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Abstract Students’ engagement reflect their level of involvement in an ongo-
ing learning process which can be estimated through their interactions with a
computer-based learning or assessment system. A pre-requirement for stimu-
lating student engagement lie in the capability to have an approximate rep-
resentation model for comprehending students’ varied (dis)engagement be-
haviors. In this paper, we utilized model-based clustering for this purpose
which generates K mixture Markov models to group students’ traces contain-
ing their (dis)engagement behavioral patterns. To prevent the Expectation-
Maximization (EM) algorithm from getting stuck in a local maxima, we also
introduced a new initialization method named as K-EM. The proposed method
initializes the EM algorithm using the results of a preliminary K-means clus-
tering algorithm performed on students’ logged problem-solving actions. We
performed an experimental work on two real datasets using the three variants
of the EM algorithm: the original EM, emEM, K-EM; and, non-mixture base-
line models for both datasets. The proposed K-EM method has shown very
promising results and achieved significant performance difference in compar-
ison to the other approaches particularly using the Dataset1 (which contains
small length traces in contrast to the Dataset2). Hence, we suggest to perform
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further experiments using large dataset(s) to validate our method. Addition-
ally, visualization of the resultant K mixtures (or clusters) through first-order
Markov chains reveal very useful insights about (dis)engagement behaviors
depicted by the students. We conclude the paper with a discussion on the
usefulness of our approach, limitations and potential extensions of this work.

Keywords Student engagement behavior · Mixture Markov models · Model-
based clustering · Expectation-Maximization algorithm · K-means clustering ·
Sequential traces · Categorical data

1 Introduction

Although there are a lot of definitions available to date in the literature for
students’ engagement, it is generally referred as active participation in an on-
going task or process. In other words, engagement reflects a student’s level
of involvement in a learning process. It is thus a crucial notion that becomes
even more important when students are interacting with a computer-based
learning or assessment system as the main objective of these systems is to fa-
cilitate students in learning and improving their learning outcomes. However,
if a student does not show interest or engage appropriately during a learn-
ing process, he/she may observe failure or degradation in performance (Cocea
and Weibelzahl, 2007) and consequently abandon the learning process. There
is evidence to show that students’ online engagement (which is estimated
through their behaviors while interacting with a learning/assessment environ-
ment) is positively correlated with good performance scores in standardized
exams (Pardos et al., 2014) and students’ academic outcomes (Vogt, 2016).
Recently, researchers have been showing great interest in measuring student
online engagement after realizing that the student’s knowledge gap cannot
be addressed easily if he/she does not show interest while interacting with a
learning environment (Desmarais and Baker, 2012).

Computer-based learning enables tracking students’ activities at the micro-
level, i.e. event by event, but this information can be exploited only if events
are encoded with a suitable representation model. In this work, we aim to
model, analyze and predict students’ (dis)engagement behaviors in confidence-
based assessment, which requires students to specify their confidence level with
each submitted answer (Gardner-Medwin and Gahan, 2003). Thus, confidence-
based assessment provides two outcome measures for student evaluation, that
is, a student’s submitted response to a question (which can be either cor-
rect or incorrect) and his/her associated confidence level in that response
(e.g., as high or low). Maqsood and Ceravolo (2018) discussed the importance
and usefulness of this two-dimensional assessment paradigm and highlight the
need for capturing students’ dynamic behaviors during assessment. A map-
ping between students’ (dis)engagement behaviors and the two performance
measures of confidence-based assessment (i.e., a student’s response correct-
ness and associated confidence level), is presented in (Maqsood et al., 2019)
based on theoretical reasoning. The proposed classification scheme defined six
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(dis)engagement behavioral patterns, each representing a student’s positive or
negative engagement during assessment. Specifically, the six behavioral pat-
terns namely: High Knowledge (HK), Less Knowledge (LK), Fill-knowledge
Gap (FG), Knowledge Gap (KG), Learn (LE), and, Not Interested (NI); are
defined using the following three problem-solving actions: a student’s response
correctness (correct or incorrect), confidence level (high or low) specified for
each submitted answer, and, a followed feedback-seeking activity (whether a
student requested task-level feedback or not for an answered question), see
Section 2.1 for the details. We refer to these categories as “(dis)engagement
behavioral patterns” (sometimes simply referred as behavioral patterns in this
paper) as they do not represent sole action a student performs, but instead,
each discrete label is a composite of three attributes of a student’s problem-
solving behavior and thus reflecting his/her (dis)engagement behavior in the
on-going assessment process.

In this work, our first objective is to construct a mechanism to model stu-
dents’ engagement/disengagement behaviors that can be used to analyze their
sequential problem-solving traces, wherein each activity is represented by a
behavioral pattern belonging to the set P , where P = {HK, LK, FG, LE, KG,
NI}. For this purpose, we utilized model-based clustering to group multivari-
ate categorical time series data representing students’ traces, each containing
behavioral patterns of different lengths. The Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) used for constructing mixture Markov mod-
els struggle for finding global maxima and hence the initialization method can
play an important role in finding a best solution (Michael and Melnykov, 2016;
Hu, 2015). Therefore, we have performed an experimental work on two different
variants of the EM algorithm along with our proposed initialization method,
called K-EM. All the methods are run on two real datasets taken from two dif-
ferent studies conducted with undergraduate students using computer-based
assessment systems.

The second objective of this research work is to predict students’ future
(or next) behavioral patterns so that students with varying needs can be iden-
tified and referred for appropriate intervention (by a teacher or an adaptive
system, if needed). For example, KG and NI patterns respectively show disen-
gaged behaviors of high and low confident students requiring different course
of actions to re-engage them in the assessment process. We have reported the
details of our experimental work and the achieved results in this paper. Our
proposed initialization method, K-EM has shown promising results; however,
further experiments on large dataset(s) are required for validation. Finally,
visualization of the resultant mixtures (i.e., Markov models) provide thought-
ful insights for theoretical and practical reasoning as discussed in detail in
the paper. We also suggest that the resultant Markov chains can be easily
interpreted by class teachers if the proposed methodology is implemented in a
computer-based assessment tool in the future. That will allow a class teacher
to get timely feedback about his/her students after each assessment session
(e.g., a computer-based quiz). Additionally, our proposed methodology can
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be extended further to create students’ personalized behavioral profiles, as
discussed in Section 9.

The remainder of this paper is structured in the following manner. A brief
background on student (dis)engagement and model-based clustering is given in
Section 2. Our proposed initialization method for EM algorithm is described
in Section 3. Section 4 contains description of the two datasets, details of
our methodology for the experimental work and predictive models. The ex-
perimental setup and evaluation metrics for comparing different algorithms
are explained in Section 5. Subsequently, in Section 6, we present the de-
tailed results. Finally, we have shown the resultant mixture Markov models
with their interpretation representing the students’ (dis)engagement behav-
iors during assessment in Section 7. Related works on determining student
(dis)engagement and probabilistic approaches used for similar problems are
discussed in Section 8. We conclude the paper in Section 9 with a summary,
limitations, usability and potential extensions of this work.

2 Background

The concept of school engagement started getting attraction in the late
90’s through the realization of the existence of some factors that might
have played a role in students’ poor academic performance and high rate of
dropouts (Fredricks et al., 2004). Likewise, earlier works are primarily based
on theoretical reasoning with a focus on developing theoretical models and
frameworks that may be useful to build a connection between students’ ac-
tions and their thought (or cognitive) process. And, the identified relation(s)
can be helpful to understand the reasoning behind different actions performed
by a student. Fredricks et al. (2004) described engagement as a multifaceted
construct, comprising the following three types: cognitive engagement refers
to the investment of effort and thoughtfulness to comprehend complex learn-
ing ideas and concepts; emotional engagement focuses on the student’s pos-
itive and negative reactions to the environment; and, behavioral engagement
draws on the idea of students’ participation in learning activities. These three
dimensions of engagement are well-accepted and widely studied in the liter-
ature. Online engagement is also referred as “behavioral engagement” in the
literature which relates to a student’s participation in a learning environment
and is estimated through his/her actions (Anderson, 2017).

Besides theoretical frameworks (for cognition), in large it is now recognized
that students’ actions with a computer-based learning environment also reflect
their “engagement” in an ongoing learning process (Beal et al., 2007). Bouvier
et al. (2014) proposed a quantitative approach to analyze and monitor engage-
ment behaviors using a trace-based method that exploits users’ logged inter-
actions with interactive systems. The idea is to transform low-level raw traces
into useful high-level abstractions of different engagement behaviors. Beal et al.
(2006) adopted the notion of students’ active participation in a current task for
defining engagement. They determined student engagement from a set of three
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student-system interactions, namely: response correctness, time spent per prob-
lem and help usage. Students’ problem-solving actions were classified into five
different engagement levels including: Independent-a, Independent-b, Guess-
ing, Help abuse and Learning. Another self-defined classification scheme for
categorizing students logged activities into engaged and disengaged behaviors
is proposed by (Brown and Howard, 2014). They relied on data analyzes to de-
fine two engagement classes, referred to as, on-task and off-task. Pardos et al.
(2014) studied students’ behavioral engagement along with affective states us-
ing students logged interactions with a mathematics tutoring system (called
ASSISTments). The automated behavioral detector model aims to identify two
specific behavioral events depicting students’ active (or in-active) participation
during assessment, namely: off-task and gaming behaviors. In Hershkovitz and
Nachmias (2009), students’ logged data was collected from an online vocabu-
lary tool, which was analyzed visually by human experts to identify the im-
portant variables relating to their theoretical framework of motivation. Then,
different variables were grouped by similarity using the Hierarchical cluster-
ing algorithm. The cluster group containing time on task (percentage) and
average session duration variables were mapped to students’ engagement be-
haviors. Besides engagement behavior detection, there are several other works
on analyzing students’ logged data to gain better understating about their us-
age of learning environments. However, we have specifically reviewed the ones
which targeted student engagement and/or behavior detection.

In this work, our focus is on determining and analyzing students’ engage-
ment behaviors through their logged data captured by a computer-based as-
sessment system. It is one of the most popular methods for data collection in
the educational domain to analyze students’ problem-solving actions due to
its uninterrupted nature, that is, all activities of a student can be recorded
with a time-stamp as he/she interacts with a computer-based learning envi-
ronment. Authors in (Cocea and Weibelzahl, 2009) have shown the possibility
of detecting and predicting students’ disengaged behaviors from their logged
data using different data mining techniques. Furthermore, experimental re-
sults presented in (Cocea and Weibelzahl, 2009, 2011) and (Tan et al., 2014)
have shown generality of a set of attributes that can be collected from most
e-learning systems repository, which makes it possible to reuse the developed
model or approach with data collected from other learning environments. In
particular, exploratory work of Tan et al. (2014) showed that comparing (be-
havioral) engagement of two groups of students who have worked on different
intelligent tutoring systems did not reveal any significant difference. Cocea and
Weibelzahl (2011) on the other hand determined the validity of their previ-
ously developed engagement detection model using data from a less structured
learning management system. These works testify the potential of studying
and extracting students’ intended learning behaviors from their logged data
recorded by computer-based learning environments. A little consensus, how-
ever, exists on the representation of the students’ engagement behavior.

