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e A new approach for generation of polygonal approximations based on the convex hull of contour is proposed.

The proposed algorithm takes into account the symmetry of the contour.

A final improvement process is applied to increase the quality of the polygonal approximation.

The new algorithm is non-optimal but unsupervised (automatic), because no parameters have to be set or tuned.

e Experiments using a public available dataset show that the new proposal outperforms other unsupervised algorithms.
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ABSTRACT

The present paper proposes a new non-optimal but unsupervised algorithm, called /CT-RDP, for ge-
neration of polygonal approximations based on the convex hull. Firstly, the new algorithm takes
into account the convex hull of the 2D closed curves or contours to select a set of initial points;
secondly, the significance levels of the contour points are computed using a symmetric version of
the well-known Ramer, Douglas-Peucker algorithm; and, finally, a thresholding process is applied to
obtain the vertices or dominant points of the polygonal approximation. Since the convex hull can
select many initial points in rounded parts of the contour, an additional deletion process is required to
remove quasi-collinear dominant points. Furthermore, an additional improvement process is applied to
shift the dominant points in order to increase the quality of the polygonal approximation. Experiments
performed on a public available dataset show that the new proposal outperforms other unsupervised

algorithms for generation of polygonal approximations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Shape representation by polygonal approximation is exten-
sively used for constructing a characteristic description of a
boundary in the form of a series of straight lines. This repre-
sentation is very popular due to its simplicity, locality, genera-
lity and compactness (Loncaric, 1998; Melkman and O’Rourke,
1998; Zhang and Lu, 2004). In a closed digital planar curve,
most of the information is located at points of high curvature
(Attneave, 1954), which are used to obtain polygonal approx-
imations. These points are known as dominant points and are
an important target in many machine vision applications (Wu,
2003a).

The present work proposes a new approach, called ICT-RDP,
for generation of polygonal approximations of 2D closed curves
or contours. The new proposal is based on the convex hull
and it is a new version of a previous algorithm (Fernidndez-
Garcia et al., 2016), which uses a symmetric version of the
well-known RDP algorithm proposed by Ramer (1972), Dou-
glas and Peucker (1973), and applies an adaptive thresholding
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method to obtain the dominant points. The new proposal also
applies a deletion process, to remove guasi-collinear dominant
points, and a final improvement step, based on the optimization
method proposed by Masood (2008b), to improve the quality of
the polygonal approximation.

The present paper is arranged as follows. Section 2 describes
the related work. Sections 3 and 4 explain the background and
the new proposal, respectively. The experiments and results are
detailed in section 5. Finally, the main conclussions and future
work are summarized in Section 6.

2. Related work

2.1. Generation of polygonal approximations

Many techniques for generation of polygonal approximations
have been proposed and can be classified according to different
criteria, such as: (1) optimal or non-optimal and (2) supervised
or unsupervised algorithms.

The optimal algorithms are based on an optimization cri-
terion (Aguilera-Aguilera et al., 2015; Kolesnikov and Frinti,
2007; Perez and Vidal, 1994; Pikaz and Dinstein, 1995; Sa-
lotti, 2001, 2002) but have two main drawbacks (Horng and
Li, 2002): the optimum depends on the applied criterion and



requires a very high time complexity, which is not suitable for
real time applications. Otherwise, the non-optimal (or subopti-
mal) algorithms do not guarantee any kind of optimum, but can
find reasonable polygonal approximations for real time appli-
cations.

The supervised algorithms take into account one or more
parameters to generate the polygonal approximations and,
therefore, this is its main drawback, because these parameters
must be tuned (Ataer-Cansizoglu et al., 2013; Carmona-Poyato
et al., 2010; Kalaivani and Ray, 2019; Lowe, 1987; Masood and
Haq, 2007; Masood, 2008a,b). On the other hand, the unsu-
pervised (or automatic) algorithms generate the polygonal ap-
proximations without using any kind of parameters (Ferndndez-
Garcia et al., 2016; Madrid-Cuevas et al., 2016; Marji and Siy,
2004; Prasad et al., 2012; Wu, 2003a).

