an homogeneous space E3(κ, τ). As an application, they developed a Simons
type integral inequality for such surfaces, characterizing the surfaces for which the equality
holds as Cli�ord or Hopf tori of the ambient space. Furthermore, recently the last two
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Variational problems of total mean curvature surfaces and applications 3

authors obtained an integral inequality for closed immersed submanifolds Σm into the
product space Sn × R having parallel normalized mean curvature vector �eld, [10,11].
They also showed that, in this case, the equality is attained if and only if Σm is isometric
to either a totally umbilical sphere, or to a certain family of Cli�ord tori in a totally
geodesic sphere Sm+1 of Sn.
In the spirit of the previous results, we will obtain the Euler-Lagrange equation of

the total mean curvature functional for closed immersed surfaces into the product space
Sn × R, Proposition 2. As a consequence, we will get a Simons type integral inequality
and we will characterize when the equality is attained. Speci�cally, if ϕ and ϕh stand
for the umbilicity tensor of Σm, and the umbilicity tensor related to the mean curvature
vector �eld h, respectively, and T denotes the tangential part of the vector �eld ∂t in
Sn × R, the main aim of the paper is to prove the following result:

Theorem 1. Let Σ2 be a closed immersed H-surface into the product space Sn × R.
Then, ∫

Σ

{
|ϕ|2

(
1− 5|T |2 − 3

2
|ϕ|2

)
− 2(|ϕh|+ 1)|T |2 + 2

}
dΣ ⩽ 4πχ(Σ). (1.6)

In particular, the equality holds if and only if Σ2 is isometric to either

(i) a slice S2 × {t0}, or

(ii) a totally geodesic 2-sphere or a Cli�ord torus in S3 × {t0}, or

(iii) a Veronese surface in S4 × {t0},

for some t0 ∈ R.

On the one hand, let us remark that, since given m,n ∈ N, m < n, the unit sphere
Sm is a totally geodesic submanifold of the unit sphere Sn, the above surfaces for which
the equality in (1.6) is attained are in fact surfaces of the product Sn × R in general
dimension. On the other hand, let us also observe that (1.6) do not depend on the
codimension. Besides that, in the case where Σ2 is contained in a slice of Sn × R, T = 0.
Thus, (1.6) reduces to ∫

Σ

{
|ϕ|2

(
1− 3

2
|ϕ|2

)
+ 2

}
dΣ ⩽ 4πχ(Σ), (1.7)

which in the case n = 4 coincides with Guo and Yin's inequality,(1.5), and it improves it
when n > 4.

2. Preliminaries

In this section, we will present some basic facts about the product manifold Sn × R, as
well as a suitable Simons type formula for submanifolds immersed in such product.
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4 A.L. Albujer, S.F. da Silva and F.R. dos Santos

As usual, let Rn+2 be the (n+ 2)-dimensional Euclidean space. Then, the product
space Sn × R is de�ned as the following subset of Rn+2:

Sn × R = {(x1, . . . , xn+2) ∈ Rn+2 ; x2
1 + · · ·+ x2

n+1 = 1}, (2.1)

equipped with the induced metric from the Euclidean space, ⟨, ⟩, i.e. Sn × R is the usual
product of the unit sphere Sn(1) and the real line. Associated to it,

∂t := (∂/∂t)
∣∣
(p,t)

, (p, t) ∈ Sn × R, (2.2)

is a parallel and unitary vector �eld, that is,

∇∂t = 0 and ⟨∂t, ∂t⟩ = 1, (2.3)

where ∇ is the Levi-Civita connection of Sn × R.
Concerning the curvature tensor of Sn × R, it is well-known that it satis�es (see [8]):

R(X,Y )Z = ⟨X,Z⟩Y − ⟨Y, Z⟩X + ⟨Z, ∂t⟩(⟨Y, ∂t⟩X − ⟨X, ∂t⟩Y )

+ (⟨Y, Z⟩⟨X, ∂t⟩ − ⟨X,Z⟩⟨Y, ∂t⟩)∂t,
(2.4)

where X,Y, Z ∈ X(Sn × R) and R is de�ned by (see [20])

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. (2.5)

Let us consider Σm an m-dimensional submanifold of Sn × R and let us also denote
by ⟨, ⟩ the induced metric on Σm. In this setting, we will denote by ∇ the Levi-Civita
connection of Σm and ∇⊥ will stand for the normal connection of Σm in Sn × R. We will
denote by σ the second fundamental form of Σm in Sn × R and by Aξ the Weingarten
operator associated to a �xed normal vector �eld ξ ∈ X(Σ)⊥. We note that, for each ξ ∈
X(Σ)⊥, Aξ is a symmetric endomorphism of the tangent space TpΣ at p ∈ Σm. Moreover,
Aξ and σ are related by

⟨σ(X,Y ), ξ⟩ = ⟨Aξ(X), Y ⟩, (2.6)

for all X,Y ∈ X(Σ) and ξ ∈ X(Σ)⊥. We also recall that the Gauss and Weingarten
formulas of Σm in Sn × R are given by

∇XY = ∇XY + σ(X,Y ) and ∇Xξ = −Aξ(X) +∇⊥
Xξ, (2.7)

for all X,Y ∈ X(Σ) and ξ ∈ X(Σ)⊥.
Since ∂t ∈ X(Sn × R), it can be decomposed along Σm as

∂t = T +N (2.8)

where T := ∂⊤
t and N := ∂⊥

t denote, respectively, the tangent and normal part of the
vector �eld ∂t on the tangent and normal bundle of the submanifold Σm in Sn × R.
Moreover, from (2.3) and (2.8), we get the relation

