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On the Symmetries of a Kaehler Manifold

Alma L. Albujer , Jorge Alcázar and Magdalena Caballero

Abstract. The natural symmetries of Riemannian manifolds are de-
scribed by the symmetries of its Riemann curvature tensor. In that sense,
the most symmetric manifolds are the constant sectional curvature ones.
Its natural generalizations are locally symmetric manifolds, semisym-
metric manifolds, and pseudosymmetric manifolds. The analogous gen-
eralizations of constant holomorphic sectional curvature Kaehler mani-
folds are locally symmetric Kaehler manifolds, semisymmetric Kaehler
manifolds, and holomorphically pseudosymmetric Kaehler manifolds.
Do they differ in some way from their Riemannian analogues? Yes, we
prove they can all be characterized only in terms of holomorphic planes.
Furthermore, the concept of holomorphically pseudosymmetric Kaehler
manifold is different from the classical notion of pseudosymmetric Rie-
mannian manifold proposed by Deszcz. We study some relations between
both definitions of pseudosymmetry and the so called double sectional
curvatures in the sense of Deszcz. We also present a geometric interpre-
tation of the complex Tachibana tensor and a new characterization of
constant holomorphic sectional curvature Kaehler manifolds.
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1. Introduction

A Riemannian manifold (M, g) is said to be locally flat when its Riemann
curvature tensor R vanishes. Along this paper we will consider the Riemann
curvature tensor given by

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, (1.1)

for any vector fields X,Y,Z ∈ X(M), where X(M) stands for the Lie algebra
of vector fields on M . When necessary, as it is usual in Riemannian geom-
etry, we will also consider R as the (0, 4)-tensor given by R(X,Y,Z,W ) =
g(R(X,Y )Z,W ) for any X,Y,Z,W ∈ X(M).
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The simplest non-flat Riemannian manifolds are the spaces of constant
sectional curvature c, for which the Riemann curvature tensor takes the form

R(X,Y )Z = c(X ∧g Y )Z, (1.2)

∧g being the metric endomorphism in (M, g), defined by X∧gY := g(Y, ·)X−
g(X, ·)Y , for any vector fields X,Y ∈ X(M). Generalizing those spaces, Car-
tan considered in [1] the locally symmetric spaces as those such that ∇R = 0,
that is, with parallel curvature, characterized by the fact that the sectional
curvature of every plane is preserved after parallel transport of the plane
along any curve, see [8].

Going a step further, let us observe that the integrability condition of
∇R = 0 is R · R = 0. Therefore, every locally symmetric space also satisfies
R · R = 0. This fact led Szabó ( [14,15]) to define semisymmetric spaces as
the Riemannian manifolds satisfying R · R = 0. Let us recall here that R · R
is the (0, 6)-tensor on M given by

R · R(X1,X2,X3,X4;X,Y ) = (R(X,Y ) · R)(X1,X2,X3,X4)

= −R(R(X,Y )X1,X2,X3,X4) − R(X1, R(X,Y )X2,X3,X4)

− R(X1,X2, R(X,Y )X3,X4) − R(X1,X2,X3, R(X,Y )X4),

(1.3)

for every X1,X2,X3,X4,X, Y ∈ X(M). As proved by Haesen and Verstraelen
in [5, Corollary 1], semisymmetric manifolds are characterized as those man-
ifolds whose sectional curvature at every point p ∈ M of any plane π ⊂ TpM ,
K(p, π), is invariant, up to second order, under parallel transport of π around
any infinitesimal coordinate parallelogram centered at p. It is immediate to
observe that any Riemannian surface satisfies R · R = 0, so the concept of
semisymmetry takes relevance in the case of Riemannian manifolds (Mn, g)
of dimension n ≥ 3.

As a natural generalization of these last spaces, the pseudosymmetric
spaces in the sense of Deszcz (see [3] and references therein) are defined as
the Riemannian manifolds (Mn, g) of dimension n ≥ 3 for which

R · R = L Q(g,R), (1.4)

where L ∈ C∞(M) and Q(g,R) is the Tachibana tensor, which is defined by

Q(g,R)(X1,X2,X3,X4;X,Y ) = −((X ∧g Y ) · R)(X1,X2,X3,X4)
= R((X ∧g Y )X1,X2,X3,X4) + R(X1, (X ∧g Y )X2,X3,X4)

+ R(X1,X2, (X ∧g Y )X3,X4) + R(X1,X2,X3, (X ∧g Y )X4),
(1.5)

for X1,X2,X3,X4,X, Y ∈ X(M). The Tachibana tensor may well be the
simplest (0, 6)-tensor with the same algebraic symmetries as R · R.

