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Abstract

Design patterns (DPs) are recognised as a good practice in software development. However, the lack of appropriate
documentation often hampers traceability, and their benefits are blurred among thousands of lines of code. Automatic
methods for DP detection have become relevant but are usually based on the rigid analysis of either software metrics
or specific properties of the source code. We propose GEML, a novel detection approach based on evolutionary ma-
chine learning using software properties of diverse nature. Firstly, GEML makes use of an evolutionary algorithm to
extract those characteristics that better describe the DP, formulated in terms of human-readable rules, whose syntax is
conformant with a context-free grammar. Secondly, a rule-based classifier is built to predict whether new code contains
a hidden DP implementation. GEML has been validated over five DPs taken from a public repository recurrently
adopted by machine learning studies. Then, we increase this number up to 15 diverse DPs, showing its effectiveness
and robustness in terms of detection capability. An initial parameter study served to tune a parameter setup whose
performance guarantees the general applicability of this approach without the need to adjust complex parameters to a
specific pattern. Finally, a demonstration tool is also provided.
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1. Introduction

Design patterns (DPs) are reusable template solutions
that address recurrent software-design problems. The
adoption of DPs is a best practice for programmers with
the goal of improving the quality of software products —
in terms of their maintainability, elegance, flexibility and
understandability (Gamma et al., 1995). Given such ben-
efits, and considering that manual inspection is an error-
prone and time-consuming process, automatic Design Pat-
tern Detection (DPD) has become a prominent area in the
reverse-engineering research field (Bafandeh Mayvan et al.,
2017). By automatically identifying the adoption of DPs,
DPD techniques can improve the understanding of the de-
sign decisions in software systems, as well as the processes
of redocumenting them, reimplementing them, and reusing
them.

Different techniques have been proposed in the research
literature to automate DPD, most of which search for par-
ticular structures in static code (Mayvan and Rasoolzade-
gan, 2017). In this case, the code structures defining DPs
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need to be predetermined by experts into a knowledge-
base, as they usually are specific to the codebase of study.
Having the expert defined these code structures may im-
pose rigidity to the detection technique, and design pat-
terns should be reinterpreted for particular contexts.

To reduce this limitation, machine learning (ML) tech-
niques were proposed for DPD, e.g., Ferenc et al. (2005).
These techniques are more easily adapted to different code-
bases because they learn from a collection of representa-
tive examples — and thus can recognise diverse imple-
mentations by simply replacing or extending such anal-
ysed collection of examples. In particular, ML-based ap-
proaches provide mechanisms to learn the structural and
behavioural properties of the source code, as well as soft-
ware metrics, that best describe the DP. Even so, despite
the fact that DPs can be described considering these mul-
tiple aspects, current ML approaches consider either soft-
ware metrics or code properties — structural, behavioural
or both.

Unfortunately, the detection performance of existing
ML-based approaches for DPD is affected by the design
pattern under analysis, often requiring its specific param-
eter configuration. This characteristic makes them harder
to adopt in practice: tuning parameters requires consider-
able effort by software engineers, since machine learning is
often not their main area of expertise. Furthermore, the
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results provided by certain ML-based techniques like neu-
ral networks are difficult to understand and interpret by
the human expert (Mori and Uchihira, 2019), thus making
their recommendations less likely to be trusted (Dzindolet
et al., 2003).

In this paper, we present GEML, a novel machine-
learning-based approach for DPD from static code. More
specifically, GEML is founded on associative classification
(AC), a ML technique for which we have implemented a
solution based on grammar-guided genetic programming
(G3P). Our goal is to achieve the benefits of ML-based
proposals while also addressing their limitations by using
G3P as a basis of our approach. Like other ML-based
proposals, GEML learns from DP examples, giving it the
ability to capture diverse DP implementations. As for the
limitations of previous ML proposals, GEML has been de-
signed to promote extensibility, readability and flexibility.

For extensibility, GEML includes a customisable collec-
tion of design microstructures whose potential to identify
DP instances is automatically determined by the evolu-
tionary algorithm during the learning phase. For read-
ability, GEML builds a rule-based classifier guided by a
configurable context-free grammar that declares the syn-
tax of the rules. Rules, as a well-established mechanism
to encode human knowledge (Grosan and Abraham, 2011),
describe the distinctive characteristics of DP instances in a
more comprehensible way than the outcomes produced by
black-box models (Kotsiantis et al., 2006). And for flexi-
bility, GEML is applicable to each DP without requiring
different algorithms or parameter configurations, since it
searches for optimal rules to describe each particular DP.

In addition to these benefits, in our experiments, GEML
also provided accuracy levels that outperformed other
available techniques, providing competitive results even
when very few samples are provided. Furthermore, GEML
is able to maintain a stable behaviour with just a single
general configuration, which we believe will make it more
beneficial for software engineers in practical settings.

In short, GEML allows developers to execute it out-of-
the-box without having to configure it for each DP, and
customise its elements and parameters to gain detection
power in particular scenarios. However, these desirable
qualities would only make GEML beneficial in practice if
it also provided (reasonably) similar performance as other
existing techniques. Thus, we focus our evaluation on
studying the effectiveness provided by GEML.

We perform several experiments in our evaluation.
Firstly, we study GEML’s detection performance in depth
through a sensitivity analysis. Although these kinds of
analysis are laborious, they become essential to compre-
hend the internals of artificial intelligence techniques like
those applied here. In particular, we aim to understand
the extent to which each algorithmic component and its
configuration contributed to detecting each individual DP.
In this way we are able to determine the best detection
capability offered by GEML. We also study the selection
options and effectiveness of GEML if its configuration was

customised in terms of the design microstructures eligible
by the software engineer and software metrics — called
operators — that describe the properties that best char-
acterise each DP. Then, we also experimented with the
alternative scenario in which software engineers did have
the knowledge and time to customise it separately for each
DP. As additional benefits of customising GEML individ-
ually for each DP, we expect that practitioners would also
observe lower runtimes. Finally, we measure the detec-
tion performance of the general configuration of GEML.
We anticipate that this would be the most common (and
simpler) usage scenario for practitioners.

We also analyse how GEML behaves when the general
configuration is set but the training conditions change.
In this case, we consider up to 15 DPs — the highest
number of DPs studied from a ML perspective — at the
cost of reducing the number of available training sam-
ples. Even so, our results show that GEML is able to
infer detection rules in all cases, not requiring any adap-
tation regarding its internal components and configura-
tion. We also compare GEML’s detection performance
to other DPD methods, including both ML and non-ML
techniques. GEML provided higher accuracy and F1 score
than MARPLE (Zanoni et al., 2015) — a well-known ML-
based approach — for four out of the five DPs available
for comparison (with up to 35% improvement in F1 for
one of them). Against other non-ML-based techniques,
GEML also recover more DP instances when validating
with JHotDraw, a frequently studied project in DPD lit-
erature. Lastly, we analyse the strengths and weaknesses
of GEML with respect to SSA and Ptidej, the two ref-
erence DPD tools most frequently used for comparative
purposes. In this sense, GEML is highly competitive since
it correctly identifies a higher number of DP implementa-
tions and support DPs whose detection is not available in
these tools. GEML also overcomes some limitations of
these tools, such as the absence of the classes implement-
ing some roles of the DP and the excessive number of false
positives. In short, the results of our evaluation show that
GEML is a practical approach for DPD: it improves the
effectiveness of current methods, while returning readable
outcomes. Furthermore, the possibility of choosing the
code properties more relevant for learning brings flexibil-
ity to the DPD process.

This paper provides the following contributions:

• a novel DPD technique (GEML) based on machine
learning with grammar-guided genetic programming
that is able to provide a single configuration for de-
tecting 15 DPs and returning human-readable rules;

• the provision of a collection of design microstructures
and metrics, in terms of operators that are derived
by the context-free grammar (CFG) guiding the G3P
algorithm and defined with both categorical and nu-
merical values;

• an analysis of which design microstructures and soft-
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ware metrics best represent each DP.

• a experimental evaluation of GEML under different
training and configuration scenarios, finding highly
competitive results when compared against other ML
and non-ML approaches;

• a research demonstration tool to support software en-
gineers in executing GEML and customising it for
individual DPs.

The rest of the paper is organised as follows. Main con-
cepts and terminology related to the applied techniques
are introduced in Section 2. Section 3 presents the re-
lated work, and Section 4 provides a detailed description
of our DPD model. Section 5 details the experimental
methodology and framework. Then, the three experiments
conducted are discussed in Section 6, 7 and 8. Section 9
describes the demonstration tool provided as additional
material supporting this approach. Finally, threats to va-
lidity and concluding remarks are presented in Sections 10
and 11, respectively.

2. Theoretical Background

Design patterns are descriptions of communicating ob-
jects and classes that are customised to solve a general de-
sign problem in a particular context (Gamma et al., 1995).
They differ in the number and purpose of their defining
roles, each one describing a specific task to be performed.
Consequently, a DPD method does not only identify the
code elements implementing the design pattern, but also
the roles they play within the pattern structure. Notice
that the definition of these elements and how they relate
to each other might depend on the particularities of the
programming language, e.g., Java allows implementing ex-
plicit interfaces but C++ does not. Besides, a given role
could be played by more than one code element. Therefore,
since design patterns are general and adaptable solutions,
the presence of certain properties or a predefined structure
for roles cannot be assumed. Their diverse nature, i.e., be-
havioural, creational or structural, suggests that different
properties might be needed to characterise a given pattern,
what definitely may hamper the detection process.

This section explains the most relevant theoretical con-
cepts related to the techniques required by GEML to
conduct the detection procedure. This is built on the
basis of associative classification, i.e., a ML-based ap-
proach founded on the use of if-then rules over a classi-
fication approach looking for an understandable detection
model (Thabtah, 2007). Internally, the classifier is con-
structed using an evolutionary technique, G3P, specially
conceived to evolve computer programs according to a
grammar, whose derivations and constraints define how
these programs — i.e., a potential rule of the GEML’s
detection model — are built.

2.1. Associative Classification

Machine learning provides computational methods that
allow learning from vast collections of data. ML techniques
can be mostly divided into two major groups, unsupervised
and supervised. Unsupervised techniques explore the data
samples to find interesting and meaningful patterns de-
scribing them. A well-known technique within unsuper-
vised learning is association rule mining (ARM) (Agrawal
et al., 1993), where patterns are represented as a set of
association rules. Formally, let I = {i1, ..., in} be a set of
items, and let A and C be itemsets, i.e., A = {i1, ..., ij}
and C = {i1, ..., ik}, an association rule is an implication
of the type A→ C where A ⊂ I, C ⊂ I, and A ∩ C = ∅.

In ARM, quality measures are computed to determine
the quality of the produced rules, the support and confi-
dence being the most representative measures. On the one
hand, the support (Eq. 1) indicates how frequently a rule
is satisfied within a given set of data samples (D). On
the other hand, the confidence (Eq. 2) measures the pro-
portion of samples that satisfy the consequent from those
already satisfying the antecedent. In both equations, s
represents each data sample within D.

supp(A→ C) =
| {A ∪ C ⊆ s} |

|D|
s ∈ D (1)

conf(A→ C) =
| {A ∪ C ⊆ s} |
| {A ⊆ s} |

s ∈ D (2)

Unlike unsupervised learning, supervised techniques
make predictions based on the information extracted from
past data. The purpose of a classification algorithm is
to assign a predefined category, referred as class, to an
unknown data sample. In particular, associative classifi-
cation makes use of ARM techniques to build rule-based
classifiers (Thabtah, 2007). With this aim, class associ-
ation rules (CARs) (Liu et al., 1998), those in which the
consequent determines the class, are generated. In general,
AC can be viewed as a two-step process: (1) an ARM-
based method is applied to mine a set of CARs; and (2)
the set of CARs is pruned to exclusively select those rules
that will be definitely constitute the classification model.

2.2. Grammar-guided Genetic Programming (G3P)

Inspired by the principles of natural evolution, evolu-
tionary computation creates a population of individuals,
each one representing a potential solution to the prob-
lem, which are then “evolved” during a number of gener-
ations (Eiben and Smith, 2015). An individual is charac-
terised by its genotype, i.e., the computational structure
used to encode the solution, and its phenotype, i.e., its
real-world representation. In addition, a domain-specific
fitness function has to be defined to assess the quality of
an individual. In a general schema, for each generation,
individuals are selected and modified with the aim of pro-
ducing better individuals than their predecessors. More
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specifically, the algorithm selects a subset of the popula-
tion to act as parents, often based on their fitness value.
Parents are then combined to generate offspring by means
of a crossover operator. Mutation can also be applied to
the obtained individuals, looking for more diverse solu-
tions. At the end of the generation, the best individuals
survive and create the next population.

Genetic programming (GP) is a special type of EC tech-
nique in which individuals are encoded using tree struc-
tures (Koza, 1992). Originally conceived to evolve com-
puter programs, GP requires specialised operators to ma-
nipulate tree-based solutions of different shapes and sizes.
In particular, G3P is an extension of GP in which a CFG
describes the syntactic constrains that must be satisfied
by any valid individual. A CFG is defined by a four-tuple
{S,

∑
N ,

∑
T , P}, where S is the root symbol,

∑
N is the

set of non-terminal symbols,
∑
T , is the set of terminal

symbols and P is the set of production rules. A production
rule indicates how a non-terminal symbol can be rewrit-
ten into one of their derivations until the expression only
contains terminal symbols. Formally, it can be expressed
as a→ B, where a ∈

∑
N and B ∈ {

∑
N ∪

∑
T }∗.

In G3P, each individual is created by deriving a different
sequence of production rules, represented as a derivation
tree. The elements of the CFG are also considered during
the application of crossover and mutation to guarantee the
production of valid solutions. G3P has been used to mine
association rules (Luna et al., 2012), where the grammar
formally defines the structure of the rule in terms of item-
sets. In this context, each individual represents an associa-
tion rule, and the evolutionary process is oriented towards
finding a set of high-quality rules according to support and
confidence criteria.

3. Related Work

Multiple techniques have been proposed for automatic
detection of structural, behavioural and creational design
patterns, using both static and dynamic analysis of source
code. Also, both types of techniques can be combined
together depending on the pattern to be detected, e.g.,
by inspecting both class definitions and object collabora-
tions (Ng et al., 2010; Lucia et al., 2018). Given that
GEML performs static analysis, we mostly focused on
these approaches for DP detection, with special attention
to those proposals based on machine learning. In addi-
tion, even though the majority of studies take source code
as input, other authors have explored detection at design
stages too, e.g., using UML class diagrams (Di Martino
and Esposito, 2016).

Within the scope of reasoning techniques, the Pat sys-
tem (Kramer and Prechelt, 1996) is considered a pioneer-
ing work based on declarative logic programming. It de-
fines the structural properties of DPs and the software
project as Prolog facts. Then, the Prolog search engine
is used to look for exact matches of these facts, which
are identified as new DP instances. Similarly, the use of

Prolog facts together with the use of meta-patterns (Pree
and Sikora, 1997), which are common structures of DPs,
were used by Hayashi et al. (2008). In this context, the
FINDER tool (Dabain et al., 2015) integrates facts related
to class structure and method invocations. Then, it fil-
ters out the fact base using predefined detection scripts.
Fuzzy logic has been also used to deal with incomplete
knowledge (Niere et al., 2002) in a attempt to make the
detection process more flexible. In this approach, a fuzzy
weight is assigned to each either structural or behavioural
property thus reporting a level of confidence to each po-
tential match. However, fuzzy-based approaches require
an extensive base of knowledge to represent the diverse
implementations. Given that such a base of knowledge
has to be constructed by a group of experts, outcomes
from the detection process could be biased.

Alternatively, techniques based on similarity scoring
adopt graphs to represent structural information. The
SSA tool (Tsantalis et al., 2006) searches for substructures
that correspond to a predefined template of the graph de-
scribing the structure of a certain DP, i.e., the explicit
representation of the relationships between roles. Mech-
anisms to deal with approximate matches can be applied
too, such as considering a small variation range in the value
of some properties. Similarly, behavioural properties like
message passing are often considered to reduce false pos-
itives (Dong et al., 2009). In a different approach (Yu
et al., 2015), a set of substructures are searched prior
to the identification of the DP implementations. Then,
method signatures are compared against a set of prede-
fined templates describing the DPs to refine the results.
In this vein, two other state-of-the-art approaches focus
on improving the prediction performance of the substruc-
tures search process (Bafandeh Mayvan et al., 2017; Yu
et al., 2018). While the former reduces the search space
by conveniently partitioning the project graph, the lat-
ter defines ordered sequences to guide the search in such
an order that the most representative classes of the pat-
tern are discovered first, filtering irrelevant classes at an
early stage. DPF is a model-based graph matching tool for
which a meta-model and a domain-specific language are
proposed to specify the structural and behavioural rela-
tionships describing DPs (Bernardi et al., 2014). Another
popular tool, PINOT (Shi and Olsson, 2006), uses graphs
as an abstract representation of methods taking part in
candidate DP implementations, from which control flow is
statically analysed.

