Analysis of two alternative organophosphorus flame retardants in electronic and plastic consumer products: resorcinol bis-(diphenylphosphate) (PBDPP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP) A. Ballesteros-Gómez*, S.H. Brandsma, J. de Boer, P.E.G. Leonards Institute for Environmental Studies, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. **Corresponding author* Tel: + 31205983193 Fax +31205989553 E-mail: anamaria.ballesterosgomez@vu.nl

21 Abstract

Following the phase-out of polybrominated diphenyl ethers (PBDEs), organophosphorus flame 22 23 retardants (PFRs) are increasingly used as alternative flame retardants in many products. Data on the presence of two alternative PFRs in consumer products, resorcinol bis (diphenylphosphate) 24 (PBDPP or RDP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP or BDP) is still scarce 25 or non-existing. In this study we propose a simple extraction method and analysis by liquid 26 27 chromatography-atmospheric pressure chemical ionization (APCI) coupled to a high resolution time-of-flight mass spectrometry (TOF) for plastic consumer products. Detection limits were low 28 enough for trace quantitation in plastic or electronic samples (0.001 and 0.002 % w/w for 29 PBDPP and BPA-BDPP, respectively). The APCI source provided better sensitivity and matrix 30 31 effects than the commonly used ESI source for the analysis of these PFRs. Both PBDPP and BPA-BDPP were detected in 7 of the 12 products purchased in 2012 (at 0.002-0.3 % w/w for 32 PBDPP and 0.02-0.18 % w/w for BPA-BDPP) while only PBDPP was found in 4 of the 13 33 34 products purchased before 2006 (0.005-7.8 % w/w). In newly purchased products, PBDPP, BPA-35 BDPP and triphenyl phosphate (TPHP) were the most frequently detected PFRs. These results 36 support the recent findings of our research group about high concentration levels of PBDPP and BPA-BDPP up to 0.5-1 mg g-¹ in house dust collected on electronic equipment and highlights the 37 38 need for further research on these two novel PFRs.

39

40 KEYWORDS: organophosphorus flame retardants; resorcinol bis-(diphenylphosphate);
41 bisphenol A bis (diphenylphosphate); liquid chromatography; atmospheric pressure chemical
42 ionization

43 **1. Introduction**

Brominated flame retardants (BFRs) are widely used in common materials and products such as plastics, electronic equipment, textile, furniture and building materials in order to prevent fire (De Wit, 2002; Birnbaum et al., 2004). Many BFRs are widespread in the environment and present in human tissues and blood (De Wit, 2002; Law et al. 2006; Besis et al., 2012; Wan-Li et al., 2013) and have been reported to cause neurotoxicity, thyroid hormone effects and certain morphological effects in the liver and kidney (Darnerud et al., 2003).

In order to protect the environment and human health, the commercial formulations of polybrominated diphenyl ethers (PBDEs), have been banned or phased out by both EU (Directives 2003/11/EC and 2002/95/EC and European Court of Justice on 9.5.2008) and US regulations (Betts, 2008 and Kemmlein et al., 2009), which resulted in increased application of alternative flame retardants in order to comply with flammability standards in consumer products.

One such alternative class of flame retardants are the organophosphorus flame retardants (PFRs). 56 57 Stapleton et al. (2012) identified tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and components associated with Firemaster550, a mixture containing 2-ethylhexyl-2,3,4,5-tetrabromobenzoate 58 (EH-TBB), bis (2-ethylhexyl) 2,3,4,5- tetrabromophthalate (BEH-TEBP) and triphenyl 59 phosphate (TPHP), as major flame retardants in polyurethane foam from couches purchased after 60 the phase-out of pentaBDE in 2005. Two chlorinated PFRs not previously reported in the 61 environment, V6 and a derivative that contains tris(2-chloroethyl) phosphate (TCEP) as an 62 impurity, were identified in baby products and dust coming from polyurethane foam (Fang et al., 63 2012; Stapleton et al. 2013). In a recent study on dust collected in houses from California by 64

Dodson et al. (2012), the concentration of carcinogenic chlorinated organophosphorus
compounds (TCEP and 2-Propanol, 1,3-dichloro, phosphate (3:1) or TDCIPP) were found up to
0.01% w/w in dust, values higher than those previously reported in the USA. In the same study,
tris (2,3-dibromopropyl) phosphate (TDBPP), or brominated "Tris" was also reported for the first
time in house dust and concentrations of Firemaster 550 components were higher in 2011 than
2006. This compound was banned in children's sleepwear due to its carcinogenicity.