It is well known that a Riemannian manifold has constant sectional
curvature if and only if its Tachibana tensor vanishes identically, see [4].
Therefore, if (Mn, g), n ≥ 3, is a Riemannian manifold with non-constant
sectional curvature, the set of points where the Tachibana tensor does not
vanish identically is an open non-empty subset U ⊆ M . Given a point p ∈ U ,
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a plane π = v ∧ w ⊂ TpM is said to be curvature-dependent with respect
to another plane π̄ = x ∧ y ⊂ TpM if Q(g,R)(v, w,w, v;x, y) �= 0. In this
context, given p ∈ U and two planes in TpM , π = v ∧ w and π̄ = x ∧ y,
such that π is curvature-dependent with respect to π̄, the double sectional
curvature L(p, π, π̄) of π with respect to π̄ at p is defined in [5, Definition 3]
as

L(p, π, π̄) =
R · R(v, w,w, v;x, y)

Q(g,R)(v, w,w, v;x, y)
. (1.6)

The above definitions are independent on the choice of bases for π and π̄.
Given p ∈ M and two planes, π = v ∧ w and π̄ = x ∧ y, such that π

is curvature-dependent with respect to π̄, Q(g,R)(v, w,w, v;x, y) measures
the change of the sectional curvature K(p, π) under an operation involving
infinitesimal rotations performed at the point p. Specifically, considering π′ =
v′ ∧ w′, where v′, w′ ∈ TpM are vectors obtained after infinitesimal rotations
of the projections of v and w respectively onto π̄, Q(g,R)(v, w,w, v;x, y)
measures, up to order two, the difference K(p, π′) − K(p, π), see [5].

It is obvious that if (M, g) is a pseudosymmetric manifold in the sense
of Deszcz, all its double sectional curvatures are independent of the planes.
Furthermore, this is also a sufficient condition: a Riemannian manifold M of
dimension n ≥ 3 is pseudosymmetric in the sense of Deszcz if and only if at
every p ∈ U , for all planes π and π̄ in TpM such that π is curvature-dependent
with respect to π̄, L(p, π, π̄) = L(p) for some smooth function L ∈ C∞(M)
(see [5, Theorem 3]). Moreover, M is pseudosymmetric in the sense of Deszcz
if and only if at every p ∈ U , for every planes π and π̄ in TpM such that
π is curvature-dependent with respect to π̄, the double sectional curvature
L(p, π, π̄) is independent of the plane π (see [5, Theorem 5]) (see Table 1 for
a summary of the different natural symmetries on a Riemannian manifold.).

Along this work, we will consider Kaehler manifolds (M2n, g, J) satis-
fying different symmetries. Specifically, we will study constant holomorphic
sectional curvature, locally symmetric, semisymmetric, and pseudosymmetric
Kaehler manifolds. It is worth pointing out at this point that every Kaehler
manifold (M2n, g, J) of real dimension 2n > 4, which is pseudosymmetric in
the sense of Deszcz, is also semisymmetric, see [2] and [11]. However, there
exists an example in dimension 2n = 4 of a Kaehler manifold (M4, g, J)
which is pseudosymmetric in the sense of Deszcz but not semisymmetric,
[11]. Furthermore, the tensors R · R and Q(g,R) do not present the same

Table 1. Natural symmetries on a Riemannian manifold

Locally flat R = 0
Constant sectional curvature R(X,Y )Z = c (X ∧g Y )Z
Locally symmetric ∇R = 0
Semisymmetric R · R = 0
Deszcz pseudosymmetric R · R = LQ(g,R)
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symmetries and properties involving the complex structure J . For these rea-
sons, in 1989 Olszak proposed an alternative concept of pseudosymmetry for
Kaehler manifolds, see [10]. We will refer to this concept of pseudosymmetry
as holomorphic pseudosymmetry.

The manuscript is organized as follows. In Sect. 2, some basic notions
about Kaehler manifolds are recalled and three new algebraic results concern-
ing the symmetries of (0, 5) and (0, 6)-tensors on M are presented: Lemma 2.2,
Lemma 2.3, and Lemma 2.4. In Sect. 3, the complex Tachibana tensor is
defined and, in an analogous way as in the Riemannian case, a geometri-
cal interpretation is given. Such tensor allows us to give a characterization
result of Kaehler manifolds with constant holomorphic sectional curvature:
Theorem 3.3. In Sect. 4, characterization results for locally symmetric and
semisymmetric Kaehler manifolds are proved: Theorems 4.1 and 4.2. Finally,
Sect. 5 is devoted to holomorphically pseudosymmetric Kaehler manifolds.
The relations between holomorphic pseudosymmetry, pseudosymmetry in the
sense of Deszcz and the double sectional curvatures are studied. In particular,
two characterization results for holomorphically pseudosymmetric Kaehler
manifolds are given in terms of the double sectional curvatures: Theorems 5.2
and 5.4.