1 = ⟨∂t, ∂t⟩ = |T |2 + |N |2, (2.9)

| · | being the norm related to the metric ⟨, ⟩. It is clear that, if T vanishes identically
along Σ, then ∂t is normal to Σm and hence Σm lies in a slice Sn × {t0}, t0 ∈ R. Besides
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Variational problems of total mean curvature surfaces and applications 5

that, a direct computation from (2.3) and (2.7) gives

∇XT = AN (X) and ∇⊥
XN = −σ(T,X), for all X ∈ X(Σ). (2.10)

A well-known fact is that the curvature tensor R of Σm can be described in terms of
its second fundamental form σ and the curvature tensor R of the ambient space Sn × R
by the so-called Gauss equation, which is given by

⟨R(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩+ ⟨σ(X,Z), σ(Y,W )⟩ − ⟨σ(Y,Z), σ(X,W )⟩
= ⟨X,Z⟩⟨Y,W ⟩ − ⟨Y, Z⟩⟨X,W ⟩+ ⟨Z, T ⟩(⟨Y, T ⟩⟨X,W ⟩ − ⟨X,T ⟩⟨Y,W ⟩)
+ (⟨Y,Z⟩⟨X,T ⟩ − ⟨X,Z⟩⟨Y, T ⟩)⟨T,W ⟩
+ ⟨σ(X,Z), σ(Y,W )⟩ − ⟨σ(Y, Z), σ(X,W )⟩,

(2.11)

for all X,Y, Z,W ∈ X(Σ), and the Codazzi equation

(∇⊥
Y σ)(X,Z)− (∇⊥

Xσ)(Y,Z) = (R(X,Y )Z)⊥ = (⟨Y,Z⟩⟨X,T ⟩ − ⟨X,Z⟩⟨Y, T ⟩)N,
(2.12)

for all X,Y, Z ∈ X(Σ), where ∇⊥σ satis�es:

(∇⊥
Xσ)(Y,Z) = ∇⊥

Xσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ). (2.13)

Let us denote by h the mean curvature vector �eld of Σm in Sn × R, de�ned by

h =
1

m
tr(σ) (2.14)

and by H its norm, i.e. H2 = ⟨h, h⟩. It is immediate to check that if {em+1, . . . , en+1} is
an orthonormal frame of X(Σ)⊥, we can write (2.14) in the following way:

h =
∑
α

Hαeα where Hα :=
1

m
tr(Aα) = ⟨h, eα⟩, (2.15)

and Aα := Aeα . In particular, mH2 = tr(Ah).
Next, for any normal vector �eld ξ, let us de�ne the tensor ϕξ as the traceless part of

Aξ, i.e. ϕξ := Aξ − 1
m tr(Aξ)I. We shall also consider ϕ the traceless part of σ, given by

ϕ(X,Y ) := σ(X,Y )− ⟨X,Y ⟩h. (2.16)

The tensors ϕ and ϕξ are also known as the umbilicity tensor and the umbilicity tensor
related to ξ of Σm, respectively. It is easy to check that

|ϕ|2 = |σ|2 −mH2 and |ϕξ|2 = |Aξ|2 −m⟨ξ, h⟩2. (2.17)

Observe that |ϕ|2 = 0 if and only if Σm is a totally umbilical submanifold of Sn × R.
We end this section by recalling the following two results, which we shall use later in

this paper. The �rst one is a Simons type formula proved in [9,10]. It should be noticed
that, for the sake of simplicity, in Proposition 1 and, in general, along this manuscript
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6 A.L. Albujer, S.F. da Silva and F.R. dos Santos

we will naturally identify, at convenience, the Weingarten operator with its associated
symmetric matrix.

Proposition 1. Let Σm be a submanifold in the product space Sn × R. Then

1

2
∆|σ|2 = |∇⊥σ|2 +m

∑
α

tr(Aα ◦HessHα) +m|ϕN |2 − 2m
∑
α

|ϕα(T )|2 + (m− |T |2)|ϕ|2

−m⟨ϕh(T ), T ⟩+
∑
α,β

tr(Aβ)tr(A
2
αAβ)−

∑
α,β

(
N(AαAβ −AβAα) + [tr(AαAβ)]

2
)
,

(2.18)

where ϕα := ϕeα , m+ 1 ⩽ α, β ⩽ n+ 1 and N(B) := tr(BBt) for all matrix B.

The second one is an algebraic lemma which was proved in [18].

Lemma 1. Let B1, . . . , Bp, where p ⩾ 2, be symmetric m×m matrices. Then

p∑
α,β=1

(
N(BαBβ −BβBα) + [tr(BαBβ)]

2
)
⩽

3

2

(
p∑

α=1

N(Bα)

)2

. (2.19)

3. The �rst variation of the total mean curvature

The goal of this section is to study the stationary points of the functional H, de�ned
in (1.4), for closed surfaces in Sn × R. To that end, we will recall the rough Laplacian
∆⊥ : X(Σ)⊥ → X(Σ)⊥ which is de�ned by setting

∆⊥ξ := tr(∇2ξ) =
∑
i

∇⊥
ei∇

⊥
eiξ, (3.1)

where {e1, . . . , em} is any orthonormal frame of X(Σ).
Now, let us compute the �rst variational formula of H.

Proposition 2. Let x : Σm → Sn × R be an isometrically immersed closed sub-
manifold. Then x is a stationary point of H, or an H-submanifold, if and only
if

Hm−2

∆⊥h+
(
m− |T |2 −mH2

)
h−m⟨N,h⟩N +

∑
α,β

Hαtr(AαAβ)eβ

 = 0, (3.2)

for m > 2, and

∆⊥h+
(
2− |T |2 − 2H2

)
h− 2⟨N,h⟩N +

∑
α,β

Hαtr(AαAβ)eβ = 0, (3.3)

in the case m = 2, where m+ 1 ⩽ α, β ⩽ n+ 1.