Combining the optimal and supervised approaches, the ge-
neration problem of polygonal approximations of 2D closed
curves or contours can be formulated in two ways (Kolesnikov
and Frénti, 2007): minimum-distortion problem or minimum-
rate problem. The algorithms based on the minimum-distortion
problem or Min — € problem consider a predefined number d of
vertices and try to generate the optimal polygonal approxima-
tion with d vertices or dominant points (DP) so that the adjust-
ment error from the contour is minimal among all the approx-
imations with d vertices (Aguilera-Aguilera et al., 2015; Perez
and Vidal, 1994; Salotti, 2001). Other algorithms are focused
on the minimum-rate problem or Min —# problem, where a pre-
defined error measure € is set and try to generate the polygonal
approximation, with the minimal number of vertices, so that its
adjustment error from the contour is less than € (Salotti, 2002).

In this paper, a non-optimal but unsupervised algorithm is
proposed for generation of polygonal approximations suitable
for real-time applications.

2.2. Quality measures of polygonal approximations

The quality of a polygonal approximation can be assessed by
two approaches: subjective or objective. In the subjective a-
pproach, a human observer visually compares the original con-
tour with the polygonal approximation. This approach is easy
to apply, but cannot be automated and depends on the criterion
of the observer. On the other hand, two criteria must be taken
into account in the objective approach: (1) the number of points
of the polygonal approximation and (2) its adjustment error to
the contour. The objective approach can be automated but has
a main drawback: the criteria on which it is based are opposed
to each other. In general, if the number of points is reduced,
then the adjustment error increases; otherwise, if the number
of points is increased, then the adjustment error decreases. Be-
cause of this, the aim of the objective evaluation must be to
achieve the best tradeoff between the number of points and the
adjustment error of the polygonal approximation.

The measurement to evaluate the number of points of the
polygonal approximation is Compression ratio, defined as
CR = %, where n is the number of contour points and d is
the number of points of the polygonal approximation or do-
minant points (DP). If the number of dominant points de-
creases, the compression ratio increases, and vice versa. On

3

the other hand, different measurements have been proposed to
evaluate the adjustment error, such as: (a) Integral square er-
ror: ISE = Y e?, where ¢; is the distance of the contour
point P; to the polygonal approximation; or (b) Maximum error:
E. = maXgi,..,jie;}. ISE may not take into account some rel-
evant information of the contour when hides large deviation at
particular point due to closeness of approximating polygon at
other parts of the curve. E is proposed to solve this lack of
accuracy of ISE (Masood and Haq, 2007).

The Figure of Merit FOM = % was proposed by Sarkar
(1993) to make the tradeoff between the compression ratio
(CR) and the total distortion (ISE) caused (Masood, 2008a).
However, the terms CR and ISE used by FOM are not balan-
ced (Rosin, 1997), causing the measure to be biased towards
approximations with lower ISE and many dominant points.
Hence, FOM is not the best measure for comparing contours
with different numbers of dominant points. The weighted sum
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of squared error WE = C—lf is defined as the inverse of FOM

(Wu, 2003a,b). The weighted maximum error WE,, = Ié—; has
also been proposed (Lowe, 1987; Masood and Haq, 2007; Wu,
2003a). Technically, WE and WE, are similar to FOM and
suffer similar problems (Masood and Haq, 2007). A parame-

terized version WE, = (g—]g), has also been used (Carmona-

Poyato et al., 2010; Marji and Siy, 2004) to tradeoff the con-
tribution of ISE and CR, where n = 1,2,3. From our point
of view, WE, is the fairest measurement that makes the best
tradeoff between compression ratio and adjustment error, be-
cause WE| and WEj3 favor polygonal approximation with many
or few dominant points, respectively (Carmona-Poyato et al.,
2011);

A new measure was proposed by Rosin (1997) to avoid the
drawback of FOM: Merit = +[Fidelity X Efficiency, where Fi-
delity = f— x 100 and Efficiency = 5— x 100 where E,,
and N, are the error and the number of dominant points of the
suboptimal polygonal approximation, E,, is the error produced
by the optimal algorithm with the same number of dominant
points and N,,, represents the number of dominant points that
would require an optimal algorithm to produce the same error
(Perez and Vidal, 1994; Salotti, 2001). The Fidelity measures
how well the polygon obtained by the algorithm to be tested fits
the curve relative to the optimum polygon, in terms of the ap-
proximation error. The Efficiency measures the compactness of
the polygon obtained by the algorithm to be tested, relative to
the optimum polygon that incurs the same error (Rosin, 1997).