In contrast to these chemicals, few data are available for two other novel organophosphorus 71 flame retardants, resorcinol bis (diphenylphosphate) (PBDPP or RDP) and bisphenol A bis 72 73 (diphenylphosphate) (BPA-BDPP or BDP). PBDPP and BPA-BDPP can be used as an 74 alternative for decabrominated dipheyl ether (decaBDE) in TV/flat screen housings and other electronic consumer products (Lowell Center for Sustainable Production, 2005) and they are 75 applied in a variety of polymers [PBDPP is used in acrylonitrile butadiene styrene (ABS), 76 77 polycarbonate (PC)/ABS, poly(p-phenylene) oxide (PPO)/ high impact polystyrene (HIPS) and 78 BPA-BDPP in HIPS, PC, PPO and PC/ABS (Roth et al., 2012)]. There are few toxicity data for PBDPP and BPA-BDPP, although some aquatic toxicity studies in the literature show varying 79 results with moderate-low and high-low toxicity, respectively (Waaijers et al., 2013). This 80 variation may be due to the presence of triphenyl phosphate (TPHP) as a by-product in the 81 PBDPP and BPA-BDPP technical products (up to 5%); TPHP is known to be toxic to aquatic 82 organisms (EC10 = 0.037 mg/L for Oncorhynchus mykiss) (Waaijers et al., 2013). Levels of 83 PBDPP and BPA-BDPP have been recently reported by our research group in dust samples from 84 85 the Netherlands, Greece and Sweden. High concentrations were found in dust collected on electronic equipment (<0.1-1280 µg/g for BPA-BDPP and <0.04-520 µg/g for PBDPP), while 86 lowerlevels were measured further away from the electronics (Brandsma et al., 2013) 87

88 To the best of our knowledge the only data on PBDPP and BPA-BDPP are from Roth et al. (2012), who reported a method based on ultrasonic supported extraction and precipitation for the 89 analysis of PFRs in polymer parts of electrical and electronic devices by gas chromatography-90 91 quadrupole mass spectrometry (GC-q-MS) analysis. PBDPP was found at 21.4-17.4% w/w in PPO/HIPs polymers and at 0.18 % w/w in PC polymer. BPA-BDPP was found at 3.3-7.0% w/w 92 in PC and at 13.2% w/w in ABS/PC polymer in samples obtained from actual and second-hand 93 equipment as well as waste devices gathered from collection stations and recycling plants (Roth 94 et al., 2012). In the current study we present a sensitive and selective liquid extraction followed 95 96 by LC-APCI(+)-HRTOF-MS method for the quantification of PBDPP and BPA-BDPP in a variety of plastic products commonly found in the indoor environment, making them a potential 97 route via which human exposure can occur. 98

99 **2.** Material and methods

100 **2.1. Chemicals and reagents**

All solvents were of analytical grade and used as supplied. Dichloromethane and methanol were
from Promochem, (Wesel, Germany) and toluene from Fisher Scientific (Loughborough, UK).
Milli-Q water was obtained from ultrapure water purification Q-Pod system (Millipore, Bedford,
USA). PBDPP (Fyrolflex RDP, technical grade, 95.5% purity) and and BPA-BDPP (Fyrolflex
BDP, technical Grade, 96.5% purity) were obtained from ICL (Amsterdam, the Netherlands).
The structure and physico-chemical properties of the analytes are given in Table 1.

107 The internal MS calibration was made with an APCI-TOF tuning mix provided by Supelco 108 (Bellefonte, PA, USA). MS internal calibration in each run was performed by infusing the 109 calibration solution into the source within the first minute of the chromatogram by using a syringe pump (as designed by the supplier of the instrument). The internal calibration was performed by enhanced quadratic mode, being values below 5 ppm mass error considered acceptable.

113 **2.2.** Apparatus

A microTOF II with resolution >16,500 FWHM equipped with an LC-APCI II source (Bruker
Daltonics, Bremen, Germany) was used as detector. An electrospray ionization (ESI) source was
also used for comparison. The LC system was an Agilent 1220 Infinity LC. A Kinetex core-shell
LC C18 column (2.1 mm x 100mm x 2.6 μm) was obtained from Phenomenex (Torrance,
California).