Proof. Let us consider a variation of x, that is, a smooth map X : Σm × (−ε, ε) →
Sn × R satisfying that for each s ∈ (−ε, ε), the map Xs : Σ

m → Sn × R, given by Xs(p) =
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Variational problems of total mean curvature surfaces and applications 7

X(p, s), is an immersion and X0 = x. Then, we can compute the �rst variation of H along
X, that is,

d

ds
H(Xs)

∣∣∣∣
s=0

=

∫
Σ

d

ds
(Hm

s dΣs)

∣∣∣∣
s=0

, (3.4)

where, for each s ∈ (−ε, ε), Hs =
√
⟨hs, hs⟩ stands for the norm of the mean curvature

vector of Σm in Sn × R with respect to the metric induced by Xs and dΣs denotes its
volume element.

On the one hand, let us compute
d

ds
Hm

s

∣∣∣∣
s=0

. For the sake of simplicity, let us denote

v = d/ds. We claim that:

m

2
v(H2

s )

∣∣∣∣
s=0

= ⟨mh− |T |2h−m⟨N,h⟩N +
∑
α,β

Hαtr(AαAβ)eβ , v
⊥⟩

+
m

2
v⊤(H2) + ⟨h,∆⊥v⊥⟩.

(3.5)

Let us assume now that m > 2. Then,

v(Hm
s ) = v((H2

s )
m
2 ) =

m

2
Hm−2

s v(H2
s ) (3.6)

and, consequently,

v(Hm
s )

∣∣∣∣
s=0

= Hm−2⟨mh− |T |2h−m⟨N,h⟩N +
∑
α,β

Hαtr(AαAβ)eβ , v
⊥⟩

+Hm−2
(m
2
v⊤(H2) + ⟨h,∆⊥v⊥⟩

)
.

(3.7)

Furthermore, by using [23, Lemma 5.4] (see also [2, Lemma 4.2]), we have

v(dΣs)

∣∣∣∣
s=0

=
(
−m⟨h, v⊥⟩+ div(v⊤)

)
dΣ. (3.8)

Therefore, along Σm, m > 2, it holds

v(Hm
s dΣs)

∣∣∣∣
s=0

= v(Hm
s )

∣∣∣∣
s=0

dΣ +Hmv(dΣs)

∣∣∣∣
s=0

=
{
Hm−2

(
⟨mh− |T |2h−m⟨N,h⟩N −mH2h, v⊥⟩

)}
dΣ

+

Hm−2

∑
α,β

Hαtr(AαAβ)⟨eβ , v⊥⟩+ ⟨h,∆⊥v⊥⟩+ div(Hmv⊤)

 dΣ,

(3.9)

where it has been used (3.7), (3.8) and the fact that

div(Hmv⊤) =
m

2
Hm−2v⊤(H2) +Hmdiv(v⊤). (3.10)
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8 A.L. Albujer, S.F. da Silva and F.R. dos Santos

Consequently,

d

ds

∫
Σ

Hm
s dΣs

∣∣∣∣
s=0

=

∫
Σ

Hm−2⟨∆⊥v⊥, h⟩dΣ +

∫
Σ

Hm−2
∑
α,β

Hαtr(AαAβ)⟨eβ , v⊥⟩dΣ

−
∫
Σ

Hm−2
(
⟨|T |2h−mh+m⟨N,h⟩N +mH2h, v⊥⟩

)
dΣ.

(3.11)

Hence, x is a stationary point of H if and only if

Hm−2

∆⊥h− |T |2h+mh−m⟨N,h⟩N −mH2h+
∑
α,β

Hαtr(AαAβ)eβ

 = 0. (3.12)

The case m = 2 follows with an analogous argument using (3.5) instead of (3.7).
It remains to prove the claim. By (2.14),

mv(H2
s ) =

∑
i

⟨(∇vAhs
)ei, ei⟩ =

∑
i

⟨∇vAhs
(ei), ei⟩ −

∑
i

⟨Ahs
(∇vei)

⊤, ei⟩, (3.13)

for any {e1, . . . , em} orthonormal frame of X(Σ). In particular, given p ∈ Σ we can choose
locally a totally geodesic frame, i.e. (∇eiej)(p) = 0 for all 1 ⩽ i, j ⩽ m.
Although in the following we will work at p, by simplicity we will omit the point. Let

us denote

I =
∑
i

⟨∇vAhs
(ei), ei⟩ and II =

∑
i

⟨Ahs
(∇vei)

⊤, ei⟩ (3.14)
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Variational problems of total mean curvature surfaces and applications 9

and let us compute both terms separately. From (2.7) and the fact that [v, ei] = ∇vei −
∇eiv = 0, we have

I = −
∑
i

⟨∇v∇eihs, ei⟩+
∑
i

⟨∇v∇⊥
eihs, ei⟩

=
∑
i

⟨R(v, ei)hs, ei⟩ −
∑
i

⟨∇ei∇vhs, ei⟩ −
∑
i

⟨∇⊥
eihs,∇vei⟩

=
∑
i

⟨R(v, ei)hs, ei⟩ −
∑
i

ei⟨∇vhs, ei⟩+
∑
i

⟨∇vhs,∇eiei⟩ −
∑
i

⟨∇⊥
eihs,∇eiv⟩

=
∑
i

⟨R(v, ei)hs, ei⟩+
∑
i

ei⟨hs,∇vei⟩+
∑
i

⟨∇vhs, σ(ei, ei)⟩ −
∑
i

⟨∇⊥
eihs, σ(ei, v

⊤)⟩

−
∑
i

⟨∇⊥
eihs,∇⊥

eiv
⊥⟩

=
∑
i

⟨R(v, ei)hs, ei⟩+
∑
i

ei⟨hs, σ(ei, v
⊤)⟩+

∑
i

ei⟨hs,∇⊥
eiv

⊥⟩+ m

2
v(H2

s )

−
∑
i

⟨∇⊥
eihs, σ(v

⊤, ei)⟩ −
∑
i

⟨∇⊥
eihs,∇⊥

eiv
⊥⟩

=
∑
i

⟨R(v, ei)hs, ei⟩+
∑
i

⟨hs,∇⊥
eiσ(v

⊤, ei)⟩+ ⟨hs, ∆
⊥v⊥⟩+ m

2
v(H2

s ).