Formal methods have been explored in the context of
DPD too. More specifically, formal concept analysis has
been applied to find groups of classes sharing common
structural relations that represent candidate design pat-
terns (Tonella and Antoniol, 2001). This approach was
later extended introducing some additional contributions
like a filtering phase of candidate patterns and propos-
ing a language-independent variant (Arevalo et al., 2004).
A case study was also conducted to detect structural pat-
terns within two subsystems of a printer controller (Wierda
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et al., 2009). However, formal approaches can be computa-
tionally expensive due to the exponential growth of formal
concepts (Poelmans et al., 2013).

Design patterns have also been expressed in terms of
features and documented using annotations, from which
automatic analysers can be built (Rasool et al., 2010; Ra-
sool and Mader, 2011). As the authors acknowledge, in-
complete definitions or inappropriate semantics negatively
impact the detection process. Relations defined on the ba-
sis of a visual language represent another way to specify
the properties of structural DPs (Lucia et al., 2009). In or-
der to reduce false positives of the detection process, this
method supports the definition of negative criteria, i.e.,
those properties that do not indicate the presence of a DP.
Then it performs a low-level analysis of the relationships
between classes in a second step.

Other authors have formulated DPD as a constraint
satisfaction problem, defining those structural and be-
havioural conditions that each particular DP should sat-
isfy. This type of method requires the manual defini-
tion and formalisation of the relationships between roles.
DeMIMA (Guéhéneuc and Antoniol, 2008) and the DPJF
tool (Binun and Kniesel, 2012) are representative examples
of this approach, both supporting constraint relaxation.
The former, which provides explanations of satisfied and
non-satisfied constraints, has been later extended to in-
clude numerical properties as a way to reduce the number
of candidates per role (Guéhéneuc et al., 2010). DeMIMA
and its extensions are available within the Ptidej tool suite.

ML has been applied to support the DPD process,
mainly building classification models to characterise DPs
through the inspection of code implementations. These
proposals differ in terms of the role that ML plays in the
detection process, the properties of the source code used
for learning, and the specific algorithm applied. A first
work makes use of association rules to discard classes not
playing a role according to some software metrics, so ML
is not directly responsible for the detection (Gueheneuc
et al., 2004). Similarly, decision trees and neural networks
were trained with a set of manually defined features –
named predictors– to reduce the number of false positives
detected after a structural analysis of the code (Ferenc
et al., 2005). A collection of software metrics was used to
feed a neural network, whose goal is the identification of
classes potentially playing a role in the DP before address-
ing the detection (Uchiyama et al., 2011).

The rest of methods rely on ML techniques to make a
decision about the presence of a DP in the code. Alhusain
et al. (2013) train multiple artificial neural networks, one
for each role, with different subsets of metrics chosen via
feature selection. They also proposed a second classifier to
carry out the detection after filtering some candidates as
in (Uchiyama et al., 2011). In (Chihada et al., 2015), the
classification model is created using support vector ma-
chines. This method uses as an input a labelled set of
manually identified pattern implementations and a set of
metrics associated with their roles. Then a subgraph iso-

morphic algorithm is executed for candidate design pat-
terns to be extracted from the code. In MARPLE (Zanoni
et al., 2015), software metrics are not taken as inputs but
a set of structural and behavioural properties, such as ob-
ject compositions or method delegations. Implemented as
an Eclipse plugin, MARPLE makes use of several cluster-
ing and classification algorithms implemented by Weka.1

More particularly, MARPLE is able to use different highly
interpretable classifiers like decision trees. However, it
does not use DP instances directly as an input. Since it
executes a clustering algorithm prior to detection, it makes
the resulting models not as representative of the original
samples as expected and, consequently, more difficult to
understand.

More recently, DPD has been treated as a multi-
classification problem, where the goal is to determine
which specific pattern is implemented by the input
code (Dwivedi et al., 2018). Here, three different black-box
classifiers — neural networks, support-vector machines
and random forests — are trained using up to 67 software
metrics. Convolutional neural networks and random forest
have been also applied to learn from feature maps (Thaller
et al., 2019). These elements are defined based on the oc-
currences of certain microstructures in the code.

Our proposal, GEML, belongs to the area of ML-
based techniques for DPD. Compared to non-ML-based
approaches, GEML does not need prior knowledge about
the properties of the DP to be detected. Therefore, it can
be adapted to organisational policies and different pro-
gramming styles. As other ML-based methods, it auto-
matically discovers which are the properties that best de-
fine each DP by exploring previous implementations from
code repositories. As a counterpart, ML-based approaches
require a labelled set of implementations, which may not
be available in all contexts. Focusing on other ML-based
alternatives, GEML differs from the existing approaches
in the combination of software metrics and properties as
input for learning. As for the algorithm, it uses G3P to
produce a rule-based classifier instead of black-box detec-
tors, such as neural networks or support vector machines.
Outcomes from these kinds of models are harder to under-
stand, which also reduces their likelihood for adoption by
practitioners (Rana et al., 2014).

4. The GEML approach

Fig. 1 depicts the overall structure of GEML. Taking
the approach as a black-box, the inputs required consist
in the organisational repository containing patterns pre-
dicted in the past (i.e., samples), and the source code for
which the detection process is carried out. After the exe-
cution of GEML, the detected DPs are returned. These
patterns can be incorporated to the organisational repos-
itory for future detections, so that the detection model is

1Weka 3: Data Mining Software in Java, available from https:

//www.cs.waikato.ac.nz/ml/weka (accessed June 11, 2020)
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Figure 1: Two-phased model for design pattern detection

progressively adapted to the specific development culture.
Going into the detail of our approach, GEML has been
proposed as a two-phased model. Firstly, the set of both
structural, behavioural and metric-based software proper-
ties that best describe the design pattern under analysis
are learned in form of rules. With this aim, a represen-
tative set of labelled DP implementations are scrutinised
from the code repository, which contains both positive and
negative samples. Keeping negative samples could provide
relevant information about realistic scenarios, since simi-
larities to a real DP could lead to misclassification oth-
erwise. In fact, a high number of negative samples bene-
fits the robustness of the detection process, specially when
the amount of positive examples in public repositories is
low (Alhusain et al., 2013; Thaller et al., 2019). Every
pattern instance within the repository is characterised by
its constituent elements, its source code and the role map-
ping, i.e., the correspondence between elements and roles.

The set of class association rules must be compliant with
the CFG, formally defining the language syntax required
to state the properties and constraints of the pattern. The
G3P algorithm for DPD (G3P4DPD) has been developed
to search for those rules that best characterise the imple-
mentations available in the repository. Since the resulting
CARs have a descriptive nature, they could not be di-
rectly used for detection purposes. During the second step
of the process, the most effective rules for the construction
of the detection model will be chosen. With this aim, a
pruning method is applied first to obtain the minimum set
containing the most descriptive rules. Then, a strategy is
followed to decide how to arrange the resulting rule set in
order to build the detector, according to the precepts of
different methods for associative classification (Thabtah,
2007). Both phases are explained in detail next.

4.1. G3P-based Algorithm for Rule Generation

Algorithm 1 shows the general procedure of G3P4DPD,
which receives five inputs: the number of generations
(maxGen), the population size (popSize), the number of
individuals or CARs to be returned (extPopSize), the
grammar (cfg) and the source code repository (repo).

Algorithm 1: G3P4DPD

Input : maxGen, popSize, extPopSize, cfg, repo
Output: extPop
pop ← generateRules(popSize, cfg)
extPop ← ∅
evaluate(pop, repo)
while generation < maxGen do

parents ← select(pop ∪ extPop, popSize)
offspring ← crossover(parents)
if random() < 0.5 then

offspring ← diversityMutator(offspring);
else

offspring ← dpdMutator(offspring);
end
evaluate(offspring, repo)
pop ← offspring
extPop ← update(pop ∪ extPop, extPopSize)
generation++

end

G3P4DPD keeps an external archive (extPop) composed
of the most accurate individuals according to their evalu-
ation. They are returned as output.

Regarding its operation, G3P4DPD firstly creates a ran-
dom population (pop) of popSize individuals conformant
with the syntax prescribed by the grammar, cfg. The ex-
ternal archive, extPop, is then initialised to the empty set.
Initial individuals of pop are evaluated by computing the
fitness function, which obtains the support of the rule cal-
culated from the repository repo. At this point, the algo-
rithm iterates until the maxGen-th generation is reached.
For each generation, the selection operator returns popSize
individuals (parents) from the union between population
pop and population extPop. Next, the crossover operator
is applied with a certain probability over pairs of parents.
After combining their genotypes, the obtained offspring
are then mutated. The choice of the specific mutator is
made randomly — between two possible operators — and
seeks for a balance between search space exploration and
the type and magnitude of the changes applied. On the one
hand, diversityMutator looks for the improvement of popu-
lation diversity by including new properties in the compar-
ison expressions of the rule. On the other hand, dpdMuta-
tor is a DPD-specific mutator that aims to generate rules
describing both positive and negative samples. Once these
new offspring have been evaluated in terms of their sup-
port, they all replace the current population. Finally, the
external archive is updated to keep those rules exceeding a
certain support and confidence threshold, while ensuring
that it does not exceed extPopSize elements, i.e., rules,
and they are not repeated or redundant. Next sections ex-
plain in further detail how solutions are encoded and how
the aforementioned genetic operators operate.
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rule

antc

adapter adaptee

cmp aPattern

catCmp

true

consq

role role boolValuecatCmptor delegate

(a) Genotype

(=  delegate  adapter  adaptee  true)  →   (aPattern)

(b) Phenotype

Figure 2: Example of correspondence between genotype and pheno-
type for an illustrative individual

4.1.1. Encoding

On the one hand, the genotype of an individual is rep-
resented by a valid derivation tree of production rules, as
formally defined by the CFG. On the other hand, its phe-
notype denotes the corresponding class association rule.
As an example, Fig. 2 shows a genotype/phenotype map-
ping, the described rule stating that, if the element play-
ing the role adapter delegates some functionality to the
element adaptee, then this would expected to be a valid
Adapter pattern.

As explained in Section 2.2, any CFG requires the def-
inition of sets of terminal and non-terminal symbols, and
the production rules to derive valid expressions from a
root, non-terminal symbol. In this context, terminal sym-
bols represent the software metrics, as well as the struc-
tural and behavioural properties that allow identifying the
presence of a pattern instance, whereas non-terminal sym-
bols define the derivable elements, including all the com-
ponents needed to build comparison expressions between
the aforementioned properties. Production rules deter-
mine the derivation steps that lead to the generation of
detection rules, which are ultimately written in terms of
terminal symbols. Notice that the CFG could be certainly
customised to a specific design pattern, thus allowing a
more efficient description of the most relevant properties
of that pattern.

Fig. 3 shows the proposed grammar for the DPD pro-
cess. Some production rules were omitted for readabil-
ity. The first production rule listed in P determines that
the root symbol, <rule>, can be derived into two other
non-terminal symbols, <antc> and <consq>, represent-
ing the antecedent and the consequent, respectively. On
the one hand, the antecedent can be defined as an inclu-
sive sequence of numerical (<numCmp>) and categorical
(<catCmp>) comparisons. On the other hand, <consq>
can be derived into two possible terminals, expressing

� �
G = (S,

∑
N
,
∑

T
, P )

S = <rule>∑
N

= {<rule>, <antc>, <cmp>, <numCmp>, <numCmptor>, <numOp>,

<catCmp>, <catCmptor>, <role>, <boolValue>, <typeOfValue>,
<linkMethodValue>, <linkArtefactValue>,
<ctorVisibilityValue>, <aggregationValue>,
<adapterMethodValue>, <sameInterfaceValue>, <consq>}∑

T
= {and , ≥, ≤, >, <, =, ! =, NOM , NOC , DIT , RFC , adapter ,

adaptee , target , true , false , isFinal , isSubclass ,
controlledInit , staticField , staticFlag , conglomeration ,
returned , received , createObj , delegate , sameElem , typeOf ,
linkMethod , linkArtefact ,ctorVisibility , aggregation ,
adapterMethod , redirectInFamily , sameInterfaceInstance ,
sameInterfaceContainer , class , absClass , enum , intface ,
directOver , indirOver , directImpl , indirImpl , notLinked ,
directInherit , indirInherit , private , protected , package ,
public , decl , inhr , single , multi , aPattern , notAPattern }

P =
<rule> ::= <antc> <consq>
<antc> ::= <cmp> | and <antc> <cmp>
<cmp> ::= <numCmp> | <catCmp>
<numCmp> ::= <numCmptor> <numOp> <role> const
<catCmp> ::= <catCmptor> isFinal <role> <boolValue>

| <catCmptor> delegate <role> <role> <boolValue>
| <catCmptor> typeOf <role> <typeOfValue>
| ...

<numCmptor> ::= ≥ | ≤ | > | <
<catCmptor> ::= = | ! =
<numOp> ::= DIT | NOC | RFC | NOM
<role> ::= adapter | adaptee | target
<boolValue> ::= true | false
<typeOfValue> ::= class | absClass | intface | enum
...
<consq> ::= aPattern | notAPattern� �

Figure 3: Grammar used by the G3P4DPD algorithm

whether it is a positive detection of a design pattern in-
stance, aPattern, or not, notAPattern. In addition, it is
worth noting that this grammar has been slightly cus-
tomised for the Adapter pattern, the non-terminal <role>
being derived into adapter, adaptee and target. Similarly,
adaptations of the grammar to other patterns could be
also made straightforward by just setting the operators
and roles that are more relevant to each pattern from those
available, or exceptionally by implementing new operators.
A more general possibility is to make the complete list
of operators available to the algorithm and let it “find”
which are the most relevant for the search. In any case,
G3P4DPD would not be affected, since the algorithm re-
ceives the grammar definition as a parameter and it will
adapt the search in consequence.

As mentioned above, each property of the DP is declared
by the antecedent of the rule as a comparison, written
as an expression in prefix form containing a comparator,
an operator, one or more arguments, and a value. Nu-
merical comparisons, numCmp, allow the representation
of those properties based on software metrics. Each com-
parison comprises a numerical comparator (<, >, ≤ or
≥); a numerical operator that computes an object-oriented
software metric from the CK (Chidamber–Kemerer) met-
ric suite (Chidamber and Kemerer, 1994), such as NOM
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(number of methods), NOC (number of children), DIT
(depth of inheritance tree) or RFC (response for a class);
an argument referring to the measured element playing a
role in the pattern; and a numerical constant (const). As
an example, the comparison “NOC(target)<1” indicates
that the target class has no subclasses. Likewise, other nu-
merical software metrics could be implemented and added
to the grammar without recompiling G3P4DPD.

On the other hand, categorical comparisons involve
structural and behavioural properties. Structural prop-
erties serve to express characteristics of structural ele-
ments, such as a class being abstract or final, as well as
the relationships between these elements, such as an ag-
gregation or generalisation. Behavioural properties refer
to those interactions between classes or method invoca-
tions that can be analysed from static code. These com-
parisons are composed by a categorical comparator (= or
!=); a categorical operator like linkArtefact or delegate;
a number of arguments receiving the participating roles;
and a value. As an example of a categorical compari-
son, “typeOf(target)=intface” describes that the tar-
get role is implemented by an interface. Table 1 shows
the full list of available operators, their signatures and de-
scription. It is worth noting that categorical operators are
mainly based on elemental design patterns (Smith, 2012),
micro patterns (Gil and Maman, 2005) and design pat-
terns clues (Fontana et al., 2011). They provide language
elements that can be easily understood by the software
engineer.

These structures can be expressed as categorical opera-
tors checking whether a code artefact satisfies a property
on a true/false basis. For instance, Abstract Interface is
an elemental design pattern checking whether a given code
artefact is an interface. Usually, an artefact is a class or
an interface. However, it largely depends on the specific
programming language, and other artefacts could be con-
sidered like enumerations, or subtypes of artefacts, such
as abstract and concrete classes. It implies that a large
number of operators like isConcrete, isAbstract, isInterface
and isEnumeration would be necessary to cover all types of
artefacts. Besides, these operators would be strongly cor-
related, e.g., if isConcrete is true, then the others should
be false, what could make rules redundant and add noise to
the learning process. Therefore, the CFG declares multi-
valued categorical operators, which are able to return dif-
ferent alternative terms instead. This is the case of typeOf,
which allows analysing a source code artefact and returns a
single value for all these possibilities. In this way, this op-
erator replaces a number of redundant and unnecessarily
inefficient boolean operators, while boosts the generation
of more compact and readable rules.

4.1.2. Genetic Operators

There are three genetic operators to be considered in
this evolutionary schema: selection, crossover and muta-
tion. The selection operator is applied at the beginning
of each generation in order to choose a set of parents for

breeding. With this aim, a binary tournament selects two
individuals from the union of pop and extPop, taking the
best according to their fitness. This process is repeated
until popSize parents are selected.

Regarding the crossover, this operator is applied to each
pair of parents according to a given probability. The op-
erator works by randomly selecting and swapping a single
comparison from their respective genotype. Finding such
a comparison requires traversing the derivation tree in pre-
order until a <cmp> symbol is reached, delimited by and,
<cmp> or <consq>, as illustrated in Fig. 4. Then, each
offspring is mutated.

