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bDepartment of Quantitative Methods, Universidad Loyola Andalucia, c/ Escritor Aguayo, 4, Córdoba, Spain

ABSTRACT

Emerging technologies have led to the creation of huge databases that require reducing their high di-
mensionality to be analysed. Many suboptimal methods have been proposed for this purpose. On
the other hand, few efficient optimal methods have been proposed due to their high computational
complexity. However, these methods are necessary to evaluate the performance of suboptimal meth-
ods. This paper proposes a new optimal approach, called OSTS, to improve the segmentation of time
series. The proposed method is based on A∗ algorithm and it uses an improved version of the well–
known Salotti method for obtaining optimal polygonal approximations. Firstly, a suboptimal method
for time-series segmentation is applied to obtain pruning values. In this case, a suboptimal method
based on Bottom-Up technique is selected. Then, the results of the suboptimal method are used as
pruning values to reduce the computational time of the proposed method. The proposal has been com-
pared to other suboptimal methods and the results have shown that the method is optimal, and, in some
cases, the computational time is similar to other suboptimal methods.

c� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the high dimensionality of data and the large size
of databases has originated the development of methods to re-
duce its dimensionality with minimum information loss (Ka-
malzadeh et al., 2017). These methods are applied in time series
data mining, an important area of research in many and differ-
ent fields of science. Due to this, the problem of time series
segmentation is an important task in data mining.

A time-series Ts is a sequence of data points ordered in time
such that Ts = (t1, t2, . . . , tm) where t1, t2, . . . , tm are individual
observations and m is the number of observations in a time se-
ries.

Time series are applied to different problems, such as cluster-
ing (Ferreira and Zhao, 2016) and classification (Zhao and Itti,
2016), among others (Duran-Rosal et al., 2018a).

Segmentation can be considered as a discretization problem
and aims to accurately approximate time series. It is used to
reduce the dimensionality of the time series while preserving
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essential features and characteristics of the original time series
(Sangeeta and Geeta, 2012).

In the literature, time series segmentation techniques are
also called time series representation procedures. Bajcsy et al.
(1990) even make the point that both steps should not be han-
dled separately. A new symbolic representation of time series
and a hierarchical classification of all the various time series
representations were proposed by Lin et al. (2007).

Segmentation consists of cutting the time series in some spe-
cific points, called cut points (CP), in order to achieve two im-
portant goals: 1) the search of useful patterns or segments in
time series (Nikolaou et al., 2015) and 2) the reduction of the
dimensionality or the number of points of time series by trans-
forming it into a new representation space (Aghabozorgi and
Wah, 2015)

This work can be included in the second objective. In this
case, the general approach is to segment a time series into sub-
sequences (windows), and, then, primitive shape patterns are
selected to improve the representation of the original time se-
ries. The simplest and most intuitive technique is called Piece-
wise Linear Representation (PLR). This technique approxi-
mates the time series, of length n, with K straight lines. There
are two methods for obtaining the straight lines, by using linear
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interpolation or by using linear regression (Keogh et al., 2004).
The proposed method uses PLR with linear interpolation

due to its low computational complexity. Usually, K is much
smaller than n to reduce the number of points of the time series
and to make its computation more efficient.

The problem can be addressed in different ways (Keogh et al.,
2004).

• Given a time series, obtain the best segmentation using K
segments.

• Given a time series, obtain the best segmentation such that
the maximum error for any segment does not exceed a pre-
fixed threshold.

• Given a time series, obtain the best segmentation such that
the accumulated error of all segments is less than some
prefixed threshold.

The error is calculated from the vertical differences between
the straight line obtained in the segmentation and the real data
points, squaring them and then summing them together (i.e. the
L2-norm between the line and the data).

Another commonly used measure of goodness of fit is the
distance between the best fit line and the data point furthest
away in the vertical direction (i.e. the L∞-norm between the
line and the data).

This work can be included in the first item and uses L2-norm.
Considering how to get the cut points, segmentation methods

can be classified into three three categories (Keogh et al., 2004).

• Sliding Windows: A segment is grown until it exceeds
some error bound. The process repeats with the next data
point not included in the newly approximated segment.

• Top-Down: The time series is recursively partitioned until
some stopping criteria is met.

• Bottom-Up: Starting from the finest possible approxima-
tion, segments are merged until some stopping criteria is
met.

On the other hand, the methods that segment the complete
time series are called offline methods and those that produce
segments based on the data seen so far are called online meth-
ods. Recently, other techniques based on metaheuristics (Ge-
netic Algorithms and particle swarm optimisation) have been
used (Duran-Rosal et al., 2018a), (Duran-Rosal et al., 2018b).
Another recent and interesting work proposes an online seg-
mentation method that adapts unannounced mutations of the
data (Gonzalez-Vidal et al., 2018). Sarker (2019) discusses the
problem of time-series segmentation by comparing the static
with the dynamic segmentation, taking into account if the num-
ber of segments is preset or not. Sarker et al. (2019) consid-
ers time segments according to recent activities. This work
proposes an offline method, called OSTS, based on an im-
proved and adapted version (Carmona-Poyato et al., 2017) of
the well-known Salotti method (Salotti, 2002) for obtaining op-
timal polygonal approximations. In order to reduce the com-
putational time, the present work uses pruning values obtained
from a suboptimal Bottom-Up method. For this purpose, an

adapted version of the suboptimal Pikaz method (Pikaz and
Dinstein, 1995), improved by Masood (2008), has been used.
The present paper is arranged as follows. Section 2 describes
the related and used works to compare the proposed method.
Section 3 explains the new proposal. The experiments and re-
sults are detailed in Section 4. Finally, the main conclusions are
summarized in Section 5.