(3.15)

where we have also used (2.14) and (3.1).
From the Codazzi equation (2.12) it holds

∇⊥
eiσ(v

⊤, ei) = (∇⊥
eiσ)(v

⊤, ei) + σ(ei,∇eiv
⊤)

= (R(v⊤, ei)ei)
⊥ + (∇⊥

v⊤σ)(ei, ei) + σ(ei,∇eiv
⊤).

(3.16)

Inserting (3.16) in (3.15),

I =
∑
i

⟨R(v⊥, ei)hs, ei⟩+
∑
i

⟨hs,∇⊥
v⊤σ(ei, ei) + σ(ei,∇eiv

⊤)⟩+ ⟨hs, ∆
⊥v⊥⟩+ m

2
v(H2

s )

=
∑
i

⟨R(v⊥, ei)hs, ei⟩+
m

2
v⊤(H2

s ) +
∑
i

⟨Ahs
(ei),∇eiv

⊤⟩+ ⟨hs, ∆
⊥v⊥⟩+ m

2
v(H2

s ).

(3.17)

For the second expression of (3.14), it is not di�cult to check that

II =
∑
i

⟨Ahs
(∇vei)

⊤, ei⟩

=
∑
i

⟨Ahs
(∇eiv

⊤ +∇eiv
⊥), ei⟩ =

∑
i

⟨Ahs
(∇eiv

⊤), ei⟩ − tr(Ahs
Av⊥).

(3.18)
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10 A.L. Albujer, S.F. da Silva and F.R. dos Santos

Therefore,

m

2
v(H2

s ) =
∑
i

⟨R(v⊥, ei)hs, ei⟩+
m

2
v⊤(H2

s ) + ⟨hs, ∆
⊥v⊥⟩+ tr(Ahs

Av⊥), (3.19)

thus

m

2
v(H2

s )

∣∣∣∣
s=0

=
∑
i

⟨R(v⊥, ei)h, ei⟩+
m

2
v⊤(H2) + ⟨h,∆⊥v⊥⟩+ tr(AhAv⊥), (3.20)

On the other hand, writing v⊥ =
∑

β⟨v⊥, eβ⟩eβ and h =
∑

α Hαeα, from (2.14) we get

Ah =
∑
α

HαAα and Av⊥ =
∑
β

⟨v⊥, eβ⟩Aβ . (3.21)

Hence,

tr(AhAv⊥) =
∑
α,β

Hαtr(AαAβ)⟨v⊥, eβ⟩. (3.22)

Besides this, from (2.4),

m∑
i=1

⟨R(v⊥, ei)h, ei⟩ = ⟨mh− |T |2h−m⟨N,h⟩N, v⊥⟩. (3.23)

So, the claim is proved by replacing (3.22) and (3.23) into (3.20). □

It is not di�cult to see that minimal submanifolds are stationary points of the total
mean curvature functional H. In fact, (3.2) is trivial for minimal submanifolds and (3.3)
is also satis�ed since H = 0 implies that the mean curvature vector �eld h vanishes
identically at Σm. Let us prove that minimal submanifolds are the only stationary points
in the class of totally umbilical submanifolds contained in a slice of Sn × R. To that end,
we need to present �rst the following auxiliary result.

Lemma 2. If Σm is a totally umbilical submanifold contained in a slice of Sn × R,
then the mean curvature vector �eld is parallel in the normal bundle.

Proof. From umbilicity, (2.16) gives

σ(X,Y ) = ⟨X,Y ⟩h, X, Y ∈ X(Σ). (3.24)

Hence, a direct computation from the Codazzi equation (2.12) yields

(⟨Y, Z⟩⟨X,T ⟩ − ⟨X,Z⟩⟨Y, T ⟩)N = ⟨X,Z⟩∇⊥
Y h− ⟨Y,Z⟩∇⊥

Xh, (3.25)

for all X,Y, Z ∈ X(Σ). Since Σm is contained in a slice, T = 0, so from (3.25)

⟨Y,Z⟩∇⊥
Xh = ⟨X,Z⟩∇⊥

Y h, (3.26)

for all X,Y, Z ∈ X(Σ). Therefore, choosing Y = Z orthogonal to X, we conclude that h
is parallel in the normal bundle. □
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Variational problems of total mean curvature surfaces and applications 11

As a consequence of the previous result, we get the following corollary.

Corollary 1. Let Σm be a totally umbilical submanifold contained in a slice of Sn × R.
Then, Σm is an H-submanifold of Sn × R if and only if it is totally geodesic.