Two possible variants of mutator have been considered
for this problem. Firstly, the so-called diversityMutator
aims at generating rules with novel comparisons. To this
end, it selects a number of comparisons and rebuilds the
individual by randomly deriving these <cmp> until new
terminal symbols are obtained. The number of compar-
isons is chosen with a random roulette wheel that pro-
motes small changes against those significantly altering
the individual. As an example, Fig. 5a shows how a cate-
gorical comparison is replaced by a numerical comparison.
Secondly, dpdMutator aims at obtaining rules describing
both positive and negative samples. The rationale be-
hind this operator is that if a comparison describes the
correct implementation of a pattern, its negation should
imply an incorrect result. This operator traverses the
derivation tree and rewrites the logical meaning of each
comparison with an inverse probability to the number of
comparisons in the antecedent. With this aim, it sim-
ply switches the comparison symbol, e.g., < is replaced
by ≥, as illustrated in Fig. 5b. In addition, the termi-
nal symbol of the consequent, i.e., the class label, will
be also inverted with a probability of 0.5. For instance,
if the comparison “typeOf(target)=intface” describes
a recurrent property of positive samples for the Adapter
pattern, “typeOf(target)!=intface” is likely to repre-
sent negative samples. At the end of the mutation op-
eration, regardless of the specific variant being used, the
mutated offspring is returned.

4.2. Construction of the Detection Model

After completing the first step explained above, the
G3PDPD algorithm returns its external archive composed
of CARs. However, they still require to be scrutinised
to select strictly those that will be part of the detection
model. With this aim, the database coverage method
is computed on the complete set of rules. This pruning
method was originally defined for CBA (Liu et al., 1998),
a general approach for associative classification, and later
applied by other well-known algorithms like CMAR (Li
et al., 2001) or CPAR (Yin and Han, 2003).

Algorithm 2 shows the pseudocode of the pruning
method, conveniently adapted to this problem. The pro-
cedure takes the archive returned by G3P4DPD, extPop,
the repository, repo, and a coverage threshold. As an out-
put, it returns the pruned set of rules, ruleSet. To do
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Table 1: Grammar operators to describe design pattern implementations

Numerical operators

Signature Description

NOM(r1) Number of methods of r1
NOC(r1) Number of children directly inherited from r1
DIT(r1) Depth of the inheritance tree from r1
RFC(r1) Number of distinct methods and constructors potentially invoked when an object of r1

receives a message

Categorical operators

Signature Description

isFinal(r1) true if r1 cannot be extended; false otherwise

isSubclass(r1) true if r1 is a subclass; false otherwise

controlledInit(r1) true if r1 instantiates itself within an if or while block; false otherwise

controlledExcept(r1) true if r1 uses exceptions and an static flag to control its instantiation; false otherwise

conglomeration(r1) true if 2 or more methods of r1 are invoked from another method from r1; false otherwise

returns(r1,r2) true if a value of type r2 is returned from a method of r1; false otherwise

receives(r1,r2) true if a method of r2 receives a value of type r1 as argument; false otherwise

createObj(r1,r2) true if r1 instantiates r2; false otherwise

delegates(r1,r2) true if a method of r1 invokes a method of r2; false otherwise

sameElem(r1,r2) true if r1 and r2 are coded by the same artefact; false otherwise

typeOf(r1) Returns the type of the artefact implementing r1 (absClass, intface, enum, class)

linkMethod(r1,r2) Indicates if a method of r1 directly or indirectly overrides (directOver, indirOver),
implements (directImpl, indirImpl) or is notLinked to a method of r2

linkArtefact(r1,r2) Returns the sort of link between the artefacts playing r1 and r2 (directInherit,
indirInherit, directImpl, indirImpl, notLinked)

ctorVisibility(r1) Returns the visibility of the less restrictive constructor of r1 (private, protected, package,
public)

aggregation(r1,r2) Returns information about an attribute of r2 declared in r1 in terms of its visibility and
instantiability

adapterMethod(r1,r2,r3) Returns if a declared (decl) or inherited (inhr) method of r1, implemented from r3,
delegates in a method of r2; notLinked otherwise

redirectInFamily(r1) Returns if a declared method of r1 is delegated in a class or interface being extended or
implemented by r1, once (single) or multiple times (multi); notLinked otherwise

sameInterfaceInstance(r1,r2) Returns if r2 is a class or interface being extended or implemented by r1, which has one
(single) or multiple (multi) fields of a class or interface being extended or implemented by
r2; notLinked otherwise

sameInterfaceContainer(r1,r2) true if r2 is a class or interface being extended or implemented by r1, which defines a
collection of a class or interface being extended or implemented by r2; false otherwise

rule

antc, consq

and, cmp, antc aPattern

catCmptor,  typeOf, role, typeValue

numCmptor, numOp, role, const= intfacetarget

targetDIT

numCmp

<

rule

antc, consq

cmp

numCmptor, numOp, role, const

adapteeNOC

numCmp

>

catCmp cmp

aPattern

rule

antc, consq

and, cmp, antc aPattern

catCmptor,  typeOf, role, typeValue
numCmptor, numOp, role, const

= intfacetarget
targetDIT

numCmp

<

rule

antc, consq

cmp

numCmptor, numOp, role, const

adapteeNOC

numCmp

>

catCmp cmp

aPattern

Figure 4: Example of the crossover operator

this, rules are sorted according to their confidence, sup-
port and size, i.e., number of comparisons, respectively.
More precisely, given two rules R1 and R2, it is said
that R1 precedes R2 iff any of these conditions is satis-
fied: (a) conf(R1) > conf(R2); (b) conf(R1) = conf(R2)
and supp(R1) > supp(R2); or (c) conf(R1) = conf(R2),

supp(R1) = supp(R2) and #comparison(R1) < #compari-
son(R2). Then, all repository samples are scanned for each
rule searching for those matching the antecedent. When
positive, they are conveniently added to the list covSam-
ples. In addition, if the rule correctly classifies at least one
of these samples, i.e., the flag marked is true, then it will
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rule

antc, consq
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adapteeNOC

numCmp

>

aPattern

rule

antc, consq

cmp

catCmptor, delegate, role, role, boolValue

catCmp

aPattern

adapter trueadaptee=

(a) Operator diversityMutator

rule

antc, consq

cmp aPattern

numCmptor, numOp, role, const

targetDIT

numCmp

<

rule

antc, consq

cmp notAPattern

numCmptor, numOp, role, const

targetDIT

numCmp

≥

(b) Operator dpdMutator

Figure 5: Examples of the mutation operators

be added to ruleSet and the counter of covered samples
in repo will be increased. In case a sample is covered by
a number of rules greater than or equal to the threshold,
it will be removed from repo so that this sample does not
need to be checked again. Finally, if the rule does not
contribute to increase the current detection capability, it
will be discarded. This happens when the rule detects the
same samples as other rules with higher confidence and
support. This process is repeated until all samples in repo
have been covered or until there are no more rules left.

After the pruning procedure, the selected rules need to
be arranged in order to constitute the classifier. Here, the
four most commonly referenced strategies from the field
of associative classification have been considered for com-
parison (Thabtah, 2007): maximum likelihood (MAXL);
dominant factor multiple label (DFML); DFML, as de-
fined by CMAR (DFMLχ2); and DFML, as determined
by CPAR (DFMLLap). They all operate differently when
a new, unknown sample is received. For instance, the
MAXL method selects the highest ranked rule covering
the new sample, its consequent implying the prediction.
This approach has been criticised by some authors since
a single rule becomes responsible for the decision of the
classifier (Li et al., 2001). In contrast, DFML selects all
rules covering the incoming sample and distributes them
according to their consequent (Hadi et al., 2016). The
partition containing more rules determines the class. This
method has been adapted in different proposals by chang-
ing how the most representative partition is obtained. A
well-known variant is DFMLχ2 , where the weighted χ2

is computed for each partition, the set of rules with the

Algorithm 2: Database coverage

Input : extPop, repo, threshold
Output: ruleSet
ruleSet ← ∅
sort(extPop)
foreach rule in extPop do

marked ← false
covSamples ← ∅
foreach sample in repo do

if match(rule, sample) then
covSamples ← covSamples ∪ sample
if rule correctly classifies sample then

marked ← true
end

end

end
if marked then

ruleSet ← ruleSet ∪ rule
increaseCoverage(repo, covSamples)
removeCoveredSamples(repo, threshold)

end
if empty(repo) then

break
end

end

highest value being returned. This measure analyses the
strength of the rules based on their support and class fre-
quency. Similarly, DFMLLap calculates the Laplace accu-
racy to estimate the expected accuracy for each rule and
selects the partition with its highest average. It should be
noted that DFMLLap considers only the best k rules within
each partition, k being a prefixed parameter. Then, after
sorting the rules, the classifier is ready to receive new code,
apply the rules and predict the presence of a DP imple-
mentation.

5. Experimental Settings

We first pose the research questions that set out the ob-
jectives to be validated in this section. Then we present the
data repositories and explain the methodology followed in
the experiments. The last section details the experimental
framework.

5.1. Research Questions

The conducted experiments aim at responding the fol-
lowing research questions (RQs):

• RQ1. What configuration best informs our technique
for each DP? The combination of parameters for the
G3P-based machine learning algorithm and the prun-
ing method might lead to vast number of results. It
would be convenient to objectively provide the best
parameter setup for each DP.
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• RQ2. For the software engineer, which are the most
significant design elements and metrics to be consid-
ered for the detection of a given pattern? The com-
bination of numerical (metrics) and categorical (be-
havioural and structural properties) attributes offers
the engineer the possibility of using a wide range of
microstructures and operators at his/her convenience.
In this way, after analysing which operators are most
frequently used to describe each pattern, the experi-
mentation can be replicated by adjusting them in or-
der to find out whether the results maintain the de-
tection performance.

• RQ3. Does GEML provide as much effectiveness as
other ML-based DPD techniques? It would be conve-
nient to study if, taking a single configuration for all
DPs, our model is still competitive against a similar
ML-based approach. Reaching a general-purpose con-
figuration would relieve the software engineer of the
need to set up the model.

• RQ4. How does training conditions influence
GEML? As any other ML-based approach, GEML
requires the availability of DP examples to learn from.
Therefore, it is important to study how GEML be-
haves when few examples are provided. This would
allow the software engineer to confirm the potential
of the technique under different execution scenarios.

• RQ5. Does GEML provide as much effectiveness as
other non-ML-based DPD techniques? Similarly to
RQ3, it would be interesting to analyse the benefits
that GEML brings compared to other non-ML-based
DPD tools currently available to the software engi-
neer, thus ensuring that it also contributes to advance
in the state of the practice.

5.2. Experimental Data Sources

The experimentation considers a total of 15 design
patterns, covering the three different categories defined
by (Gamma et al., 1995): creational (Abstract factory,
Factory method and Singleton), behavioural (Command,
Iterator, Observer, State, Strategy, Template Method and
Visitor) and structural (Adapter, Bridge, Composite, Dec-
orator and Proxy). These patterns provide different levels
of complexity, as they differ in the number of roles and
may present elements playing multiple roles.

Samples of these design patterns have been extracted
from public repositories, but other institutional data
sources could be valid too. More specifically, we conduct
our experiments with implementations from two reposito-
ries, namely DPB and P-Mart, each with a different pur-
pose. Firstly, we consider DPB (Fontana et al., 2012) be-
cause it provides the highest number of samples from pub-
licly available repositories. Moreover, DPB was created by
the authors of MARPLE to validate their approach, what
ensures a fair comparison against this particular proposal,

and contains both positive and negative samples, a re-
quirement when experimenting with ML-based methods.
DPB collects samples from nine industrial Java projects,
plus one more project adopted from the literature. Table 2
lists the number of artefacts, methods, attributes and lines
of code (LOC) of each software project contained by DPB.
A limitation of this repository is that it only supports five
design patterns (see Table 3, which includes the total num-
ber of samples [S], divided into positive [+] and negative
[-]).

In order to compare GEML against other non-ML-based
proposals, we rely on P-Mart (Guéhéneuc, 2007), a peer-
validated repository frequently used in other DPD studies.
P-Mart includes samples of 20 design patterns distributed
among all projects listed in Table 2, with the exception of
the DPExample project. Table 4 summarises the samples
per project identified within P-Mart, as well as the number
of existing DPs from those defined by Gamma. As can be
observed, JHotDraw is the project containing the greatest
variety of DPs (11), making it appropriate for its use as
a test project when comparing GEML with other DPD
studies, as will be explained later in Section 5.3.

The use of P-Mart allows GEML to be set against other
DPD methods reporting results for JHotDraw, but this
project limits the number of DPs available for compari-
son. Notice that P-Mart was not originally designed to
specifically experiment with ML-based approaches due to
the reduced number of positive samples, so it has to be
enlarged to be suitable for training (Thaller et al., 2019).
To carry out a more complete, accurate and practicable
analysis, it is important to provide GEML with a more ex-
tensive collection of DPs for training than those available
in P-Mart. Therefore, we have built a training repository
in order to validate the applicability of GEML on an even
greater number of design patterns. This is a common prac-
tice in DPD studies, especially in those presenting ML-
based proposals (Ferenc et al., 2005; Alhusain et al., 2013;
Thaller et al., 2019). Therefore, we have complemented
the positive samples available in P-Mart with other in-
stances manually validated from those recovered by DPD
tools (Ferenc et al., 2005; Lucia et al., 2018). In partic-
ular, we include those pieces of code for which both SSA
and Ptidej reported the presence of a DP implementation
with all its roles. In the case of Ptidej, this information
is complete. In contrast, some samples of P-Mart are not
fully labelled, which has caused us to double-check the
repository to maintain only those instances that describe
all their roles. As for the negative samples, a common ap-
proach is to generate random candidates from the code and
select those that are more similar to positive samples ac-
cording to some heuristics (Thaller et al., 2019). We follow
a similar procedure, so that a maximum of three negative
samples per positive sample have been generated.2 The
final list of design patterns available in the repository is

2Details of the procedure and the resulting training repository are
available from the additional material (see page 23).
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Table 2: Properties of the Java projects used for experimentation

Project Types Methods Attributes LOC
DPExample 1749 4710 1786 32313
QuickUML 2001 230 1082 421 9233
Lexi v0.1.1 alpha 100 677 229 7101
JRefactory v2.6.24 578 4883 902 79732
Netbeans v1.0.x 6278 28568 7611 317542
JUnit v3.7 104 648 138 4956
JHotDraw v5.1 174 1316 331 8876
MapperXML v1.9.7 257 2120 691 14928
Nutch v0.4 335 1854 1309 23579
PMD v1.8 519 3665 1463 41554

Table 3: Samples per design pattern in each experiment

Design Experiment #1 Experiment #2
pattern + - S + - S
Adapter 618 603 1221 65 180 245
Fact. Method 562 482 1044 3 9 12
Decorator 93 154 247 2 6 8
Singleton 58 96 154 55 165 220
Composite 30 98 128 6 18 24
State - - - 147 412 559
Templ. Method - - - 50 147 197
Proxy - - - 19 57 76
Observer - - - 8 14 22
Strategy - - - 7 21 28
Abs. Factory - - - 6 18 24
Command - - - 5 15 20
Visitor - - - 3 9 12
Iterator - - - 3 9 12
Bridge - - - 2 6 8

Table 4: Characteristics of the projects available in P-Mart and
DPExample

Project No. DPs No. positive samples
DPExample 19 174
QuickUML 2001 6 7
Lexi v0.1.1 alpha 3 5
JRefactory v2.6.24 6 26
Netbeans v1.0.x 4 26
JUnit v3.7 5 8
JHotDraw v5.1 11 21
MapperXML v1.9.7 9 15
Nutch v0.4 8 15
PMD v1.8 9 14

shown in Table 3, together with the number of training
samples. After preliminary experiments, the number of
positive samples for the remaining seven DPs available in
P-Mart has proven to be insufficient for training.

5.3. Description of Experiments

Three experiments have been planned in order to find
an answer to these RQs:

• Experiment #1. In this experiment, we validate the

detection capability of GEML under laboratory set-
tings. More specifically, we study how the parame-
ter tuning influences our proposal and analyse differ-
ent configurations with respect to MARPLE (Zanoni
et al., 2015), another method based on machine learn-
ing.

• Experiment #2. In this experiment we compare
GEML against other recent non-ML-based DPD pro-
posals: DePATOS (Yu et al., 2018), MLDA (Al-
Obeidallah et al., 2018) and SparT (Xiong and Li,
2019). With this aim, for comparison purposes, we
provide results on a P-Mart project, JHotDraw.

• Experiment #3. This experiment focuses on more
qualitative aspects, evaluating GEML in a more prac-
tical setting. Here, GEML is tested on a project,
DPExample, taken from a different repository, DPB,
than the one used for training. In this case, we com-
pare our proposal with two non-ML-based DPD tools,
SSA and Ptidej, which were run using the testing
project as input. We choose these tools because they
are the most frequently used for comparative purposes
in DPD studies (selected in 88% and 35% of the works,
respectively). In our preliminary analysis, we found
other eight tools, but they were unavailable for down-
load or failed in their installation or execution.

