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Aurora Ramı́rez, José Raúl Romero∗, Sebastián Ventura

Department of Computer Science and Numerical Analysis, University of Córdoba, 14071,
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Abstract

While working on a software specification, designers usually need to evaluate
different architectural alternatives to be sure that quality criteria are met.
Even when these quality aspects could be expressed in terms of multiple
software metrics, other qualitative factors cannot be numerically measured,
but they are extracted from the engineers know-how and prior experiences.
In fact, detecting not only strong but also weak points in the different solu-
tions seems to fit better with the way humans make their decisions. Putting
the human in the loop brings new challenges to the search-based software
engineering field, especially for those human-centered activities within the
early analysis phase. This paper explores how the interactive evolutionary
computation can serve as a basis for integrating the humans judgment into
the search process. An interactive approach is proposed to discover software
architectures, in which both quantitative and qualitative criteria are applied
to guide a multi-objective evolutionary algorithm. The obtained feedback is
incorporated into the fitness function using architectural preferences allowing
the algorithm to discern between promising and poor solutions. Experimen-
tation with real users has revealed that the proposed interaction mechanism
can effectively guide the search towards those regions of the search space that
are of real interest to the expert.
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1. Introduction

Making decisions is an intrinsic aspect of any software design task, since
engineers have to choose the best design alternative among all the possibili-
ties on the basis of both functional and non-functional requirements. During
the architectural analysis, abstract artifacts need to be precisely identified
and specified in order to efficiently guide the development, evolution and
deployment of the overall system. Considering such an early stage, architec-
tural decisions become even more challenging due to the lack of knowledge
about the system but, at the same time, they are crucial to fulfill the many
quality criteria imposed [12].

Artificial intelligence techniques and, more specifically, metaheuristics,
can support software engineers in their decision processes by providing them
with effective methods to explore a great deal of software designs, each one
determined by a different trade-off among the required quality aspects. Such
a scenario can be viewed as one of the goals of the search-based software
engineering (SBSE) field [14], in which optimization techniques are applied to
the resolution of software engineering (SE) tasks conveniently reformulated
as search problems. However, solving human-centered activities in a fully
automated way seems to be unrealistic, especially for those related to the
analysis phase. Certainly, trying to capture the richness of human knowledge
only by means of software metrics still represents an unresolved matter to
the SE community [32]. Hence, most of the evaluation methods proposed at
the architectural level strongly rely on the expert’s judgment [10], making
extremely difficult to precisely formulate a quantitative fitness function.

Given the relevance of the software architect for the design process, search-
based approaches should benefit from his/her knowledge and expertise in or-
der to address the optimization problem in the same way s/he would do it.
Interactive optimization [21] constitutes a compelling paradigm here. It al-
lows the human to actively participate in such a way that the expert’s opinion
can influence both the problem formulation and the search process, allowing
the adaptation of the interaction mechanism to the specific requirements of
the application domain.

Due to the many various aspects involved with architectural analysis,
related optimization problems often require the definition of multiple con-
flicting objectives. In this sense, the integration of interactive approaches
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into multi-objective evolutionary algorithms (MOEAs) [7] needs further con-
siderations. Since a MOEA requires the presence of a decision maker (DM)
in order to choose the final solution among the set of alternatives returned,
a logical step would be to allow the DM to dynamically express his/her pref-
erences during the search process [23].

Even when maintaining a multi-objective perspective for architectural
optimization is clearly necessary, conceiving an interaction mechanism only
founded on expressing opinions about the objective space seems to be insuf-
ficient. In addition, comparing several architectural models becomes a hard
task due to the information overload. However, engineers would feel more
confident when they strictly evaluate qualitative aspects of the automatically
generated architectural solutions [31]. This approach permits them to extend
the scope of the feedback provided to the algorithm, as well as to adapt the
sort of requested opinion as the search elapses. For instance, delivering both
positive and negative judgments, which perfectly matches with the human
way of acting, can assist the algorithm to discern between interesting and
poor solutions with respect to the expert’s understanding.

In this context, this paper proposes an interactive evolutionary approach
to address the so-called discovery of component-based software architec-
tures [28]. In this problem several software metrics based on maintainability
are considered for the evaluation of structural aspects of the components and
interfaces that constitute the early software specification. Nevertheless, as-
sessing the adequacy of these highly-abstract software artifacts should also
rely on the engineer’s feedback. With these factors in mind, the following
two research questions (RQ) were stated:

RQ1: How can the qualitative judgment of the engineer be integrated into
the evolutionary discovery of software architectures? The proposed interac-
tive approach should consider the multi-objective nature of the optimization
problem and define an appropriate evaluation mechanism, in which both
qualitative and quantitative evaluation criteria could be put together.

RQ2: Does putting the human in the loop involve a significant improve-
ment compared with not considering him/her along the optimization process?
The interactive system should strike a balance between the evolutionary per-
formance, measured by usual quality indicators, and the practical incentive
for the software engineer in terms of a reasonable number of high-quality so-
lutions satisfying his/her preferences. Such an analysis requires conducting
an empirical study with a substantial number of participants, where aspects
like usefulness and intuitiveness should be also evaluated.
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A main contribution of this work is the combination of qualitative and
quantitative evaluation criteria. On the one hand, an interactive system man-
ages design decisions entered by the engineer to either intensify the search
towards specific regions of the search space or, on the contrary, escape from
those that do not meet his/her expectations. More specifically, each design
decision is mapped into a function, named architectural preference, that re-
inforces the fitness value of solutions satisfying the corresponding qualitative
characteristic. On the other hand, the quantitative evaluation in terms of
software metrics is kept as a means for achieving promising candidate solu-
tions from a multi-objective perspective. Additionally, it serves to control the
inherent uncertainty that arise when dealing with human reasoning, such as
fatigue and inconsistency [25]. Reports obtained from real user experiences
show that the interactive algorithm here presented is able to adapt the search
as new design decisions are made.

The rest of the paper is structured as follows. Section 2 briefly introduces
software architecture optimization methods, as well as the concepts and ter-
minology related to the interactive evolutionary computation (IEC) and its
application to SBSE. Section 3 describes the optimization problem under
study, while the interactive evolutionary approach for discovering software
architectures is detailed in Section 4. Next, Section 5 presents the empirical
method and experimental framework. Experiments assessing both the evo-
lutionary performance and the applicability of the approach are presented in
Section 6. Finally, threats to validity are discussed in Section 7, and Section 8
concludes.

2. Background

This section explains the basis of how search techniques have been pre-
viously applied to address architectural design problems, describing some
non-interactive optimization approaches. However, interactive optimization
systems propose a completely different perspective to face optimization prob-
lems, involving the human in the search process. This fact clearly influences
their design and implementation, briefly discussed in this section too. Next,
some related work focused on the use of interactive approaches in SBSE is
introduced.
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2.1. Software architecture optimization

During early analysis, the conception of a software architecture satisfying
both the functional and non-functional requirements constitutes an impor-
tant activity. Apart from describing the abstract structure of the system, an
architecture exposes the design principles that should guide its subsequent
development and evolution [13]. Similarly, architectural models represent
essential artifacts when addressing other activities of the software life cycle,
such as resource allocation during deployment or reconstruction as part of
maintenance and migration [11]. Carrying out these tasks as optimization
problems is the idea behind the application of software architecture opti-
mization methods [1].

Optimization methods like metaheuristics can be used to arrange elements
of an architectural specification or semi-automatically derive new models.
This is done according to predefined quality attributes and other existing
constraints. The advantage of applying these methods lies on their high ca-
pacity to explore a wide set of design alternatives, only requiring minor adap-
tation in order to properly manage the problem-specific decision variables.
Nevertheless, the abstract and cross-cutting nature of software architectures
need to be thoroughly observed to satisfactorily support the decision-making
process [12], in which it may influence other factors like human intuition,
conflicting goals or the uncertainty inherent to this early stage.