Proof. Let Σm be a submanifold of Sn × R under the assumptions of the corollary.
From Lemma 2 it follows that ∇⊥h = 0. Furthermore, since Σm is contained in a slice,
T = 0. Thus, using (2.10) and the assumption of umbilicity, we have

0 = ⟨AN (X), Y ⟩ = ⟨σ(X,Y ), N⟩ = ⟨X,Y ⟩⟨h,N⟩ (3.27)

for all X,Y ∈ X(Σ), so ⟨h,N⟩ = 0. Besides that, the umbilicity of Σm also implies that,
for every m+ 1 ⩽ α ⩽ n+ 1, it holds Aα(X) = ⟨h, eα⟩X.
Hence, the �rst variational formula for H in Proposition 2 becomes

0 = Hm−2

(
mh−mH2h+m

∑
α

⟨h, eα⟩2h

)
= mHm−2h (3.28)

if m > 2 and simply h = 0 in the case m = 2. In any case, it is immediate to check that
Σm is an H-submanifold if and only if it is minimal. Thus, from umbilicity, if and only if
it is totally geodesic. □

4. Two key lemmas

Associated to the second fundamental form of Σm, let us consider the following operator
P : X(Σ)× X(Σ) → X(Σ)⊥ by setting

P (X,Y ) = m⟨X,Y ⟩h− σ(X,Y ). (4.1)

We observe that P is symmetric and tr(P ) = m(m− 1)h. Concerning to P , let us consider
the following second order di�erential operator:

□∗ : X(Σ)⊥ → C∞(Σ) (4.2)

given by

□∗(ξ) = ⟨P,∇2ξ⟩, (4.3)

where ⟨ , ⟩ denotes the Hilbert-Schmidt inner product. We observe that, for each α ∈
{m+ 1, n+ 1}, by (4.1) it holds

⟨P (X,Y ), eα⟩ = m⟨X,Y ⟩⟨h, eα⟩ − ⟨σ(X,Y ), eα⟩
= m⟨X,Y ⟩Hα − ⟨Aα(X), Y ⟩,

(4.4)

which motivates the de�nition of the operator Pα : X(Σ) → X(Σ) given by Pα = mHαI −
Aα. It is immediate to see that Pα is symmetric, tr(Pα) = m(m− 1)Hα and∑

α

tr(Pα)eα = m(m− 1)
∑
α

Hαeα = m(m− 1)h = tr(P ). (4.5)
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12 A.L. Albujer, S.F. da Silva and F.R. dos Santos

We can also de�ne another second di�erential operator

□ : C∞(Σ) → X(Σ)⊥ (4.6)

such that

□(f) =
∑
α

tr(Pα ◦Hess f)eα. (4.7)

The following result gives a relation between both operators □∗ and □.

Lemma 3. Let Σm be a closed submanifold in the product space Sn × R. Then∫
Σ

f □∗(ξ)dΣ =

∫
Σ

⟨□(f), ξ⟩dΣ + (m− 1)

∫
Σ

(
f⟨∇⊥

T ξ,N⟩ − ⟨N, ξ⟩⟨∇f, T ⟩
)
dΣ, (4.8)

for all f ∈ C2(Σ) and ξ ∈ TΣ⊥.

Proof. Let p ∈ Σm and {e1, . . . , em} be an orthonormal frame of X(Σ) on a neighbor-
hood U ⊂ Σm of p, geodesic at p, that is, (∇eiej)(p) = 0 for all 1 ⩽ i, j ⩽ m. By using
the Hilbert-Schmidt inner product, we have

f□∗(ξ) = f⟨P,∇2ξ⟩ = f
∑
i,j

⟨P (ei, ej),∇2ξ(ei, ej)⟩

=
∑
i,j

ej
(
f⟨P (ei, ej),∇⊥

eiξ⟩
)
−
∑
i,j

ei (ej(f)⟨P (ei, ej), ξ⟩)

− f
∑
i,j

⟨∇⊥
ejP (ei, ej),∇⊥

eiξ⟩+
∑
i,j

ei(ej(f))⟨P (ei, ej), ξ⟩

+
∑
i,j

ej(f)⟨∇⊥
eiP (ei, ej), ξ⟩.

(4.9)

On the other hand, by a direct computation∑
i,j

ei(ej(f))⟨P (ei, ej), ξ⟩ = m
∑
i,j

ei(ej(f))δij⟨h, ξ⟩ −
∑
i,j

ei(ej(f))⟨σ(ei, ej), ξ⟩

= m∆f⟨h, ξ⟩ −
∑
α,i,j

ei(ej(f))⟨Aα(ei), ej⟩⟨eα, ξ⟩

=
∑
α

(mHα∆f − tr(Aα ◦Hess f)) ⟨eα, ξ⟩

=
∑
α

tr(Pα ◦Hess f)⟨eα, ξ⟩ = ⟨□(f), ξ⟩,

(4.10)

where δij = ⟨ei, ej⟩. Inserting (4.10) in (4.9) we get

f□∗(ξ) = ⟨□(f), ξ⟩ − f
∑
i,j

⟨∇⊥
ejP (ei, ej),∇⊥

eiξ⟩+
∑
i,j

ej(f)⟨∇⊥
eiP (ei, ej), ξ⟩

+
∑
i,j

ej
(
f⟨P (ei, ej),∇⊥

eiξ⟩
)
−
∑
i,j

ei (ej(f)⟨P (ei, ej), ξ⟩) .
(4.11)
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Variational problems of total mean curvature surfaces and applications 13

We observe that the last expressions in (4.11) can be seen as divergences, that is,∑
i,j

div (ej(f)⟨P (ei, ej), ξ⟩ei) =
∑
i,j

ej(f)⟨P (ei, ej), ξ⟩div(ei) +
∑
i,j

ei (ej(f)⟨P (ei, ej), ξ⟩)

(4.12)
and∑
i,j

div
(
f⟨P (ei, ej),∇⊥

eiξ⟩ej
)
= f

∑
i,j

⟨P (ei, ej),∇⊥
eiξ⟩div(ej) +

∑
i,j

ej
(
f⟨P (ei, ej),∇⊥

eiξ⟩
)
.