2. Set Up

A Kaehler manifold is a complex manifold (M2n, g, J), of real dimension 2n,
where g is an Hermitian metric on M and the complex structure J is parallel,
i.e. ∇J = 0. Given (M, g, J) a Kaehler manifold, it is possible to define its
complex metric endomorphism by

(X ∧c
g Y )Z = (X ∧g Y )Z + (JX ∧g JY )Z − 2g(JX, Y )JZ, (2.1)

for any X,Y,Z ∈ X(M). The simplest non-flat Kaehler manifolds are those of
constant holomorphic sectional curvature c̃, for which the Riemann curvature
tensor takes the form

R(X,Y )Z =
c̃

4
(X ∧c

g Y )Z, (2.2)

for any X,Y,Z ∈ X(M).
The following lemma, due to Ogiue [9], gives a sufficient and neces-

sary condition for a Kaehler manifold to have constant holomorphic sectional
curvature.

Lemma 2.1. A Kaehler manifold (M, g, J) has constant holomorphic sectional
curvature if and only if R(X,JX,X, Y ) = 0 for every orthonormal subset
{X,JX, Y } in X(M).

When studying further symmetries of any Kaehler manifold, or in gen-
eral of any Riemannian manifold, the tensor R · R proves to be essential.
In addition to the algebraic symmetries satisfied by such tensor on any Rie-
mannian manifold (see, for instance, [5, Lemma 1]), in the case of a Kaehler
manifold it presents a good behaviour with respect to J . Taking into account
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the behavior of R with respect to J , see [7, Prop. 4.5, Ch. IX], the following
lemma is immediate.

Lemma 2.2. The tensor R · R of a Kaehler manifold (M, g, J) verifies

R · R(JX1, JX2,X3,X4;X,Y ) = R · R(X1,X2, JX3, JX4;X,Y )
= R · R(X1,X2,X3,X4;JX, JY ) = R · R(X1,X2,X3,X4;X,Y ), (2.3)

for every X1,X2,X3,X4,X, Y ∈ X(M).

Thanks to the following result, (0, 6)-tensors on a Kaehler manifold
satisfying the same properties as R · R are characterized by their behaviour
when applied to holomorphic planes.

Lemma 2.3. Let V 2n be a real vectorial space endowed with a complex struc-
ture J and let T1 and T2 be two (0, 6)-tensors on V satisfying the following
properties:
(a) Ti(x1, x2, x3, x4, x5, x6) = −Ti(x2, x1, x3, x4, x5, x6) = −Ti(x1, x2, x4, x3,

x5, x6) = Ti(x3, x4, x1, x2, x5, x6),
(b) Ti(x1, x2, x3, x4, x5, x6) + Ti(x1, x3, x4, x2, x5, x6)+ Ti(x1, x4, x2, x3, x5,

x6) = 0,
(c) Ti(x1, x2, x3, x4, x5, x6) = Ti(Jx1, Jx2, x3, x4, x5, x6) = Ti(x1, x2, Jx3,

Jx4, x5, x6), and
(d) Ti(x1, x2, x3, x4, x5, x6) = −Ti(x1, x2, x3, x4, x6, x5) = Ti(x1, x2, x3, x4,

Jx5, Jx6),
for every x1, x2, x3, x4, x5, x6 ∈ V . If for every u, v ∈ V it holds

T1(u, Ju, Ju, u, v, Jv) = T2(u, Ju, Ju, u, v, Jv), (2.4)

then T1 = T2.

Proof. We can assume without loss of generality that T2 = 0.
Given v ∈ V , let us consider the (0, 4)-tensor on V , T v, defined by

T v(x1, x2, x3, x4) = T1(x1, x2, x3, x4, v, Jv). (2.5)

From the symmetries of T1 and [7, Prop. 7.1, Ch. IX], we get T v = 0.
Given now x5, x6 ∈ V , let us consider v = Jx5 + x6. Then, Jv =

−x5 + Jx6 and so

0 = T1(x1, x2, x3, x4, v, Jv)
= T1(x1, x2, x3, x4, Jx5, Jx6) + T1(x1, x2, x3, x4, x6,−x5). (2.6)

Finally, the result follows from assumption (d).
�

Our last algebraic result is proven in an analogous way.