In this work, we used a previously proposed classification scheme by Maq-
sood et al. (2019). The scheme transforms students’ logged problem-



6 Rabia Maqsood et al.

solving actions (during confidence-based assessment) into six engage-
ment/disengagement behavioral patterns, as described in the following.

2.1 Mapping Students’ Problem-Solving Actions into (Dis)Engagement
Behavioral Patterns

Confidence-based assessment is a two-dimensional assessment paradigm that
takes students’ confidence level with each submitted answer. This additional
“confidence” measure in combination with student response’s correctness
(which could be either correct or incorrect) derives four confidence-outcome
categories; by following (Hunt, 2003) and (Vasilyeva et al., 2008) we have: high
confidence-correct response (HCCR), low confidence-correct response (LCCR),
high confidence-wrong response (HCWR), and, low confidence-wrong response
(LCWR). These distinct categories capture a discrepancy between students’
expected and actual performance – a gap that can be addressed using cor-
rect information offered to students through feedback in a computer-based
assessment system (Maqsood and Ceravolo, 2019).

The pre-mentioned distinct confidence-outcome categories are defined in
terms of varied knowledge regions introduced by Hunt (2003). That is, HCCR
shows mastery of a student in the subject domain; LCCR depicts doubt or
hesitation about one’s knowledge; HCWR means that the student has mis-
conceptions, and LCWR shows unknowing knowledge state of a student. In
this respect, authors in (Maqsood et al., 2019) identified that seeking or no-
seeking a corrective (or task-level) feedback followed by an answer belonging
to a specific confidence-outcome category, can lead to different engaged and
disengaged behaviors of the students during assessment.

As intuition suggests, previous results of (Maqsood and Ceravolo, 2019)
showed that students’ feedback-seeking behavior is positively correlated with
wrong answers given with either confidence level. Therefore, the classifica-
tion scheme proposed by Maqsood et al. (2019) only considers feedback seek-
ing behavior for incorrect responses to differentiate between students’ en-
gagement or disengagement during assessment. Table 1 show the complete
mapping of students’ logged problem-solving actions into corresponding en-
gagement/disengagement behaviors. In the following, we precisely explain the
theoretical reasoning underlying the six distinct (dis)engagement behavioral
patterns (see last column of the table).

In Table 1, the first two rows contain answers belonging to HCCR and
LCCR which respectively represent students’ correct responses given with high
and low confidence. As mentioned earlier, feedback-seeking action has no cor-
relation with correct responses given with either confidence level (Maqsood
and Ceravolo, 2019); therefore, only a single engagement behavioral pattern is
defined for each category of response, namely: “High Knowledge” (HK) and
“Less Knowledge” (LK).

On the other hand, students’ different reactions to corrective feedback (i.e.,
seeking or no-seeking) in case of wrong responses given with high and low confi-
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Table 1: Mapping of the students’ logged problem-solving actions into six (dis)engagement
behavioral patterns, as defined in Maqsood et al. (2019). In the Confidence-Outcome Cate-
gory (first column) – the first two letters, HC or LC, respectively specify a student’s high or
low confidence level associated with a submitted answer. The last two letters, CR or WR,
in a Confidence-Outcome Category specify the correct or wrong response submitted by a
student, respectively.

Confidence-Outcome Student Response to New label for
Category Corrective Feedback (Dis)Engagement

Behavioral Pattern

HCCR Feedback Seek (FS) or High Knowledge (HK)
LCCR Feedback No-Seeka Less Knowledge (LK)

HCWR Feedback Seek (FS) Fill-knowledge Gap (FG)
Feedback No-Seek Knowledge Gap (KG)

LCWR Feedback Seek (FS) Learn (LE)
Feedback No-Seek Not Interested (NI)

aNo label is stored for this activity in the traced logs, so it is considered by
the absence of FS activity after each submitted problem.

dence derive four distinct engagement and disengagement behavioral patterns.
That is, seeking corrective feedback after a high confidence wrong response
(HCWR) is interpreted as an engaged behavior of a student who is trying to
fill the knowledge gap that occurred as a misconception or discrepancy be-
tween his/her expected and actual knowledge – thus, the engagement behav-
ioral pattern is named as “Fill-knowledge Gap” (FG). And, if a student does
not perform feedback-seeking action after a HCWR, it is considered as that
the student did not attempt to repair the knowledge gap(s); the corresponding
disengagement behavioral pattern is called “Knowledge Gap” (KG).

A low confidence wrong response (LCWR) reflects the unknowing knowl-
edge state of a student, and therefore, seeking feedback in this case means
that a student is trying to learn something; hence this engagement behavioral
pattern is referred to as “Learn” (LE) in (Maqsood et al., 2019). Since, the
corrective (task-level) feedback was only available to students for the answered
questions, a student who does not know the answer to a question may sub-
mit a low confident wrong response to see the correct answer and/or detailed
explanation. Yet, this behavior reflects that the student attempts to learning
something; as rightly captured by the LE behavioral pattern. However, a stu-
dent who does not perform feedback-seeking activity followed by a LCWR,
is considered as showing disengagement during assessment – therefore, the
corresponding disengagement behavioral pattern is called as “Not Interested”
(NI).

We believe that this classification scheme represents students’ active or
inactive involvement in confidence-based assessment at varied levels by map-
ping their problem-solving actions to six (dis)engagement behavioral patterns.
Furthermore, the data analysis performed in (Maqsood et al., 2019) showed
that the proposed scheme is quite reasonable to distinguish behaviors of high
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and low performance students as determined from their actual performance
in a class. In this research work, we utilized this classification scheme and
transforms students’ logged problem-solving activities at low-level into corre-
sponding behavioral patterns, details are provided in Section 4.1.

2.2 Model-based Clustering

Markov chain is primarily an efficient method to model sequential data and
make predictions. However, student engagement is not a stable factor and is
subject to change over time (Joseph, 2005), therefore, striving for a single
best model to represent students’ behaviors is not adequate. Hence, to capture
dynamic behaviors reflecting student (dis)engagement during assessment, we
decided to perform model-based clustering which is a probabilistic method
and results in a set of K mixture models (or clusters). All observations belong
to multiple clusters with different probabilities and each mixture component
represents a different data distribution through a Markov chain. Hansen et al.
(2017) also insisted on the use of mixture Markov chains to model sequen-
tial traces of students which have the capability to capture drift in students’
behaviors through different mixture components. Keeping in view the find-
ing of (Cohen and Beal, 2009) which shows that the next action pattern of a
student depends more likely on the previous pattern and not much on earlier
patterns, we select first-order Markov chains to model and predict students’
likely engagement behaviors. Thus, each mixture component is represented by
a first-order Markov chain.

Statisticians refer to model-based clustering as a mixture model of K com-
ponents (Cadez et al., 2003) and, in the literature, the terms are often used
interchangeably. However, model-based clustering requires an additional step
than just finding a finite mixture model, that is, to assign each sequence to its
appropriate cluster from K mixtures based on a pre-specified rule (Melnykov
et al., 2010). The most commonly used approach is a Bayes’ decision rule
which assigns a sequence to the mixture with maximum (log-)likelihood.

Expectation-Maximization (EM) algorithm is a well-known iterative pro-
cedure to determine a finite mixture model by maximizing the likelihood of
observing a complete dataset. More precisely, the mixture modeling framework
assumes that each sequence s is generated by one of the K component distri-
butions, however, its true membership label is unknown (Melnykov, 2016). EM
algorithm aims to incorporate these missing labels. That is, given some ob-
served data y, EM tries to find a model θ ∈ Θ with maximum (log) likelihood
estimation (MLE) (Gupta et al., 2011), where Θ is the symbol of parameter
values. Formally:

θ̂MLE = arg maxθ∈Θ log p(y|θ) (1)

In order to find such a model, the EM algorithm iterates over the following
two steps until it reaches convergence (or some stopping criterion).
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– Expectation (or E) step: estimates the conditional expectation of complete-
data log-likelihood function given the observed data.

– Maximization (or M) step: finds the parameter estimates to maximize the
complete-data log-likelihood from the E-step.

Finding an optimal global maxima is challenging for EM and it usually ends
up with one of the best local maxima. However, the initialization of the algo-
rithm parameters plays a critical role in finding an optimal solution (Michael
and Melnykov, 2016; Hu, 2015). To cluster multivariate categorical data, EM
algorithm requires the following three parameters to get started:

1. Number of mixtures (K).
2. Initial transition matrices for K mixtures.
3. Initial weights of K mixtures.

Like K-means, the EM algorithm also requires a prior number of mix-
tures to be defined by the user which is one of the challenging problems for
researchers. However, model-based clustering has the advantage of being sup-
ported by formal statistical methods to determine the number of clusters and
model parameters (Magidson and Vermunt, 2002). The two most commonly
used methods which are based on ‘information criterion’ to select the optimal
value of K are Bayesian Information Criterion (BIC) (Schwarz et al., 1978)
and Akaike Information Criterion (AIC) (Akaike, 1998). Both methods penal-
ize complex models, thus, the models with the lowest BIC and AIC scores are
better. The primary difference between both measures is that BIC penalizes
heavily in contrast to AIC.

EM algorithm variants: There are many variants of the EM algorithm avail-
able in the current literature. We selected the two most basics one for our
experimental work, that is, the original EM and emEM.

– EM (Dempster et al., 1977) — the original EM algorithm in which initial-
ization is performed randomly. The standard EM algorithm initializes the
initial transition matrices for K mixtures randomly where K is given by
the user.

– emEM (Biernacki et al., 2003) — a variant of the EM algorithm in which
the EM algorithm is also run in the initialization phase for a given K, as
reflected by the prefix em. The best model is then picked as the starting
point (or initial model) followed by the actual EM algorithm.

All the mixture components are assigned an equal initial weight (i.e. 1/K) in
both EM and emEM algorithm.

In this exploratory work, we also proposed a new initialization method
called K-EM which uses the results of K-means clustering performed on stu-
dents’ problem-solving actions. The details of our approach is given in the next
section.
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3 K-EM: Proposed Initialization method for the EM algorithm

As mentioned before, initializing the EM algorithm using partitioning obtained
through K-means or Hierarchical clustering method is referred to as a practi-
cal solution (Gupta et al., 2011; Michael and Melnykov, 2016) to avoid local
maxima. According to Gupta et al. (2011), performing a preliminary cheaper
clustering like K-means or Hierarchical for initializing the EM algorithm is
expected to give better results than random assignment. In their work, this
approach is used for Gaussian Mixture Model (GMM) where clusters’ means
and covariance matrices are taken from the K-means results. Hu (2015) used
hierarchical clustering for the initialization of the EM algorithm for finding
model parameters for GMM. However, this is not straightforward in case of
multivariate categorical data. In the following, to describe our proposed K-
EM method, first we discuss in detail that how K-means is performed on our
datasets and then how the retrieved results are used to initialize the EM al-
gorithm.