Software architecture optimization has recently emerged as an upward
trend in SBSE, providing the necessary support to software engineers when
dealing with complex design scenarios. Recent advances reveal that multi-
objective evolutionary algorithms can be effectively applied to enhance ar-
chitectural artifacts at different stages of the design process. For instance,
NSGA-II has served to assist engineers in the production of architectural
documentation [9]. A hybrid approach considering analytical optimization
and a variant of NSGA-II was also presented to cope with the selection
and allocation of software components during deployment [16]. Similarly,
reconfiguration after deployment was defined as a 5-objective optimization
problem to be solved by a specific genetic algorithm [38].

2.2. Interactive optimization

Interactive optimization encompasses all those search methods in which
a human explicitly takes part in the search [21]. The need for involving the
human within the process can be motivated by many different factors, such
as the inability to capture complex features around the problem formulation
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or the lack of an appropriate quantitative fitness function. This latter issue
constitutes a major concern when attempting to solve creative tasks by means
of evolutionary computation (EC), so it is not surprising that initial efforts
were mostly focused on leaving the responsibility for evaluating candidate
solutions to humans [36]. In these cases, showing a subset of the population
and then interpolating the fitness for the rest of individuals is a common
strategy to reduce the cognitive burden.

When addressing multi-objective problems (MOPs), DMs are expected
to establish the desired trade-off among objectives either at the beginning
of, during or after the search. To this end, several methods has been pro-
posed, including the negotiation of the importance of each objective and the
definition of reference points [23]. The gathered information would be used
to redirect the search towards certain regions of the Pareto front (PF) or
even to learn from the DM’s preferences [5]. Although these mechanisms
have been already integrated into some existing MOEAs, other algorithms
specifically conceived to deal with MOPs from an interactive perspective can
be also found in the literature. A representative approach is iTDEA (in-
teractive territory defining evolutionary algorithm) [15], which progressively
delimits preferred regions of the PF around the most interesting solutions.
More specifically, some solutions are presented to the DM at certain moments
of the search process in order to choose the best. According to the feedback
obtained, iTDEA updates the size of the territory associated to similar so-
lutions, which determines the permitted distance between the individuals
stored in an external archive.

Notice that interactive multi-objective optimization usually restricts the
human’s decisions to the objective space. However, humans may feel uncer-
tainty about their own opinion when the definition of the objective functions
is not easily understandable. Therefore, contributing with opinions on quali-
tative criteria would fit better in those cases where the interest lies on aspects
of the solution to be evaluated from the expert’s point of view. This approach
is considered in [6], where subjective criteria are considered to define an ob-
jective function that is computed together with another function determined
by quantitative criteria. In each iteration, the expert rates each solution
using a 0-9 scale and can perform additional actions such as altering solu-
tions. Other ways of integrating qualitative information are based on fuzzy
modeling of user’s preferences and rule-based systems [36].
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2.3. Interactive approaches in SBSE

Software engineering seems to represent a natural scenario for interactive
optimization, since most of its activities are traditionally carried out by hu-
man beings. In fact, real experiences reported by recent works confirm the
suitability of these kind of methods [18, 34], showing the interest of the SE
community in the development of decision support systems under the SBSE
paradigm. A recent review of the state-of-the-art [27] also highlights that
evaluation mechanisms based on qualitative preferences, whether they have
been freely expressed by the expert or selected from a set of options, are
preferred over the direct assignment of fitness values.

Software engineers’ abilities and know-how are specially important when
tackling analysis and design tasks. Therefore, it makes sense that the major-
ity of the interactive approaches proposed in SBSE belong to the so-called
search-based software design subfield [26]. For instance, interactive con-
ceptual object-oriented design has been successfully addressed using both
EC [33] and ant colony optimization (ACO) [34]. Here, the authors examine
the influence of aesthetic criteria, defined in terms of elegance metrics, when
class diagrams are derived from use cases. This work was then extended
to allow the designer to freeze parts of the solution, demonstrating the ef-
fectiveness of ACO to obtain high-quality solutions after a small number of
iterations.

Architecture synthesis [37] and software refactoring [24] are other exam-
ples of design problems addressed using interactive approaches. On the one
hand, the interaction mechanism employed in [37] allows the architect to
freeze classes and design patterns in order to compose the low-level architec-
ture of a software system. Using class diagrams to represent the solutions,
they are only evaluated in terms of quantitative software metrics. On the
other hand, a multi-objective approach is used in [24] with the aim of im-
proving code quality. Firstly, NSGA-II is responsible for approximating the
whole PF. Then, an interactive mechanism assists the engineer in identify-
ing the most interesting refactoring sequences, as they represent the input
information required by a local search procedure.

3. Problem fundamentals

This section describes in detail the search problem for the evolutionary
discovery of software architectures. Adopted from our previous work [28],
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where an initial non-interactive evolutionary solution was proposed, the en-
coding of candidate solutions and the metrics for their quantitative evaluation
are also explained.

3.1. The search problem

Understanding the original architecture of a system as it evolves becomes
a complex task if the corresponding analysis information is not properly
generated and maintained. There are also situations in which the software
engineer just needs to specify software artifacts at a higher level of abstrac-
tion as an important step prior to the addition of new functionality or the
migration of the system. Software components represent abstract units of
construction providing well-defined services that can be accessed through
their interfaces [35]. Promoting reusability is the ultimate goal of organizing
the system structure this way.

In this context, the discovery of component-based software architectures
consists in identifying the high-level structure of a software system, in terms
of its components and interfaces, from a previous analysis model represented
by a UML 2 class diagram [28]. More specifically, the discovery process can
be defined according to the following rules:

• A component is derived from a cohesive group of classes, all of them
working together in order to implement its behavior.

• Directed relationships among classes belonging to different components
serve to identify interfaces, since they represent the provision or need
of functionalities. Public methods within classes are used to determine
the interface operations. When two or more classes are involved in
an interaction between a pair of components, all their public methods
would specify a unique interface. Notice that the previous model de-
scribed in [28] established that each pair of related classes represents
a candidate interface. In contrast, the approach here presented has
been improved to increase flexibility in such a way that, if the same
class is required by other components, its public methods are properly
separated following reusability criteria.

• A connector represents the linking between different components in
terms of their matching interfaces. As a consequence of how interfaces
are now derived, a connector could link a provided interface to several
required interfaces.
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Following these rules, the search algorithm is able to explore the decision
space looking for the optimal allocation of classes and their relationships
into components and interfaces. Even so, the abilities and know-how of the
software engineer play a key role when envisioning the main functionalities
of large software systems and their mutual interactions. Thus, the discovery
of software architectures is still a human-centered and iterative task.

3.2. Encoding and initialization

Each candidate solution represents a complete component-based software
architecture, whose phenotypic expression corresponds to its representation
as a UML 2 component diagram. As for the search, each solution is encoded
using a tree structure, whose hierarchical composition perfectly reflects how
an artifact, e.g. a component, is comprised of elements of a lower level, e.g.
classes and interfaces.

All the encoded solutions should satisfy a number of constraints in order
to represent feasible architectural models, as defined next:

• Each class must be only located into one component. Components
cannot be empty.

• Components should define at least one interface, either required or
provided.

• A pair of components could not provide services to each other, so that
they would be mutually dependent.

The population is initialized by arbitrarily distributing classes from the
input diagram into a random number of components within the range set by
the software engineer. The process controls that classes are not replicated
and no empty component is returned. However, constraints regarding inad-
missible interactions among components are not checked. These unfeasible
individuals will be penalized in terms of their fitness value, making them
progressively disappear.