Lemma 2.4. Let V 2n be a real vectorial space endowed with a complex struc-
ture J and let T1 and T2 be two (0, 5)-tensors on V satisfying the following
properties:
(a) Ti(x1, x2, x3, x4, x5) = −Ti(x2, x1, x3, x4, x5) = −Ti(x1, x2, x4, x3, x5)

= Ti(x3, x4, x1, x2, x5),
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(b) Ti(x1, x2, x3, x4, x5) + Ti(x1, x3, x4, x2, x5) + Ti(x1, x4, x2, x3, x5) = 0,
and

(c) Ti(x1, x2, x3, x4, x5) = Ti(Jx1, Jx2, x3, x4, x5) = Ti(x1, x2, Jx3, Jx4, x5),

for every x1, x2, x3, x4, x5 ∈ V . If for every u, v ∈ V it holds

T1(u, Ju, Ju, u, v) = T2(u, Ju, Ju, u, v), (2.7)

then T1 = T2.

3. The Complex Tachibana Tensor and Constant Holomorphic
Sectional Curvature Kaehler Manifolds

In analogy to the classical Tachibana tensor, on any Kaehler manifold we
define the complex Tachibana tensor as follows.

Definition 3.1. Given (M2n, g, J) a Kaehler manifold, the complex Tachibana
tensor is defined as the (0, 6)-tensor on M given by

Qc(g,R)(X1,X2,X3,X4;X,Y ) = − ((
X ∧c

g Y
) · R

)
(X1,X2,X3,X4)

= R
((

X ∧c
g Y

)
X1,X2,X3,X4

)

+ R
(
X1,

(
X ∧c

g Y
)
X2,X3,X4

)

+ R
(
X1,X2,

(
X ∧c

g Y
)
X3,X4

)

+ R
(
X1,X2,X3,

(
X ∧c

g Y
)
X4

)
, (3.1)

for every X1,X2,X3,X4,X, Y ∈ X(M).

Remark 3.2. The choice of the notation Qc(g,R) for the complex Tachibana
tensor is due to its analogy with the classical Tachibana tensor for a Rie-
mannian manifold. However, variations of such tensor have been previously
considered in the study of the symmetries of a Kaehler manifold. Specifically,
Olszak considered in [10] the (0, 6)-tensor R1 ·R given by R1 ·R = −Qc(g,R)
and Jelonek defined in [6] the tensor Π · R = − 1

4Qc(g,R). Here Π stands for
the tensor on a Kaehler manifold given by Π(X,Y ) = 1

4 (X ∧c
g Y ) for any

X,Y ∈ X(M). Sometimes, it will be convenient to consider Π instead of the
complex metric endomorphism.

Since the complex metric endomorphism is, up to a constant, the cur-
vature tensor of a complex space form, the complex Tachibana tensor may
well be the simplest non-trivial (0, 6)-tensor with the same algebraic symme-
tries and the same properties with respect to J as R · R. In fact, one could
think that the simplest tensor with the same properties as R · R would be
Π · Π. However, with a tedious but straightforward computation, it is pos-
sible to check that Π · Π = 0. Furthermore, taking into account (2.1), for
every p ∈ M and every v, w, x, y ∈ TpM , it is immediate to get the following
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relation between the complex and the classical Tachibana tensor,

Qc(g,R)(v, w,w, v;x, y) = Q(g,R)(v, w,w, v;x, y)
+Q(g,R)(v, w,w, v;Jx, Jy)
−4g(Jx, y)R(Jv,w,w, v)
−4g(Jx, y)R(v, Jw,w, v)

= Q(g,R)(v, w,w, v;x, y)
+Q(g,R)(v, w,w, v;Jx, Jy). (3.2)

Given p ∈ U and two planes in TpM , π = v ∧ w and π̄ = x ∧ y, it
is easy to check that Q(g,R)(v, w,w, v;x, y) and Qc(g,R)(v, w,w, v;x, y) do
not depend on the choice of bases for π and π̄. And so, we can simply write
Q(g,R)(π; π̄) and Qc(g,R)(π; π̄). Taking into account this notation, (3.2)
reads

Qc(g,R)(π; π̄) = Q(g,R)(π; π̄) + Q(g,R)(π;Jπ̄), (3.3)

where Jπ̄ = Jx ∧ Jy. It is also worth pointing out that whenever any of the
two planes is a complex holomorphic plane, i.e. invariant under the action of
J , the Tachibana tensor and the complex Tachibana tensor are proportional.
Indeed, it is easy to check that

Qc(g,R)(πh; π̄) = 2Q(g,R)(πh; π̄), (3.4)

Qc(g,R)(π; π̄h) = 2Q(g,R)(π; π̄h), (3.5)

where we use the superindex h for holomorphic planes.
As a first result in this section, we get the following characterization for

Kaehler manifolds with constant holomorphic sectional curvature.