In our problem, we have two datasets containing students’ logged interac-
tions from computer-based assessment systems. The logged students’ problem-
solving actions are mapped to six different (dis)engagement behavioral pat-
terns as mentioned in Section 2.1. Our intention to use K-means on this kind
of data came from a previous work (Maqsood et al., 2019) which resulted into
distinctive clusters of similar traces representing students’ (dis)engagement
behaviors. An argument may arise here that another variant of the K-means
clustering called K-modes (Huang, 1998) is more suitable for categorical data,
which defines the similarity between two sequences based on matching ele-
ments. But, our datasets contain traces of different lengths and we used each
behavioral pattern’s proportional count to represent a trace as done in (Maq-
sood et al., 2019). This data transformation is represented by Eq. (2), which
computes the proportional count for each behavioral pattern pi ∈ P per trace,
where P = {HK, LK, FG, LE, KG, NI}.∑

i∈P pi

Trace length
(2)

In the following, we present an example to illustrate this data transforma-
tion for a trace.

Example: Let’s take a sample trace of length four: <HK, FG, KG,
HK>– each element represents a mapping of a student’s problem-solving
actions into corresponding (dis)engagement behavioral pattern as de-
scribed in Section 2.1. The proportional count for each behavioral pat-
tern in this sample trace using Eq. (2) is: HK=0.5; LK=0; FG=0.25;
LE=0; KG=0.25; NI=0. Therefore, the initial sample trace after this
data transformation would become <0.5, 0, 0.25, 0, 0.25, 0>(behav-
ioral patterns as given in the set P are replaced by their proportional
count in a specific trace). All the traces in both datasets were converted
into patterns’ proportional count in a similar fashion.
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Table 2: The proposed K-EM method

1. Perform K-means clustering on input data (as described in the text).
2. Use the results from Step 1 to initialize the EM algorithm in the following manner.

(a) Set the number of mixtures (K) equal to the number of clusters (K′) used
in K-means algorithm.

(b) Construct a first-order Markov chain for each resultant cluster (Ck′ ) contain-
ing Tk′ traces. Use these transition matrices as initial transition matrix for
respective K mixture components.

(c) Weights of K mixtures are set to the ratio of the number of traces in each

respective obtained cluster, that is, W (Ck) = Tk′/
∑K′

i=1 Ti.
3. Run the usual EM algorithm.

Consequently, traces containing similar distribution of distinct behavioral
patterns were grouped together in a same cluster using Euclidean distance. The
results of K-means clustering are then used to initialize the EM algorithm –
leading to our proposed method, K-EM, as given in Table 2. Students depict
diverse problem-solving actions during assessment which makes the problem
even more challenging to find a suitable representation of them. Also, the
datasets collected in educational studies are usually in small to medium sizes,
we expect that our proposed data-specific initialization method will result into
better mixture Markov models capturing the students’ varied (dis)engagement
behaviors.

4 Methodology

In this section, first we described the two real datasets used in our experimen-
tal work along with the design of the two studies conducted to collect these
datasets. Then, we present our methodology for constructing and evaluating
the mixture Markov models.

4.1 Datasets Description

In this study, we have used two real datasets namely, Dataset1 and Dataset2,
containing students’ logged interactions with computer-based assessment sys-
tems. The first experimental study involved 94 freshmen from the National
University of Computer and Emerging Sciences, Pakistan, while the second
experiment was conducted with 210 undergraduate students of the Universitá
degli Studi di Milano, Italy.

(a) First experimental study design: In the first study, three sessions of 40-45
minutes each were conducted in different weeks and students were given six
(code tracing) problems per session on a computer-based assessment system.
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A task-level detailed feedback (referred to as corrective feedback in Section 2.1
for each question was provided to a student upon request by the computer-
based assessment system. The corrective feedback shows correct answer along
with its explanation; see Maqsood and Ceravolo (2019) for details of the tool
and study material used in the first experimental study. The experiment was
conducted in a self-assessment setting, that is, no time limit was specified for
any question and there was no impact on a student’s course records based on
his/her participation and/or performance in this study. Students were asked
to solve as many questions as they can in the given time and specify their
confidence level (as high or low)1 before submitting a solution. In fact, two
submit buttons (‘High confidence submit’ and ‘Low confidence submit’) were
available (on student portal) so that students can make a conscious choice of
their confidence level for each answer; see Maqsood and Ceravolo (2019) for
details of the tool and study material used in the first experimental study. The
students’ logged interactions collected from this first study are referred to as
Dataset1.

(b) Second experimental study design: In the second study, multiple choices
questions were given using a computer-based assessment system to evalu-
ate students’ comprehension of given flow diagrams. The computer-based
assessment tool used in this study also offered corrective feedback for each
question upon a student’s request. This study was also conducted for students’
self-assessment purposes, however, with relatively different settings. The class
teacher uploaded 39 multiple choice questions related to basic concepts of
an introductory programming course. More specifically, 13 different exercises
were uploaded with code flow diagrams. Each exercise contained 3 multiple
choice questions, each on a separate page. Students were asked to use the
tool for their self-assessment and preparation of the final examination. As
before, students were required to specify a confidence level (as high or
low) with each submitted response using a dedicated submit button (i.e.
High confidence submit and Low confidence submit). The students’ logged
interactions collected from this second study are referred to as Dataset2.

The purpose of conducting the both experimental studies was to collect
data for determining and analyzing students’ (dis)engagement behaviors dur-
ing confidence-based assessment. Computer-based assessment tools used in
both studies recorded students’ problem-solving actions along with their times-
tamp. The assessment model used for designing the tools and data collection
is given in Maqsood and Ceravolo (2018).

Since, students were free to solve any number of problems in both ex-
perimental studies, their recorded problem-solving actions per Login-Logout
session were of different lengths. The collected datasets contain sequentially

1 We used binary scale for confidence measurement instead of a more complex rating (e.g.
percentage rating between 0-100, Likert scale response, etc.), which may confuse students in
estimating their confidence about solution’s correctness (Petr, 2000; Vasilyeva et al., 2008).
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Table 3: Summary of solved problems in both datasets

Data
Number of solved problems

Minimum Maximum Average Total

Dataset1 (92 st.; 197 traces) 2 6 5 1033
Dataset2 (185 st.; 348 traces) 2 39 17 5771

Table 4: Students’ sample traces with trace lengths between minimum 2 and maximum
6; all the behavioral patterns belong to the set P = {HK, LK, FG, LE, KG, NI }, and,
separated by a hyphen “-”

Trace1: HK-HK-LK-HK-LK
Trace2: HK-HK-FG
Trace3: KG-KG-LE-KG
Trace4: HK-HK-HK-FG-FG-FG
Trace5: HK-FG-KG-FG
Trace6: LE-LE-LK-LK-LK
Trace7: NI-NI
Trace8: HK-HK
Trace9: LK-HK-FG-FG-LK-LK
Trace10: FG-HK-HK-LK

Table 5: Distribution of behavioral patterns in the two datasets, N is the total count of
behavioral patterns in a dataset (value in the parentheses show percentage of a corresponding
behavioral pattern)

Behavioral Pattern HK LK FG LE KG NI

Dataset1
(N=1033)

421
(40.8%)

35
(3.4%)

363
(35.1%)

81
(7.8%)

117
(11.3%)

16
(1.6%)

Dataset2
(N=5771)

2047
(35.5%)

1769
(30.7%)

671
(11.6%)

1094
(19%)

52
(0.9%)

138
(2.4%)

ordered activities for each Login-Logout session of respective students. We re-
fer to a Login-Logout session containing a student’s problem-solving actions as
a“trace” in the following text. During data pre-processing, we removed traces
of length 1 as we needed to compute transition matrices of traces and make
predictions, which is impossible for a single event trace. Thus, we are left with
the traces of 92 students in Dataset1 and 185 students in Dataset2. Table 3
contains a summary of the remaining datasets.

All the problem-solving actions contained in both datasets are transformed
into respective discrete engagement and disengagement behavioral pattern
(as mentioned in Section 2.1). Table 4 shows 10 sample traces having trace
lengths between 2 and 6 (representing respectively the minimum and max-
imum number of problem-solving actions encoded into their corresponding
(dis)engagement behavioral pattern from the set P ). Table 5 shows the distri-
bution of each behavioral pattern in both datasets.

Clearly, both datasets have class imbalance problem which can make it
difficult to predict the infrequent behavioral patterns due to insufficient data



14 Rabia Maqsood et al.

for model training. More specifically, Dataset1 is dominated by behavioral
patterns that belong to high confidence, that is, HK and FG – which respec-
tively represents high knowledge and positive engagement of the students (as
described in Section 2.1. And, behavioral patterns belonging to low confident
students, that is, LE, LK and NI are below than 9% of the total behavioral
patterns in the Dataset1. Whereas, Dataset2 is dominated by correct knowl-
edge attained with high and low confidence, as represented by HK and LK
behavioral patterns, respectively. And, this dataset majorly lacks reasonable
representation of behavioral patterns representing disengagement of the stu-
dents, i.e., KG and NI (both are below than 3% of the total behavioral patterns
in the Dataset2).

4.2 Methodology for Constructing and Evaluating the Mixture Markov
Models

As mentioned in Section 1, the two objectives of this research work are: (1)
to construct mixture Markov models for finding a suitable representation for
the students’ traces containing varied (dis)engagement behavioral patterns;
and, (2) to predict students’ future behavioral pattern given their previous
history. Our methodology for constructing and evaluating the mixture Markov
models is shown in Fig. 1. At the top, the input data is shown that contains
students’ sequential traces of varying lengths, wherein each trace comprises
of (dis)engaged behavioral patterns. The upper part of Fig. 1 is labeled as
“Data splitting”. Below that, the left-half and right-half sides are respectively
labeled as “Phase-I: Model Construction” and “Phase-II: Model Evaluation”
for separating the two phases clearly. In the following, we present details of
these three sub-phases of our methodology.

4.2.1 Data splitting

For constructing and evaluating our mixture Markov models, we split the
datasets using student-level 5-folds cross-validation. The notion of student-level
is a better alternative of student-stratification in Educational Data Mining
because it separates the students between train and test data (Pelánek, 2018).
Also, the student-level data splitting relates to the real-world scenario where
we want to train a model on old students’ data and then use that model for
predicting behaviors of future students.