The software data analysis 4.0 and compass quant analysis from Bruker Daltonics (Bremen, Germany) was used for data processing (confirmation and quantitation). MS confirmation of the presence of analytes was based on mSigma (match factor between the measured isotopic pattern and the theoretical pattern for a given formula) and mass accuracy. Values of less than 5 ppm of mass error and less than 100 of mSigma were considered acceptable for positive confirmation (mSigma <100 acceptable, <50 good and <25 excellent).

125 **2.3. Sample extraction and analysis**

A total of 12 plastic products recently purchased (including powerboards, televisions, adaptors, toys, a plastic adorn and a heat sealer) and 13 old plastic products purchased before 2006 (including televisions, scanners, printers and a computer monitor) obtained from a recycling park in Amsterdam were analyzed.

130	Small pieces of the samples (~50 mg, obtained with a small cutter) were extracted with 20 mL
131	of dichloromethane (shaking for 24h and sonication for 10 min) and then 10-100 times diluted
132	with methanol as required. Extracts were ultracentrifuged in Eppendorf microtubes (10.000
133	rpm, 5 min) for the precipitation of minor remaining solids and aliquots of 2.5 μ L were finally
134	injected in the LC system. The LC mobile phase consisted of water (A) and methanol (B) both
135	containing 0.25% v/v formic acid at a flow rate of 0.3 mL min ⁻¹ . The gradient was as follows:
136	60% B for 1.5 min and then to 93.5% B in 17 min, then up to 100% B and hold for 5 min (for
137	removal of highly hydrophobic compounds) and finally re-conditioning for 8 min.
138 139	Calibration standards were prepared in methanol at concentrations within the range 5-1000 ng mL^{-1} .
100	
140	3. Results and discussion
141	3.1. LC-HR-TOF-MS parameters optimization
141 142	3.1. LC-HR-TOF-MS parameters optimization
141 142 143	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive
141 142 143 144	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for
141 142 143 144 145	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around
141 142 143 144 145 146	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around 1.5 and 1.7 times higher in the APCI mode for PBDPP and BPA-BDPP, respectively.
141 142 143 144 145 146 147	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around 1.5 and 1.7 times higher in the APCI mode for PBDPP and BPA-BDPP, respectively. MS-TOF parameters (mainly capillary exit and skimmer1: hexapole RF; transfer time and puls
141 142 143 144 145 146 147 148	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around 1.5 and 1.7 times higher in the APCI mode for PBDPP and BPA-BDPP, respectively. MS-TOF parameters (mainly capillary exit and skimmer1: hexapole RF; transfer time and puls storage time) are dependent on the <i>m/z</i> value and influence sensitivity. These parameters were
141 142 143 144 145 146 147 148 149	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around 1.5 and 1.7 times higher in the APCI mode for PBDPP and BPA-BDPP, respectively. MS-TOF parameters (mainly capillary exit and skimmer1: hexapole RF; transfer time and puls storage time) are dependent on the <i>m/z</i> value and influence sensitivity. These parameters were optimized for the <i>m/z</i> of interest in the range 550-700 <i>m/z</i> (see Table 2). Although it was not the
141 142 143 144 145 146 147 148 149 150	3.1. LC-HR-TOF-MS parameters optimization PBDPP and BPA-BDPP could be analyzed by both ESI and APCI sources operating in positive mode, with [M+H] as the major ion. It is well-known than the APCI source is more suitable for the analysis of non-polar compounds than the ESI source and the sensitivity was indeed around 1.5 and 1.7 times higher in the APCI mode for PBDPP and BPA-BDPP, respectively. MS-TOF parameters (mainly capillary exit and skimmer1: hexapole RF; transfer time and puls storage time) are dependent on the <i>m</i> / <i>z</i> value and influence sensitivity. These parameters were optimized for the <i>m</i> / <i>z</i> of interest in the range 550-700 <i>m</i> / <i>z</i> (see Table 2). Although it was not the focus of this study, the presence of other PFRs in the samples was investigated for discussion of