Theorem 3.3. Let (M, g, J) be a Kaehler manifold, then the following condi-
tions are equivalent:

(a) M has constant holomorphic sectional curvature.
(b) The complex Tachibana tensor Qc(g,R) vanishes identically.
(c) Qc(g,R)(u, Ju, Ju, u;x, Jx) = 0 for every p ∈ M and x, u ∈ TpM .
(d) Q(g,R)(u, Ju, Ju, u;x, Jx) = 0 for every p ∈ M and x, u ∈ TpM .

Proof. Implications (b) ⇒ (c) ⇒ (d) are immediate. For the proof of the im-
plication (a) ⇒ (b), just observe that if M has constant holomorphic sectional
curvature, its Riemann curvature tensor takes the form R = cΠ, where Π is
defined as in Remark 3.2. Then Qc(g,R) = −4Π · R = −4cΠ · Π = 0.

It remains to show (d) ⇒ (a), which is a consequence of Lemma 2.1.
Given p ∈ M and x, u ∈ TpM ,

0 = Q(g,R)(u, Ju, Ju, u;x, Jx)
= 4g(u, x)R(u, x, Ju, u) − 4g(Ju, x)R(u, Jx, Ju, u).

And so,

g(u, x)R(u, x, Ju, u) = g(Ju, x)R(u, Jx, Ju, u).
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We decompose x in its projection onto the plane generated by u and Ju
and its orthogonal projection, x = αu + βJu + w, and we get

αg(u, u){βR(u, Ju, Ju, u) + R(u,w, Ju, u)}
= βg(Ju, Ju){αR(u, Ju, Ju, u) + R(u, Jw, Ju, u)}.

And so,

αR(u,w, Ju, u) = βR(u, Jw, Ju, u).

In particular, if β vanishes and α �= 0,

R(u,w, Ju, u) = 0.

We choose now an orthogonal set in TpM , {u, Ju,w}, and we construct
x = u + w. Applying the reasoning above, we finish the proof taking into
account Lemma 2.1. �

Our next aim is to give a geometrical interpretation of the tensor Qc(g,R).
As a previous step, we recall the geometrical interpretation of the metric en-
domorphism applied to a vector. Even if the interpretation is valid for any
Riemannian manifold, we focus on Kaehler manifolds.

Let (M, g, J) be a Kaehler manifold. Take p ∈ U , a plane π̄ = x ∧
y in TpM and z ∈ TpM . Assume that x, y are orthonormal and choose
{e3, · · · , e2n}, so that {x, y, e3, · · · , e2n} is an orthonormal basis of TpM .
Then z can be decomposed as the sum of its projection onto π̄ and its pro-
jection onto the (2n − 2)-linear subspace of TpM expanded by e3, · · · , e2n.
By rotating the projection of z onto π̄ an angle ε, while keeping the other
part of the sum fixed, a new vector, z̃, is obtained. If ε is small enough, that
vector can be approximated by

z̃ = z + ε(x ∧g y)z + O(ε2). (3.6)

And so, the vector (x∧gy)z measures the first order change of the vector
z after such an infinitesimal rotation of z in the plane x ∧ y at the point p.

Take now p ∈ U and two planes in TpM , π = v ∧ w and π̄ = x ∧ y,
where {v, w} as well as {x, y} are orthonormal. We rotate infinitesimally the
projection of v and w onto π̄. Proceeding as in (3.6), we get

ṽ =v + ε(x ∧g y)v + O(ε2),

w̃ =w + ε(x ∧g y)w + O(ε2).

After that, we rotate infinitesimally the projection of those new vectors
onto Jπ̄ = Jx ∧ Jy to obtain

ṽ′ =v + ε(x ∧g y)v + ε(Jx ∧g Jy)v + O(ε2),

w̃′ =w + ε(x ∧g y)w + ε(Jx ∧g Jy)w + O(ε2).

Comparing the sectional curvatures of the planes π = v ∧ w and π̃′ =
ṽ′ ∧ w̃′, we get

K(p, π̃′) = K(p, π) + εQ(g,R)(π, π̄) + εQ(g,R)(π, Jπ̄) + O(ε2)
= K(p, π) + εQc(g,R)(π; π̄) + O(ε2). (3.7)



MJOM On the Symmetries of a Kaehler Manifold Page 9 of 15 197

In conclusion, the complex Tachibana tensor Qc(g,R)(π; π̄) measures the
change of the sectional curvature of π under the previous operation involving
infinitesimal rotations in π̄ and Jπ̄.