With 5-folds student-level data splitting, students in both datasets were
randomly assigned to 5-folds. Once the student-level folds have been created
for both datasets, we retained them to run different algorithms for making
justifiable comparisons and analyses.

4.2.2 Phase-I: Model Construction

The data from i-1 folds is then treated as train data and is used in the Phase-I
for model construction. Using the train data as input, we obtained K mixture
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Fig. 1: Methodology for constructing (Phase-I) and evaluating (Phase-II) the mixture
Markov models using student-level 5-folds cross validation

(or clusters) by running the EM, emEM and K-EM methods. We also con-
structed a non-mixture baseline model for comparisons, which is described in
the Section 5.

The resulted K mixtures are shown as Clusters in Fig. 1, each comprises
of similar traces of the students in the train data. For each mixture, we con-
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structed a corresponding first-order Markov model, shown as Markov Chains
in the figure.

4.2.3 Phase-II: Model Evaluation

The next important step is to evaluate the constructed mixture Markov models
from Phase-I. For this purpose, the data from ith fold is treated as test data.
The test data contains traces of the students different from those in the train
data. Since, we got K models from the Phase-I, our first task in the Phase-II is
to find the most suitable mixture label for all the test data traces so that we can
use the corresponding trained model for making predictions in a trace. This
is the very usual approach in clustering based classification designs wherein a
clustering method is used first to create K number of models and then the most
suitable model amongst those is used for test data classification, for example,
see Lopez et al. (2012). Also, note that the resultant first-order Markov chains
which will be used for making predictions of the students’ future behavioral
patterns, are constructed already in the Phase-I and they have not seen the
test data yet. In the followings, we describe our approach for Bayes’ decision
rule for labeling test traces, model for predicting students’ future behavioral
patterns, and, evaluation metrics that we have used for performance estimation
of the mixture Markov models, sub-modules shown in Fig. 1 – Phase-II.

(a) Bayes’ decision rule for labeling test traces: Given the K mixtures gen-
erated earlier in Phase-I, we estimated the posterior probability of each test
data trace t. Then, we used the Bayes’ decision rule 2 to find the most suitable
mixture label for a trace based on the maximum posterior probability. After
performing this step, all the traces in the test data got a mixture label; thus,
we can imagine that there will be some similar test traces which are estimated
to belong to a specific mixture. We have shown this step in Fig. 1 as “labeling
test traces” which produces subgroups of similar test data traces.

(b) Predicting students’ future behavioral patterns: Next, we wanted to predict
students’ future behavioral patterns using our pre-constructed mixture Markov
models from Phase-I (shown at the bottom of Fig. 1 as first-order Markov
chains). Also, prediction is a mechanism for validating the developed learner
models (Desmarais and Baker, 2012), which in our context represent students’
engagement/disengagement behaviors by first-order Markov chains. Markov
chains serve dual purposes of modeling and predicting sequentially ordered
activities. With first-order Markov chain, we make the Markovian assumption
that a student’s future behavioral pattern bi+1 is dependant on his/her current
behavioral pattern bi only and not on the previous history. That is:

P (bi+1|b1, b2, ..., bi) = P (bi+1|bi) (3)

2 We have provided the R code implementation of this step at GitHub;
https://github.com/r-maqsood/Mixture-Markov-Models-R.
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Fig. 2: Dynamic behavioral pattern predictions made for students’ traces. Each future be-
havioral pattern bi+1 is predicted based on the current behavioral pattern bi using Marko-
vian assumption, and hence, no prediction is made for the first behavioral pattern in a trace.
This figure is a reproduced version of Fig. 5(d) from Pelánek (2018) with minor changes.

Here, P represents the conditional probability of an event bi+1 given some
previous event(s).

Fig. 2 illustrates our approach for making predictions at student trace level
which is referred to as “dynamic prediction” by Pelánek (2018). As shown in
the figure, given a model trained on students’ sequential traces in the train
data, we can use it to make predictions for student in the test data. And, after
observing each new event in a student trace, the prediction is updated. In our
case, we used first-order Markov chain to represent sequential traces in the
train data and predict a student’s next behavioral pattern using Eq. 3. This
means that for a student trace of length l in the test data, we make l − 1
predictions. Note that no prediction is made for the first behavioral pattern
since there is no preceding behavioral pattern.

We remind here that we have already constructed K number of first-order
Markov chains in the Phase-I (see Fig. 1), each corresponding to a resultant
mixture from a specific variant of the EM algorithm used in this research study.
Cadez et al. (2003) also showed that a mixture of first-order Markov chains
is different than a simple (or non-mixture) first-order Markov chain and that
making predictions with the prior approach resulted into a better accuracy.

(c) Performance evaluation metrics: In order to estimate the performance of
different mixture Markov models, evaluation metrics that we have used are
listed in Table 6. For our multi-class predictive models obtained for different
clusters, we used prediction accuracy, precision, recall and F1 score for per-
formance evaluation. We also computed the number of iterations taken by an
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Table 6: Performance metrics used for model evaluation

Metric Description

Macro Acc.t Macro accuracy: prediction accuracy computed at students’ trace-level; (Eq. 4)
Micro Acc. Micro accuracy: prediction accuracy computed using complete test data; (Eq. 5)
Precisionwt. Weighted (macro) precision; (Eq.6)
Recallwt. Weighted (macro) recall; (Eq. 7)
F1wt. Weighted (macro) F1 score; (Eq. 8)
Iterations Number of iterations taken by an algorithm for model training using train data

algorithm for model training (Phase-I, Fig. 1) since a faster variant of the EM
algorithm can be a matter of choice in the case of large datasets.

The usual micro performance metrics (i.e., micro-accuracy, micro-precision,
micro-recall, micro-F1) are computed for complete test data which treats all
the classes equally (e.g., see Eq. 5). In case of class imbalance problem, a
more dominant class(es) can overshadow the rare or less frequent class(es),
leading to incorrect performance measures. Since, both of our datasets have
class imbalance problem, we focused on macro and weighted (macro) versions
of these metrics as mentioned in Table 6. However, we report both micro
and macro prediction accuracy measures for completeness. These metrics are
computed for predictive models corresponding to K mixture Markov models.
To summarize the performance of an algorithm ran in a 5-folds cross-validation
setting, we computed weighted average of K clusters (we simply refer to it as
mean (M)) and standard deviation (SD) of all these metric (as reported in the
next section).

Macro Acc.t =
No. of correct predictions per trace

Trace length
(4)

Micro Acc. =
No. of correct predictions

Total predictions
(5)

Precisionwt. =
∑
i∈C

Precision(Classi) x Weight(Classi) (6)

Recallwt. =
∑
i∈C

Recall(Classi) x Weight(Classi) (7)

F1wt. =
∑
i∈C

F1(Classi) x Weight(Classi) (8)

In the above equations, C is the total number of classes which represent the six
behavioral patterns in our datasets. Weight(Classi) is the ratio of the number
of behavioral patterns that belong to Class i.
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(a) Optimal K for Dataset1 (K1) (b) Optimal K for Dataset2 (K2)

Fig. 3: Models comparison using AIC and BIC scores to determine the optimal number of
mixtures K for EM and emEM algorithms – (a) Dataset1: K1=2, (b) Dataset2: K2=3

5 Experimental Setup

All the experiments related to model-based clustering in this work were per-
formed using ClickCluct package of R (Melnykov, 2016), which provides an
implementation of the emEM algorithm. The algorithm converges (or stops)
if the difference between the log-likelihood of two subsequent iterations is less
than 1e−10. We used the same stopping criterion for the EM and K-EM algo-
rithms, and, modified the existing code to implement these two variants. The
following two sub-sections explain the parameters used to construct mixture
Markov models using the three variants of the EM algorithm. More specif-
ically, we provide details of how the three algorithms, that is, EM, emEM
and K-EM (our proposed method) initializes the three initial parameters of
the Expectation-Maximization algorithm (as mentioned in Section 2.2. More-
over, we also constructed baseline models for both datasets as described in
Section 5.3.

5.1 Initial parameters for the EM and emEM algorithms

(a) Number of mixtures (K): For determining the optimal value of K for
both EM and emEM algorithms, we computed BIC and AIC scores for both
datasets using models of different number of mixtures, see Fig. 3 (K is on the
horizontal axis).

For Dataset1, Fig. 3(a) shows that the BIC and AIC scores increase with an
increasing K value and both measures suggest that 2 is the optimal number
of clusters. Whereas, for Dataset2, BIC and AIC measures disagree on the
optimal value of K (see Fig. 3(b)); that is, the lowest BIC score is achieved
at K = 3 and the lowest AIC score is at K = 5. In such a situation, the
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BIC-preferred value can be taken as a minimum value of K and the AIC-
preferred value as a maximum K value; and, any model can be picked within
this range (preferably based on some other criteria) (Dziak et al., 2019). For
Dataset2, the range for the optimal number of mixtures K is 3 and 5, and we
picked K = 3 arbitrarily. Thus, the EM and emEM algorithms were applied
on Dataset1 and Dataset2 using K1=2 and K1=3, respectively.

(b) Initial transition matrices for K mixtures: For initial transition matrices,
the EM algorithm uses random values. While, the emEM algorithm runs the
EM algorithm in the initialization phase and finds the approximate values for
transition matrices as the starting point.

(c) Initial weights of K mixtures: All the mixture components are assigned
an equal initial weight (i.e. 1/K) in both EM and emEM algorithms.

5.2 Initial parameters for the K-EM algorithm

(a) Number of mixtures (K): To select the optimal number of clusters (K ′)3

for both datasets, we used the NbClust method of R which uses 30 different
well-known indices for approximation, including: Cindex, CH index, Beale in-
dex, DB index, Silhouette index, Dunn index, etc. (see Charrad et al. (2012)
for details). The NbClust methods retrieves the best value of K using maximal
voting between all the indices. For our datasets, we got 4 and 2 as the optimal
values of K ′ for Dataset1 and Dataset2, respectively.

The elbow graph, which is a very popular approach to visualize the optimal
value of K for K-means algorithm, is shown in Fig. 4 for both datasets. We can
see that the optimal K ′ determined for both datasets using NbClust method
(i.e. K ′

1=4 for Dataset1 and K ′
2=2 for Dataset2) are indeed good choices as

indicated by minimum within-cluster sum of squares.
Next, using the values of K ′

1 and and K ′
2, we run the K-means algorithm

on both datasets as described in Section 3. The K-means algorithm was exe-
cuted for 15 iterations with 25 initial points – which is often a recommended
approach for finding better clusters by repeating the algorithm with different
initial centroids. The results of K-means were then used to initialize the EM
algorithm as mentioned earlier in Section 3.

(b) Initial transition matrices for K mixtures: Using the results of K-means
clustering algorithm, initial transition matrices for the EM algorithm were
initilized as mentioned in Table 2, 2(b).