tris(2-chloroisopropyl) phosphate (TCIPP); tris(2-butoxyethyl) phosphate (TBOEP); 2-152 153 ethylhexyldiphenyl phosphate (EHDP); 2-ethylhexyl phosphate (TEHP); and tris(phenyl) phosphate (TPHP); tris(methylphenyl) phosphate (TMPP), tris(isobutyl) phosphate (TiBP), 154 tris(2-chloroethyl) phosphate (TCEP) from and 3,4:5,6-dibenzo-2H-1,2-oxaphosphorin-2-oxide 155 (DOPO) could also be analyzed by LC-APCI(+)-MS, also with [M+H] as the major ion, except 156 for EHDP for which the fragment $[M-C_8H_{17}+H_2]$ was the main ion. The structure and mass 157 accurate values of these compounds can be found in Figure S-1 of the Supplementary 158 Information. The use of LC-APCI-MS for the analysis of PFRs has been hardly reported. 159 Regarding the study of Amini and Crescenzi (2003), the APCI(+) ionization of 160 organophosphorus triesters was much less affected by the matrix than the ESI (+) ionization, and 161 the signal was significantly more stable. However, in this study ESI provided better sensitivity 162 163 for most of the compounds (5-30 times better). APCI ionization is proposed for the first time as an alternative for the ESI ionization of PBDPP BPA-BDPP, for which not only less matrix 164 effects (ion suppression or enhancement) but even a slightly better sensitivity was obtained due 165 to the suitability of this source for highly non polar compounds. 166

Source parameters were optimized by injecting into the source a solution of PBDPP and BPA-BDPP in methanol at a concentration of around 0.5 mg mL⁻¹ by using a syringe pump (optimal values are given in Table 2). The vaporizer gas temperature was set at 240 °C to prevent thermal degradation of the analytes that occurred above 280° C (the signal being completely lost).

171 Regarding the LC chromatographic separation, it is worth mentioning that a significant
172 improvement in peak shape was observed when using
173 the core-shell as used in this article in comparison with an equivalent fully porous particles C18
174 column.

175 **3.2.** Analytical performance of the method.

176 The extraction method was validated by analyzing two polymer materials made of acrylonitrile butadiene styrene terpolymer (ABS) that contained the target compounds at 15% w/w and that 177 178 were prepared and validated for the European ENFIRO project (Life Cycle Assessment of 179 Environment-Compatible Flame Retardants: Prototypical Case Study). Aliquots of 100 mg of polymer were extracted in triplicate with 20 ml of dichloromethane by shaking for 24 h and then 180 an ultrasonic extraction for 10 min. The solution was diluted 200 times with toluene followed by 181 25 times with methanol before analysis. Percentage recoveries were 102 ± 4 for PBDP and 88 ± 5 182 for BPA-BDPP. 183

The main analytical characteristic of the method are given in Table 3. The instrumental detection 184 (LODs) and quantification limits (LOQs) were calculated from blank determinations by using a 185 signal-to-noise ratio of 3 and 10, respectively. The quantification and detection limits of the 186 method were estimated from these values by considering a sample amount of 50 mg, 20 mL 187 188 extraction solvent and a dilution factor of 1:10 (v/v) in methanol. The whole dichloromethane extracts could be evaporated without losses of the target compounds and reconstituted in 189 methanol to improve the detection limits if required. Instrumental quantitation limits by LC-190 APCI-HRTOFMS were 2.5 for PBDPP and 5 ng mL⁻¹ for BPA-BDPP, that were low enough for 191 the analysis of plastic samples (equivalent to 0.001 and 0.002 % w/w in the sample). 192

Possible matrix effects (ion suppression or enhancement) were assessed by spiking the final extract of three plastic samples that did not contain PBDPP and BPA-BDPP with concentrations of 0.05 and 0.2 μ g mL⁻¹ and were acceptable and in the ranges of 75-95% for PBDPP and of 99-120% for BPA-BDPP. 197

3.3. Sample analysis

Concentrations of PBDPP and BPA-BDPP in consumer products are given in Table 4. The
presence of PBDPP and BPA-BDPP was confirmed by retention time, mass accuracy (< 5ppm)
and mSigma or isotopic pattern fitting values (below 100).