3.3. Software metrics for quantitative evaluation

Dealing with several quality attributes like modularity or reusability in
the same design is a usual situation for the architect. Hence, the discovery of
software architectures can be addressed from a multi-objective perspective,
where quality metrics measuring such attributes need to be simultaneously
optimized. Table 1 shows the three metrics, i.e. objectives, used in this work:
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Table 1: Software metrics to evaluate component-based architectures

ICD = 1/n ·
∑n

i=1 ((#clt −#cli)/#clt) · (CI ini /(CI ini + CIouti ))

ERP =
∑n

i=1

∑n
j=i+1 (was ·#asij + wag ·#agij + wco ·#coij + wge ·#geij)

GCR = #cgroups/n

• Intra-modular Coupling Density (ICD) looks for a trade-off between
coupling and cohesion. For each component i it calculates the ratio
between internal (CI ini ) and external (CIouti ) relations, also considering
the number of inner classes (#cli). #clt stands for the total number
of classes in the full model, and n is the number of components. This
metric has to be maximized, and varies in the range [0,1].

• External Relations Penalty (ERP) counts the number of relationships
between classes of different components, i and j, that cannot be de-
clared with a well-defined interface. This situation mostly occurs when
the navigability of associations (as), aggregations (ag) or compositions
(co) is not explicitly defined in the source analysis model. General-
ization relationships (ge) between classes located in different compo-
nents, e.g. representing a data abstraction, may also turn into external
dependencies. The software architect can specify how detrimental a
dependency caused by each kind of relationship is for the resulting ar-
chitecture in terms of their respective weights (wx). ERP should be
minimized, 0 being the optimum.

• Groups/Components Ratio (GCR) defines the ratio between the num-
ber of groups of interconnected classes (#cgroups) and the number of
components in the entire architecture (n). A well-defined component
is expected to contain a unique group of classes, so the optimal value
is 1. This metric should be minimized.

4. Interactive model for the evolutionary discovery of software ar-
chitectures

As stated in RQ1, considering the feedback from the software engineer
into the discovery of software architectures would permit adding new valuable
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Figure 1: Proposed interactive evolutionary model.

qualitative information to the search process. With this aim, this section pro-
vides an overview of the proposed IEC model. Then, a more detailed descrip-
tion of its essential elements is presented, including the solution evaluation
method based on both quantitative and qualitative criteria, the mechanisms
enabling the management and transformation of solutions, and how human
interaction is conducted.

4.1. Overview of the approach

Fig. 1 shows the proposed evolutionary model (henceforth named iMOEA),
which is composed of two main elements: the algorithm conducting the auto-
matic search of architectural models, and the interaction module that coor-
dinates the communication between the algorithm and the software engineer.
More specifically, the multi-objective evolutionary algorithm here proposed
is based on a steady-state scheme, and makes use of a sophisticated diversity
preservation technique similar to hyperboxes. Both aspects are relevant ac-
cording to our previous findings [30], since they provided a more appropriate
convergence and a control mechanism to reduce the archive size, respec-
tively. In addition, the algorithm defines a specific evaluation method that
combines quantitative (software metrics) and qualitative (architectural pref-
erences) criteria. The resulting fitness function is then used as one criterion
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to compare solutions along the search process.
Firstly, the algorithm initializes the population according to the procedure

detailed in Section 3.2. Notice that, at that time, solutions can be evaluated
by only meeting quantitative criteria, i.e. the software metrics serving as
objectives (see Section 3.3). An initial archive is also created from the set
of non-dominated solutions. Then, the evolutionary search follows the usual
execution flow: parent selection, genetic operators, replacement and archive
update. The search continues until a stopping condition is met.

At certain moments of the evolution, the algorithm momentarily stops the
search to obtain feedback from the software engineer. During the interaction,
the algorithm selects a subset of the population to be evaluated in terms
of qualitative criteria. Architectural preferences are then defined in such
a way that the algorithm will be able to numerically determine to what
extent each candidate solution satisfies these criteria. The engineer can also
perform additional actions, such as freezing some specific elements of the
architectural model under evaluation or even stopping the search. Notice
that his/her choice might influence the course of the evolution in steps like
the generation of offspring. After the first interaction, the evaluation phase
begins to consider both quantitative and qualitative criteria, incorporating
the expert’s perspective in the optimization process.

4.2. Fitness function: putting together human decisions and software metrics

The lack of consistency and the cognitive burden, which are inherent in
any interactive system, become even more critical when dealing with soft-
ware architectures due to the presence of highly abstract artifacts. All this,
combined with the huge amount of solutions that an algorithm can generate
in one single execution, implies that relying only on the engineer’s judgment
to assess the quality of the solutions would be impractical. Thus, an effective
evaluation mechanism requires striking the right balance between objective
and subjective criteria. Software design metrics have proven to be effective
in identifying the overall functional blocks of the architecture [28]. As the
design progresses and a more fine-tuned design is required, the participation
of the expert becomes more relevant. Therefore, a reward/penalization ap-
proach [27] is adopted to capture the engineer’s expectations. Given that
both qualitative and quantitative assessments should be combined and com-
puted, the feedback provided by the expert should be then mapped into
numerical preference functions. With this aim, Eq. 1 defines the fitness func-
tion of a solution s as a weighted sum of two terms, fobj and fsub. Weights
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wobj and wsub are considered in order to let the engineer control the relative
importance of the objective and subjective evaluation, respectively. This
function varies in the range [0,1] and should be minimized. Next, each com-
ponent of the fitness function is explained in detail.

fitness(s) = wobj · fobj(s) + wsub · fsub(s) (1)

4.2.1. Objective evaluation: software metrics

The objective component, fobj, requires the definition of a set of software
metrics, each one representing a conflicting objective. Without limiting the
generality, fobj considers that all of them should be minimized and vary in
the range [0,1]. Consequently ERP and GCR have been scaled accordingly.
Their theoretical upper limit will depend on the number of relationships and
the number of classes contained by the source analysis model, respectively.
In addition, ICD values need to be inverted.

Given that obtaining a weighted sum of the objective values would target
the search towards a unique point in the PF, a different kind of aggregation
function is required here in order to transform the metric information into
a single value. With this aim, fobj uses the maximin function [4]. For a
given set of objectives k ∈ [1, K] this function returns a value in the range
[-1,1], reporting on both the dominance and the diversity of a solution with
respect to a reference set Z, e.g. the whole population. On the one hand,
the sign of the result serves to distinguish between non-dominated (< 0),
weakly-dominated (= 0) and dominated solutions (> 0). On the other hand,
the specific value gives an idea of the proximity between non-dominated
solutions, values close to -1 being preferred. For a dominated solution, the
result represents its distance to the PF, values close to 0 meaning proximity.
Both properties serve to precisely qualify a candidate solution from a multi-
objective perspective and, at the same time, the obtained values can be
easily interpreted. Eq. 2 shows the formulation of the maximin function,
properly adapted to return a value in the range [0,1], as required by Eq. 1.
f s
k represents the value of the objective k for the solution under evaluation

(s), whereas f z
k represents the same value but for a solution, z, belonging

to the reference set (Z). Notice that the maximin function inspects all the
search directions in order to find which one allows the solution s to be far
from being dominated.

fobj(s) = (1 +maxz 6=s(mink(f s
k − f z

k )))/2 ∀z ∈ Z (2)
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4.2.2. Subjective evaluation: architectural preferences