To cope with the intrinsic randomness of evolution-
ary algorithms, 30 independent runs with different ran-
dom seeds are executed. For Experiment #1, the possible
bias due to the training partitions of the input repository
(DPB) is solved by carrying out a stratified 10-fold cross
validation in every execution. In Experiment #2, we set
the conditions that allow the comparison with other DPD
approaches on a widely studied project, JHotDraw. All
the DPD under analysis provide access to the recovered
instances in this project, allowing a fair comparison by in-
specting their level of agreement with respect to P-Mart.
Also, JHotDraw is the P-Mart project with a greater vari-
ety of DP implementations. The rest of projects within P-
Mart are used as the training set. Here we only consider as
truly DP samples those labelled as positive on P-Mart. In
Experiment #3 we want to simulate the process in which
an engineer uses past projects to train the DPD model
over all the possible DPs, and then apply the detection
model on a new project. Since none of the nine P-Mart
projects contains samples of all the DPs, we used them
together for training, and the detection model is tested
on DPExample. Since SSA and Ptidej do not require any
training phase, they are directly executed using DPExam-
ple as input. True positive samples of DPExample have
been manually revised.

Results are then reported in terms of the following com-
monly used classification measures: accuracy, which indi-
cates the percentage of instances correctly classified; recall,
which corresponds to the amount of DPs retrieved over the
total number of samples within the repository; precision,
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which measures how many DPs are positively detected
as positive; specificity, which indicates the proportion of
negative samples correctly identified as negative; and F1

score, which calculates the harmonic mean between pre-
cision and recall. Once these performance metrics have
been computed, the relevance of the results (Arcuri and
Briand, 2014) needs to be statistically validated. Firstly,
the Wilcoxon test allows performing pairwise comparisons,
where the null hypothesis, H0, hypothesises that both al-
gorithms – or configurations – perform equally well. The
distributions to be compared represent the results of 30
executions of the evolutionary algorithm for a given DP
and performance measure. As multiple configurations are
tested, p-values are conveniently adjusted by using the
Holm’s method. For those pairwise comparisons report-
ing significant differences, the Cliff’s delta test is carried
out to measure the effect size. A 95% confidence level is
considered for both tests.

5.4. Experimental Framework

An implementation of GEML is provided in Java us-
ing JCLEC (Ventura et al., 2008), which includes func-
tionalities and data structures to implement evolutionary
algorithms. The VF2 algorithm (Cordella et al., 2004),
available in the VFLib graph matching library,3 has been
used for implementing the generation of candidates in Ex-
periment #2. Three additional libraries have been used:
ckjm,4 an implementation of the CK metric suite; Java
Parser,5 a source code parser used to extract information
and properties from code; and Javassist,6 a similar library
that takes bytecode as input. They both are used to im-
plement the grammar operators during rule evaluation,
although bytecode-based operators are preferred because
they allow a faster computation of the properties.

Table 5 lists the parameter setup and its variations for
the detection model, including the G3P4DPD algorithm
and the pruning procedure. The population size, the num-
ber of generations and the crossover probability have been
set after preliminary experiments. The maximum num-
ber of derivations determines the limit of the genotype
size, i.e., how long a rule can be. This value has been set
to 25, as larger values would hardly generate individuals
with admissible support. In addition, the size of the ex-
ternal archive has not been restricted to avoid discarding
interesting rules and to test the effectiveness of the prun-
ing method. The rest of parameters will be set according
to the conclusions extracted from the parameter study in
Section 6.1, which serves to determine their influence on

3VFLib, available from https://mivia.unisa.it/vflib/ (ac-
cessed June 20, 2020)

4Chidamber and Kemerer Java Metrics (ckjm), available from
https://www.spinellis.gr/sw/ckjm (accessed June 20, 2020)

5JavaParser for processing Java code available from https://

javaparser.org/ (accessed June 20, 2020)
6Javassist: Java bytecode engineering toolkit available from http:

//www.javassist.org/ (accessed June 20, 2020)

Table 5: Parameter setup of the DPD model

Parameter Value

Population size 100
Number of generations 150
Crossover probability 0.8

Maximum number of derivations 25
Coverage threshold 1, 2, 3, 4
Support threshold 0.01, 0.05, 0.1

Confidence threshold 0.5, 0.6, 0.7

the detection process. As for this analysis, support, confi-
dence and coverage are configured according to the most
frequently applied values within the AC field (Liu et al.,
1998; Li et al., 2001).

6. Experiment 1: Validation of the Detection
Model

Experiment #1 is explained in this section. The internal
elements of the detection model are analysed by means
of an extensive parameter study (RQ1). Then, we also
focus on the selection of the grammar operators, revealing
the most recurrent microstructures and design elements to
describe each DP (RQ2). Finally, the results are discussed
with special emphasis on the effectiveness of the proposal
(RQ3).

6.1. Parameter Study

In response to RQ1, we carry out a parameter study fo-
cused on the three influential aspects required for the most
fitting parametrisation of GEML: the coverage threshold,
which is a key parameter for rule pruning; support and
confidence thresholds, which effect the production of high-
quality rules during the evolutionary search; and the strat-
egy selection, which determines how the pruned rules are
arranged to form the DPD model (see the Additional Ma-
terial and Appendix for complete results).

6.1.1. Coverage Threshold

The coverage threshold determines how many rules a
given sample should satisfy to be considered as covered by
the detection model. The lower the threshold, the lower
the number of resulting rules. Following the recommen-
dations of the AC literature (Liu et al., 1998; Li et al.,
2001), we have selected four possible values, from 1 to 4.
Default values for support and confidence have been set
to 0.01 and 0.5. In addition, given that a classification
strategy is required, MAXL has been chosen as the base-
line procedure, since it is the simplest, only considering
one rule for the classification. Again, the five classifica-
tion measures are computed for each configuration, with
special emphasis in F1, which reflects the effect of both
precision and recall. After 30 executions, the best average
values for F1 were obtained when the coverage threshold
is equal to 1. As for the statistical analysis, the Wilcoxon
test does not report significant differences in the case of
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the Adapter. In contrast, differences were found for the
rest of patterns, especially when compared with largest
values of the threshold. Considering these differences and
the fact that lower coverage thresholds help reducing the
size of the rule set, the threshold is set to 1 for all the
patterns.

6.1.2. Support, Confidence and Classification Strategy

The update mechanism of the archive is controlled by
the support and confidence thresholds, looking for only
preserving high-quality rules. In response to RQ1, we need
to determine the parameters that return rules with the
highest quality for each DP. With this aim, all the combi-
nations of support and confidence thresholds (see Table 5),
jointly with different classification strategies, have been
analysed. The outcomes from these combinations can be
found in the Appendix for each design pattern separately.
Table 6 summarises the findings, showing the best combi-
nation of parameters with respect to F1.

For the sake of clarity, results are mainly analysed based
on the values obtained for F1. In addition, notice that ac-
curacy is not a fully reliable measure here, as long as the
DPB repository is highly imbalanced. With respect to the
classification performance of the different configurations,
there is not a big difference for the Singleton, Adapter and
Factory Method patterns. The same does not apply for the
Decorator and Composite, however, for which differences
of more than 20% are reported. These differences mainly
occur between those configurations using different classi-
fication strategies, the support and confidence thresholds
having less effect.

Regarding the classification strategy, it is worth noting
that the same set of CARs has been used as input for all
the strategies. In the case of DFMLLap, k is set to 5, as
suggested by its authors. Firstly, the results reveal that
using only one rule for detection is not the best alterna-
tive, since MAXL is never able to return the best value for
any performance measure. In fact, this strategy reaches
significantly worse results for the Decorator and Compos-
ite patterns. Similarly, DFMLLap obtains low detection
performance for these patterns, even worse than MAXL.
Note that this strategy only takes into account a reduced
number of rules for detection, which is given by the value
of k. Thus, it could be argued that using a limited number
of rules is not the best alternative for the DPD problem.
Secondly, considering the strategies DFML and DFMLχ2 ,
the latter stands out as the procedure that best exploits
the detection capability of GEML. More specifically, the
best values of F1 are reached when using this strategy.
Focusing on the negative samples, other strategies could
obtain better specificity results but at the expense of lower
recall values, meaning that less DP instances would be re-
covered. Therefore, only configurations using DFMLχ2 are
considered when analysing how the support and confidence
thresholds influence the detection model.

As for the support and confidence thresholds, the best
performance is mostly reached for those configurations

with a higher confidence threshold (0.7), the Composite
being the only exception. We speculate that these rules
are expected to provide more certainty in the detection.
Nevertheless, notice that lower values are commonly used
in the AC literature. Regarding the support, the Singleton
and Adapter obtain the best results with the lowest sup-
port value (0.01), whilst 0.05 is the best value for the Fac-
tory Method, Decorator and Composite patterns. How-
ever, there is no best configuration with a support value
of 0.1. Since this measure is related to the proportion of
samples satisfying a rule, low values are needed to include
those rules that are able to describe less common pattern
implementations within the repository. Therefore, lower
support values stand out as the best alternative, as sug-
gested by the AC literature.

Finally, we summarise the main findings that give an-
swer to RQ1:

• Low support values are preferred for all design pat-
terns, 0.01 showing better results for Singleton and
Adapter. For Factory Method, Decorator and Com-
posite, a support equal to 0.05 is recommended.

• A confidence threshold equal to 0.7 is a good general
choice, as only Composite obtains better results when
setting another value (0.6).

• For all design patterns, DFMLχ2 is the pruning strat-
egy providing best performance. This strategy is es-
pecially beneficial for the Decorator and Composite
patterns.

6.2. Selection of Grammar Operators

The CFG determines the type of expressions (see Sec-
tion 4.1.1) to appear within the rules describing DP imple-
mentations. As shown in Section 6.1, all these operators
could be applied without further parametrisation to cap-
ture any type of design pattern under analysis, making the
practical use of this detection model easier to the software
engineer. Nevertheless, engineers could discard from the
grammar those operators referred to microstructures that,
in their opinion, are not descriptive of the pattern to be
detected, or even are modified to comply with their organi-
sational practices. It seems natural to think that the selec-
tion of a number of representative operators would produce
rules formed from a limited set of pre-selected elements.
In addition, it could reduce the search space and, conse-
quently, the time required to find the best rules. Therefore,
in response to RQ2, it is interesting to analyse to what ex-
tent the selection of operators influence the search process
and which operators provide a better detection capability
for each design pattern. With this aim, we have counted
the number of occurrences in the pruned set of rules for
the five design patterns after 30 executions. The results
are depicted in Fig. 6 as box-plots, where the frequency of
appearance has been normalised to the range [0, 1].

For the Singleton pattern, it can be observed that
those operators related to the class instantiation, such
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Table 6: Best classification performance in terms of F1 for each design pattern

Strategy Supp-Conf Accuracy Precision Recall Specificity F1

Singleton DFMLχ2 (0.01) - (0.7) 0.9561 ± 0.0136 0.9460 ± 0.0147 0.9461 ± 0.0298 0.9621 ± 0.0118 0.9411 ± 0.0202

Adapter DFMLχ2 (0.01) - (0.7) 0.8688 ± 0.0022 0.8430 ± 0.0028 0.9121 ± 0.0032 0.8244 ± 0.0038 0.8757 ± 0.0020

Factory Method DFMLχ2 (0.05) - (0.7) 0.8304 ± 0.0082 0.8113 ± 0.0081 0.8965 ± 0.0158 0.7533 ± 0.0145 0.8503 ± 0.0081

Decorator DFMLχ2 (0.05) - (0.7) 0.8229 ± 0.0179 0.8043 ± 0.0269 0.7251 ± 0.0393 0.8824 ± 0.0171 0.7501 ± 0.0302

Composite DFMLχ2 (0.05) - (0.6) 0.8859 ± 0.0181 0.7567 ± 0.0408 0.8900 ± 0.0700 0.8845 ± 0.0243 0.7885 ± 0.0425

as ctorVisibility or controlledExcep have a strong pres-
ence, whereas those requiring more than one role as in-
put are hardly used. As for the Adapter, adapterMethod,
which is a pattern-specific operator, appears in most of
rules, whereas sameElem or sameInterfaceContainer are
rarely selected. As expected, those operators related to
object creation like createObj and returns commonly ap-
pear in the rules describing the samples of the Factory
Method. Finally, redirectInFamily, sameInterfaceInstance
and sameInterfaceContainer are recurrent operators for
the Decorator and Composite patterns, as they are re-
lated to delegations between classes belonging to the same
inheritance tree. The ability of G3P4DPD to mine nega-
tive rules is the reason why almost every operator appears
in the final rule set. Notice that using a reduced set of
operators would require a smaller number of generations,
i.e., 100, to complete the search. Besides, including (po-
tentially) dispensable operators within a rule could affect
its readability too. Therefore, those operators whose mean
frequency is less than or equal to 0.05 have been omitted
from the experiments in order to find out how this selec-
tion would affect the detection performance. This value,
depicted as dashed lines in Fig. 6, has been set to all DPs
after preliminary experimentation.

The experimentation has been carried out analogously
to the previous experiments without selection of grammar
operators. For brevity, only the best results will be shown
(for a complete list of results, see Additional Material).
Table 7 lists the best results obtained for each DP con-
sidering the reduced set of grammar operators. Figures
in bold typeface represent those values that improve the
analogous results — i.e. same support, confidence and
strategy — obtained without reducing the set of operators
(see Table 6). As can be observed, DFMLχ2 is still the clas-
sification strategy obtaining the best results for every pat-
tern. Regarding the confidence threshold, best values are
mostly reached for configurations with a high value (0.7),
the Composite being the only requiring a lower value (0.5).
Again, a high support value (0.1) is never recommended.
In general, note that the resulting values remain robust
and there are not notorious differences with previous ex-
periments including all operators. As for F1, in absolute
terms, the selection seemingly benefits the results obtained
for Singleton and Composite. In the case of the Adapter,
values with or without selecting operators reflect practi-
cally a tie. We argue that this consistency in the results
favours the engineers feeling able to adapt the selection of
grammar operators either to the needs of their organisa-
tional repositories or to reduce the search space without

significantly affecting the detection performance. Pairwise
comparisons have been performed between analogous con-
figurations having and having not reduced the set of gram-
mar operators. This statistical analysis reflects that there
are no significant differences, the Factory Method being
the only exception, as it slightly improves when all opera-
tors are used.

To sum up, the following insights about the impact of
the grammar operators can be extracted (RQ2):

• GEML is able to automatically determine the type
of operators more relevant to each category of de-
sign pattern. Those related to visibility and instan-
tiation allow detecting creational patterns (Singleton
and Factory method), whereas operators focused on
delegation structures are highly effective to recover
structural and behavioural patterns (Adapter, Deco-
rator and Composite).

• The general performance of GEML does not signifi-
cantly decrease when the set of operators is reduced,
Factory method being the only exception.

6.3. Performance Comparison and Discussion

Performance comparison. Section 6.2 showed how robust
GEML behaves when one specific part of the configura-
tion, i.e., the grammar operators representing design mi-
crostructures, is refined. Nevertheless, even though it is
likely that software engineers could make design-based de-
cisions like selecting these microstructures, it still seems
unrealistic to think that they would have the skills re-
quired to set up the rest of parameters and adjust the
model to their needs. In these sense, for the sake of prac-
ticality, we have considered the use of a common model
configuration for all design patterns taking the results
listed in Section 6.1. As previously observed, DFMLχ2

clearly dominates the rest of classification strategies. As
for the support and confidence thresholds, S(0.01)-C(0.7)
reaches the best values for the Singleton and Adapter,
whereas S(0.05)-C(0.7) is the most appropriate for the
Factory Method and Decorator. Finally, S(0.05)-C(0.6)
was the best configuration for the Composite pattern. As
lower values of support are preferred in order to find rare
DP implementations, S(0.01) is seemingly a comprehen-
sive choice. Similarly, C(0.7) is selected as the confidence
threshold since it reaches the best values for all the cases,
except for the Composite, for which also gets competitive
performance values. The results obtained for this config-
uration for the five patterns are also shown in Table 8,

Published version available at: https://doi.org/10.1016/j.jss.2021.110919
c©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/



16

N
O

M

N
O

C

D
IT

R
F

C

is
F

in
a

l

is
S

u
b

c
la

s
s

c
o

n
tr

o
lle

d
In

it

c
o

n
tr

o
lle

d
E

xe
c
p

c
o

n
g

lo
m

e
ra

ti
o

n

re
tu

rn
s

re
c
e

iv
e

s

c
re

a
te

O
b

j

d
e

le
g

a
te

s

s
a

m
e

E
le

m

ty
p

e
O

f

lin
k
M

e
th

o
d

lin
k
A

rt
e

fa
c
t

c
to

rV
is

ib
ili

ty

a
g

g
re

g
a

ti
o

n

a
d

a
p

te
rM

e
th

o
d

re
d

ir
e

c
tI

n
F

a
m

ily

s
a

m
e

In
te

rf
a

c
e

In
s
ta

n
c
e

s
a

m
e

In
te

rf
a

c
e

C
o

n
ta

in
e

r

0.0

0.2

0.4

0.6

0.8

1.0

operator

fr
e
q
u
e
n
c
y

(a) Singleton
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(b) Adapter
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(c) Factory Method
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(d) Decorator
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(e) Composite

Figure 6: Frequency of appearance of grammar operators in the resulting rules

which compiles the results obtained during the parameter
study. More precisely, it shows the accuracy and F1 re-
turned by the best configuration —in terms of F1— found
for each design pattern, as well as the default common

configuration discussed above.