Both compounds were detected together in 7 of the 12 newly purchased products with 202 concentrations in the ranges of 0.002-0.3 % w/w for PBDPP and 0.02-0.18 % w/w for BPA-203 204 BDPP. The higher concentrations were found in a plastic electrical adorn (0.3 % w/w PBDPP 205 and 0.2 % w/w of BPA-BDPP) and in an electrical double adaptor (0.3 % w/w PBDPP and 0.05 % w/w of BPA-BDPP). It is worth mentioning that in 4 of the 7 samples the concentration of 206 BPA-BDPP was between 2-10 times higher than that of PBDPP. On the other hand, 4 of the 13 207 208 samples purchased before 2006 contained PBDPP and none contained BDA-BDPP. Concentrations of 5.7 and 7.8 % w/w PBDPP were found in an old television and a printer. 209 210 These high concentrations suggests that PBDPP was the main (or one of the main) flame 211 retardants used in these two products.

Although we analyzed only a limited number of samples and we can't provide any statistically significant conclusion about the changes in the use of PFRs, these results suggest that the use of BPA-BDPP has increased after the phase out of PBDEs in 2005, with PBDPP being also more frequently detected in newer products but at lower concentrations. Although the concentrations found for BPA-BDPP and PBDPP in the samples purchased in 2012 were not high enough to provide flame retardancy, the fact that almost half of the samples contained these compounds suggests that they may be extensively used in common household appliances and other plastic 219 products. Their origin is not clear and they could be components of flame retardant mixtures or 220 they could come from cross-contamination during the industrial processing or from recycled polymers. Triphenyl phosphate (TPHP, accurate mass value 327.0781) is a by-product in the 221 222 PBDPP and BPA-BDPP technical products (up to 5%) and was present in every sample containing these compounds. Figure 1 shows the extracted ion chromatograms of PBDPP, BPA-223 224 BDPP and TPHP in a standard solution and in two plastic products. In some samples, TPHP was present at a higher level than would be expected for by-product [e.g. Figure 1 (B)], so probably 225 acting in these samples as flame retardant or plasticizer. 226

The presence of other PFRs was investigated and confirmed by mass accuracy (< 5ppm) and mSigma values (below 100). Besides TPHP, other PFRs were present in samples purchased in 2012. TMPP was present in two LCD televisions and the heat sealer sample. TCEP was found in one LCD television and TBOEP in one toy sample, all of them at concentrations below 0.1 % w/w. Only TPHP was detected in old plastic products (namely in four samples, in three of them probably as by-product of PBDPP).

4. Conclusions

The method proposed for the analysis of PBDPP and BPA-BDPP in plastic products by LC-APCI-HRTOF-MS is simple and provides good recoveries (above 90%). It is a good instrumental alternative to LC-ESI-MS in terms of sensitivity and matrix effects and to common GC-MS in which broad peaks and thermal degradation usually hamper the detection of both compounds. PBDPP and BPA-BDPP have been quantified in electronic and other plastic consumer products. Until now, such data was very limited or nonexisting. Both PBDPP and BPA-BDPP were detected together in 7 of the 12 products purchased in 2012 while only PBDPP was found in 4 of the 13 products purchased before 2006. Due to the low concentrations found in
recent product (below 0.3 % w/w) their application or origin is not clear, being recycling one
possible source. These findings call for further research on the presence and potential toxic
effects of PBDPP and BPA-BDPP that may be widespread in household appliances. They further
underpin recent data of our research group showing high concentrations of both compounds in
dust collected on electronic equipment.

247 Acknowledgments

The first author acknowledges the funding of her postdoctoral fellowship by the European Commission Marie Curie ITN INFLAME project (no. 264600). The authors acknowledge the European Commission as part of the work was funded by the FP7 ENFIRO project (contract No. 226563).

252 **References**

Amini, A; Crecenzi, C. 2003. Feasibility of an on-line restricted access material/liquid chromatography/tandem mass spectrometry method in the rapid and sensitive determination of organophosphorus triesters in human blood plasma. Journal of Chromatography B, 795, 245– 256.