2. Related work

In this section, the methods used to compare with the pro-
posed method will be briefly described.

Bottom-Up method (Keogh et al., 2004): in this method, all
the points are considered as possible cut points. Then, in each
iteration, the two adjacent segments that produce a minimum
error are merged.

Top-Down method (Keogh et al., 2004) is the complementary
algorithm. At the beginning, the segment that joins the first and
the last point of the time series is used to segment all the time
series. Then, this method recursively divides the segment by
selecting the point that produces the maximum error reduction
as cut point.

Sarker et al. (2017) proposed an improved version of Bottom-
Up method. A dynamic behavior-oriented time segmentation
approach for extracting temporal behaviour rules, applied to
mine mobile user behavior, was used. This approach dynam-
ically identifies the optimal continuous time segments, each of
which is dominated by a particular behavior of the user.

The previous methods are run until some stopping criteria are
met (related to the approximation error). In order to use these
algorithms, they have been adapted and the stopping criteria is
the final number of cut points.

Duran-Rosal et al. (2018b) used Bottom-Up and Top-Down
methods as a local search strategy, and then this local search
was combined with the metaheuristics GA (Genetic Algo-
rithm), PSO (Particle Swarm Optimisation) and the different
PSO variants: at the beginning of the evolution, a 50% of the
population is randomly selected, and these individuals are im-
proved by the local search. After that, the metaheuristic is
applied to the complete population, including standard ran-
dom individuals and the ones improved by the local search
method. Finally, the best solution obtained by the metaheuristic
is also applied to local search. Taking into account this proce-
dure and the method described in (Duran-Rosal et al., 2016),
a 40% of the cut points, found by the GA, Barebones parti-
cle swarm optimisation algorithm (BBPSO), Exploiting bare-
bones particle swarm optimisation algorithm (BBePSO), and
Dynamic exploiting barebones particle swarm optimisation al-
gorithm (DBBePSO) are fine-tuned resulting the hybrid ver-
sions of GA, PSO and PSO variants (HGA, HPSO, HBBPSO,
HBBePSO, HDBBePSO) (Duran-Rosal et al., 2018b).

For all algorithms, the population size is 100. The number
of segments is set to a 2.5% of the total number of points of
the time series. The stop criterion of all the algorithms is a
maximum number of fitness evaluations, which is established
based on the length of each time series, N. These algorithms
have been run 30 times with different random seeds.
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3. Proposed method

Although the optimal methods have high computational com-
plexity and cannot be used in real-time applications, they can
be used to assess the goodness of suboptimal methods. Duncan
and Bryant (1996) suggest to use dynamic programming for op-
timal time series segmentation. However, this method has high
computational complexity like all methods based on this tech-
nique. On the other hand, it is possible to reduce the compu-
tational time of an optimal method using an efficient pruning
technique. So, an optimal method could achieve computational
times comparable to suboptimal methods. This is the goal of
the present work.

The following features of the OSTS method can be high-
lighted:

• To obtain the optimal time series segmentation, a method
based on an improved version of Salotti method is pro-
posed (Carmona-Poyato et al., 2017).

• A suboptimal method, in this case Pikaz method, is used to
obtain pruning values in order to reduce its computational
time (Pikaz and Dinstein, 1995).

The method is detailed in the following subsections.

3.1. Adapted Pikaz suboptimal method
Pikaz and Dinstein (1995) proposed a very efficient subop-

timal method based on a greedy iterative algorithm to obtain
polygonal approximation of a boundary. This method elimi-
nates the redundant point of the contour with the smallest asso-
ciated error value. To calculate the associated error with each
point Pj, two neighbouring points, Pj−1 and Pj+1, are joined
with a straight line. Maximum perpendicular (squared) dis-
tance of all boundary points between Pj−1 and Pj+1 from the
straight line is called as associated error value of point Pj. In
each iteration, only the point with the smallest associated er-
ror value is deleted. If more than one point with the smallest
associated error value exists, any of them may be removed be-
cause sequence of removal (in case of more than one candidate)
will not affect the results. When a point is deleted, only the as-
sociated error with its two neighbours must be updated. This
method has a low computational complexity (O(n log n)) and
can produce polygonal approximation with any pre-set number
of final points. This method has been adapted in order to apply
it in time series. The associated error is calculated from the ver-
tical differences between each point Pj and the straight line that
joins Pj−1 and Pj+1 instead of perpendicular distance. In this
way, a preset number of cut points of the time series could be
obtained. This method can be considered a Bottom-Up method.

So that the results of this method can be applied as pruning
values for the optimal method, the accumulated error values for
each point in the series are calculated. This value is called the
integral squared error (ISE). The value of ISEn for each point
Pn of the time series is calculated as:

ISEn =

n�

i=1

e2
i (1)

where ei is the vertical distance from Pi to its corresponding
approximated segment.

3.2. Optimal Salotti method
Salotti (Salotti, 2002) proposed a method based on the search

of the shortest path in a graph using A∗ algorithm, to obtain
optimal polygonal approximations of a boundary, minimizing
the global ISE of the approximation.