In response to RQ3, the detection performance of
GEML is compared against MARPLE, a ML-based tool
experimented under the same experimental methodology.
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Table 7: Best results for the operator study

Strategy Supp-Conf Accuracy Precision Recall Specificity F1

Singleton DFMLχ2 (0.01) - (0.7) 0.9596 ± 0.0115 0.9492 ± 0.0180 0.9508 ± 0.0251 0.9649 ± 0.0128 0.9452 ± 0.0173

Adapter DFMLχ2 (0.01) - (0.7) 0.8686 ± 0.0017 0.8428 ± 0.0028 0.9125 ± 0.0026 0.8236 ± 0.0033 0.8756 ± 0.0016

Factory Method DFMLχ2 (0.01) - (0.7) 0.8230 ± 0.0099 0.8097 ± 0.0082 0.8816 ± 0.0209 0.7545 ± 0.0158 0.8423 ± 0.0107

Decorator DFMLχ2 (0.05) - (0.7) 0.8236 ± 0.0129 0.8054 ± 0.0271 0.7196 ± 0.0246 0.8868 ± 0.0175 0.7490 ± 0.0193

Composite DFMLχ2 (0.05) - (0.5) 0.8840 ± 0.0187 0.7438 ± 0.0465 0.9089 ± 0.0564 0.8763 ± 0.0271 0.7937 ± 0.0345

Table 8: Comparison results for Experiment #1

Best configuration General-purpose configuration

GEML MARPLE GEML MARPLE

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Singleton 0.9561 0.9411 0.88 0.91 0.9561 0.9411 0.93 0.90
Adapter 0.8688 0.8757 0.86 0.85 0.8688 0.8757 0.85 0.84

Factory Method 0.8304 0.8503 0.82 0.83 0.8308 0.8489 0.82 0.83
Decorator 0.8229 0.7501 0.82 0.77 0.8188 0.7448 0.82 0.77
Composite 0.8859 0.7885 0.77 0.56 0.8888 0.7568 0.75 0.45

More specifically, we compare the best results obtained by
MARPLE for each pattern, as originally reported by the
authors (Zanoni et al., 2015). The general-purpose con-
figuration for MARPLE corresponds to a Random Forest
classifier with k-Means as preprocessor, as this combina-
tion provided the best results for three out of the five pat-
terns. Comparative results can be found in Table 8, con-
sidering the best and the general-purpose configuration for
both techniques. As can be observed, considering the five
DPs in this experiment, GEML outperforms MARPLE
for the Singleton, Adapter and Factory Method, with per-
centage of improvements equal to 4.57%, 4.25% and 2.28%,
respectively, when comparing general-purpose configura-
tions. In contrast, MARPLE achieves an increase of 2.65%
in F1 for the Decorator. However, GEML demonstrates a
significant advantage in the case of the Composite pattern,
obtaining an increase of 35.14% in F1 when comparing the
results of our general-purpose configuration even against
the best results of MARPLE, and 68.18% if we compare
their best configurations. Again, it is worth remarking
that GEML reaches more stable values along the different
design patterns, in contrast to MARPLE.

GEML provides better detection performance for the
Singleton pattern, whose structure exhibits one single role.
In contrast, the worst results are returned for the Deco-
rator and Composite. This is in line with the conclusions
drawn by other DPD models (Uchiyama et al., 2011; Chi-
hada et al., 2015; Zanoni et al., 2015), where the detection
capacity decreases as the pattern complexity increases.

From the comparison results, the following findings re-
lated to RQ3 can be extracted:

• GEML outperforms MARPLE for four out the five
patterns under comparison, achieving up to 68.18% of
improvement in terms of F1 for the Composite pat-
tern.

• GEML provides more stable results than MARPLE,
with more than 81% of accuracy and 74% of F1 for

all patterns, using either its general-purpose or best
configuration.

• Like other ML proposals, GEML shows a better de-
tection performance for less complex patterns.

Discussion of design characteristics. GEML presents
some characteristics in its design that makes it an appeal-
ing alternative beyond its good performance. We next
discuss their implications from a more practical perspec-
tive. The use of a CFG and a large, diverse set of eligible
design properties in terms of grammar operators facilitates
the customisation of the detection process to the engineers’
needs. In contrast to other proposals, GEML allows both
numerical and categorical properties, meaning the simul-
taneous use of metrics and design microstructures. In this
way the software engineer can explicitly influence the de-
sign and developmental aspects that will guide the search.
Furthermore, the resulting model would be able to capture
the most significant properties in each moment, adapting
the model to changes in the repository. Promoted by the
use of ML techniques, new detected samples — both pos-
itive and negative — by the resulting models could also
serve as an input for future detections. Thus, GEML
would allow the progressive adjustment of the prediction
to the organisational development culture, what is usu-
ally a dynamic element in companies. Finally, in compar-
ison to other black-box proposals (Chihada et al., 2015;
Dwivedi et al., 2018; Thaller et al., 2019), GEML uses a
rule-based model, which is more comprehensible for prac-
titioners (Kotsiantis et al., 2006).

7. Experiment 2: Comparison Against DPD
Methods Using P-Mart

This section presents the results and analysis of Experi-
ment #2, in which GEML is compared to other DPD stud-
ies considering a project available in P-Mart, JHotDraw, as
the testing project. We provide results from 10 out of the
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Table 9: Comparison results for JHotDraw project.

Ground GEML DePATOS SparT MLDA
truth P TP Pr Re F1 P TP Pr Re F1 P TP Pr Re F1 P TP Pr Re F1

Adapter 1 1 1 1.00 1.00 1.00 38 1 0.03 1.00 0.05 12 1 0.08 1.00 0.15 19 1 0.05 1.00 0.10
Command 1 11 1 0.09 1.00 0.17 - - - - - 8 1 0.13 1.00 0.22 12 1 0.08 1.00 0.15
Composite 1 11 1 0.09 1.00 0.17 1 1 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1 1 1.00 1.00 1.00
Decorator 1 2 1 0.50 1.00 0.67 3 0 0.00 0.00 0.00 3 1 0.33 1.00 0.50 1 1 1.00 1.00 1.00

Factory Method 2 0 0 0.00 0.00 0.00 - - - - - 2 1 0.50 0.50 0.50 0 0 0.00 0.00 0.00
Observer 2 26 2 0.08 1.00 0.14 - - - - - 4 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00
Singleton 2 2 2 1.00 1.00 1.00 - - - - - 2 2 1.00 1.00 1.00 2 2 1.00 1.00 1.00

State/Strategy 6 7 1 0.14 0.17 0.15 - - - - - 24 2 0.08 0.33 0.13 22 3 0.13 0.50 0.20
Template Method 2 4 2 0.50 1.00 0.67 - - - - - 5 1 0.20 0.50 0.29 - - - - -

Total 18 64 11 42 2 61 10 57 9

11 Gammas DPs available in this project, since the rest of
P-Mart projects cannot provide training instances for the
Prototype pattern. Three recent DPD methods are cho-
sen for comparison: DePATOS, which detects structural
patterns using a sub-graph isomorphism algorithm (Yu
et al., 2018); MLDA, a rule-based approach that anal-
yses method signatures Al-Obeidallah et al. (2018); and
SparT, a method based on ontologies that combines struc-
tural, behavioural and semantic information Xiong and Li
(2019). All these works provide results on JHotDraw that
can be contrasted, since their authors both report abso-
lute values of recovered instances, and give access to the
DP implementations found. This allows us to compute the
performance metrics (precision, recall, and F1) on the ba-
sis of a common ground truth, instead of comparing results
validated over custom repositories created by the authors.
Notice that, usually, P-Mart is extended in DPD studies,
but the resulting datasets are not publicly available.

Table 9 lists the DPs under study and the results of the
four methods in terms of number of recovered instances
per DP, as well as the total sum. Precision, recall and
F1 are computed considering positive samples labelled in
P-Mart as the ground truth for all methods. None of the
methods under comparison distinguish State from Strat-
egy, so we report them together for GEML7 too. The
symbol “-” is used to indicate that the particular DP is
not supported by the method. GEML is the method that
recovers more true DP implementations (11), followed by
SparT (10) and MLDA (9). In terms of F1, GEML is the
best method for four DPs (Adapter, Observer, Singleton
and Template method), and the second best method for
the remaining DPs. The only DP for which no implemen-
tation is found is the Factory method, which is not sup-
ported by DePATOS and not detected by MLDA. GEML
considerably reduces the number of false positives for the
Adapter and State/Strategy patterns compared to the rest
of methods. In contrast, given that GEML is a ML-based
approach, it suffers from the low number of training in-
stances in some cases, such as Composite and Observer.
Even so, GEML manages to detect the same number of
true positives than the other methods for the Composite
pattern, and it is the only method that is able to recover

7Notice that GEML can detect both State and Strategy design
patterns separately.

the two Observer implementations.

8. Experiment 3: Analysis of Applicability

Experiment #3 is explained in this section on the basis
of a practical scenario, and evaluated according to more
qualitative aspects. The experimentation has been per-
formed with a large number of DPs (15), showing that
no adaptation is required to execute GEML when new
DPs are introduced. The outcomes serve us to analyse
how the change of the training repository might influence
the behaviour of the proposed method (RQ4). Then, a
comparison against reference non-ML-based DPD tools is
provided (RQ5).

8.1. Influence of Training Factors

In response to RQ4, GEML is retrained by applying its
general-purpose configuration and using a different input
repository than in Experiment #1, as explained in Sec-
tion 5.3. Then, the detection model is tested on DPExam-
ple. Table 10 shows the results for the median and best
execution of the 30 runs. Pr and Re stand for precision
and recall, respectively. Design patterns are sorted in de-
creasing number of positive training samples (see Table 3).

The results bring new insights. Despite the low num-
ber of training instances in the repository —a limiting
factor inherent to machine learning— GEML is able to
retrieve DP instances for 15 design patterns, all Gamma’s
DP available in P-Mart, with the exception of Builder,
Memento, Prototype and Facade. A general observation
is that our method suffers when less than 10 training sam-
ples are provided. In these cases, it might happen that
the lack of data result in executions for which no detec-
tion rules can be generated (marked as ’-’ in Table 10).
The degradation in performance is more evident in terms
of precision, i.e., the rate of false positives tends to in-
crease. Even so, GEML finds at least half of the true DP
implementations during its best execution, with the excep-
tion of four design patterns (Observer, Abstract Factory,
Command and Factory Method).

Another consequence of having a reduced training set is
overfitting, since less variability of examples is presented
to the algorithm. The fact that DPExample is the only
project taken from the literature, in contrast to other open
source projects used for training, may cause this project
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Table 10: Performance of GEML in the test project (DPExample) with and without using numerical properties

With numerical properties Without numerical properties

Median Best Median Best

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

State 0.09 0.67 0.16 0.13 0.67 0.22 0.10 0.67 0.18 0.14 0.67 0.23
Adapter 0.04 0.58 0.08 0.12 0.83 0.21 0.04 0.67 0.08 0.17 0.33 0.22
Singleton 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

Template Method 0.22 0.21 0.20 0.55 0.86 0.67 0.40 0.86 0.55 0.55 0.86 0.67
Proxy 0.38 0.75 0.50 0.50 0.75 0.60 0.43 0.75 0.55 0.60 0.75 0.67

Observer 0.14 0.29 0.19 0.67 0.29 0.40 0.50 0.14 0.22 1.00 0.29 0.44
Strategy 0.09 0.50 0.15 0.10 0.50 0.16 0.09 0.50 0.15 0.11 0.63 0.19

Composite 0.10 0.50 0.17 0.12 0.50 0.19 0.10 0.50 0.17 0.13 0.67 0.22
Abstract Factory - - - 0.04 0.37 0.08 - - - 0.16 0.79 0.25

Command - - - 0.01 0.40 0.02 0.01 0.40 0.02 0.01 0.20 0.02
Factory Method - - - - - - - - - 0.12 0.20 0.15

Visitor 0.36 0.93 0.52 0.42 0.93 0.58 0.36 0.93 0.52 0.42 0.93 0.58
Iterator 0.02 0.40 0.03 0.80 0.80 0.80 0.02 0.40 0.03 0.67 0.80 0.73

Decorator 0.75 0.33 0.45 0.80 0.67 0.73 1.00 0.33 0.50 0.80 0.67 0.73
Bridge 0.04 0.17 0.07 0.07 0.50 0.13 0.04 0.17 0.07 0.07 0.50 0.13

to present slight differences for some properties relying on
role identification and software metrics. This is specially
evident for two DPs, Adapter and Template Method, since
GEML provides a considerably higher precision and recall
in the training phase. For the Adapter, we have observed
differences in how DPB and P-Mart label the roles, since
DPB assigns one class per role at most (Zanoni et al.,
2015). This affects the effectiveness of the adapterMethod
operator, which works under the same assumption. Simi-
larly, we realised that numerical properties (software met-
rics) become less informative in this experiment. The dif-
ference in size between classes inspected during training
and those available for testing implies that the learned
thresholds for measures like LOC and NOM are not so
representative for the testing project. After excluding such
operators, our method has improved its detection capabil-
ity for six design patterns and has guaranteed more sta-
ble results for Abstract Factory, Command and Factory
Method (see Table 10). The generated rule set for each
DP is available as additional material.

The specificity of some operators has revealed as an im-
portant factor to counteract the low number of training
samples. This is reflected in the Decorator pattern, for
which GEML provides similar results than those obtained
in Experiment #1 after learning from two positive samples
only in Experiment #2. Looking at the resulting detec-
tion models, we observe that redirectInFamily — an op-
erator particularly associated to the Decorator pattern —
frequently appears in the rules, as shown in Section 6.2.
This finding does not imply that new operators oriented
towards a particular DP have to be implemented to sup-
port its detection. This can be observed in the case of the
Visitor pattern, which has obtained the highest recall de-
spite being a pattern with very few positive samples and
not being considered in Experiment #1. For this specific
pattern, the operator checking whether a role is imple-
mented by an interface becomes highly relevant to identify

its structure. Finally, State and Strategy share the same
class structure, making it difficult to distinguish them and
therefore to detect them correctly. For this reason, some
DPD methods consider them together. According to our
outcomes, GEML is able to differentiate State from Strat-
egy, and vice versa, for around 10% of instances, and the
corresponding false positives are often attributed to an
usual misclassification between both DPs.

Finally, Table 11 provides the average execution time
of each step of the DPD process applied to DPExample,
a medium-size project. G3P4DPD is the step requiring
more time, although it does not usually takes longer than
one minute. Pruning the generated rules is a very fast
procedure that mostly depends on the number of rules re-
turned by G3P4DPD. Note that training the DPD model,
i.e., rule generation and pruning, only needs to be carried
out when new DP instances are added to the repository.
The VF2 algorithm is efficient for candidate generation,
and no great disparity is observed for design patterns with
different number of roles. Then, the filtering step takes
two seconds at most, depending on the different heuristics
applied to each DP (see Section 5.3). Finally, the time
required to proceed with the detection depends on both
the number of candidates and the number of rules.

In light of these results, the influence of the training
conditions (RQ4) can be summarised as follows:

• The detection performance of GEML reaches up to
81%, though it varies depending on the design pat-
tern. GEML achieves more than 50% of recall for 11
out of the 15 DPs, and more than 75% for six of them,
despite the low number of samples available.

• The detection capability is not only affected by the
training set size, but also the particular character-
istics of each DP and how roles are labelled in the
repository.
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Table 11: Average execution time (ms) of each phase of the DPD
process. Graph building from code takes 909.67 ms on average.

Rule Candidates DP
gener. pruning gener. filtering detection

State 68,188.23 29.27 24.00 168.37 1,066.80
Adapter 27,949.63 19.20 22.37 300.87 722.67
Singleton 19,112.73 6.50 15.57 204.23 1,140.40

T. Method 39,412.37 17.83 18.20 178.30 584.30
Proxy 12,099.03 3.33 18.47 160.83 85.83

Observer 5,157.50 67.67 24.50 75.37 60.43
Strategy 6,980.83 1.63 24.03 260.57 197.23

Composite 14,909.90 1.40 22.30 237.47 697.50
A. Factory 8,852.90 1.20 23.20 1,733.53 52.67
Command 11,596.50 0.97 37.30 240.57 342.03
F. Method 5,145.03 0.80 31.20 160.07 2.67

Visitor 9,765.87 0.70 17.13 27.93 3.13
Iterator 3,928.11 0.74 23.95 14.03 110.71

Decorator 4,174.20 0.50 35.43 434.97 3.93
Bridge 3,961.95 0.72 31.55 158.61 4.10

• The choice of operators, especially not using software
metrics, become more relevant when few samples are
available. The improvement can be up to 300% in
terms of precision, 114% in terms of recall and 213%
with respect to F1.