(c) Initial weights of K mixtures: Initial weights of the K mixtures were set
to the number of traces belonging to corresponding clusters obtained by the
K-means algorithm; see Table 2, 2(c)

3 We referred to the value of K used in K-means algorithm as K′ to differentiate it from
the optimal value of K used for the EM and emEM algorithms.
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(a) Optimal K for Dataset1 (K′
1) (b) Optimal K for Dataset2 (K′

2)

Fig. 4: Elbow graphs showing the optimal number of clusters to be used in the K-EM
method – (a) Dataset1: K′

1=4, (b) Dataset2: K′
2=2

5.3 Baseline Model

Our baseline models for both datasets are non-mixture models, that is, no mix-
tures or clusters are created and hence only a single model is constructed for
each dataset in each iteration of 5-folds student-level cross-validation. Given
the heterogeneous nature of our datasets, it is expected that the three model-
based clustering methods will have better prediction accuracy than the corre-
sponding non-mixture baseline models of both datasets.

6 Results Analyses and Discussion

In this section, we present the results of our experimental work performed
using the three variants of the EM algorithm – EM, emEM, and K-EM, and
baseline models for both datasets; details of their initial parameters settings
are given in the previous section. The evaluations metrics that we have used
for models’ performance estimation are mentioned in Table 6. We provided
(weighted) mean and standard deviation of each evaluation metric computed
over 5-folds student-level cross-validation.

6.1 Results Analyses for Dataset1

Table 7 show the results of Dataset1, the three variants of the EM algorithm
were ran using the corresponding optimal K, see the values of K1 and K ′

1,
respectively in Fig. 3 and Fig. 4.
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Table 7: Comparison of student-level 5-folds cross validation results for Dataset1 (92 stu-
dents; 197 traces; models constructed as described in Section 5; EM and emEM are run
with K1=2; K-EM with K′

1=4 mixtures; Baseline Model does not contain any cluster)

Baseline Model EM emEM K-EM

Mean SD Mean SD Mean SD Mean SD

Macro Acc.t(%) 53.48 2.4 56.61 2.7 55.66 4.7 62.26 3.7
Micro Acc.(%) 53.09 3.9 54.90 2.8 54.03 6.4 60.98 4
Precisionwt.(%) 51.72 5.3 48.19 6.5 42.69 9 55.35 4.7
Recallwt.(%) 53.09 3.9 54.90 2.8 54.03 6.4 60.98 4
F1wt.(%) 52.23 4.6 49.28 3.2 46.40 7.4 53.93 3.3
Iterations – – 86.2 44.2 55 54.3 147.8 58

SD = Standard Deviation

In Table 7, we can see that the prediction accuracy (both macro and mi-
cro) obtained by all variants of the model-based clustering achieved better
results than the non-mixture Baseline model, which contained a single pre-
dictive model for the whole train data. Though, micro accuracy results for
the EM and emEM method are quite similar to that of the Baseline model.
Since, the micro accuracy is computed at a global level, that is, it treats all
the classes equally; we can expect that some of the very infrequent behavioral
patterns (as shown in Table 5) would have impacted this performance measure
for the model-based clustering methods which construct K predictive models.
So, reporting micro accuracy results for a multi-class imbalanced data is prob-
ably not a good choice. For this reason, we will not focus on this metric for
future results analyses. Besides this, both randomly initialized methods, i.e.,
EM and emEM have achieved poor precision and F1 scores in comparison to
the Baseline model. Both algorithms have also struggled in achieving good re-
call in contrast to the Baseline model. Whereas, our proposed K-EM method
has overall shown better performance than the Baseline model.

EM and emEM algorithms, both achieved very similar macro accuracy,
micro accuracy and recall results; whereas (weighted) precision and F1 scores
are better for the EM model. Clearly, our proposed K-EM method has also
achieved better results in comparison to the both randomly initialized meth-
ods, EM and emEM for Dataset1. However, we remind that our proposed
K-EM method is run with K ′

1=4; whereas the EM and emEM uses K1=2
for Dataset1. This difference in number of mixtures has a clear impact on the
number of iterations required for model training. As shown in Table 7, both
EM and emEM converges faster than our K-EM method, and it seems reason-
able since K-EM has more number of mixtures. However, the variance in the
iterations taken by all the algorithms is quite high and we will see shortly if
this performance difference is actually meaningful or not.

We could have reported confidence interval (CI) values for the mean re-
sults of 5-folds student-level cross-validation shown in Table 7. For example,
the CI computed on mean Macro Acc.t of K-EM, EM and emEM methods.
However, those values would not have made much sense for making inference
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about the mean difference between any two methods (Cumming and Finch,
2005). As mentioned in Section 4, same student-level folds were used for all the
algorithms; this allows us to make inference on paired data. Therefore, we com-
puted 95% CI values between the paired difference of each evaluation metric
obtained in 5-folds. The results are reported in Table 8 for Dataset1 where we
compared our K-EM method with the others; paired difference mean, paired
difference standard deviation and 95% CIs are presented. The null value of
the CI for the mean difference is zero which means that there is no significant
performance difference between the two methods. Thus, the CIs ranges not
involving the value of zero are shown in boldface, which indicates a signifi-
cant performance difference between the two methods with 95% confidence.
However, for some metrics/methods we have reported results using 90% CI to
show significant difference in the performance, if possible.

Based on the results of Table 8, we can say with 95% confidence that
our proposed K-EM method has shown significant performance difference for
Dataset1 in comparison to the Baseline and EM methods on the following
metrics: Macro Acc.t, Micro Acc. and Recall. However, the two randomly
initialized methods – that is, EM and emEM did not show any significant
performance difference in comparison to the Baseline model of Dataset1 (even
using 80% CI) on any metric4. The K-EM has shown significant performance
difference with 95% CI in comparison to the emEM method on almost all the
metrics (precision results are significant with 90% CI only). The significant
difference between Iterations (on last row) show that the emEM converges
faster than our proposed K-EM method whereas it had less number of mixtures
(i.e., K1=2 for EM and emEM; K ′

1=4 for K-EM).

To analyze the detailed performance for distinct (dis)engagement behav-
ioral patterns in the resultant K mixture Markov models, we plot summa-
rized confusion matrices of 5-folds student-level cross-validation. Fig. 5 shows
confusion matrices heatmap of the resultant K mixtures for Dataset1 using
the K-EM algorithm with K ′

1=4. As we can see, the resultant K mixtures
have shown different performance (i.e., true positives, false positive and true
negatives) for distinct (dis)engaged behavioral patterns. We remind that the
predictions are made using Markovian property (see Eq. 3, which uses the con-
ditional probability of a most recent event to predict a future event – an event
in our work represents a specific (dis)engaged behavioral pattern from the set
P = {HK, LK, FG, LE, KG, NI}). The three most infrequent behavioral pat-
terns relating to low-confidence in the Dataset1, i.e., LE, LK, and NI (as shown
in Table 5) has more false negatives. Whereas, the two most frequent behav-
ioral patterns (i.e, HK and FG) have more false positives which has negatively
affected the weighted precision of the resultant Markov models, as shown in
Table 7. This problem particularly occurs in the students’ traces containing
mixed behavioral patterns wherein a student depicted abrupt (dis)engaged be-
havioral patterns during assessment and hence, our predictive model based on
the Markovian property make some incorrect predictions.

4 These results are not reported in Table 8 for conciseness
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Table 8: Dataset1: 95% confidence interval for paired difference over 5-folds student-level
cross-validation. A positive value in the “Diff. Mean” column shows that the K-EM method
has better performance in difference means of the two methods; and a negative value meant
otherwise (except for the “Iterations” metric where a low value represents a better perfor-
mance).

Metric Diff. Mean Diff. SD 95% CI

K-EM/Baseline

Macro Acc.t(%) 8.79 4.5 (3.23, 14.35)
Micro Acc.(%) 7.89 4.6 (2.21, 13.57)
Precisionwt.(%) 3.63 6 (-3.81, 11.06)
Recallwt.(%) 7.89 4.6 (2.21, 13.57)
F1wt.(%) 1.70 6.2 (-5.94, 9.33)

K-EM/EM

Macro Acc.t(%) 5.66 2.1 (3.06, 8.25)
Micro Acc.(%) 6.08 1.8 (3.85, 8.30)
Precisionwt.(%) 7.16 11.1 (-6.58, 20.89)
Recallwt.(%) 6.08 1.8 (3.85, 8.3)
F1wt.(%) 4.65 4.6 (0.22, 9.07)*
Iterations 61.60 80.4 (-38.20, 161.40)

K-EM/emEM

Macro Acc.t(%) 6.60 3.8 (1.85, 1135)
Micro Acc.(%) 6.95 4.4 (1.45, 12.44)
Precisionwt.(%) 12.65 11.3 (1.93, 23.38)*
Recallwt.(%) 6.95 4.4 (1.45, 12.44)
F1wt.(%) 7.53 5.3 (0.93, 14.12)
Iterations 92.80 47.1 (34.32, 151.28)

Diff. Mean = Difference Mean; Diff. SD = Difference Standard Deviation;
CI = Confidence Interval; * = 90% CI

6.2 Results Analyses for Dataset2

Now, we analyse the results of Dataset2, as shown in Table 9, the three variant
of the EM algorithm were ran using the corresponding optimal K, see the
values of K2 and K ′

2, respectively in Fig. 3 and Fig. 4.

Again, the macro accuracy computed at the students’ trace-level of the
three model-based clustering methods is better than the Baseline model of
Dataset2. These results suggest that model-based clustering has a potential
to discover hidden patterns in diverse datasets and it is a good approach to
construct mixture Markov models instead of a single model using the complete
train data.

The predictive models for the EM and K-EM has achieved better preci-
sion results in comparison to the Baseline non-mixture model for Dataset2.
However, in general, the Dataset2 seems to have more false-positives since the
precision of all the predictive models is very low (ranging between 36% to 39%
only). The emEM and K-EM has got better recall scores than the Baseline
model; whereas the three model-based clustering methods has almost similar
F1 score to that of the Baseline model in Dataset2.

If we compare the three model-based clustering methods, we can observe
that the emEM and EM has achieved almost similar or better results in some
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Fig. 5: Confusion matrices heatmap for the Dataset1 with K′
1=4 mixtures obtained using

K-EM method

Table 9: Comparison of student-level 5-folds cross validation results for Dataset2 (185
students; 348 traces; models constructed as described in Section 5; EM and emEM are run
with K2=3; K-EM with K′

2=2 mixtures; Baseline Model does not contain any cluster)

Baseline Model EM emEM K-EM

Mean SD Mean SD Mean SD Mean SD

Macro Acc.t(%) 47.71 4.2 52.09 3.9 53.08 4.3 51.05 2.6
Micro Acc.(%) 53.98 2.7 54.68 1.6 56.56 3.1 56.12 2.2
Precisionwt.(%) 36.88 2.7 38.9 3.3 36.7 5.7 38.31 5.7
Recallwt.(%) 53.98 2.7 54.68 1.6 56.56 3.1 56.12 2.16
F1wt.(%) 43.69 2.7 42.28 1.1 43.93 4 43 3.5
Iterations – – 38.2 22.2 48.2 27.7 28.8 36.4

SD = Standard Deviation
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Table 10: Dataset2: 95% confidence interval for paired difference over 5-folds student-
level cross-validation. A positive value in the “Diff. Mean” column shows that the K-EM
method has better performance in difference means of the two methods; and a negative value
meant otherwise (except for the “Iterations” metric where a low value represents a better
performance).