If the A∗ algorithm is applied directly to solve this problem,
its computational time is similar to algorithm based on dynamic
programming due to the cost of the management of the graph
and node sorting. In order to reduce the search, Salotti (Salotti,
2002) proposed two improvements:

• To obtain a first rough polygonal approximation to esti-
mate the value of a threshold on the maximum global er-
ror. Thus, nodes which cannot lead to optimal solutions
are pruned. This rough polygonal approximation is ob-
tained by using a suboptimal method with low computa-
tional complexity.

• To stop the exploration of successors of the shortest path
in the graph as soon as possible. For this reason, Salotti
proposed a simple solution to stop the exploration using
a lower-bound calculated from the linear regressions y/x
and x/y to estimate least-square errors. When this lower
bound is greater than the maximum global error, this node
cannot lead to optimal solution and it is pruned, and an-
other node is tested. When the node that depicts the last
point of the time series is selected, the algorithm finishes.

Using these improvements, Salotti managed to reduce the time
complexity of the A∗ algorithm. In this case the computational
complexity is O(MN2), where M is the number points of the
polygonal approximation and N is the the number of points of
the boundary. Since M is much smaller than N, the computa-
tional complexity is close to O(N2).

3.3. Improved optimal Salotti method
Carmona-Poyato et al. (2017) improved Salotti method by

calculating the lower-bound using the minimum error of the
best line segment approximating a set S of consecutive points
(Pi, . . . , Pj) instead of using the linear regressions y/x and x/y
to estimate least-square errors. This method is known as total
least squares or orthogonal regression. By using this method,
the time taken to calculate the lower-bound is halved. This im-
provement reduces the computational time of the original Sa-
lotti method about 16%. This method was adapted in (Duran-
Rosal et al., 2018b) for time series segmentation, obtaining
optimal segmentations in all cases. However, its computa-
tional time is high compared to other methods based on particle
swarm optimisation and used in (Duran-Rosal et al., 2018b).

3.4. Our proposal (OSTS method)
Our proposal can be explained in the following steps:

1. Adapted Pikaz method (Pikaz and Dinstein, 1995) is ap-
plied. Thus, the accumulated values of ISE for each point
of the time series are calculated. These values are used as
pruning values in next step. The computational complex-
ity of Pikaz method is O(n log n), thus, for all time series
used in the experiments, the computational time obtained
is in the order of milliseconds.
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2. An improved version of (Carmona-Poyato et al., 2017) is
used. This improvement consists of:

• As in (Carmona-Poyato et al., 2017), the proposal is
based on the search of the shortest path in a graph
using A∗ algorithm.

• In this graph, each node contains information about
a point in the time series (index), its possible posi-
tion in the final segmentation (position), its predeces-
sor node (previous) and the ISE value accumulated at
that point.

• When the node of the graph of minimum accumu-
lated error, not yet evaluated, is selected, it is com-
pared to the pruning value corresponding to this
point, obtained in the first step. If the ISE value for
this node is greater than the pruning value, the node
is pruned because it cannot obtain an optimal solu-
tion. Otherwise, the node is a candidate to be part of
the optimal solution (cut point). It should be noted
that the error corresponding to that point of the node
and in that position is optimal because it has been
obtained by using A∗ algorithm.

• The algorithm finishes when the candidate node to
be part of the optimal solution contains the last point
of the time series.

The pseudocode and a graphical example of the proposed
method are shown summarized in Table 1 and Figure 1, respec-
tively.

0

5

11
N-1

Node[0]
Index = 0
Position =  0
ISE = 0
Prev = -

Node[1]
Index = 5
Position =  1
ISE = ISE(0,5)
Prev = Node[0]

Node[2]
Index = 11
Position =  2
ISE = Node[1].ISE +ISE(5,11)
Prev = Node[1]

Node[M-1]
Index = N-1
Position =  M-1
ISE = Node[M-2].ISE+ISE(Node[M-2].Index, N-1)
Prev = Node[M-2]

Node [M-2]

...

Fig. 1. Graphical example of the proposed method. In this case, the Cut
Points are 0, 5, 11, . . . ,N − 1. M is the number of Cut Points and N is the
number of points of the time series

In this case the computational complexity is O(MN2), where
M is the number of cut points and N is the the number of points
of the time series. Since M is much smaller than N, the compu-
tational complexity is close to O(N2).

The tests carried out have shown that, with this improvement,
the computational time is reduced between 65% and 97% com-
pared to the version used in (Duran-Rosal et al., 2018b).

Table 1. Pseudocode for the proposed method

OSTS method
INPUT: Time series (TS ), Accumulated ISE for all points of TS obtained using
Pikaz method (AccumulatedIse)
OUTPUT: List of Cut Points of the optimal segmentation (Lcp)
Local Data Structures: List of candidate nodes (Lc), List of evaluated nodes (Le),
Initial Node (N0).
Pseudo-code
Initialise N0 using the first point of the time series
Lc.insert(N0)
minimum = Lc.getNodeMinimumIse()
Repeat

Le.insertNode(minimum)
For each Node Ni possible candidate successor of minimum

Ni.index← i //i is the original position of N in the time series
Ni.position← minimum.position + 1
Ni.IS E ← minimum.IS E + IS E(minimun.index,Ni.index)
Ni.previous← minimum
If Ni.IS E > AccumulatedIse(Ni.index)

continue //Ni is pruned
End-If
If Ni � Lc

Lc.insert(Ni)
Else if Ni.IS E ≤ Ni.oldIS E // old value of ISE for the i-th node

Lc.update(Ni)
Else

//Ni is not updated
End-If

End-For
minimum← Lc.getNodeMinimumIS E()

Until minimum.index = LastPointT imeS eries
While minimum.index � 0

Lcp.insert(minimum.index)
minimum← minimum.previous

End-While
End-Pseudo-code

4. Experiments and results

This section shows the time series considered to evaluate the
different methods, the experimental setting and the results ob-
tained.