To quantify the subjective component, fsub, the algorithm makes use of the
set of design decisions compiled after each interaction. Taking a candidate
solution as a reference, the engineer might highlight a qualitative aspect that
he/she considers relevant to appear in a final solution, or focus his/her at-
tention on features to be avoided. Notice that qualitative criteria will mostly
be focused on phenotypic aspects of a solution, e.g. whether a software com-
ponent is meaningful. Once the association between the design decision and
the architectural preference has been established, the algorithm is responsi-
ble for promoting the solutions that satisfy positive preferences and, at the
same time, penalizing those presenting undesirable characteristics according
to the negative preferences. To do this, prefp in Eq. 3 measures to what
extent an arbitrary solution s satisfies the architectural preference p. The
returning value, i.e. the degree of achievement, lies in the range [0,1] and
should be maximized, regardless of whether the engineer’s opinion is positive
or negative. In addition, each preference has an associated weight, wp, which
represents the engineer’s confidence in his/her decision. This can be ex-
pressed using the Likert-type scale, though the corresponding weight should
be scaled in order to ensure that the result remains in the range [0,1]. Here,
weights are relative to a unique interaction, so the specific value is computed
according to the confidence levels associated to all the evaluations made in
the same interaction.

fsub(s) = 1− 1/P ·
P∑

p=1

(wp · prefp(s)) (3)

At different interactions, the expert will express his/her opinion on either
the specific composition of the solutions under evaluation or the values of
the returned software metrics. The following list compiles the preference
alternatives available for the engineer:

1. No preference. The expert skips providing any opinion.

2. Best component. For a given solution, the engineer selects the best
component, c+, according to its structure. A preference function prefbc
will determine to which extent there are other individuals having a
similar component (see Eq. 4). For each component c of a solution, the
function cl() extracts its classes, so that the resulting set is compared
with the set of classes contained in c+. With this aim, the Jaccard

14



index J is calculated (see Eq. 5). Given a pair of sets, A and B, this
similarity measure calculates the ratio between the number of common
elements and the number of different elements. Finally, the maximum
similarity value among the n components comprising the architectural
solution is returned as the degree of achievement of this preference.

prefbc = max{J(cl(c), cl(c+))} ∀c ∈ [1, n] (4)

J(A,B) = |A ∩B|/|A ∪B| (5)

3. Worst component. In contrast to the previous preference, this prefer-
ence allows the engineer to express a negative opinion on an observed
component c−. Here, the corresponding preference function prefwc pe-
nalizes those solutions having a component similar to c− (see Eq. 6).

prefwc = max{1− J(cl(c), cl(c−))} ∀c ∈ [1, n] (6)

4. Best provided interface. The expert may identify an interface p+ of
interest for the service interaction specification, even when the com-
ponent providing it is not properly formed yet. Similar to prefbc, the
preference function defined by Eq. 7 computes the Jaccard index, in
this case being used to compare sets of interface operations. The func-
tion op(i) serves to extract the operations from an interface i, while
in(c) compiles the interfaces provided by a component c.

prefbi = max{J(op(in(c)), op(p+))} ∀c ∈ [1, n] (7)

5. Worst provided interface. Similar to prefwc, it focuses on interfaces
instead of components. Eq. 8 shows the expression that calculates the
preference function prefwi, p

− being the rejected interface.

prefwi = max{1− J(op(in(c)), op(p−))} ∀c ∈ [1, n] (8)

6. Number of components. The engineer may be interested in leading the
search for solutions with a preferred number of components n+. In
this case, prefnc calculates the difference between this number and the
current number of components of the given solution, n. In Eq. 9, nmin

and nmax are the limits initially set by the engineer to the size of the
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architecture. An evolutionary consequence, which remains transparent
to the expert, is the obvious reduction of the search space.

prefnc =

{
(n− nmin)/(n+ − nmin) if n < n+

1− ((n− n+)/(nmax − n)) if n ≥ n+
(9)

7. Metric in a range. This preference helps the engineer to determine the
expected values—or range of values—of a given metric m (see Table 1
in Section 3.3). Having set a maximum (mmax) and a minimum (mmin)
value for m, the preference prefmr penalizes any solution s with a
metric value ms outside this interval. On the contrary, values close to
the midrange (mmid) are rewarded, as shown in Eq. 10.

mmid = (mmax −mmin)/2 (10)

prefmr =


0 if ms < mmin

1− (ms −mmid)/mmid if ms ∈ [mmin,mmax]

0 if ms > mmax

8. Aspiration levels. This preference allows the engineer to set the target
values for all the metrics. From the evolutionary perspective, aspira-
tion levels [23] are appropriate to guide the search towards solutions
whose objective values are close to the DM expectations. Achievement
scalarizing functions (ASFs) [22] are usually applied to determine to
what extent a solution s satisfies the aspiration levels represented in
the form of a reference point z∗. The ASF here selected, shown in
Eq. 11, computes a weighted distance in each search direction k so that
the overall preference prefal promotes those solutions with a small ASF
value. Notice that solutions having better objective values, f s

k , than
z∗ obtain the maximum degree of achievement for this preference k.
Assuming equal weights, wk, Fig. 2 illustrates both cases. The ASF
value for s1 would be determined by the distance in axis F1. ASF is
lower than 0 for s2 as it has better objective values than z∗. Both the
reference point and the weights are provided by the software engineer.
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Figure 2: An illustrative example of ASF values

ASF = max{wk · (f s
k − z∗k)} (11)

prefal =

{
1 if ASF ≤ 0

1− ASF if ASF > 0

4.3. Selection, mutation and replacement strategies

Focusing on the selection mechanism, two parents are selected using bi-
nary tournament, one from the population and another from the archive.
Since the competition is based on their fitness values, both quantitative and
qualitative criteria influence the selection process.

Then, the algorithm applies the mutation operator in order to produce
two offspring. The mutation operator simulates five different architectural
transformations: adding a component (a); removing a component (r); merg-
ing two components (m); splitting a component (s); and moving a class
(c) [28]. For each individual, the mutator executes a probabilistic roulette
with these operations ensuring that any architectural output will be com-
prised of an allowed number of components, according to the aforementioned
thresholds. After selecting an operation and applying it, any mutant not
satisfying all the constraints is discarded, and the original solution mutated
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once again. This process is performed for a maximum of 10 attempts. If the
mutator still fails to find a feasible individual, the initial solution is returned.
In addition, the operator should be aware of the fact that individuals can con-
tain frozen parts that should not be modified. On the other hand, crossover
is not considered because it would hardly generate feasible solutions [28].

Finally, the replacement strategy causes a competition among offspring
and current individuals, promoting the survival of those solutions having
better fitness values. Solutions discarded by the engineer are progressively
removed from the population in order to keep the population size constant.
Additionally, if three or more solutions are marked to be removed, two of
them would be eliminated in the current generation, while the others will be
conveniently penalized in order to ensure their removal in future generations.

4.4. Archive update mechanism

Algorithm 1 describes the procedure to update the archive, which is par-
tially based on the definition of territories proposed by iTDEA [15]. However,
there are some aspects of the original procedure that have been conveniently
adapted in order to apply the proposed fitness function when determining
which solutions should be kept in the archive after each generation. Firstly,
the method checks that the individual was not added beforehand (line 3).
Secondly, it extracts the set of dominated solutions (line 5). Then, the
method proceeds like iTDEA (lines 6-9). More specifically, a preferred re-
gion for the given individual (r) is determined according to a set of weights
associated to each objective function [15]. After finding the archive member
s closer to the individual (line 8), the rectilinear distance between them is
calculated (line 9). At this point, the decision about whether ind should
replace s is not only based on that distance, but also on how much each
one satisfies the engineer’s preferences. It is a key difference with respect to
iTDEA, which would simply discard ind if it lies on the territory associated
to s. The complete acceptance criteria are defined as follows:

• A solution of interest to the engineer is always accepted, regardless of
whether it is dominated or not (line 11). In addition, they cannot be
removed in subsequent generations. The territory size of the associated
region is conveniently reduced when the solution lies on the territory
of another solution (lines 12-14).