Metric Diff. Mean Diff. SD 95% CI

K-EM/Baseline

Macro Acc.t(%) 3.35 3.3 (0.22, 6.47)*
Micro Acc.(%) 2.14 1.6 (0.15, 4.12)
Precisionwt.(%) 1.43 4 (-3.58, 6.4)
Recallwt.(%) 2.14 1.6 (0.15, 4.12)
F1wt.(%) -0.69 1.5 (-2.55, 1.2)

K-EM/EM

Macro Acc.t(%) -1.03 3.4 (-5.22, 3.15)
Micro Acc.(%) 1.44 2.4 (-1.48, 4.35)
Precisionwt.(%) -0.58 5.8 (-7.78, 6.62)
Recallwt.(%) 1.44 2.4 (-1.48, 4.35)
F1wt.(%) 0.72 2.8 (-2.77, 4.20)
Iterations -9.40 38 (-56.60, 37.80)

K-EM/emEM

Macro Acc.t(%) -2.02 2.9 (-5.60, 1.56)
Micro Acc.(%) -0.44 1.6 (-2.44, 1.56)
Precisionwt.(%) -1.34 3.3 (-5.42, 2.74)
Recallwt.(%) -0.44 1.6 (-2.44, 1.56)
F1wt.(%) -0.93 1.6 (-3.22, 1.36)
Iterations -19.40 25.2 (-50.65, 11.85)

Diff. Mean = Difference Mean; Diff. SD = Difference Standard Deviation;
CI = Confidence Interval; * = 90% CI

metrics than our proposed K-EM method. A probable justification that we
consider for this performance degradation of the K-EM method in Dataset2 is
that it has less number of mixtures in contrast to the EM and emEM methods,
that is, K ′

2=2 and K2=3. In other words, one could have claimed that the
high value of K ′

1 in Dataset1 has got us improved results for the Dataset1
while it did not happen in the Dataset2 due to a low value of K ′

2 in comparison
to the EM and emEM methods. However, notice that the difference in mean
and variance between the three methods in Dataset2 is less and therefore, it
is not reasonable to conclude anything before doing further analyses.

Table 10 show our results for 95% confidence interval computed for the
paired difference of each evaluation metric obtained using 5-folds student-level
cross-validation for Dataset2. We reported the paired difference mean, paired
difference standard deviation and 95% CIs for different methods in comparison
to K-EM. The CIs ranges not involving the value of zero are shown in boldface,
which indicates a significant performance difference between the two methods
with 95% confidence.

We can see that the K-EM method has shown significant performance dif-
ference in comparison to the Baseline model of Dataset2, for Micro Acc. and
Recall with 95% CI and with 90% CI for Macro Acc. t. Whereas, the K-EM
method achieved performance difference in Macro Acc.t with 90% CI. Like
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(a) Cluster 1 (b) Cluster 2

Fig. 6: Confusion matrices heatmap for the Dataset2 with K′
2=2 mixtures obtained using

K-EM method

K-EM, the emEM has shown significant performance difference in comparison
to the Baseline model of Dataset2 for Macro Acc.t, Micro Acc. and Recall with
95% CI. Although, the EM method has shown significant performance differ-
ence for Macro Acc.t and Precision only. As we compared the K-EM with EM
and emEM based on our results shown in Table 9, the latter two methods has
shown somewhat better performance than our proposed approach. Though, as
expected none of them has got significant performance difference in compari-
son to the K-EM method, despite having an increased value of K as per the
results given in Table 10.

Fig. 6 shows confusion matrices heatmap of the resultant K mixtures for
Dataset2 using the K-EM algorithm withK ′

2=2. As we can see, the Markovian
property based predictive model has performed even worse for Dataset2 which
has longer trace lengths on average as compared to Dataset1 (see Table 3).
The three least frequent behavioral patterns in the Dataset2 (i.e., KG, NI,
and FG) has more false negatives. While, the two most frequent behavioral
patterns (i.e., HK and LK) has more false positives and hence we got a very low
mean weighted precision value for Dataset2, only 38.31% as shown in Table 9.

6.3 Discussion

Surprisingly, the two randomly initialized methods, EM and emEM, have
shown no significant performance difference than the corresponding Baseline
model of Dataset1, while both have shown at least some significant results in
comparison to the Baseline model of Dataset2 (as discussed in Section 6.2).
Whereas, our proposed K-EM method has shown significant performance dif-
ference for Macro Acc.t, Micro Acc. and Recallt, in comparison to the corre-



28 Rabia Maqsood et al.

sponding Baseline models of both datasets. The three model-based clustering
methods have somewhat struggled in achieving better weighted Precisiont val-
ues than the non-mixture Baseline models of both datasets. As shown by the
confusion matrices previously, the problem lie due to high false positives for
some most frequent behavioral patterns in K resultant mixtures of imbalance
datasets.

Therefore, in agreement to Cadez et al. (2003), we can conclude that mix-
ture Markov models achieve better prediction accuracy results in comparison
to a non-mixture first-order Markov chain. In other words, multiple predictive
models can better capture varied behaviors depicted by students in comparison
to a single predictive model constructed using the whole train data. Hence, it is
useful to apply model-based clustering methods on students’ problem-solving
actions data which are usually diversify in nature.

In the above, we also compared the performance of the EM and emEM
(which uses random initialization approach) with our proposed K-EM method
that utilizes data-specific information for initialization from a preliminary K-
means clustering algorithm. The three methods were ran on the two datasets
using correspoinding optimal value of K, that is, for Dataset1: K ′

1=4 for
K-EM, K1=2 for both EM and emEM); and for Dataset2: K ′

2=2 for K-EM,
K2=3 for both EM and emEM). The K-EM has achieved overall better results
in Dataset1 in comparison to the emEM method (see Table 8, with an excep-
tion of Precisionwt.). The K-EM method has also shown performance difference
with 95% confidence interval in Macro Acc.wt., Micro Acc. and Recallwt. in
contrast to the EM method. In case of Dataset2, our proposed K-EM method
did not performed well neither worse than the EM and emEM methods despite
having less number of mixtures.

Therefore, we can conclude that our proposed K-EM method has shown
promising results in comparison to the two random initialization methods.
However, the two datasets used in this work were relatively small in sizes (i.e.
Dataset1 contains 197 traces of 92 students; Dataset2 contains 185 traces of
348 students) and suffered by class imbalance problem. Whereas, to prove a
new algorithm/method, a more appropriate approach is to use a benchmark
dataset(s) (Salzberg, 1997). In the future, we aim to perform comparative
analyses of our proposed K-EM method with different approaches using large
datasets.

Additionally, our detailed analyses of the confusion matrices for both
datasets revealed that the Markovian property based predicted models for
first-order Markov chain have struggled in producing correct predictions. This
could be due to the fact that our datasets contained varied (dis)engagement
behavioral patterns in the students’ traces. Another probable reason could be
the limitation of the classification scheme used in this work from Maqsood et al.
(2019) to map students’ problem-solving actions into six (dis)engagement be-
havioral patterns. We further discuss this limitation of the classification scheme
in Section 9.



Modeling and Predicting Students’ Engagement Behaviors 29

7 Visualizing and Interpreting Students’ (Dis)Engagement
Behavioral Patterns

In this section, we present visual representation and interpretation of the resul-
tant mixture Markov models, obtained using the K-EM method with a corre-
sponding optimal value of K ′ (i.e., K ′

1=4 for Dataset1; K ′
2=2 for Dataset2)

on complete datasets – Dataset1 with 197 traces and Dataset2 having 348
traces.

Fig. 7 and Fig. 8 contain Markov models5 respectively for Dataset1 and
Dataset2. The states of the Markov chains (shown by circles) represent six
discrete (dis)engagement behavioral patterns. The size of each state is pro-
portional to its support (or percentage of occurrence) in a specific cluster to
show varied behaviors composed of some frequent and rare behavioral pat-
terns as depicted by the students during assessment 6. The thickness of an
edge between two states is proportional to the transition probability between
them (scaled by a constant factor). The transition probabilities greater than
32% are displayed only for legibility and to highlight prominent behavioral
patterns and easy interpretation (also, we refer to the resultant K mixtures
as clusters in the following text). Moreover, in each Markov chain, the two
behavioral patterns representing students’ engagement (i.e., FG and LE) are
shown by the states on the left; the two behavioral patterns representing their
correct knowledge (i.e., HK and LK) are shown by the states in the middle;
while the two behavioral patterns for students’ disengagement (i.e., KG and
NI) are shown by the states on the right in each figure. In the figures, we also
made distinction between behavioral patterns related to the students’ high or
low confidence during assessment; that is, the upper-half of each figure shows
behavioral patterns representing their low-confidence (such as: LE, LK, and
NI), whereas, the lower-half of each figure shows behavioral patterns repre-
senting high confidence of the students during assessment (such as: FG, HK,
and KG).

In the following sub-sections, we interpret the students’ (dis)engagement
behavioral patterns as depicted from their logged interactions in each dataset.
However, we only consider the frequent behavioral patterns (based on the sizes
of their corresponding states in a Markov chain for making correct interpreta-
tions.

5 All plots were drawn using r-igraph: https://igraph.org/r/.
6 Furthermore, states are filled with different colors to highlight their meanings. For exam-

ple engagement behavior reflected with either confidence level is represented by two states,
FG and LE, which are given the same color (yellow) in the images. Similarly, states repre-
senting disengagement behaviors: KG and NI, are shaded with the same color (blue). High
knowledge (HK) and less knowledge (LK) states are differentiated with gray and white
colors, respectively; see colored pictures in online PDF version.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Fig. 7: Four resultant Markov chains for Dataset1 (using complete dataset): (a) Cluster 1:
8 traces ; (b) Cluster 2: 27 traces ; (c) Cluster 3: 101 traces ; (d) Cluster 4: 61 traces ; The
size of each state is proportional to its percentage in the respective cluster and thickness of
each edge is proportional to the transitional probability between respective states (scaled
by a constant factor).