4.1. Datasets used
The performance of the OSTS method has been evaluated in

several synthetic and real-world time series collected from pub-
lic repositories, to test its robustness in different scopes of ap-
plication. The time series used are the following:

• UCR time series: four datasets from the UCR Time Series
Classification Archive has been selected (Dau et al., 2018).
The time series selected are Hand Outlines, with a total of
8127 points, Mallat, and StarLightCurves, all of them with
8192 observations.

• Donoho-Johnstone time series (Donoho and Johnstone,
1994, 1995). The Donoho-Johnstone benchmarks are
formed by four functions to which random noise can
be added to produce an infinite number of datasets. In
this work, we have considered the function Blocks with
medium noise, producing a total of 2048 observations.

• Stock prices time series from financial applications: five
different indexes have been selected. IBEX35, BBVA,
Deutsche Bank, Intesa San Paolo, and Société Genéralé.
These four series have a length of 4174 points, consider-
ing daily values from 1 January 1999 to 9 February 2015.
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• Wave height time series (Hs): four time series of signif-
icant wave height collected from buoys of the National
Data Buoy Center of the USA have been used (NOAA,
2015). Two buoys are collecting data in the Gulf of Alaska
(with registration number 46001 and 46075), and the rest
are from Puerto Rico (41043 and 41044). One value every
six hours from 1st January 2008 to 31st December 2013 is
considered for buoy 46001 (8767 observations), while data
from 1st January 2011 to 31st December 2015 are consid-
ered for the rest of buoys (7303 observations for each one).

• Arrhythmia dataset contains cardiology data which be-
longs to the PhysioBank ATM of the MIT BIH Arrhyth-
mia dataset (Moody and Mark, 2001). We used the MLII
signal of the record 108 (9000 observations) to test the al-
gorithm in this dataset.

Some representative series are shown in Figure 2.

4.2. Error measures
To measure the effectiveness of the OSTS method, the fol-

lowing error measures have been used: 1) the root mean square
of ISE divided by the number of points of the time series (n),
called RSME. This is the main measure since it has been used
as objective function to optimize the error. 2) Average error of
the average errors within each segment (errorAA). 3)Average
error of the maximum errors within each segment (errorAM).
4) Maximum error of the average errors within each segment
(errorMA). 5) Maximum error of the maximum errors within
each segment (errorMM). The last four measures were used in
(Fuchs et al., 2010).

4.3. Experimental design
The experimental design is presented in this subsection. In

order to evaluate the performance of the OSTS method, the fol-
lowing methods has been compared:

• An adapted and improved version of the Salotti method
(Duran-Rosal et al., 2018b), (Carmona-Poyato et al.,
2017).

• An adapted version of the Bottom-Up method (Keogh
et al., 2004), described in section 2.

• An adapted version of the Top-Down method (Keogh
et al., 2004), described in section 2.

• An adapted and improved version of the Bottom-Up
method (Sarker et al., 2017), described in section 2.

• A genetic algorithm (GA) with crossover and mutation
probabilities set to pc = 0.8 and pm = 0.2, respectively.

• A basic particle swarm optimisation algorithm (PSO) with
the following specific parameters: initial velocities of the
particles are set to values close to zero, the inertia coeffi-
cient (w) is set to 0.72, and the constant parameters (C1
and C2 ) are fixed to 1.49.

• The exploiter version of the barebones PSO (BBePSO)
proposed by Kennedy (2003) has also been tested.

• The Dynamic exploiting barebones particle swarm opti-
misation algorithm (DBBePSO) proposed in (Duran-Rosal
et al., 2018b). The λ parameter is set to 1 at the beginning,
and it linearly decreases to 0.1. No other parameters must
be set.

• According to Duran-Rosal et al. (2016), a 40% of the cut
points, found by the GA, BBePSO, and DBBePSO are
fine-tuned according to the method presented in (Duran-
Rosal et al., 2018a) resulting in the HGA, HBBePSO, and
HDBBePSO methods, respectively.

The number of cut points is set to a 2.5% of the total number of
points of the time series.

4.4. Results and Discussion

Tables 2 and 3 show the obtained values of RSME for all
methods.

There is a simple result for the first five methods, because
they are deterministic. The remaining methods are not deter-
ministic, and the table shows the mean and the standard devi-
ation of the 30 runs using different seeds. The mean ranking
of each algorithm is also included, where 1 is the best method
and 13 for the worst one. In this case, the best methods are
the OSTS method and the improved Salotti method (Carmona-
Poyato et al., 2017), because they are optimal. In most cases,
the error obtained in both is much smaller than the other meth-
ods.

The second method is Sarker method and its RSME value is
30 percent higher in most cases.