• Replacing one non-dominated solution with another belonging to the
same region will be permitted if it implies improving fsub (lines 19-26).
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Algorithm 1 Update archive

Require: population, archive
1: archive′ ← archive
2: for all ind ∈ population do
3: if ind /∈ archive′ then
4: accept←false
5: dominated← solutionsDominatedBy(ind)
6: r ← preferredRegion(ind)
7: t← territorySize(r)
8: s← closerSolution(archive′,ind)
9: d← distance(s,ind)

10: if ind was selected by the user then
11: accept←true
12: if d < t then
13: reduceTerritorySize(r, t− d)
14: end if
15: else
16: if ind is non-dominated then
17: if d > t then
18: accept←true
19: else
20: n← numberOverlappingTerritories(ind)
21: if n == 1 AND fsub(ind) > fsub(s) then
22: accept←true
23: archive′ ← (archive′ ∩ ¬s)
24: end if
25: end if
26: end if
27: end if
28: end if
29: if accept then
30: archive′ ← (archive′ ∩ ¬dominated ∪ ind)
31: end if
32: end for
33: return archive′
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It should be noted that if the solution overlaps with the territory of two
or more archive members (line 20), the action will not be performed in
order to avoid discarding an excessive number of solutions.

• Dominated solutions are only removed when the individual whose ac-
ceptance is being checked is finally added (lines 31-33), as suggested
in [15].

After each interaction, the algorithm reduces the territory size for the
region allocating the best solution in terms of fsub, allowing a higher density
of solutions around.

4.5. Interaction mechanism

There are two relevant factors that may affect users’ fatigue and their
loss of interest: the frequency of interaction and the mechanism of selection
of solutions. To prevent fatigue, the engineer is able to set the desired num-
ber of interaction steps. Then, how these interactions are distributed along
the search is automatically determined according to [15]. Given a maximum
number of generations, g, g/3 generations are executed before the first inter-
action in order to approximate the PF, while g/6 iterations are performed
by the algorithm after the last interaction to ensure that human decisions
are properly propagated. Between these two points, the user will be able to
take action at regular intervals.

A clustering approach is applied in order to select the most representative
solutions of the overall population. Notice that it is also important to provide
software engineers with information regarding the improvements resulting
from their decisions. Therefore, if m solutions are required to be displayed
to the expert, a kMeans++ algorithm [3] selects m− 1 solutions, looking for
diversity with respect to their objective values. The remaining solution is
the one with the highest fsub value.

Engineers are also allowed to perform additional actions. Firstly, the most
promising solutions can be directly saved to the archive, not only implying
that they will be returned at the end of the search process, but also that
they could be selected as parents more frequently. Secondly, solutions not
satisfying the engineer’s expectations could be identified for removal in the
replacement phase. Finally, parts of an individual genotype could be frozen
as a way to facilitate their appearance in other solutions.
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5. Experimental framework

The IEC model has been coded in Java using JCLEC-MOEA [29]. In
addition, some supporting libraries have been used to process data1, extract
analysis information from XMI files2 and implement the clustering proce-
dure3. These algorithm executions aimed at assessing the performance of
the evolutionary search were run on an Ubuntu 16.4 computer with 8 cores
Intel Core i7 2.67-GHz and 7.79-GB RAM.

The rest of this section explains the empirical methodology conducted to
properly respond to research questions RQ1 and RQ2. The parameter set-up
and problem instances are detailed next.

5.1. Methodology

The performance of a new MOEA is usually assessed in terms of qual-
ity indicators. Nevertheless, interactive approaches also imply putting the
human in the loop in order to perform their evaluation. Both ways are
complementary, though the latter requires conducting some particular ex-
perimentation and analysis.

Firstly, as posed in RQ2, the performance of the multi-objective evolu-
tionary approach has to be proved before the human getting involved. With
this aim, a parameter study is required to analyze the behavior of the algo-
rithm regarding the returned number of solutions and the expected trade-off
between their quality and diversity. These properties will be evaluated using
two quality indicators, hypervolume (HV ) and spacing (S) [7]. In addition,
the evolutionary performance is compared against the well-known NSGA-
II algorithm [8]. In both cases, algorithms will be executed 30 times with
different random seeds over all the available problem instances.

The significance of the outcomes [2] is assessed by applying non-parametric
statistical tests. More specifically, the Wilcoxon Signed-Rank test will be ex-
ecuted to perform pairwise comparisons, while the Aligned Friedman test
will be used when the experiment involves more than two algorithms. An
effect size measurement is also considered to assess the performance gain,
the Cliff’s Delta test being selected to this end. For all experiments, the

1http://www.uco.es/grupos/kdis/datapro4j
2http://www.sdmetrics.com/OpenCore.html
3http://commons.apache.org/proper/commons-math/
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null hypothesis, H0, establishes that the corresponding algorithms perform
equally well at a specific level of significance, 1-α.

Once the non-interactive algorithm (hereinafter referred to as bMOEA,
base MOEA) is properly analyzed and tuned, the interactive approach (iMOEA)
will be empirically assessed through the participation of 9 people. All the
participants are either students or professionals in the field of computer sci-
ence, with previous background in software development for a period of 2 to
17 years. More specifically, the experiment is conducted by 1 undergradu-
ate student, 2 master students, 4 software engineers (postgraduates) and 2
academics (PhDs), who face a specific real-world problem instance named
Datapro4j (see further details in Section 5.2). This software system has been
selected as case study because its analysis model could be understandable
by the engineer for the time required to conclude the experiment. Addition-
ally, about 33% of the participants already had some previous development
experience with Datapro4j in one form or another.

Interactive sessions have been planned as follows. At the beginning, par-
ticipants are instructed in the purpose and content of the experiment, as well
as in the use of the interactive tool, including the architectural preferences
and actions. Given that users are able to visualize the entire architectural
model, special considerations are taken to reduce the inherent cognitive bur-
den. On the one hand, internal information about classes is not shown as
it remains unaltered from one solution to another, and a printed copy of
the input class diagram is also provided during the session. On the other
hand, the number of components is restricted according to the configuration
parameters, while the mechanism proposed to derive interfaces ensures that
the number of interfaces per component is not excessive.

Each participant executes a single run with the best configuration ob-
tained after the parameter study and a different random seed. The interac-
tion scheme consists of 3 stops for the user to evaluate 3 different solutions
each time. This way all the participants evaluate the same number of solu-
tions and every interactive execution will provide intermediate results under
the same conditions.

Exhaustive execution logs are generated to properly study the behavior
of participants and receive relevant feedback from their experience. During
the experiment, participants are requested to write down the reasons of their
decisions. Similarly, at the very end of the session, they should fill in a form
with additional questions about their experience and impressions, as well as
free comments or suggestions.
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The two planned experiments, i.e. the parameter study and the empirical
investigation, serve to respond RQ2. On the one hand, the analysis in terms
of quality indicators proves the competitiveness of the algorithm from an evo-
lutionary point of view. On the other hand, the usefulness and intuitiveness
of the approach can be derived from the information gathered from the inter-
active session. Furthermore, the influence of the participants’ opinion with
respect to the sort of the solutions found and the level of metric optimization
is assessed by comparing the outcomes of bMOEA and iMOEA. Notice that,
in this problem, any configuration is a solution, with the only exception of
unfeasible individuals. Therefore, the fitness function is intended to simulate
the software engineer’s behavior in terms of his/her design preferences, which
could not be formulated beforehand, as they are expected to be indicated as
the search progresses. Consequently, the solutions returned do not necessar-
ily have to be Pareto optimal, but a reflection close to the expectations of
the expert.

5.2. Algorithm set-up

Table 2 shows the list of parameters and their respective values. Over-
all parameters like the population size and the stopping criteria, as well as
those being specific to the problem under study, have been set according
to our previous studies [28, 30]. Same weights were applied to the objec-
tive and subjective evaluations. Furthermore, the influence of the territory
size (τ) on the update mechanism of the archive deserves special attention,
since it might affect the number of resulting solutions. In this case, three
different initial values of τ are tested during the non-interactive experiment,
while recommendations from the authors of iTDEA are followed regarding
the mechanism to update it after each interaction [15]. As mentioned in Sec-
tion 5.1, the interaction scheme ensures that all users interact 3 times with
the algorithm, sequentially showing 3 different solutions each time.