7.1 Interpretation of the Students’ (Dis)Engagement Behavioral Patterns in
Dataset1

In Fig. 7(a), Cluster 1 represents the smallest group of students’ traces –
only 4% traces of the complete Dataset1. The frequent behavioral patterns
are high knowledge (HK) and fill-knowledge gap (FG) which shows that the
traces belong to high confident students who depicted positive engagement
during assessment – as shown by more incoming edges to the HK state and
transition probabilities between HK and FG. This is the only cluster which
also contain some representation of the learn (LE) behavioral pattern that
shows positive engagement of low confident students.
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(a) Cluster 1 (b) Cluster 2

Fig. 8: Two obtained Markov chains for Dataset2 using 85% train data: (a) Cluster 1: 176
traces ; (b) Cluster 2: 172 traces ; The size of each state is proportional to its percent-
age in the respective cluster and thickness of each edge is proportional to the transitional
probability between respective states (scaled by a constant factor).

Cluster 2, shown in Fig. 7(b), represents the second least similar group
of students’ traces (i.e., 14% of the complete Dataset1). The most frequent
behavioral patterns in this cluster are knowledge gap (KG) and fill-knowledge
gap (FG), representing respectively the disengagement and engagement of high
confident students. The KG state has more incoming edges (one is from the
HK state with 52% transition probability) including a self-loop of 43% tran-
sition probability. This shows that the students having high confidence in
wrong answers did not request the available (task-level) feedback which could
have helped them in learning from their mistakes and performing better in
the subsequent questions. Hence, it reflects their disengagement during the
assessment. Another observable activity in this cluster is fill-knowledge gap
(FG) with an incoming edge from LE state with 64% transition probability.
Since, both LE and FG states represent the students’ engagement with low
and high confidence, respectively; we interpret this behavior as change in one’s
confidence level from low to high.

Cluster 3, shown in Fig. 7(c), is the largest subgroup of traces in the
Dataset1 (i.e., 51% traces) which depicts positive engagement of the students
during assessment. The traces contain the fill-knowledge gap (FG) behav-
ioral pattern as the most dominant behavior followed by the high knowledge
(HK). The FG behavioral pattern reflect that the students attempt to fill their
knowledge gap(s) through detailed (task-level) feedback (mainly) for wrong
answers (Maqsood and Ceravolo, 2019). A high transition probability of a
self-loop on FG state (i.e., 71%) shows that students in case of wrong re-
sponse(s) majorly focused on learning from the task-level feedback available
for each submitted problem. Also, in cases when the students show high knowl-
edge (HK), they moved to the fill-knowledge gap (FG) behavioral pattern for
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incorrect answers. Finally, edges from states in the upper-half to their corre-
sponding states in the lower-half show a change in the students’ confidence
level from low to high in a respective knowledge state – for example: an edge
with 83% transition probability from LK to HK and the one with 50% tran-
sition probability from NI to KG. The first one, that is, an edge from LK to
HK is indeed desirable, that is, an under-confident student who might be an-
swering the questions correctly with a low confidence, should improve his/her
confidence-level in the subject domain over time.

The second largest subgroup of the students’ traces found in Dataset1 is
shown by Cluster 4 in Fig. 7(d), which comprises of 31% of the total traces in
the dataset. Since, the most frequent behavioral pattern occurred in this group
of traces is high knowledge (HK), we can say that these traces belong to the
students having high knowledge in the subject domain who gave more correct
answers with high confidence (see the HK state’s size and a high probability
self-loop, i.e., 75%).

7.2 Interpretation of the Students’ (Dis)Engagement Behavioral Patterns in
Dataset2

Cluster 1, shown in Fig. 8(a), represents 51% of the total students’ traces
in the Dataset2. These traces mainly reflect high knowledge of the respective
students (see the size of the HK state). The HK state has many incoming edges
and a a high transition probability self-loop (i.e., 75%). Note that the students’
behaviors reflected by this Markov chain are quite similar to the second largest
subgroup of traces found in the Dataset1 (see Cluster 4 in Fig. 7(d)).

Cluster 2 , shown in Fig. 8(b), is comprised of 49% of the students’ traces in
the Dataset2. The students’ traces in this subgroup reflect correct knowledge
and positive engagement of the low confident students – as shown by the less
knowledge (LK) and learn (LE) behavioral pattern states, respectively. The
LK state also has a self-loop with 60% transition probability which shows that
the respective students correctly answered the subsequent questions with low
confidence. We can assume that those students have doubts attained correct
knowledge of the subject domain but they have doubts about it (Gardner-
Medwin and Gahan, 2003). Learning (LE) is the second most frequent behav-
ioral pattern observed in this cluster which shows engaged behavior of some
low confident students during assessment.

7.3 Summary

In summary, visualization of the resultant mixture Markov models provides
substantial insights about the students’ (dis)engagement behaviors in both
datasets. Through these Markov chains, a class teacher can better understand
strengths and weaknesses of his/her students by visualizing different subgroups
of distinct behavioral patterns. For example, this could be a point of concern
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for a class teacher to further investigate the potential reason(s) for the high
ratio of traces with low confidence observed in the Cluster 2 of Dataset2 (i.e.,
49% of the total dataset). In our opinion, it could be either due to (high)
difficulty level of the posed questions or the perceived toughness of the course
by the respective students, which made them felt low confident about their
(correct) knowledge. Similarly, some students having high confidence in wrong
responses depicted disengaged behavior during the assessment (see Fig. 7(b)
– Cluster 2 of Dataset1). The intervention of a class teacher is required in this
case to understand why those respective students did not requested for a task-
level feedback for the questions answered incorrectly during computer-based
assessment.

8 Related Works

8.1 Measuring Student Engagement

There are several methods used in the existing literature for data collection
and estimating students’ engagement behavior. For example, (Chapman, 2003)
reported a number of alternative methods used by the researchers, including
students’ self-report engagement level (through questionnaires), checklists and
rating scales - done by the teachers, direct observations of students in a class,
(students’) work sample analyses (e.g. project, portfolio, etc.), and, case stud-
ies. As mentioned earlier, our focus is on analyzing students’ interactions data
recorded by a computer-based assessment system. Therefore, in the following,
we discuss attributes and methods used to measure student engagement by
related works only which have taken students’ logged data as an input.

Hershkovitz and Nachmias (2009) referred to engagement as an attribute
of motivation during learning and used Hierarchical clustering algorithm to
identify the best attributes that mapped on existing theories of motivation.
They identified the following two variables to determine student engagement:
time on task percentage and average session duration. Cocea and Weibelzahl
(2009) also linked engagement with students’ motivation in a subject or do-
main and estimated it using: frequency and effort (or time) spent on both
reading pages and quizzes attempted by the students as they interacted with
three different learning environments. Students’ sessions were labeled as en-
gaged or disengaged by human experts based on a set of rules defined earlier
from manual analysis of the data (Cocea and Weibelzahl, 2007). Eight data
mining techniques were then used to construct a prediction model for student
(dis)engagement, for example, Bayesian nets, Logistic regression, Decision tree,
etc. Their supervised approach relied on pre-analysis of the data performed by
human experts to identify a suitable length of traces which is data-dependent.
Hence, the re-usability of the implemented method is reduced extensively.
Whereas, we adopted an unsupervised approach using a probabilistic model
that takes care of traces of different lengths.
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Beal et al. (2006) adopted the notion of students’ active participation in a
current task and classify students’ problem-solving activities into five differ-
ent levels of engagement using: response correctness, time spent per problem
and help usage. Hierarchical clustering was applied to proportion scores of
these patterns to analyze students’ use of an intelligent tutoring system (ITS).
Another experimental study presented in (Brown and Howard, 2014) uses on-
/off- task notations to refer to engaged and disengaged behaviors, respectively.
Specifically, they used response correctness, time on task and triggered events
(i.e., keyboard strokes and/or mouse movements); attributes to label students’
actions as engaged or disengaged. Engagement is considered as one of the affec-
tive states in (Pardos et al., 2014) which is determined using number of correct
answers, proportion of actions in a time frame; number of reattempts, hints
requested and fail on first attempt. Human experts’ (in field) observations were
synchronized with student logged data to define a mapping between recorded
interactions and various affective and behavioral states observed by the ex-
perts. Eight classification methods including Decision trees, Naive Bayes, Step
regression and others were used to build a model for automatic detection for
each effective state separately.

The literature review shows the potential of students’ logged interac-
tions to determine their level of involvement in the learning process. How-
ever, the classification of students’ problem-solving activities into engage-
ment/disengagement behaviors depends on the problem domain and collected
data attributes. As mentioned earlier, we used a classification scheme defined
in (Maqsood et al., 2019) for mapping students’ problem-solving activities into
six behavioral patterns reflecting their engagement and disengagement during
confidence-based assessment. Our work is distinguished from prior works as we
have analyzed sequential traces of students’ interactions to understand their
progression from one behavioral state to another using a more sophisticated
probabilistic model.

8.2 Modeling and Predicting Humans’ Behaviors using Probabilistic Methods

Although several techniques have been presented in the literature to ex-
tract meaningful information from students problem-solving traces recorded
by computer-based learning environments, for example: clustering (Beal et al.,
2006; Hershkovitz and Nachmias, 2009; Köck and Paramythis, 2011; Boroujeni
and Dillenbourg, 2018), classification (Cocea and Weibelzahl, 2009, 2011; Par-
dos et al., 2014; Maqsood et al., 2019), evolutionary method (Romero et al.,
2004), Bayesian network (Muldner et al., 2011), deep learning and other ma-
chine learning techniques (Botelho et al., 2019), etc. Our focus in on the family
of probabilistic approaches used to model and/or predict human behavior. In
this section, we discuss some applications of different methods specifically in-
cluding Markov chain, hidden Markov model and mixture of Markov chains.

Authors in (Taraghi et al., 2015) modeled students’ question answering
patterns (i.e. right or wrong answer) using second-order Markov chains to
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construct their profiles. Another application of Markov chains to capture and
predict users’ behaviors is given in (Khalil et al., 2007), where each trace con-
tains a user’s navigational pattern on a website. A simple K-means algorithm
is used to group users having similar web navigation behaviors. Each cluster
is then represented by a Markov chain and a user’s future behavior is pre-
dicted accordingly. Their work is limited as it restricts a user’s behavior to be
represented by only one Markov chain. Whereas, our approach of clustering
similar Login-Logout sessions using mixture Markov chains allows the flexibil-
ity of capturing change in a student’s behavior from one session to another.
Furthermore, model-based clustering is a more sophisticated method to group
traces of different lengths in contrast to distance-based clustering approaches
like K-means and Hierarchical clustering algorithms (Cadez et al., 2003) used
in some prior works, e.g., (Khalil et al., 2007; Taraghi et al., 2015).