Table 6 show the mean ranking of all methods considering
the values of errorAA, errorAM , errorMA and errorMM . This
table shows that the best method for errorAA, errorAM and
errorMA is the OSTS method and Sarker method is the second
one. However, for errorAM Sarker method is the best and the
proposed method is the second one.

Figure 3 shows a graphical comparison between the OSTS
method and the Sarker method, the second best method consid-
ering the error measures that have been used. Since the size of
the series is very large, only the last 750 points of the IBEX
time series have been used. The figure shows how the OSTS
method produces better segmentation than the Sarker method.

Tables 4 and 5 show run time for the deterministic methods
and the mean and the standard deviation values of 30 run times
for the remaining methods. The run times have been measured
in seconds. All the experiments were run using an Intel(R)
Xeon(R) CPU E5-2620 v3 at 2.40 GHz with 32 GB of RAM
and 24 cores. The results show that the worst computational
times are obtained by the improved Salotti method (Carmona-
Poyato et al., 2017) because is optimal. However, the OSTS
method has greatly reduced the time of this method. It is im-
portant to highlight that:

• The OSTS method has outperformed to GA method and
HGA method in the ranking.

• For some of the time series used, it has improved some of
the remaining methods. For example, see Hand Outlines,
Mallat, Star Light Curves and Donoho-Johnstone.
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Table 2. RMSE values (1/2) obtained by all the algorithms in each time series. Proposed, Improved Salotti, Top-Down, Bottom-Up and Sarker are
deterministic and they are run once, while GA, HGA, PSO, HPSO, BbePSO, HBBePSO, DBBePSO, HDBBePSO are run 30 times with different seeds due
to their stochastic nature (Mean ± Standard deviation). The mean rankings of all algorithms are also included.

Time series \method Proposed Improved Salotti Bottom-Up Sarker Top-Down GA HGA
Hand Outlines 0.0036 0.0036 0.005 0.0038 0.006 0.030 ± 0.004 0.006 ± 0.000

Mallat 0.072 0.072 0.097 0.076 0.502 0.338 ± 0.014 0.167 ± 0.009
StarLightCurves 0.011 0.011 0.016 0.012 0.026 0.064 ± 0.005 0.024 ± 0.001

Donoho-Johnstone 2.218 2.218 2.639 2.285 3.466 3.119 ± 0.078 2.642 ± 0.062
IBEX 149.962 149.962 210.321 206.774 269.801 279.366 ± 9.788 203.896 ± 3.633
BBVA 0.236 0.236 0.320 0.250 0.405 0.447 ± 0.012 0.325 ± 0.008

DEUTSCHE 1.421 1.421 2.032 1.496 2.318 2.570 ± 0.097 1.883 ± 0.057
SAN PAOLO 0.080 0.080 0.112 0.086 0.136 0.158 ± 0.005 0.111 ± 0.003
SO Genéralé 1.598 1.598 2.292 1.710 2.472 2.807 ± 0.081 2.112 ± 0.054

B46001 0.799 0.799 1.088 0.840 1.011 1.158 ± 0.010 0.989 ± 0.011
B46075 0.822 0.822 1.145 0.866 1.056 1.202 ± 0.013 1.040 ± 0.014
B41043 0.295 0.295 0.426 0.311 0.449 0.487 ± 0.006 0.398 ± 0.008
B41044 0.292 0.292 0.419 0.308 0.425 0.404 ± 0.003 0.357 ± 0.005

Arrhytmia 0.022 0.022 0.032 0.023 0.091 0.485 ± 0.006 0.394 ± 0.010
Mean rankings (r̄) 1.000 1.000 6.600 3.200 9.600 11.400 6.500

Table 3. RMSE values (2/2) obtained by all the algorithms in each time series. Proposed, Improved Salotti, Top-Down, Bottom-Up and Sarker are
deterministic and they are run once, while GA, HGA, PSO, HPSO, BbePSO, HBBePSO, DBBePSO, HDBBePSO are run 30 times with different seeds due
to their stochastic nature (Mean ± Standard deviation). The mean rankings of all algorithms are also included.

Time series \method PSO HPSO BbePSO HBBePSO DBBePSO HDBBePSO
Hand Outlines 0.029 ± 0.016 0.006 ± 0.000 0.012 ± 0.001 0.006 ± 0.000 0.007 ± 0.000 0.005 ± 0.000

Mallat 0.314 ± 0.050 0.162 ± 0.007 0.279 ± 0.020 0.166 ± 0.008 0.206 ± 0.013 0.149 ± 0.006
StarLightCurves 0.063 ± 0.019 0.024 ± 0.001 0.044 ± 0.003 0.023 ± 0.001 0.032 ± 0.002 0.021 ± 0.001

Donoho-Johnstone 3.469 ± 0.147 2.705 ± 0.072 3.127 ± 0.085 2.646 ± 0.070 2.976 ± 0.084 2.608 ± 0.050
IBEX 314.513 ± 30.383 207.619 ± 3.981 281.477 ± 10.900 203.527 ± 5.222 237.904 ± 7.236 198.671 ± 3.811
BBVA 0.463 ± 0.037 0.325 ± 0.008 0.428 ± 0.013 0.322 ± 0.008 0.366 ± 0.014 0.313 ± 0.008