Brandsma, S.H.; Sellström, U.; de Wit, C.A.; de Boer, J.; Leonards, P.E.G. 2013. Dust
measurement of two organophosphorus flame retardants, resorcinol bis(diphenylphosphate)
(RBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP), used as alternatives for BDE209, Environmental Science and Technology, DOI: 10.1021/es40412

- Besis, A., Samara, C. 2012. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor
 environments A review on occurrence and human exposure. Environmental Pollution 169, 217229.
- Betts, K.S. 2008. Unwelcome guest: PBDEs in indoor dust. Environmental Health Perspectives
 116, A202–A208.
- Birnbaum, L., Staskal, D. 2004.Brominated flame retardants: cause for concern? Environmental
 Health and Perspectives 112, 9-17.
- 268 Court Proceedings, Court Of Justice, Official Journal of the European Union 9.5.2008, C116/2-3.

Darnerud, P. O. 2003. Toxic effects of brominated flame retardants in man and in wildlife.
Environmental International 29, 841-853.

- 271 De Wit, C. 2002. An overview of brominated flame retardants in the environment.
 272 Chemosphere 46, 583-624.
- Directive 2003/11/EC of the European Parliament and of the Council of 6 February 2003
 amending for the 24th time Council Directive 76/769/EEC relating to restrictions on the
 marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether,
 octabromodiphenyl ether). Official Journal of the European Union 15.2.2003, L42/45-46.
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the
 restriction of the use of certain hazardous substances in electrical and electronic equipment.
 Official Journal of the European Union 13.2.2003, L37/19-23.

Dodson, R.E.; Perovich, L.J.; Covaci, A.; Van de Eede, N.; Ionas, A.C.; Dirtu, A.C.; Green
Brody, J.; Rudel, R.A. 2012. After the PBDE Phase-Out: A Broad Suite of Flame Retardants in
EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Emerging
and Novel Brominated Flame Retardants (BFRs) in Food. EFSA Journal 2012;10(10):2908. [125
pp.] doi:10.2903/j.efsa.2012.2908. Available online: www.efsa.europa.eu/efsajournal

Fang, M.; Webster, T.F.; Gooden, D.; Cooper, e.M.; McClean, M.D.; Carignan, C.; Makey, C.;
Stapleton, H.M. 2013. Investigating a Novel Flame Retardant Known as V6: Measurements in
Baby Products, House Dust, and Car Dust. Environmental Science and Technology 47, 44494454.

Kemmlein, S., Herzke, D., Law, R.J., 2009. Brominated flame retardants in the European
chemicals policy of REACH-regulation and determination in materials. Journal of
Chromatography A 1216, 320-333.

Lowell Center for Sustainable Production (LCSP). 2005. Decabromodiphenylether: an
investigation of Non-Halogen Substitutes in Electronic Enclosure and Textile Applications.
Lowell: LCSP http://www.sustainableproduction.org/downloads/DecaBDESubstitutesFinal4-1505.pdf

Law, R.J.; Allchin, C.R.; de Boer, J.; Covaci, A.; Herzke, D.; Lepom, P.; Morris, S.; Troncynski,
J.; de Wit, C.A. 2006. Levels and trends of brominated flame retardants in the European
environment. Chemosphere 64, 186-208.

Repeat House Dust Samples from California. Environmental Science and Technology 46,
13056–13066.

14

- 301 Roth, T.; Urpi Bertran, U.; Pöhlein, M.; Wolf, M.; van Eldik, R. J. Chromatogr. A, 2012, 1262,
 302 188–195.
- 303 Stapleton, H.M.; Klosterhaus, S.; Keller, A.; Ferguson, P.L.; van Bergen, S.; Cooper, E.;
- 304 Webster, T.F.; Blum, A. 2011. Identification of Flame Retardants in Polyurethane Foam
- 305 Collected from Baby Products. Environmental Science and Technology 45, 5323–5331.
- 306 Stapleton, H.M.; Sharma, S.; Getzinger, G.; Lee Ferguson, P.; Gabriel, M.; Webster, T.F.; Blum
- ,A. 2012. Novel and High Volume Use Flame Retardants in US Couches Reflective of the 2005

PentaBDE Phase Out. Environmental Science and Technology 46, 13432-13439

- 309 Waaijers, S. L., Kong, D., Hendriks, H. S., de Wit, C. A., Cousins, I. T., Westerink, R. H.,
- Leonards, P. E. G., Kraak, M. H., Admiraal, W., de Voogt, P., Parsons, J. R. Persistence,
 Bioaccumulation, and Toxicity of Halogen-Free Flame Retardants. Rev. Environ. Contam.
 Toxicol. 2013, 22, 1-71.
- Wan-Li, M.; Sehun, Y.; Bell, E.M.; Druschel, C.M.; Caggana, M.; Aldous, K.M.; Louis,
 G.M.B.; Kannan, K. 2013. Temporal Trends of Polybrominated Diphenyl Ethers (PBDEs) in the
 Blood of Newborns from New York State during 1997 through 2011: Analysis of Dried Blood
 Spots from the Newborn Screening Program. Environmental Science and Technology 47, 80158021.