Table 3 shows the quantitative characteristics of each problem instance.
They provide a wide spectrum of complexity regarding the number of classes
and relationships, which are classified into associations (as), aggregations
(ag), compositions (co), generalizations (ge) and dependencies (de). The
last column indicates the number of candidate interfaces, i.e. the number
of relationships whose navigability has been explicitly specified. With the
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Table 2: Required parameters and their values

Parameter Value
Population size 150
Maximum number of evaluations 24000
Minimum number of components 2
Maximum number of components 6
ERP metric weights (was, wag, wco, wge) 1, 2, 3, 5
Mutation weights (wa, wr, wm, ws, wc) 0.2, 0.1, 0.1, 0.3, 0.3
Fitness weights (wobj, wsub) 0.5, 0.5
Initial territory size (τ0) 0.01, 0.05, 0.1
Final territory size (τH) 0.005
Decreasing factor (λ) 0.5
Number of interactions 3
Number of solutions per interaction 3

Table 3: Problem instances and their characteristics

Problem Classes
Relationships

Interfaces
as ag co ge de

Aqualush 58 69 0 0 20 6 74
Datapro4j 59 3 3 2 49 4 12
Java2HTML 53 20 15 0 15 66 170
JSapar 46 7 21 9 19 33 80
Marvin 32 5 22 5 8 11 28
NekoHTML 47 6 15 18 17 17 46

exception of Aqualush4, a benchmark used for educational purposes, all the
problem instances represent working software systems5.

4http://www.ifi.uzh.ch/en/rerg/research/aqualush.html
5http://www.java-source.net/
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Table 4: Number of solutions of the final archive
τ = 0.01 τ = 0.05 τ = 0.1

Aqualush 23.77± 6.28 14.80± 2.52 9.23± 1.87
Datapro4j 12.57± 3.62 8.37± 2.06 5.73± 1.12
Java2HTML 140.37± 3.03 49.75± 5.17 17.48± 1.92
JSapar 21.67± 4.99 12.20± 2.94 8.00± 1.41
Marvin 13.27± 4.02 8.27± 2.02 5.93± 1.29
NekoHTML 20.07± 4.56 11.60± 3.20 7.97± 1.33

6. Analysis of results

6.1. Evolutionary performance

The number of solutions returned to the expert is a key aspect when
dealing with real-world decision scenarios and interactive approaches. In
the proposed bMOEA, the archive size can be controlled by the parameter
τ . Even though the final number of solutions might depend on the way
the engineer interacts with the algorithm, providing some guidance to the
algorithm in this regard could help.

As explained in Section 5.2, the algorithm has been run considering three
possible values of τ : 0.01, 0.05 and 0.1. Notice that there is no interaction
here, so τ remains constant along the search. Consequently, it only imposes a
restriction with respect to the minimum number of solutions to be returned.
Table 4 shows the average archive size for the three aforementioned configu-
rations, including the standard deviation. As might be expected, increasing
the value of τ allows reducing the archive size. Furthermore, the specific
problem instance might be another determinant factor.

Given that a limited number of solutions could compromise the expected
trade-off between convergence and diversity, a further analysis of the quality
of the solutions is carried out in terms of HV and S. Firstly, the spacing
values for the three configurations are studied in order to confirm that the
use of territories allows our bMOEA to effectively preserve diversity while
maintaining an affordable number of alternatives to be returned to the par-
ticipant.

Table 5 shows the obtained results for each problem instance, where
higher values are better. As can be seen, setting too low values of τ might
demote the expected diversity, mainly because of the increase of the number
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Table 5: Results for Spacing (S)

τ = 0.01 τ = 0.05 τ = 0.1
Aqualush 0.039± 0.023 0.045± 0.028 0.048± 0.020
Datapro4j 0.038± 0.034 0.044± 0.045 0.050± 0.027
Java2HTML 0.021± 0.002 0.022± 0.004 0.030± 0.009
JSapar 0.041± 0.021 0.064± 0.017 0.063± 0.031
Marvin 0.031± 0.009 0.029± 0.015 0.035± 0.019
NekoHTML 0.033± 0.011 0.032± 0.017 0.037± 0.019
Ranking 14.500 9.500 4.500

of solutions returned by the algorithm. Rankings reported by the Aligned
Friedman test are also included in Table 5. To confirm the existence of
statistical differences using this test, the statistic z–distributed according
to a chi-square distribution with 2 degrees of freedom–should be compared
to a critical value of that distribution. Given that the obtained statistic,
z = 4.1477, is smaller than the critical value (5.9915) for α = 0.05, H0 can-
not be rejected, that is, bMOEA behaves similarly in terms of spacing for
the three proposed configurations.

In contrast, as can be observed in Table 6, when comparing the three
configurations in terms of HV , better values are now obtained for τ = 0.01,
though the Aligned Friedman test reveals that there are not statistical differ-
ences (z = 4.0730) at a confidence level (CL) of 95%. Consequently, τ = 0.05
is chosen as the most appropriate value for our algorithm, since it achieves
the best trade-off between both indicators and the difference with the corre-
sponding best possible configuration is not statistically significant.

In addition to the influence of τ , it would be also interesting to find out
to what extent the proposed algorithm provides a similar performance that
those MOEAs aimed at returning an approximation of the whole PF. In
fact, NSGA-II has also been considered here due to its ability to effectively
guide the search towards non-dominated solutions and the lack of an explicit
mechanism to limit the number of final solutions. Table 7 shows the results
for S and HV , as well as the number of non-dominated solutions found.
Although NSGA-II provides values of HV slightly higher than our algorithm
(see Table 6 for τ = 0.05), it is worth noticing the difference with respect to
the spacing indicator. Besides, the high number of returned solutions could
complicate the decision-making process.
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Table 6: Results for hypervolume (HV )

τ = 0.01 τ = 0.05 τ = 0.1
Aqualush 0.637± 0.012 0.620± 0.015 0.599± 0.017
Datapro4j 0.658± 0.017 0.639± 0.017 0.614± 0.022
Java2HTML 0.282± 0.026 0.278± 0.027 0.261± 0.035
JSapar 0.555± 0.015 0.552± 0.018 0.530± 0.018
Marvin 0.616± 0.008 0.614± 0.007 0.604± 0.012
NekoHTML 0.602± 0.012 0.586± 0.015 0.567± 0.015
Ranking 3.667 9.333 15.500

Table 7: Results obtained by NSGA-II

Num. of solutions Spacing Hypervolume
Aqualush 147.73± 11.84 0.018± 0.008 0.635± 0.015
Datapro4j 148.67± 4.25 0.013± 0.013 0.645± 0.010
Java2HTML 148.87± 2.96 0.009± 0.008 0.404± 0.048
JSapar 150.00± 0.00 0.018± 0.007 0.547± 0.014
Marvin 140.60± 23.22 0.014± 0.005 0.618± 0.009
NekoHTML 150.00± 0.00 0.016± 0.007 0.596± 0.013

Pairwise comparison is performed here in order to precisely compare their
performance. Regarding HV , the Wilcoxon test reveals that NSGA-II per-
forms better than our algorithm with a CL of 90% (p−value = 0.0938), even
though this difference is classified as negligible by the Cliff’s Delta test. On
the contrary, our proposal is statistically better than NSGA-II in terms of
S with a CL of 95%, p − value = 0.0313, the difference between both algo-
rithms being classified as large. In this sense, our algorithm is a competitive
alternative against NSGA-II, since it is able to find not only high quality but
also representative solutions, even when the archive size has to be limited.