DEUTSCHE 2.847 ± 0.247 1.938 ± 0.074 2.565 ± 0.089 1.921 ± 0.067 2.173 ± 0.081 1.828 ± 0.045
SAN PAOLO 0.159 ± 0.015 0.111 ± 0.004 0.147 ± 0.004 0.111 ± 0.002 0.124 ± 0.005 0.105 ± 0.002
SO Genéralé 3.042 ± 0.266 2.143 ± 0.062 2.782 ± 0.086 2.136 ± 0.045 2.456 ± 0.099 2.074 ± 0.050

B46001 1.250 ± 0.018 0.987 ± 0.010 1.170 ± 0.009 0.980 ± 0.007 1.142 ± 0.020 0.977 ± 0.006
B46075 1.317 ± 0.019 1.049 ± 0.010 1.236 ± 0.011 1.036 ± 0.008 1.208 ± 0.020 1.032 ± 0.009
B41043 0.528 ± 0.007 0.397 ± 0.006 0.490 ± 0.005 0.393 ± 0.005 0.464 ± 0.014 0.387 ± 0.005
B41044 0.526 ± 0.006 0.392 ± 0.008 0.489 ± 0.006 0.388 ± 0.008 0.467 ± 0.013 0.384 ± 0.006

Arrhytmia 0.109 ± 0.010 0.053 ± 0.003 0.085 ± 0.004 0.050 ± 0.002 0.066 ± 0.004 0.047 ± 0.002
Mean rankings (r̄) 12.600 7.000 11.100 6.100 9.500 4.300

Table 4. Computational time (1/2) in seconds obtained by all the algorithms in each time series. Proposed, Improved Salotti, Top-Down, Bottom-Up and
Sarker are deterministic and they are run once, while GA, HGA, PSO, HPSO, BbePSO, HBBePSO, DBBePSO, HDBBePSO are run 30 times with different
seeds due to their stochastic nature (Mean ± Standard deviation). The mean rankings of all algorithms are also included.

Time series \method Proposed Improved Salotti Bottom-Up Sarker Top-Down GA HGA
Hand Outlines 32.834 810.559 10.750 11.630 9.620 55.496 ± 4.976 55.670 ± 4.982

Mallat 33.868 732.615 23.760 25.730 21.780 72.943 ± 6.602 73.125 ± 6.605
StarLightCurves 50.274 1056.290 25.020 28.110 21.470 71.913 ± 7.030 72.086 ± 7.036

Donoho-Johnstone 2.825 10.855 1.780 1.930 1.240 4.789 ± 0.386 4.829 ± 0.388
IBEX 42.948 248.947 7.130 10.260 4.600 25.967 ± 0.731 26.082 ± 0.734
BBVA 15.149 85.047 3.630 4.080 2.470 14.631 ± 0.302 14.720 ± 0.304

DEUTSCHE 10.968 95.779 3.590 4.230 2.510 14.422 ± 0.473 14.508 ± 0.477
SAN PAOLO 12.681 86.459 2.990 3.200 2.530 14.623 ± 0.757 14.710 ± 0.761
SO Genéralé 13.505 108.374 2.480 3.280 2.480 14.322 ± 0.848 14.405 ± 0.853

B46001 297.875 1092.100 13.340 17.400 11.140 60.387 ± 2.388 60.586 ± 2.394
B46075 205.776 627.355 7.270 12.750 7.540 39.696 ± 0.644 39.850 ± 0.647
B41043 157.429 504.465 7.260 10.740 7.510 39.739 ± 0.391 39.891 ± 0.395
B41044 137.891 760.920 7.230 11.450 7.790 58.311 ± 2.428 58.508 ± 2.430

Arrhytmia 46.912 919.173 11.490 13.840 12.410 39.870 ± 1.722 40.033 ± 1.735
Mean rankings (r̄) 9.100 13.000 1.600 3.100 1.400 10.200 11.200
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Fig. 2. Some representatives time series. From left to right and from top to bottom: Arrhythmia, Mallat, Donoho-Johnstone and IBEX

Table 5. Computational time (2/2) in seconds obtained by all the algorithms in each time series. Proposed, Improved Salotti, Top-Down, Bottom-Up and
Sarker are deterministic and they are run once, while GA, HGA, PSO, HPSO, BbePSO, HBBePSO, DBBePSO, HDBBePSO are run 30 times with different
seeds due to their stochastic nature (Mean ± Standard deviation). The mean rankings of all algorithms are also included.

Time series \method PSO HPSO BbePSO HBBePSO DBBePSO HDBBePSO
Hand Outlines 17.368 ± 2.533 17.538 ± 2.541 50.477 ± 3.671 50.656 ± 3.677 48.708 ± 4.526 48.898 ± 4.531

Mallat 34.316 ± 5.244 34.506 ± 5.253 61.966 ± 3.655 62.139 ± 3.658 64.456 ± 6.446 64.636 ± 6.452
StarLightCurves 33.530 ± 4.151 33.701 ± 4.155 65.068 ± 5.185 65.237 ± 5.190 64.551 ± 6.421 64.731 ± 6.424

Donoho-Johnstone 1.935 ± 0.392 1.976 ± 0.392 3.479 ± 0.301 3.518 ± 0.301 3.579 ± 0.287 3.619 ± 0.289
IBEX 9.217 ± 1.104 9.341 ± 1.106 22.702 ± 1.169 22.821 ± 1.173 22.843 ± 1.790 22.966 ± 1.797
BBVA 4.500 ± 0.397 4.590 ± 0.399 12.115 ± 0.762 12.200 ± 0.766 12.287 ± 1.152 12.374 ± 1.158