318

319

Abbreviation	CAS number	Chemical name	Structure	Formula	^a LogKow	^a Vapour pressure (Pa)
PBDPP	57583-54-7	Resorcinol bis(biphenylphosphate)	03 CO	$C_{30}H_{24}O_8P_2$	7.08	5.01E-11
BPA-BDPP	5945-33-5	Bisphenol A bis(bisphenylphosphate)		$C_{39}H_{34}O_8P_2$	8.29	1.97E-15

Table 1 Physica-chemical information of PRDPP and RPA-RDPP	
Table 1. 1 hysico-chemical mitor mation of 1 DD11 and D1A-DD11	

APCI source	HR-TOFMS
Capillary -1000 V	Capillary exit: ±100 V
End plate offset -500	Skimmer1: ±33 V
Corona +5000 nA	Hexapole 1: 23 V
Dry gas 2 L min ⁻¹	Hexapole RF: 200 V
Nebulizer 2 bar	Transfer time: 70
Dry Heater 220 $^{\circ}$ C	Puls storage time: 15
Vaporizer temperature at 240° C	

Table 2. APCI source and MS parameters for the
analysis of PBDPP and BPA-BDPP

Compound	Accurate mass	Main ion in	Retention time	Instrument LOD	Calibration		^b Method LOQ	^b Method LOD	
		APCI+	(min)	$(ng mL^{-1})$	^a Linear regression equation	R ²	(% w/w)	(% w/w)	
PBDPP	575.1019	$[M+H]^+$	10.9	1	y = 873903x - 330	0.9982	0.001	0.0004	
BPA-BDPP	693.1802	$[M+H]^+$	14.5	2	y = 360656x - 35	0.9953	0.002	0.0008	

Table 3. Analytical performance of the method

^an=7, units µg mL⁻¹, ^bcalculated on the basis of 50 mg sample, 20 mL dichloromethane extract and 1:10 (v/v) dilution factor

		Purchase	PBDPP	BPA-BDPP	Other PFRs
		year	w/w	w/w	
Electrical powerboard	1	2012	0.002	0.01	TPHP
	2	2012	n.d.	n.d.	-
Electrical adaptor	1	2012	0.3	0.06	TPHP
	2	2012	0.02	0.05	TPHP
Plastic children toys	1	2012	n.d.	n.d.	TBOEP
	2	2012	n.d.	n.d.	-
	3	2012	0.003	0.005	-
Vacuum cleaner		2012	n.d.	n.d.	-
Electrical plastic adorn		2012	0.3	0.2	TPHP, TMPP
Heat sealer		2012	0.05	0.15	TPHP, TMPP
m 1 · ·	1	2012	1		
l elevision	1	2012	n.d.	n.d.	-
	2	2012	0.06	0.07	TPHP, tced tmdd
	3	2002	5.7	n.d.	TPHP
	4	2006	n.d.	n.d.	-
	5	2002	n.d.	n.d.	-
	6	2005	n.d.	n.d.	-
	7	2000	0.007	n.d.	TPHP
	8	2006	n.d.	n.d.	TPHP
Old PC monitor		2000	n.d.	n.d.	-
Scanner	1	2004	n.d.	n.d.	-
	2	1998	n.d.	n.d.	-
	3	2002	n.d.	n.d.	-
Printer	1	2000	7.8	n.d.	TPHP
	2	2000	0.005	n.d.	-
	3	1998	n.d.	n.d.	-

Table 4. Concentrations (percentage in weight material w/w) of BPA-BDPP and PBDPP in different plastic products

Figure captions

Figure 1. LC-APCI(+)-HRTOFMS extracted ion chromatograms of target compounds in (A) standard solution of PBDPP and BPA-BDPP in methanol (individual concentrations 0.25 μ g mL⁻¹), a diluted heat sealer sample extract and a diluted old printer sample extract