4. Locally Symmetric and Semisymmetric Kaehler Manifolds

As we recalled in the introduction, locally symmetric spaces, i.e. those for
which ∇R = 0, are a natural generalization of spaces of constant curvature.
It is well known that those spaces are characterized by the fact that the
sectional curvature is conserved under parallel transport along any curve. Our
next result for Kaehler manifolds shows that in the previous characterization
we can only consider holomorphic planes.

Theorem 4.1. Let (M, g, J) be a Kaehler manifold. Then, the following con-
ditions are equivalent:

(a) M is locally symmetric.
(b) (∇XR) (U, JU, JU,U) = 0 for any vector fields X,U on M .
(c) Sectional curvature of holomorphic planes is invariant under parallel

transport along any curve.

Proof. The proof of (a) ⇒ (b) is trivial and (a) ⇒ (c) is known. To finish the
proof we will prove (b) ⇒ (a) and (c) ⇒ (a).

The implication (b) ⇒ (a) is obtained by applying Lemma 2.4 to the
(0, 5)-tensor given by T (X1,X2,X3,X4,X5) := (∇X5R) (X1,X2,X3,X4).

In [13, Prop. 10, Ch. 8], it is proven that being locally symmetric is
equivalent to the following property: if X,Y,Z are parallel vector fields along
a curve α on M , so it is R(X,Y,Z). We use this characterization to prove
(c) ⇒ (a). Let α : I → M be a curve starting at p ∈ M . By orthonormal ex-
pansion it suffices to prove that R(X,Y,Z,W ) is constant along α, whenever
X,Y,Z,W are parallel vector fields along α. Fix t ∈ I and define a function
A : (TpM)4 → R by

A(x, y, z, w) = R(X,Y,Z,W )(t),

where X,Y,Z,W are parallel vector fields along α extending x, y, z, w, re-
spectively. Given any u ∈ TpM , if U denotes its extension along γ, then JU
is the extension of Ju. Since g((X ∧g Y )Y,X) is constant along α, it holds

A(u, Ju, Ju, u)
g((u ∧g Ju)Ju, u)

= K(U, JU, JU,U)(t) = K(u, Ju, Ju, u).

It is easy to show that A is curvature-like (i.e., it is a function with the same
properties as R(x, y, z, w)). Therefore, applying [7, Prop. 7.1,Ch. IX], we get
A = R. Thus, R(X,Y,Z,W )(t) is independent of t. �

The integrability condition of ∇R = 0 is R ·R = 0. In the same manner
as for locally symmetric Kaehler spaces, Kaehler semi-symmetric spaces can
be characterized in terms of holomorphic planes, as it is shown in the next
characterization result.
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Theorem 4.2. Let (M, g, J) be a Kaehler manifold. Then, the following con-
ditions are equivalent:
(a) M is semisymmetric.
(b) R · R(u, v, v, u;x, Jx) = 0 for every p ∈ M and x, u, v ∈ TpM .
(c) R · R(u, Ju, Ju, u;x, y) = 0 for every p ∈ M and x, y, u ∈ TpM .
(d) R · R(u, Ju, Ju, u;x, Jx) = 0 for every p ∈ M and x, u ∈ TpM .

Proof. Implications (a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d) are direct. It only
remains to proof (d) ⇒ (a), but it follows immediately from Lemma 2.3. �

5. Holomorphically Pseudosymmetric Kaehler Manifolds

It is known that every Kaehler manifold (M2n, g, J) of real dimension 2n > 4
which is pseudosymmetric in the sense of Deszcz is also semisymmetric, see
[2] and [11]. However, there exists an example in dimension 2n = 4 of a
Kaehler manifold (M4, g, J) which is pseudosymmetric in the sense of Deszcz
but not semisymmetric, [11]. On the other hand, as it has been remarked in
the introduction, the tensors R ·R and Q(g,R) do not present the same sym-
metries and properties involving the complex structure J . For these reasons,
for Kaehler manifolds it seems reasonable to consider the alternative version
of pseudosymmetry based on the complex Tachibana tensor. This definition
was proposed by Olszak in 1989 [10].

Definition 5.1. A Kaehler manifold (M2n, g, J), n ≥ 2, is said to be holomor-
phically pseudosymmetric when the tensor R · R satisfies

R · R = f Qc(g,R), (5.1)

where f ∈ C∞(M).

It is obvious that any semisymmetric Kaehler manifold is always holo-
morphically pseudosymmetric. However, the reverse is not true, since exam-
ples of both compact and non-compact holomorphically pseudosymmetric
Kaehler manifolds which are not semisymmetric are known, see [6] and [12],
respectively.