• GEML is able to learn rules for any new design pat-
tern without requiring the implementation of specific
operators, but might have difficulties to produce rules
for some DPs when the number of samples is signifi-
cantly low.

8.2. Comparison with DPD Tools

In the context of RQ3, the previous results should be
contrasted with those obtained with other tools available
to the software engineer, i.e., SSA and Ptidej. It should
be noted that the conditions under which this comparison
can be carried out (see Section 5.3) are not favourable for
GEML. On the one hand, the number of training sam-
ples for some DPs is extremely low. On the other hand,
since GEML has partially learned from the outcomes of
both tools, GEML might fail to identify the instances not
discovered by these tools. Even so, GEML manages to
be superior, or at least competitive, to SSA and Ptidej.
Table 12 shows the best results for GEML together with
those obtained after running both tools. We report ab-
solute numbers of positive DP implementations retrieved
(P) and correctly identified (TP) by each method, since
they seem easier to interpret and give an idea of the effort
required to manually verify tool outcomes. As a reference,
the actual number of DP implementations (ground truth)
is provided too.

Overall, GEML detects 63% of the DP implementa-
tions, followed by SSA (43%) and Ptidej (35%). SSA ap-
plies a more conservative detection strategy that allows
reducing the presence of false positives (FPs). Proxy,
Strategy, Factory Method, Bridge and Visitor clearly il-
lustrate this point. GEML shows more variability in this
regard, with more than a half of FPs corresponding to
three DPs: Abstract Factory (not supported by the other
tools), Command and State. The issues discussed in pre-
vious Section 8.1, such as the low number of instances and

Table 12: Comparison results for Experiment #2

Ground GEML SSA Ptidej
truth P TP P TP P TP

State 12 57 8 41 3 104 9
Adapter 6 12 2 54 3 128 3
Singleton 21 21 17 22 17 82 15

T. Method 7 11 6 20 7 234 7
Proxy 4 5 3 2 2 127 4

Observer 7 2 2 4 2 - -
Strategy 8 46 5 6 6 0 0

Composite 6 30 2 7 1 29 2
A. Factory 19 99 15 - - - -
Command 5 79 1 4 3 36 2
F. Method 15 26 3 1 1 44 5

Visitor 15 33 14 11 11 2 2
Iterator 5 5 4 - - - -

Decorator 6 5 4 19 5 - -
Bridge 6 41 3 3 0 - -
Total 142 472 89 194 61 786 49

overfitting, are the reason behind such behaviour. Even
so, GEML considerably reduces the need of inspecting all
classes within the project, and tends to return less FPs
than Ptidej. We observe that this tool correctly identi-
fies the classes implementing the design pattern, but fails
to assign the roles and returns several permutations as
solution for the same DP instance. SSA presents some
limitations with respect to role identification too. For 12
DPs, SSA does not provide the classes playing one or more
roles, meaning that the practitioner is required to manu-
ally inspect the code to complete the DP definition.

Each tool appears to be superior for a different set of
design patterns, not necessarily those belonging to the
same category (creational, structural or behavioural). In-
deed, the only DPs for which the three tools return the
majority of implementations are Singleton and Template
Method. Difficulties to detect implementations of Factory
Method, Composite and Adapter are observed in the three
tools. SSA finds one DP instance more than GEML for
Adapter, Template Method, Strategy and Decorator, and
two more instances of the Command pattern. Higher dif-
ferences are observed in favour of GEML for State (5),
Bridge (3), Visitor (3) and Factory Method (2). Com-
pared to Ptidej, GEML also returns a similar number of
correct DP instances for State, Adapter, Template Method
and Proxy. However, the lack of support to four DPs (Ob-
server, Bridge, Abstract Factory and Decorator) and the
fact that Strategy and State are considered together im-
pose some limitations to Ptidej.

At this point the level of detection agreement between
tools is discussed based on the intersection of their result
sets so as not to focus solely on the number of DP instances
detected. These coincidences are expressed as percentages
in Table 13, what includes outcomes for both positive DP
implementations and TPs. In light of the results, it does
not seem evident to conclude which pair of tools provide
more similar results. Due to the FP rate of Ptidej, GEML
is closer to SSA in terms of positive implementations. Nev-
ertheless, GEML achieves higher agreement with Ptidej
for State and Proxy compared to the coincidences between
SSA and Ptidej.
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Table 13: Coincidences among DPD tools

Coincidences in positive implementations Coincidences in true positive implementations
Unique GEML GEML SSA ∩ All GEML GEML SSA ∩ All

TP ∩ SSA ∩ Ptidej Ptidej ∩ SSA ∩ Ptidej Ptidej

State 1 38.0% 53.3% 33.0% 24.6% 37.5% 70.0% 33.3% 30.0%
Adapter 0 15.8% 6.8% 20.6% 4.2% 75.0% 75.0% 100.0% 75.0%
Singleton 0 95.4% 17.15% 16.9% 16.9% 100.0% 68.4% 68.4% 68.4%

T. Method 0 52.4% 5.1% 8.6% 4.7% 85.7% 85.7% 100.0% 85.7%
Proxy 0 40.0% 1.5% 0.8% 0.8% 66.7% 50.0% 25.0% 25.0%

Observer 2 0.0% - - - 0.0% - - -
Strategy 0 10.6% - - - 83.3% - - -

Composite 2 23.3% 25.5% 12.5% 8.5% 25.0% 50.0% 50.0% 25.0%
A. Factory 15 - - - - 0.0% - - -
Command 0 2.4% 3.6% 8.6% 0.0% 40.0% 0.0% 75.0% 0.0%
F. Method 0 0.0% 40.0% 0.0% 0.0% 0.0% 60.0% - 0.0%

Visitor 3 78.8% 6.1% 18.2% 6.1% 83.9% 6.5% 18.2% 6.5%
Iterator 4 - - - - - - - -

Decorator 1 14.3% - - - 50.0% - - -
Bridge 3 7.3% - - - 0.0% - - -

Next, we focus on those design patterns for which tools
exhibit less agreement. GEML and SSA both found two
out of the seven implementations of the Observer, but they
returned different instances. Similarly, the implementa-
tion found by SSA for the Factory Method was not de-
tected by GEML. This phenomenon is observed for Proxy
implementations too, for which no pair of tools returns
more than two equal instances. Furthermore, Table 13 also
provides the number of TPs that only GEML was able to
find. In total, GEML detects 12 implementations missed
by SSA or Ptidej, not counting the Abstract Factory nor
the Iterator instances, since neither SSA nor Ptidej con-
sider these DPs. For the Observer, the Bridge and the
Composite patterns, these DP implementations are the
only TPs returned by GEML, meaning that it is highly ef-
fective to find instances that other tools would miss. As for
the Visitor, apart from the three unique implementations
returned, GEML is able to find all the instances (11) de-
tected by SSA. This is not what happens more often and,
even though each tool has its own ability to find out cer-
tain DP implementations, in most cases their results are
complementary.

To conclude, we next compile the most relevant facts
that give response to RQ5:

• GEML finds more true positive instances than the
two reference tools, SSA and Ptidej, including sam-
ples of the Abstract Factory pattern and Iterator (not
available in these tools).

• Considering only those DPs supported by all tools,
11% of the samples recovered by GEML were not
found by any other tool used for comparison.

• The level of agreement among all tools, in terms of
true positive implementations, can reach more than
80%, but for some DPs is significantly lower. Tools for

DPD are mutually complementary in terms of practi-
cal use.

9. Demonstration Tool

GEML is publicly available as a Java-based demonstra-
tion tool (see Additional Material) that allows engineers to
detect DP implementations from their own projects with-
out requiring any expertise in ML or evolutionary tech-
niques. The tool provides basic graphical support for
the whole DPD process, divided into the following three
phases:

1. Generation of candidates. The source code is analysed
to extract an initial set of potential DP implementa-
tions (candidates).

2. Learning of the detection model. The G3P4DPD and
pruning algorithms are executed to generate the set
of detection rules.

3. Recovery of design patterns. The detection rules, to-
gether with a classification strategy chosen by the
software engineer, check whether the candidates are
actually implementing a DP.

Each of these phases is detailed next. Firstly, for the
generation of candidates, the project from which the set of
potential samples for a given DP will be extracted must
be selected. During this process, code artefacts and their
relationships are scrutinised to find groups of related ele-
ments. Then, a role mapping procedure assigns a role to
every artefact comprising the candidate according to its
relationships. Taking the Adapter pattern as an example,
the code artefact playing the adapter role has to imple-
ment the interface declared by target, while adapting the
service provided by adaptee. Thus, it should be linked to at
least two other code artefacts. Similarly, in the case of the
Singleton pattern, each code artefact would correspond to
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Figure 7: Step 1: Generation of candidates

Figure 8: Step 2: Learning of the detection model

a DP candidate, as it only has one role. Fig. 7 shows the
screenshot with this configuration panel. Once candidates
are found, they can be exported for future executions. A
file containing software metrics is also generated.

In a different view, the learning of the detection model
is conducted, the support and confidence thresholds being
set as shown in Fig. 8. The user could also select the set
of operators to be applied for mining the rules (see Sec-
tions 4.1.2 and 6.2). The rest of parameters are set to their
default values for simplicity, though advanced users could
still modify them by simply editing an XML configura-
tion file. This file also includes the path of the repository
from which rules will be mined, so the user could modify
it according to organisational or team requirements. Ad-
ditionally, the resulting detection rules can be saved for
future use.

To illustrate this operation, we have selected the project
datapro4j8, a Java library for processing and handling data
from heterogeneous data sources, which contains imple-
mentations of the Singleton pattern. Fig. 9 shows two il-
lustrative rules returned by G3P4DPD: one describing pos-
itive samples —consequent aPattern— and one for nega-
tive samples —consequent notAPattern. On the one hand,
the first rule implies that implementations of the Single-
ton pattern scrutinised from this repository contain a non-
public constructor, and a property of their own type to
ensure that only one instance is created. In addition, DIT
values are not greater than one, meaning that Singleton
instances have no superclasses in this repository, except
for Object, as any Java class. On the other hand, the
second rule determines that those classes with a public

8Datapro4j, available from http://www.jrromero.net/tool_

datapro4j.html (accessed June 22, 2020)

� �
if

ctorVisibility(singleton) != public
and aggregation(singleton,singleton) != notLinked
and DIT(singleton) < 2

then
aPattern

if
ctorVisibility(singleton) = public
and controlledExcept(singleton) = false
and controlledInit(singleton) = false

then
notAPattern� �

Figure 9: Two sample rules generated by the G3P4DPD algorithm

Figure 10: Step 3: Recovery of Singleton pattern instances

constructor whose double invocation is not controlled by
exceptions are not a valid implementation of Singleton.
Notice that the use of exceptions is an alternative imple-
mentation of Singleton, which is usually coded in terms
of a private constructor whose invocation is controlled by
a static variable. However, the use of design microstruc-
tures as grammar operators allows detecting both cases.
For this execution, the support and confidence thresholds
were set to 0.01 and 0.7. In addition, the list of oper-
ators were limited to only those that best represent the
Singleton pattern (see Section 6.2).

Finally, as for the recovery of design patterns, the clas-
sification strategy has to be selected. For the datapro4j
example, we applied the MAXL strategy. Fig. 10 shows
the implementations found for this pattern and repository,
which are highly coincident with the actual specification
of the library. It is also worth noting that these imple-
mentations could be added to the repository in order to
gradually adjust this database to the corporate culture in
future detections.

10. Threats to Validity

Internal threats are those related to aspects of the ex-
perimentation that cannot ensure the causality of the ob-
tained results. Here, the stochastic nature of the algo-
rithm, as well as its setup and parametrisation are inter-
nal threats to be considered. Therefore, all experiments
are based on 30 independent executions. Furthermore,
a parameter study was conducted to determine the best
values. As for the construction of the detection model, a
stratified 10-fold cross validation is performed to avoid any
bias due to the training data. Another threat for the in-
ternal validity refers to the setup of the detection method
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and, more specifically, to the selection of the pruning and
classification strategies. On the one hand, the database
coverage method has been considered for pruning, as it is
a well-known, proved method in the AC literature, and
has been already applied jointly to four of the classifica-
tion strategies considered in this study. On the other hand,
the detection performance of several classification strate-
gies has been analysed as part of the experimentation. The
statistical analysis has shown that the detection model is
not greatly affected by these algorithms.

External validity is related to the generalisation of the
experimental results. In this approach, we have selected 15
design patterns for validation and comparison purposes. In
addition, these patterns present different number of roles
and multiple roles played by a single artefact. Even so,
the low number of training samples available for some
DPs could limit the generalisation of conclusions. Simi-
larly, the use of DPB and P-Mart repositories, which con-
tain Java projects, implies that our conclusions could not
be directly extrapolated to organisational environments of
different nature. Nevertheless, these projects are of non-
trivial size and they have become frequent benchmarks
within the field. The application of GEML to other indus-
trial projects might require its adaptation to their specific
requirements, e.g., other programming languages or de-
sign microstructures (grammar operators). In this sense,
the possibility to extend the collection of operators and the
flexibility provided by the CFG makes GEML adaptable
to organisational changes.

11. Concluding Remarks

GEML was introduced as a novel automatic approach
for design pattern detection based on evolutionary ma-
chine learning. Knowledge from code repositories is ex-
tracted by means of G3P4DPD in form of association rules,
a highly readable format to represent knowledge (Grosan
and Abraham, 2011). The use of an extendable context-
free grammar to declare the syntax of rules makes the
learning process highly flexible and adaptable to new or-
ganisational environments and design patterns. The ap-
plication of a pruning method and several classification
strategies — already proved in well-known associative clas-
sification approaches — to select those rules with best de-
tection capabilities leads GEML to accurate and robust
predictions.

An extensive experimentation shows that GEML is able
to generate high-quality rules describing implementations
of structural, creational and behavioural design patterns.
A first study reveals that the prediction performance re-
mains robust — also improving in general terms to other
related proposal — even when a single common parametri-
sation is used for all the design patterns, without the need
to adjust it individually. We think that this fact could
significantly increase its application in practice, since the
software engineer is not required to adjust the parameters.
We have also analysed whether the detection capabilities of

GEML are affected by changes in the training conditions,
using a total of 15 DPs, including behavioural, creational
and structural patterns. This is the largest set of patterns
analysed so far for a ML-based DPD proposal. Results
reveal that GEML remains highly competitive even when
very few DP examples are available for learning. Com-
pared to reference DPD methods and tools, GEML sup-
ports additional DPs and detects more implementations,
although the low number of training samples could cause
some variability in the rate of false positives. A demonstra-
tion tool is provided to show its use and allow programmers
to analyse their own Java projects.

In the future we plan to incorporate new design mi-
crostructures — in form of grammar operators — that
facilitate the detection of the remaining DPs. In addition,
the current tool can be evolved and integrated within exist-
ing IDE platforms like Eclipse, thus integrating detection
capabilities as part of the programming and maintenance
tasks.