(4.13)

Since at p ∈ Σm it holds div(ei)(p) = 0 for any 1 ⩽ i ⩽ m, we obtain∑
i,j

div
(
f⟨P (ei, ej),∇⊥

eiξ⟩ej − ej(f)⟨P (ei, ej), ξ⟩ei
)

=
∑
i,j

ej
(
f⟨P (ei, ej),∇⊥

eiξ⟩
)
−
∑
i,j

ei (ej(f)⟨P (ei, ej), ξ⟩) .
(4.14)

Now, by using the Codazzi equation (2.12),

⟨∇⊥
ejP (ei, ej),∇⊥

eiξ⟩ = mδij⟨∇⊥
ejh,∇

⊥
eiξ⟩ − ⟨∇⊥

eiσ(ej , ej),∇
⊥
eiξ⟩+ ⟨R(ei, ej)∇⊥

eiξ, ej⟩

= mδij⟨∇⊥
ejh,∇

⊥
eiξ⟩ − ⟨∇⊥

eiσ(ej , ej),∇
⊥
eiξ⟩

+ ⟨∇⊥
eiξ,N⟩ (⟨ej , T ⟩δij − ⟨ei, T ⟩) ,

(4.15)

and hence

f
∑
i,j

⟨∇⊥
ejP (ei, ej),∇⊥

eiξ⟩ = −(m− 1)f⟨∇⊥
T ξ,N⟩. (4.16)

In a similar way, ∑
i,j

ej(f)⟨∇⊥
eiP (ei, ej), ξ⟩ = −(m− 1)⟨N, ξ⟩⟨∇f, T ⟩. (4.17)

Replacing (4.14), (4.16) and (4.17) all of these in (4.11),

f□∗(ξ) = ⟨□(f), ξ⟩+
∑
i,j

div
(
f⟨P (ei, ej),∇⊥

eiξ⟩ej − ej(f)⟨P (ei, ej), ξ⟩ei
)

+ (m− 1)
(
f⟨∇⊥

T ξ,N⟩ − ⟨N, ξ⟩⟨∇f, T ⟩
)
.

(4.18)

It is worth pointing our that the expression in the divergence term is independent of the
chosen frame. Finally, by using the divergence theorem, we obtain the desired result. □

In particular, taking f ≡ 1 in Lemma 3, we get
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14 A.L. Albujer, S.F. da Silva and F.R. dos Santos

Corollary 2. Let Σm be a closed submanifold in the product space Sn × R. Then, for
all ξ ∈ X(Σ)⊥ ∫

Σ

□∗(ξ)dΣ = (m− 1)

∫
Σ

⟨∇⊥
T ξ,N⟩dΣ. (4.19)

The next result gives a Hiusken type inequality for submanifolds in Sn × R.

Lemma 4. If Σm is a submanifold in the product space Sn × R, then

|∇⊥σ|2 ⩾
m

m+ 2

(
3m|∇⊥h|2 + 4(m− 1)⟨∇⊥

T h,N⟩
)
. (4.20)

Proof. Let F : X(Σ)3 → X(Σ)⊥ be the tensor de�ned by

F (X,Y, Z) = ∇⊥
Zσ(X,Y ) + a

(
⟨Y, Z⟩∇⊥

Xh+ ⟨X,Z⟩∇⊥
Y h+ ⟨X,Y ⟩∇⊥

Zh
)
, (4.21)

for a given a ∈ R. Let us compute its norm. A direct computation gives

⟨F (X,Y, Z), F (X,Y, Z)⟩ = ⟨∇⊥
Zσ(X,Y ),∇⊥

Zσ(X,Y )⟩+ 2aQ1(X,Y, Z) + a2Q2(X,Y, Z),
(4.22)

where

Q1(X,Y, Z) = ⟨Y,Z⟩⟨∇⊥
Xh,∇⊥

Zσ(X,Y )⟩+ ⟨X,Z⟩⟨∇⊥
Y h,∇⊥

Zσ(X,Y )⟩

+ ⟨X,Y ⟩⟨∇⊥
Zh,∇⊥

Zσ(X,Y )⟩,
(4.23)

and

Q2(X,Y, Z) =
(
⟨Y,Z⟩2⟨∇⊥

Xh,∇⊥
Xh⟩+ ⟨X,Z⟩2⟨∇⊥

Y h,∇⊥
Y h⟩+ ⟨X,Y ⟩2⟨∇⊥

Zh,∇⊥
Zh⟩

)
+ 2⟨Y, Z⟩⟨X,Z⟩⟨∇⊥

Xh,∇⊥
Y h⟩+ 2⟨Y,Z⟩⟨X,Y ⟩⟨∇⊥

Xh,∇⊥
Zh⟩

+ 2⟨X,Z⟩⟨X,Y ⟩⟨∇⊥
Y h,∇⊥

Zh⟩.
(4.24)

Given p ∈ Σm, and {e1, . . . , em} an orthonormal frame of X(Σ) on a neighbourhood
U ⊂ Σm of p, which is geodesic at p, it is not di�cult to check that∑
i,j,k

⟨∇⊥
ek
σ(ei, ej),∇⊥

ek
σ(ei, ej)⟩ = |∇⊥σ|2 and

∑
i,j,k

Q2(ei, ej , ek) = 3(m+ 2)|∇⊥h|2.

(4.25)
Besides that, from the Codazzi equation (2.12) we have∑
i,j,k

Q1(ei, ej , ek) =
∑
i,j,k

(
δjk⟨∇⊥

eih,∇
⊥
ek
σ(ei, ej)⟩+ δik⟨∇⊥

ejh,∇
⊥
ek
σ(ei, ej)⟩+ δij⟨∇⊥

ek
h,∇⊥

ek
σ(ei, ej)⟩

)
= 3m|∇⊥h|2 + 2(m− 1)

∑
i

⟨ei, T ⟩⟨∇⊥
eih,N⟩

= 3m|∇⊥h|2 + 2(m− 1)⟨∇⊥
T h,N⟩.