DEUTSCHE 4.748 ± 0.489 4.839 ± 0.492 11.797 ± 0.534 11.880 ± 0.536 11.812 ± 0.580 11.897 ± 0.584
SAN PAOLO 4.492 ± 0.316 4.582 ± 0.318 12.310 ± 1.056 12.397 ± 1.060 11.858 ± 0.393 11.942 ± 0.395
SO Genéralé 4.363 ± 0.290 4.450 ± 0.291 11.880 ± 0.935 11.961 ± 0.939 11.751 ± 1.041 11.835 ± 1.048

B46001 21.950 ± 2.033 22.139 ± 2.036 53.613 ± 4.494 53.785 ± 4.502 55.966 ± 4.809 56.145 ± 4.816
B46075 15.097 ± 2.327 15.257 ± 2.325 35.825 ± 1.359 35.965 ± 1.361 36.503 ± 1.954 36.644 ± 1.958
B41043 15.017 ± 1.549 15.173 ± 1.551 34.401 ± 0.921 34.537 ± 0.923 34.377 ± 0.932 34.513 ± 0.935
B41044 15.294 ± 1.939 15.455 ± 1.953 34.230 ± 0.252 34.365 ± 0.252 40.238 ± 3.521 40.390 ± 3.531

Arrhytmia 24.916 ± 2.056 25.116 ± 2.060 54.187 ± 3.456 54.369 ± 3.468 54.186 ± 4.159 54.378 ± 4.175
Mean rankings (r̄) 4.000 5.000 7.300 8.400 7.600 8.900

• The OSTS method, taking into account the computational
time, is near of HDBBePSO method, that is the third one
taking into account the RSME value.

5. Conclusions

The conclusions of this work can be summarized as follows:

• The present work proposes an optimal method, called
OSTS, of data compression applied to time series segmen-
tation.

• The OSTS method uses an improved and adapted version
of Salotti algorithm (Carmona-Poyato et al., 2017; Duran-
Rosal et al., 2018b).

• In order to reduce the computational time, the OSTS
method uses a bottom-up suboptimal method (Pikaz and
Dinstein, 1995) to obtain pruning values.

• The results show that:

1. The OSTS method is optimal, and reduces the com-
putational time of the previous version between the
65% and 97%.

2. The computational time of the OSTS method is less
than the computational time of GA and HGA meth-
ods.

3. In some series (Hand Outlines, Mallat, Star Light
Curves and Donoho-Johnstone), the computational
time of the OSTS method is less than the computa-
tional time of the methods based on metaheuristics.

4. The OSTS method, taking into account the compu-
tational time, is near of HDBBePSO method, that is
the third one considering the RSME value.

.
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Table 6. Mean rankings of all algorithms for the values of errorAA, errorAM , errorMA and errorMM . Proposed, Improved Salotti, Top-Down, Bottom-Up
and Sarker are deterministic and they are run once, while GA, HGA, PSO, HPSO, BbePSO, HBBePSO, DBBePSO, HDBBePSO are run 30 times with
different seeds due to their stochastic nature

error \method Proposed Salotti Bottom-Up Sarker Top-Down GA HGA PSO HPSO BbePSO HBBePSO DBBePSO HDBBePSO
errorAA 1.0 1.0 9.9 3.4 4.4 10.8 6.4 11.5 7.9 11.4 6.8 9.9 5.6
errorAM 2.5 2.5 8.6 2.7 6.1 11.3 7.9 10.0 6.6 9.2 6.2 9.2 7.2
errorMA 1.4 1.4 9.6 3.4 4.1 10.3 6.7 11.2 8.2 11.4 6.6 10.0 5.8
errorMM 1.9 1.9 6.6 1.7 10.5 11.5 6.3 11.8 6.6 10.5 5.7 8.8 6.3

IBEX

Original
Proposal
Sarker

Fig. 3. Graphical comparison between the proposal and the Sarker method,
using the last 750 points of the IBEX time series. Original is IBEX
time series. The values of errorAA, errorAM , errorMA and errorMM are
(108,186,305,570) for proposed method and (139,286,352,685) for Sarker
method

References

Aghabozorgi, S.and Shirkhorshidi, A., Wah, T., 2015. Time-series clustering–a
decade review. Information Systems 53, 16–38. doi:10.1016/j.is.2015.
04.007.

Bajcsy, R., Solina, F., Gupta, A., 1990. Analysis and Interpretation of Range
Images. Springer-Verlag New York, Inc., New York, NY, USA. doi:10.
1007/978-1-4612-3360-2_4.

Carmona-Poyato, A., Aguilera-Aguilera, E., Madrid-Cuevas, F., Marin-
Jimenez, M., Fernandez-Garcia, N., 2017. New method for obtain-
ing optimal polygonal approximations to solve the min-epsilon prob-
lem. Neural Computing and Applications 28, 2383–2394. doi:10.1007/
s00521-016-2198-7.

Dau, H.A., Keogh, E., Kamgar, K., Yeh, C., 2018. The ucr time series clas-
sification archive. https://www.cs.ucr.edu/~eamonn/time_series_
data_2018/.