The Rosin’s measurement can compare results of different al-
gorithms with different number of dominant points. Neverthe-
less, Masood (2008a) pointed out that this measurement also
suffers a few weaknesses. The polygon that consists of just
break points will produce Fidelity = 100, Efficiency = 100 and
Merit = 100. It means that the set of break points taken as dom-
inant points will produce a perfect approximation, whereas this
type of approximation is of no practical use since its compres-
sion ratio is very low. Carmona-Poyato et al. (2011) proposed a
new measure for assessing polygonal approximation of curves
that uses the optimal algorithm of Perez and Vidal (1994) and
the optimization of an objective function based on WE,. Both
measurements have a main drawback: they need optimal solu-




tions which are computationally very expensive.

3. Background

3.1. Automatic generation of polygonal approximations based
on a thresholding approach

The present paper describes a new version of a previous non-
optimal algorithm for unsupervised or automatic generation of
polygonal approximations based on a thresholding approach,
which will be referred to as 7 — RDP for short (Fernandez-
Garcia et al., 2016). T — RDP consists of six steps:

1. Selection of the initial points: some special contour points
are chosen to be considered as initial points (Figure 1-
a): the farthest point(s) from the centroid is (are) chosen
as initial point(s); besides, the farthest point(s) from the
previous one(s) is (are) also considered as initial point(s).
This method is independent of the starting point, invariant
to rotations and scales and takes into account the symme-
try of the contour.
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(a) 2 initial points

(b) 27 initial points

Fig. 1. First step.- Selection of initial points for the contour Chicken-5: (a)
original method: P; is the farthest point from the centroid and P, is the
farthest point from P; ; (b) new method: convex hull.

2. Computation of the significance values of the non-initial
points: a new version of the well-known RDP algorithm
proposed by Ramer (1972) and Douglas and Peucker
(1973), which takes into account the symmetry of the con-
tour, is used to compute the significance values of the non-
initial points. The significance value of every non-initial
point is its deviation error d computed using a recursive
process. At the beginning, if P and P’ are two contiguous
initial points, then the farthest non-initial point Q located
between P and P’ is chosen and considered as candidate
point. The significance value of the point Q is its deviation
error d, that is, the distance from Q to the segment defined
by the points P and P’. This process continues recursively
with the points P and Q, and the points Q and P’, respec-
tively.

3. Computation of the significance values of the initial points:
the significance values of the initial points must be greater
than the significance values of the other contour points.
Initially, the maximum of the significance value of the non-
initial points is computed: Sig.. If Signqy is equal to 0.0,
then the significance value of the initial points is 1.0. This
situation occurs with artificial contours in which the initial
points define a perfect polygonal approximation. Other-
wise, if Sig,.. 1S not equal to 0.0, then the significance
value of the initial points is the maximum between Sig,;.x
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Fig. 2. Fifth step: adaptive thresholding method applied to the normalized
significance curve; the threshold # is the ordinate y of the farthest point P
from the Adaptive point Q.

and d, where d is the maximum distance from the centroid
to the contour points.

4. Generation of the normalized significance curve: this
curve is a plot of polygonal approximation error defined
as a function of the number of dominant points and must
be normalized in order to facilitate the search for the d-
ominant points using a thresholding method (Figure 2).