Although the tensors involved in both definitions of pseudosymmetry
are different, it is possible to characterize the holomorphic pseudosymmetry
in terms of the double sectional curvatures as defined in (1.6), getting results
similar to those known for Riemannian manifolds, [5, Theorems 3 and 5].
Using Lemma 2.3, we are now able to present our first result in this section.

Theorem 5.2. A Kaehler manifold (M2n, g, J), n ≥ 2, is holomorphically
pseudosymmetric if and only if for every p ∈ U and every holomorphic planes
in TpM , πh and π̄h, such that πh is curvature-dependent with respect to π̄h,
the double sectional curvature L(p, πh, π̄h) is independent of both planes, i.e.
L(p, πh, π̄h) = L(p) ∈ C∞(U).

Proof. Let us assume first that M is holomorphically pseudosymmetric, so
in particular

R · R(X,JX, JX,X;U, JU) = f Qc(g,R)(X,JX, JX,X;U, JU) (5.2)
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for every X,U ∈ X(M), f ∈ C∞(M) being a smooth function.
Therefore, taking into account (3.4) and the definition of the double

sectional curvature, given p ∈ U and any pair of holomorphic planes in TpM ,
πh = x ∧ Jx and π̄ = u ∧ Ju, such that πh is curvature-dependent with
respect to π̄h, it holds L(p, πh, π̄h) = 2 f(p), so the double sectional curvature
is independent of the planes.

Conversely, let us suppose now that for any p ∈ U and any pair of
holomorphic planes in TpM , πh = x ∧ Jx and π̄h = u ∧ Ju, such that πh is
curvature-dependent with respect to π̄h, its double sectional curvature does
not depend of such planes, i.e.

R · R(x, Jx, Jx, x;u, Ju) = L(p) Q(g,R)(x, Jx, Jx, x;u, Ju), (5.3)

which taking into account (3.4) implies

R · R(x, Jx, Jx, x;u, Ju) = f(p) Qc(g,R)R(x, Jx, Jx, x;u, Ju), (5.4)

where f = 1
2 L ∈ C∞(U).

We claim that the same equality holds for any pair of, non necessarily
curvature-dependent, holomorphic planes in TpM , for all p ∈ M , for any
smooth extension of f in M . Therefore, since both R ·R and Qc(g,R) satisfy
the symmetries (a), (b), (c) and (d) of Lemma 2.3, it follows that R · R =
f Qc(g,R), so M is holomorphically pseudosymmetric.

It remains to prove the claim. On the one hand, in the case p ∈ U , let
us consider the smooth function q ∈ C∞(TpM × TpM), defined by q(v, w) =
Q(g,R)(v, Jv, Jv, v;w, Jw). It is easy to prove that the zero set of q(v, w)
does not contain any open subset. Fix a basis {ei, Jei : 1 ≤ i ≤ m} and
realize that q(v, w) is a non null polynomial on the components of v and w. If
πh = x∧Jx ∈ TpM is not curvature-dependent with respect to π̄h = u∧Ju ∈
TpM , we have that q(x, u) = 0. It is possible to choose sequences of tangent
vectors in TpM , {xn}n and {un}n, convergent to x and u respectively, such
that q(xn, un) �= 0, ∀n ∈ N. Equivalently, xn ∧ Jxn is a curvature-dependent
plane with respect to un ∧ Jun, for every n ∈ N. Consequently, it holds

R · R(xn, Jxn, Jxn, xn;un, Jun)

=
1
2

L(p)Qc(g,R)(xn, Jxn, Jxn, xn;un, Jun), (5.5)

for all n ∈ N, so (5.4) follows at p ∈ U by a continuity argument.
On the other hand, the Tachibana tensor vanishes identically on int(M \

U), so this open subset has constant sectional curvature and consequently (5.4)
is trivially satisfied for any f . Finally, the equality also holds on ∂(M \U) by
continuity, and the claim is proved. �

As an immediate consequence of Theorem 5.2 we get the following result.

Corollary 5.3. Any Kaehler manifold (M2n, g, J) which is pseudosymmetric
in the sense of Deszcz is also holomorphically pseudosymmetric.

The already mentioned examples in [6,12] show that the converse is not
true in general.
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Finally, we can prove that it is possible to weaken the condition on the
double sectional curvatures in the characterization of the holomorphic pseu-
dosymmetry given in Theorem 5.2. Specifically, to guarantee the holomorphic
pseudosymmetry, it is only necessary to ask the double sectional curvatures
to be independent of the first holomorphic plane.