Additional Material

For replicability purposes, experimentation data, such
as the generated DP instances, are available for down-
load, as well as the results from the experimentation
and statistical analysis, and the demonstration tool, from
https://www.uco.es/kdis/sbse/geml/
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Appendix A. Extended results for the parameter
study

Tables A.14- A.18 compile the results for all combi-
nations of classification strategy, support and confidence
thresholds, for the Singleton, Adapter, Factory Method
and Composite patterns, respectively. Values represent
the average and the standard deviation of each perfor-
mance measure, i.e. accuracy, precision, recall, specificity
and F1. Bold typeface is used to highlight the best result
for the respective classification strategy, and shaded cells
represent the global best value for each measure.
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Table A.14: Classification performance for the Singleton

Supp - Conf Accuracy Precision Recall Specificity F1

M
A

X
L

(0.01) - (0.5) 0.9395 ± 0.0140 0.9436 ± 0.0164 0.9008 ± 0.0311 0.9631 ± 0.0115 0.9152 ± 0.0222
(0.01) - (0.6) 0.9434 ± 0.0125 0.9524 ± 0.0163 0.9029 ± 0.0262 0.9681 ± 0.0111 0.9200 ± 0.0187
(0.01) - (0.7) 0.9458 ± 0.0123 0.9535 ± 0.0140 0.9084 ± 0.0288 0.9685 ± 0.0106 0.9246 ± 0.0184
(0.05) - (0.5) 0.9317 ± 0.0171 0.9427 ± 0.0195 0.8821 ± 0.0327 0.9617 ± 0.0137 0.9038 ± 0.0265
(0.05) - (0.6) 0.9190 ± 0.0142 0.9434 ± 0.0200 0.8441 ± 0.0279 0.9641 ± 0.0135 0.8820 ± 0.0208
(0.05) - (0.7) 0.9197 ± 0.0122 0.9422 ± 0.0195 0.8467 ± 0.0228 0.9640 ± 0.0130 0.8832 ± 0.0187
(0.1) - (0.5) 0.9373 ± 0.0140 0.9461 ± 0.0175 0.8916 ± 0.0293 0.9652 ± 0.0104 0.9119 ± 0.0206
(0.1) - (0.6) 0.9254 ± 0.0107 0.9493 ± 0.0175 0.8550 ± 0.0230 0.9678 ± 0.0105 0.8912 ± 0.0165
(0.1) - (0.7) 0.9225 ± 0.0086 0.9458 ± 0.0148 0.8508 ± 0.0183 0.9660 ± 0.0106 0.8879 ± 0.0117

D
F

M
L

(0.01) - (0.5) 0.9431 ± 0.0132 0.9495 ± 0.0134 0.9038 ± 0.0353 0.9670 ± 0.0097 0.9197 ± 0.0213
(0.01) - (0.6) 0.9454 ± 0.0118 0.9493 ± 0.0143 0.9126 ± 0.0234 0.9654 ± 0.0105 0.9239 ± 0.0173
(0.01) - (0.7) 0.9490 ± 0.0143 0.9539 ± 0.0143 0.9162 ± 0.0309 0.9689 ± 0.0110 0.9290 ± 0.0220
(0.05) - (0.5) 0.9291 ± 0.0186 0.9166 ± 0.0299 0.9083 ± 0.0288 0.9418 ± 0.0237 0.9054 ± 0.0242
(0.05) - (0.6) 0.9229 ± 0.0129 0.9370 ± 0.0219 0.8614 ± 0.0195 0.9599 ± 0.0147 0.8897 ± 0.0179
(0.05) - (0.7) 0.9223 ± 0.0123 0.9382 ± 0.0226 0.8586 ± 0.0171 0.9612 ± 0.0152 0.8894 ± 0.0165
(0.1) - (0.5) 0.9204 ± 0.0167 0.8906 ± 0.0268 0.9189 ± 0.0214 0.9214 ± 0.0219 0.8980 ± 0.0202
(0.1) - (0.6) 0.9263 ± 0.0116 0.9350 ± 0.0213 0.8754 ± 0.0211 0.9569 ± 0.0154 0.8961 ± 0.0166
(0.1) - (0.7) 0.9266 ± 0.0088 0.9414 ± 0.0167 0.8669 ± 0.0132 0.9628 ± 0.0118 0.8952 ± 0.0116

D
F

M
L
χ
2

(0.01) - (0.5) 0.9429 ± 0.0116 0.9320 ± 0.0185 0.9266 ± 0.0296 0.9531 ± 0.0144 0.9227 ± 0.0175
(0.01) - (0.6) 0.9520 ± 0.0112 0.9409 ± 0.0145 0.9407 ± 0.0238 0.9589 ± 0.0113 0.9351 ± 0.0173
(0.01) - (0.7) 0.9561 ± 0.0136 0.9460 ± 0.0147 0.9461 ± 0.0298 0.9621 ± 0.0118 0.9411 ± 0.0202
(0.05) - (0.5) 0.9404 ± 0.0117 0.9346 ± 0.0163 0.9181 ± 0.0249 0.9539 ± 0.0132 0.9192 ± 0.0175
(0.05) - (0.6) 0.9253 ± 0.0106 0.9347 ± 0.0183 0.8712 ± 0.0199 0.9577 ± 0.0126 0.8943 ± 0.0157
(0.05) - (0.7) 0.9220 ± 0.0106 0.9295 ± 0.0202 0.8680 ± 0.0184 0.9550 ± 0.0134 0.8909 ± 0.0151
(0.1) - (0.5) 0.9433 ± 0.0116 0.9372 ± 0.0192 0.9207 ± 0.0186 0.9571 ± 0.0130 0.9234 ± 0.0162
(0.1) - (0.6) 0.9282 ± 0.0103 0.9359 ± 0.0187 0.8779 ± 0.0169 0.9586 ± 0.0121 0.8988 ± 0.0145
(0.1) - (0.7) 0.9284 ± 0.0094 0.9420 ± 0.0151 0.8726 ± 0.0156 0.9623 ± 0.0103 0.8979 ± 0.0131

D
F

M
L
L
a
p

(0.01) - (0.5) 0.9278 ± 0.0129 0.9430 ± 0.0136 0.8690 ± 0.0317 0.9635 ± 0.0084 0.8960 ± 0.0216
(0.01) - (0.6) 0.9370 ± 0.0130 0.9489 ± 0.0145 0.8894 ± 0.0256 0.9660 ± 0.0107 0.9103 ± 0.0193
(0.01) - (0.7) 0.9422 ± 0.0130 0.9498 ± 0.0174 0.9028 ± 0.0275 0.9661 ± 0.0127 0.9191 ± 0.0192
(0.05) - (0.5) 0.9265 ± 0.0134 0.9487 ± 0.0195 0.8613 ± 0.0282 0.9658 ± 0.0136 0.8933 ± 0.0212
(0.05) - (0.6) 0.9125 ± 0.0133 0.9448 ± 0.0201 0.8240 ± 0.0270 0.9657 ± 0.0130 0.8707 ± 0.0210
(0.05) - (0.7) 0.9189 ± 0.0126 0.9452 ± 0.0196 0.8400 ± 0.0244 0.9668 ± 0.0114 0.8815 ± 0.0195
(0.1) - (0.5) 0.9329 ± 0.0129 0.9529 ± 0.0165 0.8719 ± 0.0308 0.9700 ± 0.0094 0.9032 ± 0.0199
(0.1) - (0.6) 0.9198 ± 0.0111 0.9542 ± 0.0136 0.8343 ± 0.0263 0.9711 ± 0.0084 0.8803 ± 0.0180
(0.1) - (0.7) 0.9182 ± 0.0111 0.9532 ± 0.0127 0.8307 ± 0.0275 0.9713 ± 0.0084 0.8785 ± 0.0175

Table A.15: Classification performance for the Adapter

Supp - Conf Accuracy Precision Recall Specificity F1

M
A

X
L

(0.01) - (0.5) 0.8542 ± 0.0047 0.8356 ± 0.0051 0.8885 ± 0.0066 0.8190 ± 0.0059 0.8604 ± 0.0047
(0.01) - (0.6) 0.8624 ± 0.0034 0.8402 ± 0.0035 0.9021 ± 0.0058 0.8218 ± 0.0044 0.8692 ± 0.0034
(0.01) - (0.7) 0.8657 ± 0.0028 0.8431 ± 0.0029 0.9048 ± 0.0047 0.8258 ± 0.0037 0.8722 ± 0.0028
(0.05) - (0.5) 0.8604 ± 0.0024 0.8411 ± 0.0023 0.8953 ± 0.0039 0.8247 ± 0.0027 0.8666 ± 0.0024
(0.05) - (0.6) 0.8630 ± 0.0025 0.8411 ± 0.0029 0.9012 ± 0.0046 0.8237 ± 0.0039 0.8695 ± 0.0025
(0.05) - (0.7) 0.8642 ± 0.0026 0.8419 ± 0.0029 0.9028 ± 0.0047 0.8246 ± 0.0040 0.8706 ± 0.0026
(0.1) - (0.5) 0.8667 ± 0.0015 0.8402 ± 0.0013 0.9121 ± 0.0029 0.8203 ± 0.0013 0.8740 ± 0.0017
(0.1) - (0.6) 0.8672 ± 0.0018 0.8407 ± 0.0021 0.9124 ± 0.0024 0.8208 ± 0.0026 0.8744 ± 0.0017
(0.1) - (0.7) 0.8675 ± 0.0019 0.8413 ± 0.0030 0.9120 ± 0.0024 0.8220 ± 0.0032 0.8746 ± 0.0018

D
F

M
L

(0.01) - (0.5) 0.8621 ± 0.0045 0.8392 ± 0.0046 0.9020 ± 0.0073 0.8211 ± 0.0061 0.8686 ± 0.0046
(0.01) - (0.6) 0.8641 ± 0.0041 0.8464 ± 0.0044 0.8964 ± 0.0083 0.8309 ± 0.0059 0.8697 ± 0.0044
(0.01) - (0.7) 0.8679 ± 0.0028 0.8450 ± 0.0040 0.9069 ± 0.0057 0.8279 ± 0.0059 0.8743 ± 0.0028
(0.05) - (0.5) 0.8636 ± 0.0028 0.8418 ± 0.0022 0.9021 ± 0.0071 0.8242 ± 0.0036 0.8701 ± 0.0033
(0.05) - (0.6) 0.8634 ± 0.0026 0.8447 ± 0.0044 0.8969 ± 0.0069 0.8292 ± 0.0061 0.8692 ± 0.0029
(0.05) - (0.7) 0.8665 ± 0.0033 0.8428 ± 0.0037 0.9069 ± 0.0060 0.8250 ± 0.0051 0.8730 ± 0.0033
(0.1) - (0.5) 0.8655 ± 0.0024 0.8406 ± 0.0024 0.9084 ± 0.0054 0.8214 ± 0.0031 0.8724 ± 0.0026
(0.1) - (0.6) 0.8632 ± 0.0033 0.8440 ± 0.0038 0.8974 ± 0.0073 0.8283 ± 0.0057 0.8691 ± 0.0035
(0.1) - (0.7) 0.8662 ± 0.0026 0.8414 ± 0.0032 0.9084 ± 0.0047 0.8230 ± 0.0036 0.8730 ± 0.0028

D
F

M
L
χ
2

(0.01) - (0.5) 0.8673 ± 0.0013 0.8401 ± 0.0018 0.9134 ± 0.0017 0.8201 ± 0.0019 0.8746 ± 0.0013
(0.01) - (0.6) 0.8680 ± 0.0022 0.8423 ± 0.0027 0.9119 ± 0.0033 0.8229 ± 0.0030 0.8750 ± 0.0022
(0.01) - (0.7) 0.8688 ± 0.0022 0.8430 ± 0.0028 0.9121 ± 0.0032 0.8244 ± 0.0038 0.8757 ± 0.0020
(0.05) - (0.5) 0.8670 ± 0.0013 0.8400 ± 0.0015 0.9130 ± 0.0018 0.8198 ± 0.0016 0.8744 ± 0.0013
(0.05) - (0.6) 0.8671 ± 0.0019 0.8406 ± 0.0025 0.9119 ± 0.0024 0.8212 ± 0.0032 0.8742 ± 0.0018
(0.05) - (0.7) 0.8684 ± 0.0016 0.8421 ± 0.0027 0.9129 ± 0.0026 0.8229 ± 0.0036 0.8754 ± 0.0014
(0.1) - (0.5) 0.8674 ± 0.0004 0.8401 ± 0.0013 0.9137 ± 0.0010 0.8198 ± 0.0010 0.8748 ± 0.0009
(0.1) - (0.6) 0.8676 ± 0.0016 0.8407 ± 0.0021 0.9133 ± 0.0017 0.8208 ± 0.0025 0.8748 ± 0.0014
(0.1) - (0.7) 0.8679 ± 0.0019 0.8414 ± 0.0030 0.9127 ± 0.0022 0.8220 ± 0.0032 0.8750 ± 0.0018

D
F

M
L
L
a
p

(0.01) - (0.5) 0.8544 ± 0.0038 0.8388 ± 0.0035 0.8840 ± 0.0070 0.8241 ± 0.0044 0.8600 ± 0.0040
(0.01) - (0.6) 0.8629 ± 0.0031 0.8416 ± 0.0032 0.9008 ± 0.0063 0.8240 ± 0.0043 0.8694 ± 0.0034
(0.01) - (0.7) 0.8656 ± 0.0028 0.8442 ± 0.0027 0.9025 ± 0.0046 0.8277 ± 0.0034 0.8718 ± 0.0028
(0.05) - (0.5) 0.8603 ± 0.0025 0.8410 ± 0.0023 0.8950 ± 0.0040 0.8246 ± 0.0027 0.8664 ± 0.0026
(0.05) - (0.6) 0.8638 ± 0.0024 0.8416 ± 0.0029 0.9023 ± 0.0050 0.8243 ± 0.0039 0.8703 ± 0.0025
(0.05) - (0.7) 0.8641 ± 0.0024 0.8423 ± 0.0027 0.9020 ± 0.0050 0.8252 ± 0.0038 0.8704 ± 0.0025
(0.1) - (0.5) 0.8666 ± 0.0015 0.8402 ± 0.0013 0.9119 ± 0.0028 0.8202 ± 0.0012 0.8739 ± 0.0017
(0.1) - (0.6) 0.8672 ± 0.0019 0.8407 ± 0.0022 0.9124 ± 0.0024 0.8209 ± 0.0027 0.8744 ± 0.0018
(0.1) - (0.7) 0.8673 ± 0.0019 0.8413 ± 0.0029 0.9113 ± 0.0027 0.8221 ± 0.0031 0.8743 ± 0.0019
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Table A.16: Classification performance for the Factory Method

Supp - Conf Accuracy Precision Recall Specificity F1

M
A

X
L

(0.01) - (0.5) 0.8200 ± 0.0086 0.8331 ± 0.0089 0.8348 ± 0.0099 0.8028 ± 0.0123 0.8329 ± 0.0079
(0.01) - (0.6) 0.8198 ± 0.0081 0.8294 ± 0.0088 0.8404 ± 0.0110 0.7957 ± 0.0127 0.8335 ± 0.0077
(0.01) - (0.7) 0.8266 ± 0.0081 0.8311 ± 0.0082 0.8540 ± 0.0135 0.7946 ± 0.0119 0.8411 ± 0.0081
(0.05) - (0.5) 0.7946 ± 0.0074 0.8313 ± 0.0088 0.7790 ± 0.0132 0.8128 ± 0.0136 0.8026 ± 0.0076
(0.05) - (0.6) 0.8028 ± 0.0098 0.8257 ± 0.0102 0.8062 ± 0.0156 0.7988 ± 0.0142 0.8141 ± 0.0099
(0.05) - (0.7) 0.8156 ± 0.0079 0.8260 ± 0.0076 0.8356 ± 0.0173 0.7922 ± 0.0131 0.8292 ± 0.0085
(0.1) - (0.5) 0.8102 ± 0.0110 0.8070 ± 0.0128 0.8556 ± 0.0117 0.7573 ± 0.0216 0.8291 ± 0.0091
(0.1) - (0.6) 0.8174 ± 0.0087 0.8095 ± 0.0087 0.8691 ± 0.0126 0.7572 ± 0.0148 0.8366 ± 0.0081
(0.1) - (0.7) 0.8221 ± 0.0116 0.7998 ± 0.0122 0.8992 ± 0.0130 0.7322 ± 0.0213 0.8451 ± 0.0097

D
F

M
L

(0.01) - (0.5) 0.8124 ± 0.0089 0.8013 ± 0.0096 0.8697 ± 0.0121 0.7456 ± 0.0159 0.8328 ± 0.0080
(0.01) - (0.6) 0.8198 ± 0.0099 0.8141 ± 0.0118 0.8663 ± 0.0157 0.7656 ± 0.0186 0.8378 ± 0.0092
(0.01) - (0.7) 0.8275 ± 0.0077 0.8177 ± 0.0075 0.8783 ± 0.0175 0.7683 ± 0.0132 0.8455 ± 0.0082
(0.05) - (0.5) 0.7958 ± 0.0091 0.7926 ± 0.0115 0.8457 ± 0.0126 0.7376 ± 0.0189 0.8166 ± 0.0079
(0.05) - (0.6) 0.8069 ± 0.0109 0.8047 ± 0.0099 0.8505 ± 0.0163 0.7560 ± 0.0150 0.8253 ± 0.0105
(0.05) - (0.7) 0.8219 ± 0.0080 0.8115 ± 0.0084 0.8753 ± 0.0149 0.7597 ± 0.0142 0.8408 ± 0.0080
(0.1) - (0.5) 0.7908 ± 0.0089 0.7666 ± 0.0098 0.8853 ± 0.0144 0.6805 ± 0.0185 0.8197 ± 0.0081
(0.1) - (0.6) 0.8062 ± 0.0099 0.7841 ± 0.0102 0.8886 ± 0.0137 0.7100 ± 0.0171 0.8315 ± 0.0088
(0.1) - (0.7) 0.8143 ± 0.0145 0.7887 ± 0.0125 0.9001 ± 0.0175 0.7143 ± 0.0194 0.8393 ± 0.0130