Donoho, D.L., Johnstone, I.M., 1994. Ideal spatial adaptation by wavelet
shrinkage. Biometrika 81, 425–455. doi:10.1093/biomet/81.3.425.

Donoho, D.L., Johnstone, I.M., 1995. Adapting to unknown smoothness via
wavelet shrinkage. Journal of the American Statistical Association 90,
1200–1224.

Duncan, S., Bryant, G., 1996. A new algorithm for segmenting data from time
series, in: Proceedings of 35th IEEE Conference on Decision and Control,
pp. 3123–3128. doi:10.1109/CDC.1996.573607.

Duran-Rosal, A., Gutierrez-Pena, P., Salcedo-Sanz, S., Hervás-Martı́nez, C.,
2018a. A statistically-driven coral reef optimization algorithm for optimal
size reduction of time series. Applied Soft Computing 63, 139–153. doi:10.
1016/j.asoc.2017.11.037.

Duran-Rosal, A., Gutierrez-Pena, P.A., Carmona-Poyato, A., Hervas-Martinez,
C., 2018b. A hybrid dynamic exploitation barebones particle swarm optimi-
sation algorithm for time series segmentation. Neurocomputing 353, 45–55.
doi:10.1016/j.neucom.2018.05.129.

Duran-Rosal, A., Gutierrez-Pena, P.A., Martinez-Estudillo, F.J., Hervas-
Martinez, C., 2016. Time series representation by a novel hybrid segmen-

tation algorithm, in: Hybrid Artificial Intelligent Systems, pp. 163–173.
doi:10.1007/978-3-319-32034-2_14.

Ferreira, L.N., Zhao, L., 2016. Time series clustering via community detection
in networks. Information Sciences 326, 227–242. doi:10.1016/j.ins.
2015.07.046.

Fuchs, E., Gruber, T., Nitschke, J., Sick, B., 2010. Online segmentation
of time series based on polynomial least-squares approximations. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32, 2232–2245.
doi:10.1109/TPAMI.2010.44.

Gonzalez-Vidal, A., Barnaghi, P., Skarmeta, A., 2018. Beats: Blocks of eigen-
values algorithm for time series segmentation. IEEE Transactions on Knowl-
edge and Data Engineering 30, 2051–2064. doi:10.1109/TKDE.2018.
2817229.

Kamalzadeh, H., A., A., Mansour, S., 2017. A shape-based adaptive segmenta-
tion of time-series using particle swarm optimization. Information Systems
67, 1–18. doi:10.1016/j.is.2017.03.004.

Kennedy, J., 2003. Bare bones particle swarms, in: Proceedings of the 2003
IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), pp. 80–
87. doi:10.1109/SIS.2003.1202251.

Keogh, E., Chu, S., Hart, D., Pazzani, M., 2004. Segmenting time series: a
survey and novel approach. Data Mining in Time Series Databases , 1–
22doi:10.1142/9789812565402_0001.

Lin, J., Keogh, E., Wei, L., Lonardi, S., 2007. Experiencing sax: A novel sym-
bolic representation of time series. Data Mining and Knowledge Discovery
15, 107–144. doi:10.1007/s10618-007-0064-z.

Masood, A., 2008. Optimized polygonal approximation by dominant point
deletion. Pattern Recognition 41, 227–239. doi:10.1016/j.patcog.
2007.05.021.

Moody, G.B., Mark, R.G., 2001. The impact of the mit-bih arrhythmia
database. IEEE Engineering in Medicine and Biology Magazine 20, 45–
50. doi:10.1109/51.932724.

Nikolaou, A., Gutierrez-Pena, P., Duran-Rosal, A., Dicaire, I., Fernandez-
Navarro, F., Hervas-Martinez, C., 2015. Detection of early warning signals
in paleoclimate data using a genetic time series segmentation algorithm. Cli-
mate Dynamics 44, 1919–1933. doi:10.1007/s00382-014-2405-0.

NOAA, 2015. National buoy data center. http://www.ndbc.noaa.gov/.
Pikaz, A., Dinstein, I., 1995. Optimal polygonal approximation of digital

curves. Pattern Recognition 28, 373–379. doi:10.1016/0031-3203(94)
00108-X.

Salotti, M., 2002. Optimal polygonal approximation of digitized curves using
the sum of square deviations criterion. Pattern Recognition 35, 435–443.
doi:10.1016/S0031-3203(01)00051-6.

Sangeeta, R., Geeta, S., 2012. Recent techniques of clustering of time series
data: A survey. International Journal of Computer Applications 52, 1–9.
doi:10.5120/8282-1278.

Sarker, I.H., 2019. Context-aware rule learning from smartphone data: survey,
challenges and future directions. Journal of Big Data 6. doi:10.1186/
s40537-019-0258-4.

Sarker, I.H., Colman, A., Han, J., 2019. Recencyminer: mining recency-based
personalized behavior from contextual smartphone data. Journal of Big Data
6. doi:10.1186/s40537-019-0211-6.

Sarker, I.H., Colman, A., Kabir, M.A., Han, J., 2017. Individualized time-series
segmentation for mining mobile phone user behavior. The Computer Journal
61, 349–368. doi:10.1093/comjnl/bxx082.

Zhao, J., Itti, L., 2016. Classifying time series using local descriptors with
hybrid sampling. IEEE Transactions on Knowledge and Data Engineering
28, 623–637. doi:10.1109/TKDE.2015.2492558.