Theorem 5.4. A Kaehler manifold (M2n, g, J), n ≥ 2, is holomorphically
pseudosymmetric if and only if for every p ∈ U and every holomorphic
planes in TpM , πh and π̄h, such that πh is curvature-dependent with re-
spect to π̄h, the double sectional curvature L(p, πh, π̄h) is independent of πh,
i.e. L(p, πh, π̄h) = L(p, π̄h).

Proof. According to Theorem 5.2 we only need to prove that if all the double
sectional curvatures at p, L(p, πh, π̄h), are independent of πh, then they are
independent of both planes, i.e. L ∈ C∞(U).

Following an analogous reasoning as the one in Theorem 5.2, given p ∈ U
and any pair of holomorphic planes in TpM , πh = x∧Jx and π̄h = u∧Ju, such
that πh is curvature-dependent with respect to π̄h, if L(p, πh, π̄h) = L(p, π̄h),
then

R · R(x1, x2, x3, x4;u, Ju) =
1
2

L(p, π̄h)Qc(g,R)(x1, x2, x3, x4;u, Ju),

(5.6)

for every x1, x2, x3, x4 ∈ TpM . In particular,

R · R(x, Jx, Jx, x;u, Ju) =
1
2

L(p, π̄h)Qc(g,R)(x, Jx, Jx, x;u, Ju). (5.7)

Taking into account the algebraic symmetries of R · R, see [5, Lemma
1], we get

R · R(x, Jx, Jx, x;u, Ju)

= −R · R(Jx, x, u, Ju;x, Jx) − R · R(u, Ju, x, Jx;Jx, x)

= 2R · R(u, Ju, x, Jx;x, Jx).

(5.8)

Analogously, since Qc(g,R) satisfies the same algebraic properties as R ·R it
also yields

Qc(g,R)(x, Jx, Jx, x;u, Ju) = 2Qc(g,R)(u, Ju, x, Jx;x, Jx) �= 0. (5.9)

Thus, from (5.8) and (5.9), expression (5.7) becomes

R · R(u, Ju, x, Jx;x, Jx) =
1
2

L(p, π̄h)Qc(g,R)(u, Ju, x, Jx;x, Jx).

(5.10)

We may observe at this point that the fact that the plane πh = x∧Jx is
curvature-dependent with respect to π̄h = u∧Ju implies that there exists nec-
essarily an holomorphic plane, π̃h, which is curvature-dependent with respect
to πh. Otherwise, Lemma 2.4 would yield that Qc(g,R)(·, ·, ·, ·;x, Jx) = 0,
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getting a contradiction of (5.9). Therefore, we can reproduce the reasoning
above applied to π̃h and πh, obtaining

R · R(u, Ju, x, Jx;x, Jx) =
1
2

L(p, πh)Qc(g,R)(u, Ju, x, Jx;x, Jx).

(5.11)

From (3.4), neither Qc(g,R)(πh; π̄h) nor Qc(g,R)(π̃h;πh) vanishes. Con-
sequently, we conclude that L(p, πh) = L(p, π̄h).

It remains to show that such equality is also satisfied for any pair of
planes in TpM , p ∈ U , even if neither of them is curvature-dependent with
respect to the other. To that end, let us assume now that πh = x ∧ Jx is not
a curvature-dependent plane with respect to π̄h = u∧Ju, nor vice versa. We
can assume that there exists at least two holomorphic planes, πh

1 = v1 ∧ Jv1
and πh

2 = v2 ∧ Jv2, which are curvature-dependent with respect to πh and
π̄h, respectively. Otherwise, there would be nothing to prove. Two options
are possible. On the one hand, if πh

1 is curvature-dependent with respect to
πh
2 , or vice versa, then

L(p, πh) = L(p, πh
1 ) = L(p, πh

2 ) = L(p, π̄h). (5.12)

On the other hand, if πh
1 and πh

2 are not curvature-dependent, it is al-
ways possible to construct another holomorphic plane πh

3 = v3∧Jv3 curvature-
dependent with respect to both πh and π̄h, so the conclusion holds with a
similar chain of equalities. In order to construct πh

3 , we just have to con-
sider v3 = α1v1 + α2v2 for certain real constants α1 and α2. Since it holds
Q(g,R)(v1, Jv1, Jv1, v1;x, Jx) �= 0 and Q(g,R)(v2, Jv2, Jv2, v2;u, Ju) �= 0,
both Q(g,R)(v3, Jv3, Jv3, v3;x, Jx) and Q(g,R)(v3, Jv3, Jv3, v3;u, Ju) are
non zero polynomials on α1 and α2, so there should be at least a choice
for α1 and α2 for which both polynomials do not vanish simultaneously. �
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