6.2. Use of interactive mechanisms

A key aspect of the proposed interactive approach is that the engineer
is able to evaluate the solutions provided by the algorithm in qualitative
terms, e.g. by indicating both positive and negative preferences that might
influence the subsequent search process. It is interesting to observe how
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Table 8: Architectural preferences applied during the experiment

Architectural Preference % Selected Usefulness Intuitiveness
No preference 22.22% 6.44 7.33
Best component 29.63% 7.44 7.44
Worst component 23.46% 7.22 7.33
Best provided interface 2.47% 5.29 6.38
Worst provided interface 0.00% 4.71 6.38
Number of components 17.28% 7.50 7.33
Metric in range 2.47% 4.17 5.44
Aspiration levels 2.47% 5.80 5.22
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Figure 3: Frequency and moment of selection of each architectural preference

these architectural preferences are selected, and how useful and intuitive
participants consider their application. These two factors are scored by users
on a scale between 1 (poor) and 8 (excellent). Table 8 shows the frequency
of use of preferences, and the average rating for usefulness and intuitiveness.

Within the preferences group, participants generally focus their attention
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Table 9: Other actions taken during the interactive session

Optional action % Selected Usefulness Intuitiveness
Add to archive 34.78% 6.11 6.89
Remove from population 30.43% 5.89 6.89
Freeze components 34.78% 7.44 7.44
Stop search 0.00% 5.14 7.44

on the internal structure of the components. In fact, indicating the preferred
number of components that should comprise the architectural specification
is also a frequent choice. In contrast, preferences related to interfaces have
been rarely selected. It is likely that users consider a priority to find a proper
structure at first, and they omit any further detail on the component interac-
tion, even when it could be a factor to refine the search by filling components
with the most appropriate interacting constituents, i.e. classes and relation-
ships. Participants also avoid setting specific values to software metrics,
possibly because they consider this could not lead to such a straightforward
and tangible result. Finally, it is also a common practice not to indicate
any architectural preference. Some participants pointed out that they just
wanted to observe how the algorithm could evolve by itself, whilst others
found it a convenient way to deal with uncertainty about making a precise
judgment. In any case, the applicability of architectural preferences seems
to be related to their intuitiveness and usefulness, according to users’ scores.

In order to examine the behavior of the participants, it is also interesting
to study whether their design decisions are somehow related to the interac-
tion moment. Fig. 3 shows the total number of occurrences of the different
preferences at each specific interaction point, where i stands for the number
of interaction break, and s for the solution position in the group of three.
Notice that, apart from the omission of choice, the three most intuitive and
useful preferences—according to the user rating—were applied throughout
the entire search process. Nevertheless, some additional patterns can be
still observed. For instance, during the initial interactions, users tend to ex-
press negative opinions (e.g. worst component) or to indicate some overall
restriction (e.g. number of components) in order to reach an expected solu-
tion. However, as the evolution progresses, positive opinions become more
frequent because better solutions are returned.

Apart from indicating a preference, participants have the opportunity to
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Table 10: Evolution of software metrics
bMOEA iMOEA

ICD ERP GCR ICD ERP GCR
Initial population 0.619± 0.009 0.716± 0.009 0.689± 0.010 0.548± 0.006 0.712± 0.006 0.685± 0.006
Final population 0.640± 0.035 0.030± 0.013 0.027± 0.012 0.366± 0.066 0.168± 0.084 0.165± 0.085
Initial archive 0.476± 0.021 0.518± 0.053 0.491± 0.053 0.481± 0.036 0.520± 0.074 0.483± 0.070
Final archive 0.419± 0.029 0.133± 0.035 0.121± 0.033 0.414± 0.041 0.147± 0.046 0.139± 0.042

take additional actions, such as adding the solution to the archive, definitely
removing it, or even freezing a specific part of an architecture. They could
also stop the search process to get the current archive. It is noticeable how
these actions are not frequently selected by the user. Actually, 66% of the
participants applied at least one of these actions but only once or twice. Ta-
ble 9 summarizes how many times each action was taken, and how users rated
their usefulness and intuitiveness. Participants never stopped the search, as
they did not even find it so useful, probably because of the limits in the num-
ber of iterations and time constraints. When applied, adding solutions and
freezing components served the participants to reinforce their preferences,
which also allowed them to perceive the effect of these actions in subsequent
interactions.

6.3. Impact of subjective evaluation

Without the user interaction, the proposed algorithm would be guided by
objective measures like other non-interactive approaches. The participation
of the user might apparently distort the solutions returned from a merely
evolutionary perspective. Nevertheless, notice that the real power of the
iMOEA lies in its ability to reinforce certain solutions that engineers might
find close to their expectations. This is an important aspect to be considered
in domains like search-based software design, where a number of objective
measures is not enough to evaluate the know-how, previous experiences and
overall expectations of the user. Next, the actual influence of the subjective
decisions made along the interactive process in the quality of the solutions is
discussed.

According to the results from Section 6.1, bMOEA and iMOEA behave
similarly from an evolutionary perspective. For instance, for iMOEA, the
average value of HV is equal to 0.6368, which is quite close to the result ob-
tained by bMOEA, HV = 0.6391 (see Table 6 for the Datapro4j instance).
Even two participants reached higher values for HV than bMOEA. In terms
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of S, for iMOEA the 9 values lie on the range [0.0143, 0.0859], the aver-
age value (S = 0.0433) being a little less than that obtained by bMOEA
(S = 0.0439). Here, the observed difference in iMOEA is mainly due to
the activation of the archive update mechanism, which would be reacting to
completely different user actions. In fact, the average number of solutions
stored in this set increased from 8.37 to 11.56, returning archives with up to
19 solutions for iMOEA.

Bringing the human in the loop influences the reached trade-off among
software metrics. According to the conducted experimentation, most of the
design decisions made by the participants were implicitly directed towards
the increase of the ICD metric, which otherwise would tend to be demoted
by the evolutionary algorithm in favor of ERP and GCR. More specifically,
Table 10 shows the average value for each metric in both the initial and the
final population. These values are also obtained for the solutions belonging
to the archive. It should be noted that all values belong to the range [0,1], 0
being the optimum. For bMOEA, ERP and GCR are greatly improved in the
regular population, whereas ICD remains quite constant or even increases.
On the contrary, iMOEA is able to reduce ICD significantly without causing
a dramatic increase of the other metrics with respect to the values reached
by bMOEA. Focusing on the archive, these differences are not so evident.
Notice that the archive only stores non-dominated solutions well distributed
over the PF, the obtained average values representing better trade-offs among
the three metrics. In this sense, it is likely that interesting solutions from the
engineer’s point of view, e.g. those with low ICD values, represent dominated
solutions. This explains why ICD values are higher in the archive than in the
regular population. In this case, these solutions cannot appear in the archive
unless the user explicitly indicate that they should be added.

With iMOEA, software engineers may also recommend their preferred
structure for the architectural solutions. As discussed in Section 6.2, most
of the participants selected the architectural preference number of compo-
nents at some point in the interactive session. More precisely, many of them
agreed that 4 components was an appropriate value for this problem instance.
As can be seen in Fig. 4, this choice drastically affected the evolution, and
iMOEA rapidly discarded solutions of other sizes. In fact, notice that, even
when both bMOEA and iMOEA start with a similar distribution of solutions
regarding their number of components, bMOEA finally leads the search to-
wards architectural solutions having 2 or 3 components. It is caused by the
optimization of the objective criteria, since ERP and GCR can be reduced
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Figure 4: Variation in the size of the solutions during the evolutionary process

by creating large components.

6.4. Comparison between solutions

A complementary view of the outcomes of the interactive session can
be made focusing on the type of solutions found, and their similarity with
the manually produced architecture. In addition, it also serves to analyze
to what extent participants’ decisions might differ from those made by a
search process only guided by design metrics. As a reference, the archi-
tectural specification of the case study, Datapro4j, was originally comprised
of 4 components: Datasets, Columns, Algorithms (a.k.a. Strategies) and
Datatypes. Please notice that this comparison is made against the original
source, human-designed specification, which should not strictly comply with
the design requirements implied by the design metrics, as they could have
consider others as well.