D
F

M
L
χ
2

(0.01) - (0.5) 0.8201 ± 0.0082 0.8202 ± 0.0092 0.8561 ± 0.0113 0.7780 ± 0.0151 0.8363 ± 0.0074
(0.01) - (0.6) 0.8221 ± 0.0090 0.8180 ± 0.0094 0.8655 ± 0.0176 0.7716 ± 0.0153 0.8392 ± 0.0090
(0.01) - (0.7) 0.8308 ± 0.0089 0.8180 ± 0.0071 0.8863 ± 0.0218 0.7661 ± 0.0135 0.8489 ± 0.0099
(0.05) - (0.5) 0.8102 ± 0.0096 0.8120 ± 0.0084 0.8466 ± 0.0160 0.7677 ± 0.0133 0.8271 ± 0.0095
(0.05) - (0.6) 0.8197 ± 0.0117 0.8105 ± 0.0098 0.8725 ± 0.0195 0.7582 ± 0.0153 0.8382 ± 0.0114
(0.05) - (0.7) 0.8304 ± 0.0082 0.8113 ± 0.0081 0.8965 ± 0.0158 0.7533 ± 0.0145 0.8503 ± 0.0081
(0.1) - (0.5) 0.8134 ± 0.0102 0.7910 ± 0.0111 0.8943 ± 0.0119 0.7190 ± 0.0205 0.8377 ± 0.0083
(0.1) - (0.6) 0.8227 ± 0.0088 0.7971 ± 0.0093 0.9046 ± 0.0124 0.7271 ± 0.0163 0.8461 ± 0.0076
(0.1) - (0.7) 0.8243 ± 0.0111 0.7940 ± 0.0123 0.9154 ± 0.0134 0.7180 ± 0.0228 0.8490 ± 0.0091

D
F

M
L
L
a
p

(0.01) - (0.5) 0.8097 ± 0.0076 0.8442 ± 0.0066 0.7957 ± 0.0125 0.8262 ± 0.0090 0.8177 ± 0.0079
(0.01) - (0.6) 0.8097 ± 0.0101 0.8325 ± 0.0102 0.8120 ± 0.0137 0.8070 ± 0.0141 0.8206 ± 0.0098
(0.01) - (0.7) 0.8189 ± 0.0097 0.8355 ± 0.0100 0.8298 ± 0.0149 0.8062 ± 0.0137 0.8310 ± 0.0096
(0.05) - (0.5) 0.7857 ± 0.0094 0.8315 ± 0.0088 0.7582 ± 0.0195 0.8177 ± 0.0140 0.7911 ± 0.0110
(0.05) - (0.6) 0.7984 ± 0.0093 0.8280 ± 0.0114 0.7934 ± 0.0156 0.8042 ± 0.0160 0.8083 ± 0.0096
(0.05) - (0.7) 0.8125 ± 0.0084 0.8281 ± 0.0099 0.8256 ± 0.0178 0.7973 ± 0.0159 0.8251 ± 0.0089
(0.1) - (0.5) 0.8048 ± 0.0118 0.8018 ± 0.0149 0.8532 ± 0.0162 0.7483 ± 0.0271 0.8245 ± 0.0097
(0.1) - (0.6) 0.8145 ± 0.0093 0.8080 ± 0.0105 0.8657 ± 0.0156 0.7548 ± 0.0196 0.8338 ± 0.0086
(0.1) - (0.7) 0.8208 ± 0.0113 0.7984 ± 0.0128 0.8993 ± 0.0141 0.7292 ± 0.0238 0.8442 ± 0.0092

Table A.17: Classification performance for the Decorator

Supp - Conf Accuracy Precision Recall Specificity F1

M
A

X
L

(0.01) - (0.5) 0.7848 ± 0.0135 0.8466 ± 0.0288 0.5449 ± 0.0265 0.9303 ± 0.0132 0.6448 ± 0.0236
(0.01) - (0.6) 0.7904 ± 0.0161 0.8369 ± 0.0393 0.5605 ± 0.0369 0.9301 ± 0.0141 0.6560 ± 0.0331
(0.01) - (0.7) 0.7973 ± 0.0168 0.8311 ± 0.0278 0.5898 ± 0.0393 0.9232 ± 0.0129 0.6755 ± 0.0341
(0.05) - (0.5) 0.7882 ± 0.0125 0.8753 ± 0.0335 0.5235 ± 0.0301 0.9489 ± 0.0134 0.6357 ± 0.0279
(0.05) - (0.6) 0.7936 ± 0.0130 0.8778 ± 0.0271 0.5388 ± 0.0312 0.9484 ± 0.0125 0.6530 ± 0.0252
(0.05) - (0.7) 0.8051 ± 0.0141 0.8717 ± 0.0236 0.5779 ± 0.0364 0.9431 ± 0.0105 0.6794 ± 0.0287
(0.1) - (0.5) 0.7690 ± 0.0155 0.8679 ± 0.0341 0.4693 ± 0.0379 0.9509 ± 0.0140 0.5913 ± 0.0370
(0.1) - (0.6) 0.7725 ± 0.0147 0.8592 ± 0.0322 0.4904 ± 0.0386 0.9438 ± 0.0148 0.6064 ± 0.0327
(0.1) - (0.7) 0.7927 ± 0.0129 0.8526 ± 0.0307 0.5547 ± 0.0319 0.9372 ± 0.0117 0.6584 ± 0.0275

D
F

M
L

(0.01) - (0.5) 0.8084 ± 0.0149 0.8552 ± 0.0249 0.6135 ± 0.0327 0.9267 ± 0.0122 0.6968 ± 0.0299
(0.01) - (0.6) 0.8128 ± 0.0149 0.8508 ± 0.0244 0.6279 ± 0.0322 0.9253 ± 0.0141 0.7068 ± 0.0279
(0.01) - (0.7) 0.8168 ± 0.0162 0.8393 ± 0.0239 0.6523 ± 0.0399 0.9166 ± 0.0145 0.7203 ± 0.0328
(0.05) - (0.5) 0.8097 ± 0.0146 0.8424 ± 0.0253 0.6242 ± 0.0375 0.9223 ± 0.0138 0.7018 ± 0.0291
(0.05) - (0.6) 0.8104 ± 0.0147 0.8514 ± 0.0286 0.6204 ± 0.0318 0.9260 ± 0.0136 0.7039 ± 0.0250
(0.05) - (0.7) 0.8212 ± 0.0210 0.8438 ± 0.0310 0.6596 ± 0.0489 0.9193 ± 0.0163 0.7262 ± 0.0386
(0.1) - (0.5) 0.7839 ± 0.0111 0.8620 ± 0.0290 0.5219 ± 0.0273 0.9429 ± 0.0138 0.6310 ± 0.0248
(0.1) - (0.6) 0.7851 ± 0.0166 0.8574 ± 0.0365 0.5360 ± 0.0425 0.9363 ± 0.0162 0.6381 ± 0.0372
(0.1) - (0.7) 0.8117 ± 0.0094 0.8479 ± 0.0239 0.6246 ± 0.0306 0.9254 ± 0.0128 0.7061 ± 0.0210

D
F

M
L
χ
2

(0.01) - (0.5) 0.8143 ± 0.0174 0.7993 ± 0.0285 0.7037 ± 0.0350 0.8815 ± 0.0189 0.7352 ± 0.0280
(0.01) - (0.6) 0.8191 ± 0.0141 0.8042 ± 0.0258 0.7099 ± 0.0264 0.8855 ± 0.0170 0.7416 ± 0.0229
(0.01) - (0.7) 0.8188 ± 0.0150 0.7979 ± 0.0229 0.7184 ± 0.0340 0.8797 ± 0.0155 0.7448 ± 0.0265
(0.05) - (0.5) 0.8118 ± 0.0141 0.7835 ± 0.0203 0.7122 ± 0.0318 0.8722 ± 0.0167 0.7360 ± 0.0221
(0.05) - (0.6) 0.8151 ± 0.0150 0.7993 ± 0.0248 0.7059 ± 0.0311 0.8815 ± 0.0173 0.7384 ± 0.0238
(0.05) - (0.7) 0.8229 ± 0.0179 0.8043 ± 0.0269 0.7251 ± 0.0393 0.8824 ± 0.0171 0.7501 ± 0.0302
(0.1) - (0.5) 0.8009 ± 0.0123 0.8088 ± 0.0250 0.6379 ± 0.0264 0.8997 ± 0.0157 0.6991 ± 0.0217
(0.1) - (0.6) 0.8056 ± 0.0162 0.8208 ± 0.0266 0.6391 ± 0.0393 0.9067 ± 0.0157 0.7031 ± 0.0304
(0.1) - (0.7) 0.8220 ± 0.0164 0.8166 ± 0.0175 0.7014 ± 0.0377 0.8952 ± 0.0116 0.7428 ± 0.0278

D
F

M
L
L
a
p

(0.01) - (0.5) 0.7816 ± 0.0127 0.8782 ± 0.0270 0.5031 ± 0.0246 0.9508 ± 0.0119 0.6217 ± 0.0213
(0.01) - (0.6) 0.7833 ± 0.0150 0.8680 ± 0.0448 0.5049 ± 0.0323 0.9524 ± 0.0128 0.6212 ± 0.0329
(0.01) - (0.7) 0.7950 ± 0.0172 0.8699 ± 0.0306 0.5489 ± 0.0414 0.9443 ± 0.0138 0.6549 ± 0.0382
(0.05) - (0.5) 0.7817 ± 0.0147 0.8850 ± 0.0410 0.4929 ± 0.0320 0.9570 ± 0.0150 0.6139 ± 0.0325
(0.05) - (0.6) 0.7843 ± 0.0167 0.8838 ± 0.0393 0.5037 ± 0.0370 0.9548 ± 0.0157 0.6251 ± 0.0322
(0.05) - (0.7) 0.7999 ± 0.0142 0.8800 ± 0.0277 0.5547 ± 0.0336 0.9488 ± 0.0120 0.6637 ± 0.0286
(0.1) - (0.5) 0.7614 ± 0.0137 0.8739 ± 0.0343 0.4412 ± 0.0357 0.9559 ± 0.0131 0.5675 ± 0.0366
(0.1) - (0.6) 0.7679 ± 0.0162 0.8722 ± 0.0372 0.4639 ± 0.0377 0.9527 ± 0.0138 0.5870 ± 0.0361
(0.1) - (0.7) 0.7824 ± 0.0155 0.8552 ± 0.0362 0.5174 ± 0.0356 0.9433 ± 0.0141 0.6307 ± 0.0337
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Table A.18: Classification performance for the Composite

Supp - Conf Accuracy Precision Recall Specificity F1

M
A

X
L

(0.01) - (0.5) 0.8718 ± 0.0193 0.8201 ± 0.0791 0.5544 ± 0.0712 0.9690 ± 0.0139 0.6309 ± 0.0668
(0.01) - (0.6) 0.8694 ± 0.0155 0.8109 ± 0.1024 0.5533 ± 0.0491 0.9662 ± 0.0116 0.6244 ± 0.0590
(0.01) - (0.7) 0.8626 ± 0.0152 0.7976 ± 0.0931 0.5122 ± 0.0513 0.9700 ± 0.0151 0.5935 ± 0.0510
(0.05) - (0.5) 0.8677 ± 0.0171 0.8211 ± 0.0795 0.5311 ± 0.0632 0.9706 ± 0.0113 0.6145 ± 0.0577
(0.05) - (0.6) 0.8647 ± 0.0171 0.8283 ± 0.0733 0.5178 ± 0.0569 0.9711 ± 0.0116 0.6062 ± 0.0585
(0.05) - (0.7) 0.8737 ± 0.0179 0.8309 ± 0.0953 0.5456 ± 0.0561 0.9742 ± 0.0112 0.6322 ± 0.0586
(0.1) - (0.5) 0.8654 ± 0.0156 0.8175 ± 0.0889 0.5022 ± 0.0602 0.9767 ± 0.0105 0.5911 ± 0.0556
(0.1) - (0.6) 0.8661 ± 0.0146 0.7953 ± 0.0742 0.5033 ± 0.0617 0.9773 ± 0.0097 0.5854 ± 0.0544
(0.1) - (0.7) 0.8651 ± 0.0179 0.8051 ± 0.0975 0.4822 ± 0.0643 0.9827 ± 0.0087 0.5744 ± 0.0642

D
F

M
L

(0.01) - (0.5) 0.8984 ± 0.0153 0.8517 ± 0.0566 0.7033 ± 0.0646 0.9581 ± 0.0193 0.7350 ± 0.0497
(0.01) - (0.6) 0.8932 ± 0.0149 0.8526 ± 0.0614 0.6944 ± 0.0517 0.9544 ± 0.0159 0.7280 ± 0.0474
(0.01) - (0.7) 0.8864 ± 0.0101 0.8381 ± 0.0747 0.6189 ± 0.0372 0.9683 ± 0.0127 0.6801 ± 0.0361
(0.05) - (0.5) 0.8933 ± 0.0176 0.8429 ± 0.0782 0.7022 ± 0.0655 0.9514 ± 0.0199 0.7295 ± 0.0538
(0.05) - (0.6) 0.8934 ± 0.0175 0.8459 ± 0.0592 0.6856 ± 0.0670 0.9570 ± 0.0165 0.7238 ± 0.0558
(0.05) - (0.7) 0.8949 ± 0.0148 0.8696 ± 0.0661 0.6567 ± 0.0572 0.9679 ± 0.0102 0.7195 ± 0.0461
(0.1) - (0.5) 0.8945 ± 0.0139 0.8431 ± 0.0848 0.6722 ± 0.0558 0.9627 ± 0.0134 0.7148 ± 0.0492
(0.1) - (0.6) 0.8900 ± 0.0172 0.8279 ± 0.0588 0.6733 ± 0.0646 0.9565 ± 0.0168 0.7117 ± 0.0532
(0.1) - (0.7) 0.8946 ± 0.0177 0.8691 ± 0.0840 0.6344 ± 0.0641 0.9747 ± 0.0134 0.7009 ± 0.0574

D
F

M
L
χ
2

(0.01) - (0.5) 0.8887 ± 0.0241 0.7589 ± 0.0598 0.8833 ± 0.0729 0.8901 ± 0.0262 0.7884 ± 0.0549
(0.01) - (0.6) 0.8790 ± 0.0213 0.7390 ± 0.0530 0.8733 ± 0.0567 0.8810 ± 0.0223 0.7708 ± 0.0483
(0.01) - (0.7) 0.8888 ± 0.0180 0.7773 ± 0.0569 0.8044 ± 0.0543 0.9146 ± 0.0220 0.7568 ± 0.0391
(0.05) - (0.5) 0.8806 ± 0.0185 0.7317 ± 0.0585 0.8978 ± 0.0602 0.8751 ± 0.0186 0.7819 ± 0.0510
(0.05) - (0.6) 0.8859 ± 0.0181 0.7567 ± 0.0408 0.8900 ± 0.0700 0.8845 ± 0.0243 0.7885 ± 0.0425
(0.05) - (0.7) 0.8918 ± 0.0194 0.7792 ± 0.0435 0.8389 ± 0.0615 0.9079 ± 0.0176 0.7808 ± 0.0476
(0.1) - (0.5) 0.8856 ± 0.0223 0.7485 ± 0.0534 0.8911 ± 0.0590 0.8837 ± 0.0284 0.7879 ± 0.0492
(0.1) - (0.6) 0.8780 ± 0.0221 0.7425 ± 0.0463 0.8722 ± 0.0495 0.8799 ± 0.0259 0.7726 ± 0.0420
(0.1) - (0.7) 0.8924 ± 0.0159 0.7756 ± 0.0528 0.8422 ± 0.0596 0.9078 ± 0.0186 0.7812 ± 0.0432

D
F

M
L
L
a
p

(0.01) - (0.5) 0.8687 ± 0.0194 0.8075 ± 0.0885 0.5256 ± 0.0729 0.9737 ± 0.0124 0.6060 ± 0.0706
(0.01) - (0.6) 0.8643 ± 0.0165 0.7908 ± 0.1072 0.5100 ± 0.0639 0.9727 ± 0.0095 0.5885 ± 0.0722
(0.01) - (0.7) 0.8605 ± 0.0139 0.7845 ± 0.1009 0.4811 ± 0.0588 0.9768 ± 0.0117 0.5686 ± 0.0582
(0.05) - (0.5) 0.8613 ± 0.0190 0.8091 ± 0.0913 0.4956 ± 0.0692 0.9733 ± 0.0106 0.5848 ± 0.0670
(0.05) - (0.6) 0.8607 ± 0.0170 0.8033 ± 0.0887 0.4900 ± 0.0585 0.9744 ± 0.0112 0.5785 ± 0.0631
(0.05) - (0.7) 0.8682 ± 0.0181 0.8214 ± 0.0830 0.5089 ± 0.0649 0.9783 ± 0.0100 0.6036 ± 0.0618
(0.1) - (0.5) 0.8610 ± 0.0160 0.8028 ± 0.0827 0.4822 ± 0.0648 0.9771 ± 0.0108 0.5724 ± 0.0570
(0.1) - (0.6) 0.8621 ± 0.0144 0.7912 ± 0.0791 0.4844 ± 0.0607 0.9779 ± 0.0091 0.5702 ± 0.0565
(0.1) - (0.7) 0.8604 ± 0.0157 0.7901 ± 0.0913 0.4600 ± 0.0540 0.9834 ± 0.0089 0.5541 ± 0.0554
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