(4.26)
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Variational problems of total mean curvature surfaces and applications 15

Hence,

|F |2 = |∇⊥σ|2 + 2a
(
3m|∇⊥h|2 + 2(m− 1)⟨∇⊥

T h,N⟩
)
+ 3a2(m+ 2)|∇⊥h|2. (4.27)

Taking a = −m/(m+ 2) we obtain (4.20). □

5. Proof of Theorem 1

From now on, we will deal with H-surfaces immersed in the product space Sn × R. Before
proving our main result, Theorem 1, we need the following auxiliary proposition.

Proposition 3. Let Σ2 be an H-surface in the product space Sn × R. Then, we have∫
Σ

(
|∇⊥σ|2 + 2

∑
α

tr(Aα ◦HessHα)

)
dΣ ⩾

∫
Σ

(
2⟨N,h⟩2 − (2− |T |2 + |ϕ|2)H2

)
dΣ.

(5.1)

Proof. Firstly, taking into account the de�nition of P , a direct computation gives us

⟨P,∇2ξ⟩ =
∑
i,j

⟨P (ei, ej),∇2ξ(ei, ej)⟩

= 2
∑
i,j

δij⟨h,∇2ξ(ei, ej)⟩ −
∑
i,j

⟨σ(ei, ej),∇2ξ(ei, ej)⟩

= 2⟨h,∆⊥ξ⟩ −
∑
i,j

⟨σ(ei, ej),∇2ξ(ei, ej)⟩,

(5.2)

for any orthonormal frame {e1, e2} of X(Σ). Furthermore, with a similar reasoning as the
one in (4.10), we get∑

i,j

⟨σ(ei, ej),∇2ξ(ei, ej)⟩ =
∑
α

tr(Aα ◦Hess ξα), (5.3)

where ξα := ⟨ξ, eα⟩. Therefore,

□∗(ξ) = 2⟨h,∆⊥ξ⟩ −
∑
α

tr(Aα ◦Hess ξα). (5.4)

Making ξ = 2h in (5.4), we write

□∗(2h) = 4⟨∆⊥h, h⟩ − 2
∑
α

tr(Aα ◦HessHα) (5.5)

On the other hand, by using the following identity

1

2
∆H2 = ⟨∆⊥h, h⟩+ |∇⊥h|2, (5.6)

(5.5) reads

□∗(2h) = ⟨∆⊥h, h⟩+ 3

2
∆H2 − 3|∇⊥h|2 − 2

∑
α

tr(Aα ◦HessHα). (5.7)
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By using Lemma 4 in the case m = 2,

−3|∇⊥h|2 ⩾ −|∇⊥σ|2 + 2⟨∇⊥
T h,N⟩. (5.8)

Hence,

□∗(2h) ⩾ ⟨∆⊥h, h⟩+ 3

2
∆H2 − |∇⊥σ|2 + 2⟨∇⊥

T h,N⟩ − 2
∑
α

tr(Aα ◦HessHα). (5.9)

Let us consider now {e3, . . . , en+1} a normal orthonormal frame in X(Σ)⊥. Then, by
writing h =

∑
α Hαeα and taking into account the de�nition of ϕα, we easily get

∑
α,β

Hαtr(AαAβ)⟨eβ , h⟩ =
∑
α,β,γ

HαHγtr(AαAβ)⟨eβ , eγ⟩

=
∑
α,β

HαHβtr(ϕαϕβ) + 2
∑
α,β

(Hα)2(Hβ)2

=
∑
α,β

HαHβtr(ϕαϕβ) + 2H4.

(5.10)

So, by Proposition 2,

⟨∆⊥h, h⟩+
(
2− |T |2

)
H2 − 2⟨N,h⟩2 +

∑
α,β

HαHβtr(ϕαϕβ) = 0. (5.11)

Now let us consider σαβ = tr(ϕαϕβ) for all 3 ⩽ α, β ⩽ n+ 1. Observe that the (n− 1)×
(n− 1)-matrix (σαβ) is symmetric and it can be assumed to be diagonal for a suitable
choice of the normal orthonormal frame {e3, . . . , en+1}. Hence,∑

α,β

HαHβtr(ϕαϕβ) =
∑
α

(Hα)2tr(ϕ2
α) ⩽

∑
α

(Hα)2
∑
β

tr(ϕ2
β) = H2|ϕ|2. (5.12)

Replacing (5.11) and (5.12) in (5.9),

□∗(2h)− 2⟨∇⊥
T h,N⟩ ⩾ −(2− |T |2 + |ϕ|2)H2 + 2⟨N,h⟩2 + 3

2
∆H2

− |∇⊥σ|2 − 2
∑
α

tr(Aα ◦HessHα).
(5.13)

Finally, Proposition 3 is proved taking into account Corollary 2 and the divergence
theorem. □

Now, we are in position to present the proof of Theorem 1.
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Variational problems of total mean curvature surfaces and applications 17

Proof of Theorem 1. To begin with, taking into account the de�nition of ϕα it is
immediate to check that for all 3 ⩽ α, β ⩽ n+ 1 it holds

AαAβ −AβAα = ϕαϕβ − ϕβϕα. (5.14)

Furthermore, since for any 3 ⩽ α ⩽ n+ 1 ϕα is a 2× 2 symmetric matrix with tr(ϕα) = 0,
we easily get ϕ2