As a result of the interactive session, 104 solutions were returned as part
of the 9 final archives. From this set, 6 solutions (5.77%) contain a component
that is equal to one of those specified by the original designers. These solu-
tions were obtained from 5 different participants (55.56% of the executions),
but only one of them explicitly stored the solution in the archive. If approx-
imations to the source architecture are taken into account6, the percentage

6Here, a component having all the classes of the original component with a margin of
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of solutions would increase to 76,92%. In this scenario, all the participants
were able to find at least two alternative solutions with these characteristics.
In addition, 3 out of 4 original components were approximated at least once,
Algorithms being the most frequently identified component (in 52 of the 104
solutions). It is worth mentioning that 7 solutions archived by the partici-
pants contained that component, which was also frozen in 4 of them. This
suggests that the algorithm can achieve ’human-looking’ solutions with the
assistance of the user, requiring just a few manual modifications to reproduce
the original architecture.

After conducting a similar analysis on the non-interactive algorithm, it
can be observed that an exact reproduction of at least one original component
is found in 18 of the 251 solutions (7.17%). However, they all are generated
by only 8 of the 30 executions (26.67%). When approximate components are
considered, percentages increase up to 73.31% and 100%, respectively. In
this case, the algorithm provides good approximations of 3 components, two
of them being the same that those identified by iMOEA. The components
appearing more often are those comprised of less classes and presenting less
interactions, i.e. Dataypes and Algorithms, as they can be more easily iso-
lated. Therefore, the interaction with the user could also help the algorithm
to find a good separation of the most coupled functionalities.

It is worth mentioning that even when the algorithm is able to find similar
solutions to those specified manually, the interactive approach takes advan-
tage of human design abilities to identify core functionalities and thus is able
to produce meaningful components. In addition, mechanisms like freezing
parts of the solutions and their external storage may reinforce the search in
order to rapidly propagate human design decisions. In contrast, the influence
of the stochastic nature of the evolutionary process can be mitigated.

6.5. Human experience

In the context of software design, analyzing a number of full architec-
tural models requires a major effort for the expert. Therefore, steps should
be taken in order to alleviate the burden of successive evaluations, such as
restricting the number of interactions with the algorithm, or reducing the
spent time. With this aim, participants were asked to respond to a survey—
scores between 1 (completely disagree) and 8 (completely agree)—related to

error of ±2 classes has been considered as a valid approximation.
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Figure 5: Average evaluation time during interactions

their fatigue at the end of their interaction. Their replies indicate that, even
though they partially disagree with the idea that the interactive session took
too long (3.44), they mostly recognized that they were paying more attention
at the beginning of the process (5.13). This is clearly reflected by the average
time spent per evaluation (see Fig. 5). Notice that users take more time to
evaluate solutions shown during the initial interaction, probably because of
a greater interest and less knowledge on the problem and the process itself.
However, as the search process advances and they acquire more knowledge
about candidate solutions, users tend to reduce their degree of interest in ex-
ploring new alternatives from the returned solutions, while improving their
ability to process the information displayed by the interactive tool. This
effect is also noticeable for the first solution shown in every interaction.

As for their feedback, users pointed out that they found promising the
idea of having tools to support design tasks (6.89), since they consider that it
helps reducing the effort that the design process implies (6.50). The overall
perception was that the algorithm could provide interesting solutions (6.13),
and it even helped them to discover new design alternatives that they had not
thought about (6.38). Finally, participants also made diverse suggestions:

• To extend the number of architectural preferences and actions available,
as well as to allow applying more than one preference to the same
solution.

• To allow the user to directly manipulate the provided solution, e.g. by
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splitting components or moving elements.

• To enable participants to undo previous actions and reconsider their
decisions, as well as to allow exploring the candidate solutions at once,
instead of sequentially.

7. Threats to validity

The experimental and empirical nature of this study places certain limi-
tations, which are discussed next in terms of validity threats.

Internal validity refers to those aspects of the experimentation that can-
not ensure the causality between the hypothesis and the obtained results. In
this regard, comparisons between algorithms are based on 30 independent
runs in order to deal with the intrinsic randomness of evolutionary algo-
rithms. Appropriate statistical tests have been applied to draw conclusions
about the performance of the algorithms in terms of two commonly used
quality indicators. As for the experiment putting the human in the loop, the
relative small sample size would represent the main threat to internal valid-
ity. Nevertheless, 9 or even smaller sizes are common and properly accepted
for interactive studies in SBSE [34, 18], since the motivation behind this kind
of experimentation is mostly focused on the analysis of the human experi-
ence, the usefulness of the approach, and the contribution of human-made
decisions to the evolutionary process.

The design of the interactive experiment poses additional threats to con-
struct validity. Focusing on the selection of participants, none of them had
previous background on the use of interactive algorithms, though some of
them were familiar with evolutionary computation in domains different from
SBSE. On the contrary, a few participants had some prior knowledge about
the system under study, which was intentionally selected in order to reflect
the diversity of the practical scenario.

The threat caused by the user fatigue was controlled by applying a fixed
interaction scheme, where each participant performs only one execution within
an interactive session never longer than 1 hour. It also suitable to mitigate
the learning effect. Besides, the visualization and evaluation of complete ar-
chitectural models might produce a heavy cognitive load to the user. The
proposed evaluation method tries to overcome this situation by focusing on
the qualitative assessment of parts of the solution, and it has been conceived
to be open to other complementary mechanisms.
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External validity is related to the generalization of the experimental re-
sults. Although participants are mostly working in an academic context,
some of them have previous experience in the industry or are currently work-
ing in an industrial setting. Nevertheless, given that they all are software
engineers, the experiment has served to confirm the benefit of the interactive
approach as a supporting mechanism to support the SE professional in the
understanding of the underlying architecture of a real software system.

8. Concluding remarks

This paper presents an interactive multi-objective evolutionary algorithm
aimed at supporting software engineers during the early analysis process. The
combination of multi-objective optimization techniques with the so-called
architectural preferences guides the search towards the joint optimization
of both objective and subjective criteria. Both types of evaluation depend
on the specific characteristics of the architecture optimization problem to
be addressed, even so the adaptation of the proposed algorithm in order to
solve other design tasks would only require the redefinition of specific quality
criteria, e.g. the software metrics and architectural preferences. Under the
assumption that engineers might detect more easily those model elements
that they dislike when analyzing complex architectural specifications, they
have been also provided with the possibility to indicate negative opinions on
candidate solutions.

As for its validation, the proposed approach has been compared against a
well-known multi-objective algorithm like NSGA-II. To study its suitability
for bringing the human in the loop, the algorithm has also been validated with
a representative number of users with different expertise levels, who have par-
ticipated in interactive sessions. Results show that the interactive approach
is able to manage the expected trade-off between specific requirements of a
real decision scenario: good enough solutions, variety of alternatives and a
restricted number of solutions. Furthermore, the use of architectural pref-
erences as a mechanism for the subjective, qualitative evaluation helps to
overcome the limitations related to the use of numerical ratings, as usually
proposed by other IEC approaches.

To conclude, such a human in the loop approach would definitely allow
software engineers to actively participate in the generation and evaluation
of different design alternatives, providing the search algorithm with accurate
information concerning their real expectations and, consequently, leading to

36



more satisfactory results. In the future, we intend to consider the suggestions
made by the participants to improve the interactive experience, and analyze
whether their abilities to recognize promising parts of a solution might help
to improve the search performance. In addition, the proposed evaluation
mechanism could be also applied to other multi-objective decision scenarios
like the engineering field [17, 19], where the opinion and knowledge of experts
may suppose a significant difference to reach their expectations [20].
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