Simple Markov chains are restricted to observable data only, whereas, some-
times it is important to identify underlying hidden information to represent
the internal cognitive behaviors of the users. Hidden Markov Model (HMM)
is another very popular probabilistic approach amongst researchers to analyze
and model humans’ behaviors, where the hidden or latent states overcome the
pre-mentioned limitation of Markov chains. For example, (Beal et al., 2007)
captured students’ problem-solving behaviors using HMM where latent states
reflect their different levels of engagement (i.e. low, medium, high) with an
ITS. Also, in (Fok et al., 2005) a classification model is developed using a hid-
den Markov model to characterize students showing different content access
preferences while interacting with an e-learning system.

Bouchet et al. (2013) used the Expectation-Maximization (EM) algorithm
to cluster students’ profiles participating in a self-regulated learning environ-
ment. Although resulted clusters reveal distinct behavioral patterns of the
students, sequential ordering of the activities is not considered by the authors
which may have offered useful insights to further distinguish between students
and improve system adaptation. Cadez et al. (2003) also utilized model-based
clustering to analyze web navigation patterns of website users where each trace
contains the sequential ordering of web pages accessed by a user. Their ap-
proach is quite related to that of ours in a way that they also used mixture
of first-order Markov chains to model and analyze sequential categorical data
representing users’ dynamic behaviors. However, our method is a modification
to the original EM algorithm which improves the prediction accuracy for each
resultant cluster.

Recent work on understanding students’ procrastination behavior (Park
et al., 2018) has utilized model-based clustering where each mixture compo-
nent follows a Poisson distribution to show students’ activities in an online
course. Hansen et al. (2017) also used mixture of Markov chains to model dy-
namic behaviors of the students captured by an e-learning system. Their pro-
posed method estimates mixture components (i.e. first-order Markov chains)
using a modified K-means clustering algorithm. The authors made a simi-
lar assumption that students’ behaviors may change over time and thus per-
formed activity sequences analyses at the session level, which associates mul-



36 Rabia Maqsood et al.

tiple Markov chains with an individual student representing his/her different
problem-solving sessions. Despite having some similarities, our approach is an
extension to the standard EM algorithm which is more accurate for estimating
the likelihood of related sequential traces and generates (a mixture of) Markov
chains with better prediction accuracy.

9 Summary, Conclusion and Future Work

This research work aimed to analyze, model and predict students’
(dis)engagement behaviors in confidence-based assessment. The two datasets
used in this work came from two experimental studies conducted with under-
graduate students from Pakistan and Italy. The two studies were conducted us-
ing computer-based assessment tools which logged student-system interactions
as the students performed any activity during assessment. Using the classifi-
cation scheme introduced in Maqsood et al. (2019), students’ problem-solving
actions were then classified into six (dis)engagement behavioral patterns, that
is, the set P={HK, LK, FG, LE, KG, NI}. The previously proposed scheme
in Maqsood et al. (2019) considers a student’s three problem-solving actions
to map it to a corresponding (dis)engagement behavioral pattern, including:
a student’s response correctness (i.e., a question answered correctly or not),
his/her associated confidence-level as high or low with a submitted response,
and whether a student has requested task-level feedback subsequently for the
question answered most recently. Thus, the two datasets used in this work
contain students’ traces of different lengths wherein each event represents a
corresponding engaged or disengaged behavioral pattern from the set P .

In this work, we employed model-based clustering to find subgroups
of students’ sequential traces; wherein each trace contains a sequence of
varied (dis)engagement behavioral patterns depicted by a student during
computer-based assessment (see Table 4 for sample data). The Expectation-
Maximization (EM) algorithm used for constructing mixture Markov models
struggle for finding ‘global’ maxima and hence the initialization method can
play an important role in finding a best solution (Michael and Melnykov, 2016;
Hu, 2015). Thus, in this work, we proposed a new initialization method called
“K-EM” that uses the results of a preliminary K-means clustering algorithm
to initialize the EM algorithm for multivariate categorical data (as explained
in Section 3) .

In Section 6, we report our results of the experiments performed using
the K-EM method, the two existing EM algorithm variants namely, the orig-
inal EM and emEM, and non-mixture baseline models for the two datasets.
The K mixture Markov models are constructed for both datasets using 5-
folds student-level cross-validation using the EM, emEM and K-EM methods.
For each resultant mixture (or cluster), we then constructed a corresponding
first-order Markov chain – which is used by the predictive model to predict a
student’s future behavioral pattern for each test data trace (see our method-
ology in Fig. 1).
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Our results showed that the K-EM has achieved significantly better pre-
diction accuracy (both micro and macro) and recall than the corresponding
non-mixture baseline models for both datasets (as shown in Table 8 and Ta-
ble 10. Also, for Dataset1, our proposed K-EM method has shown overall
significant performance improvement than the emEM except that the emEM
converges faster. The K-EM method has also shown significant performance
difference with 95% confidence interval for Macro Acc.wt., Micro Acc., Recallwt.

and F1wt. in contrast to the EM method, see Table 8. While for Dataset2, the
K-EM method has achieved slightly poor or sometimes almost equal results
in comparison to the EM and emEM methods. However, there is no evidence
of significant mean paired difference between the results of the three methods
on different performance evaluation metrics, see Table 10. Thus, we conclude
that our proposed K-EM method has shown promising results in comparison
to the two randomly initialized methods. However, the two datasets used in
this work were relatively small in sizes (i.e. Dataset1 contains 197 traces of 92
students; Dataset2 contains 185 traces of 348 students) and both datasets have
class imbalance problem. To conclude, our proposed initialization method for
the Expectation-Maximization has captured the students’ behavioral dynam-
ics at a low interaction level. In other words, we better know the engagement
or involvement level of a student (using a confidence-based assessment per-
spective) that track the confidence and engagement trajectories followed by
students. We are optimistic that our methodology will have a positive influ-
ence on adaptive algorithms as our approach demonstrates a way of getting
explainable results using data mining techniques.

The number of iterations required for model training by the three methods
seems to correlate with the number of mixtures (K), where an increase in
the value of K will require more iterations in the model training phase on a
dataset. The performance difference between the convergence rates of the three
methods is not significant except for one case (i.e., emEM converges faster
than K-EM for Datset1). We, therefore suggest to perform further analyses
for different values of K using different datasets.

A limitation of our work lies in our assumption that a student’s future
(dis)engagement behavioral pattern is only dependent on his/her most re-
cent behavioral pattern during assessment. Given the heterogeneous nature
of students’ (dis)engagement behavioral patterns (as shown in Fig. 7 and 8),
increasing the prediction performance for each obtained cluster is also a fu-
ture challenge. A naive approach to further improve the prediction accuracy is
to use a higher order Markov chains. But, an increase in the accuracy would
come with a cost of an increase in time and space complexity which is not
favorable especially if the developed model is to be implemented in an online
setting (e.g., an adaptive system). Another possibility could be to utilize and
evaluate other machine learning algorithms for building a predictor model for
multivariate time-series data.

Additionally, the classification scheme used in this work from (Maqsood
et al., 2019), for mapping the students’ logged problem-solving actions into
six (dis)engagement behavioral patterns is restricted. The classification scheme
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defines six (dis)engagement behavioral patterns namely: high knowledge (HK),
less knowledge (LK), fill-knowledge gap (FG), knowledge gap (KG), learn
(LE), and, not interested (NI); based the following three problem-solving ac-
tions: a student’s response correctness (correct or incorrect), confidence level
(high or low) specified for each submitted answer, and, a followed feedback-
seeking activity (whether a student requested task-level feedback or not for an
answered question). The feedback-seeking activity time was not considered in
classification scheme due to lack of any evidence for its significant correlation
with students’ confidence-level in (Maqsood and Ceravolo, 2019). However, a
minimal threshold could be defined on feedback-seeking activity time before
classifying a student’s problem-solving actions into engaged or disengaged be-
havioral pattern. Since, there is a possibility that a student just clicked on
the task-level feedback page for curiosity (or let’s say by mistake), or do not
spend sufficient time to read and process the presented information, e.g., let’s
say below 10 seconds.

Finally, visualization of the resultant mixture Markov models reveal very
useful insights for class teachers about students’ (dis)engagement behavioral
patterns, as discussed in Section 7. Implementation of these plots in an online
assessment tool would provide easy access to various analytic to a class teacher
after each computer-based assessment session. A teacher can identify strengths
and weaknesses of students and may modify his/her teaching strategy accord-
ingly. Also, the developed method can be implemented in an adaptive system
that can identify students with undesirable behavior and offers personalized
feedback to diverse groups of students. However, it may be difficult to pro-
vide any assistance in some cases, e.g. Cluster 2 of Dataset1 (see Fig. 7(b)).
Here, we also highlight that the two larger subgroups of both datasets (i.e.
Cluster 4 and Cluster 1 respectively of Dataset1 and Dataset2) reveal very
similar behaviors of the students belonging to different populations. This is
very promising for constructing a mixture of Markov models representing the
most common behaviors of students through different mixture components,
which can be identified by the domain expert(s). And, each new student can
then be assigned to a suitable mixture component after collecting his/her
problem-solving actions. Evaluating the prediction accuracy and testing this
model on different populations is also a point of investigation for future work.

In the end, visualization of the resultant mixtures for both datasets (shown
in Fig. 7 and 8) reveal that the students depicted varied (dis)engagement
behavioral patterns in different Login-Logout sessions (or traces). Thus, in
agreement to (Hansen et al., 2017), we conclude that it is advantageous to
analyze students’ interactions at the lowest representation level, i.e. activi-
ties contained in Login-Logout sessions. The mixture Markov models yielded
through model-based clustering is a useful mechanism to capture students’
diverse behaviors. But, it does not tell us about a student’s transition(s) from
one mixture component to another, which will allow us to construct a student’s
“personalized behavioral profile”. Hidden Markov Models (HMM) has the ad-
vantage of having hidden states that are related by a Markov process and not
just individual mixture components (Rabiner and Juang, 1986). Baulm-Weltch
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algorithm (which is based on the EM algorithm) besides inferring the model
parameters, also infers transition probabilities between different hidden states.
Hence, the flexibility of constructing users’ profiles through HMM is favorable
for researchers aiming to make practical use of their constructed model(s)
in an adaptive learning system instead of just performing post-experiment(s)
data analyses. However, training HMM models is computationally expensive
in comparison to mixture Markov models. In future work, we intend to con-
struct students’ personalized behavioral profiles using mixture Markov models
to represent their level of knowledge and (dis)engagement behaviors across dif-
ferent Login-Logout sessions. This will led us to comprehend a student’s over-
all behavior from different Login-Logout sessions and we can better identify
strengths and weaknesses of a student at a high level. For example, students
who answer questions mostly with high or low confidence can be identified
as having a specific confidence level as a personality trait or in the subject
domain, instead of specifying his/her confidence accurately for each answered
question. A student’s personalized behavioral profiles will also allow us to un-
derstand any drift or change in his/her (dis)engagement behavioral patterns
across different sessions. Hence, these profiles can also be used to provide per-
sonalized feedback at a high level accordingly.
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