α = λI for a certain λ ∈ R and, consequently,

tr(ϕ2
αϕβ) = 0 (5.15)

for all 3 ⩽ α, β ⩽ n+ 1.
Besides that, with a straightforward computation and considering (5.15) we can get

the following algebraic identities:∑
α,β

tr(Aβ)tr(A
2
αAβ) = 2H2|ϕ|2 + 4H4 + 4

∑
α,β

HαHβtr(ϕαϕβ), (5.16)

and ∑
α,β

[tr(AαAβ)]
2 =

∑
α,β

[tr(ϕαϕβ)]
2 + 4H4 + 4

∑
α,β

HαHβtr(ϕαϕβ). (5.17)

Hence, from all the above identities,

−
∑
α,β

(
N(AαAβ −AβAα) + [tr(AαAβ)]

2 − tr(Aβ)tr(A
2
αAβ)

)
= −

∑
α,β

(
N(ϕαϕβ − ϕβϕα) + [tr(ϕαϕβ)]

2
)
+ 2H2|ϕ|2.

(5.18)

So, Proposition 1 can be written as follow

1

2
∆|σ|2 = |∇⊥σ|2 + 2

∑
α

tr(Aα ◦HessHα) + 2|ϕN |2 − 4
∑
α

|ϕα(T )|2

+
(
2− |T |2 + 2H2

)
|ϕ|2 − 2⟨ϕh(T ), T ⟩

−
∑
α,β

(
N(ϕαϕβ − ϕβϕα) + [tr(ϕαϕβ)]

2
)
.

(5.19)

Observe now that, by using Lemma 1,

−
∑
α,β

(
N(ϕαϕβ − ϕβϕα) + [tr(ϕαϕβ)]

2
)
⩾ −3

2
|ϕ|4. (5.20)

Moreover, the Cauchy-Schwarz's inequality implies

−4
∑
α

|ϕα(T )|2 ⩾ −4|ϕ|2|T |2 and − 2⟨ϕh(T ), T ⟩ ⩾ −2|ϕh||T |2. (5.21)
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Inserting (5.20) and (5.21) in (5.19) we get

1

2
∆|σ|2 ⩾ |∇⊥σ|2 + 2

∑
α

tr(Aα ◦HessHα) + 2|ϕN |2 − 2|ϕh||T |2

+

(
2− 5|T |2 + 2H2 − 3

2
|ϕ|2

)
|ϕ|2.

(5.22)

Taking integrals and using the divergence theorem, it follows from Proposition 3 that

0 ⩾
∫
Σ

{
2(|ϕN |2 + ⟨N,h⟩2) +

(
|T |2 + |ϕ|2

)
H2
}
dΣ

+

∫
Σ

{(
2− 5|T |2 − 3

2
|ϕ|2

)
|ϕ|2 − 2H2 − 2|ϕh||T |2

}
dΣ.

(5.23)

Hence, ∫
Σ

{(
2− 5|T |2 − 3

2
|ϕ|2

)
|ϕ|2 − 2H2 − 2|ϕh||T |2

}
dΣ ⩽ 0. (5.24)

On the other hand, by the Gauss equation (2.11) it holds

2H2 = 2K + |ϕ|2 − 2(1− |T |2). (5.25)

Then, the Gauss-Bonnet theorem implies∫
Σ

{(
1− 5|T |2 − 3

2
|ϕ|2

)
|ϕ|2 − 2(|ϕh|+ 1)|T |2 + 2

}
dΣ ⩽ 4πχ(Σ). (5.26)

Finally, let us study when the equality holds in (5.26). In such case, all the inequalities
obtained along the proof should become equalities. In particular, the equality in (5.23)
and (5.24) holds. Thus, |ϕN | = ⟨N,h⟩ = 0 and either |T | = |ϕ| = 0 or H = 0. In the �rst
case, Σ2 is anH-surface satisfying the assumptions of Corollary 1, so it is totally geodesic.
Therefore, either it is isometric to a slice S2 × {t0} in the case n = 2, or to a totally
geodesic sphere S2 in a certain S3 × {t0}.
Let us focus in the second case. On the one hand, since |ϕN | = ⟨N,h⟩ = 0, (2.17) implies

that AN = 0. Consequently, from (2.10) we have that |T | is constant on Σ2, and so it
is |N |. On the other hand, since H = 0 and the equality also holds in Lemma 4, Σ2 is
necessarily a parallel surface of S2 × R. Then, the Codazzi equation (2.12) reads

0 = ⟨R(X,Y )Z,N⟩ = |N |2 (⟨X,T ⟩⟨Y,Z⟩ − ⟨Y, T ⟩⟨X,Z⟩) , (5.27)

for all X,Y, Z ∈ X(Σ). Therefore, we easily get that either N = 0 or T = 0. In the case
where N = 0, we must have that Σ2 is a vertical cylinder π−1(γ), γ being a circle in
S2 and π : S2 × R → S2 the natural projection map. This case cannot occurs, since it
contradicts the compactness assumption of Σ2. Hence, T = 0, so Σ2 is a minimal surface
in a slice of Sn × R. For the case where Σ2 can be isometrically immersed in a certain
S3 × {t0}, a classical result of isoparametric surfaces in Riemannian space forms [16]
guarantees that Σ2 is isometric to a Cli�ord torus S1(1/

√
2)× S1(1/

√
2) in S3 × {t0}, for
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Variational problems of total mean curvature surfaces and applications 19

some t0 ∈ R. In other case, observe that, again from (2.17), |ϕ|2 = |σ|2, so the equality
in (5.24) becomes ∫

Σ

|σ|2
(
3

2
|σ|2 − 2

)
dΣ = 0. (5.28)

Therefore, from [18, Theorem 1] Σ2 is isometric to a Veronese surface in S4 × {t0}, for
some t0 ∈ R. □
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