5. Search for the threshold of the normalized significance
values: the normalized significance curve is used by a
thresholding method to search for the threshold of the nor-
malized significance values. Four thresholding algorithms
were proposed and the adaptive method obtained the best
results. The adaptive method searchs for the farthest point
P(x,y), in the region of interest of the significance curve,
to the adaptive point Q(xp, 1.0), where the project point
Q' (x0,0.0) is the first point in ascending order with nor-
malized significance value equal to 0.0 ( Figure 2).

6. Thresholding of the normalized significance values to ob-
tain the dominant points: the normalized significance va-
lues of the contour points are thresholded to obtain the
dominant points of the contour. The points of the con-
tour with a normalized significance value greater than the
threshold, or equal to 1.0 for artificial curves, are chosen
as dominant points.

The experiments demonstrated that this previous method has
a good performance for generating polygonal approximations
of 2D closed contours, without requiring any parameter to be
tuned. In addition, the time complexity is O(nlog(n)) in the
best case and “quadratic in # in the worst case, where # is the
number of points of the given polygonal contour” (Hershberger
and Snoeyink, 1992).

3.2. Convex hull

The new proposal modifies the first step of the previous
method T — RDP (Fernandez-Garcia et al., 2016) and makes
use of the convex hull of the contour to obtain the initial points
of the polygonal approximation. The convex hull of a set X of
points in the Euclidean plane (or space) is the smallest convex
set that contains X (see Figure 1-b). There are many implemen-
tations of the convex hull (Chadnov and Skvortsov, 2004). The
convex hull is not used to represent the whole contour, but it is



used to provide a set of initial points that improves the perfor-
mance of the algorithm to obtain better polygonal approxima-
tions.

3.3. Masood’s optimization

The new approach includes a final step to improve the ad-
justment of the polygonal approximation to the contour, which
is based on the optimization process proposed by Masood
(2008b). Masood took into account that some dominant points
may be moved to a new position in order to decrease the overall
error (ISE) of the resulting approximation, as it is shared among
all the dominant points (DPs).

Contour
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‘ Selection of the initial points (*)

Y
‘ Computation of the significance values of the non—initial points ‘

\l
‘ Computation of the significance values of the initial points ‘

Y
‘ Generation of the normalized significance curve ‘

Y
Search for the threshold of the normalized significance values ‘

Y
‘ Thresholding of the normalized significance values to obtain the dominant points

Y
‘ Superfluous dominant points deletion (*) ‘

\l

Tmprovement (*)

\J
Polygonal approximation

Fig. 3. New proposal: /CT — RDP. The steps marked with (*) were modified
or added regarding the original method.

4. New proposal

The new proposal is called /CT — RDP because improves the
previous algorithm 7 — RDP (see Section 3.1 and Fernandez-
Garcia et al. (2016)) by modifying the first step to select the
initial points, using the convex hull (see Section 4.1), and in-
cluding two final steps to eliminate the superfluous dominant
points (see Section 4.2) and to improve the adjustment of the
polygonal approximation to the contour (see Section 4.3), res-
pectively (Figure 3).

4.1. First step. Selection of the initial points

The first step calculates the convex hull of the contour in or-
der to use its vertices as the initial points for the rest of steps of
the new proposal (see Figure 1-b). The aim is to compute a su-
perset of points that can be considered as containing dominant
points; that is, points that are more likely to belong to the polyg-
onal approximation. The selection of the initial points using the
convex hull is invariant to rotations or scale changes, does not
depend on the parametrization of the contour points, and also
takes into account the symmetry of the contour. The Quickhull
implementation was used, being its expected time complexi-
ty of O(nlog(n)) (Eddy, 1977; Bykat, 1978). However, if the
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points are ordered by any of the coordinates or by an angle with
respect a fixed vector, then its time complexity is O(n) (Andrew,
1979; Graham, 1983).

The aim of the convex hull is not intended to represent the
entire contour, but to provide a more reliable and complete su-
perset of initial points than the previous selection method used
in the original algorithm 7 — RDP (see Figure 1). This new
superset of initial points allows to improve the performance of
the rest of the steps of the new proposal ICT — RPD to gen-
erate better polygonal approximations as will be shown in the
experiments (see Section 5 and Table 1).

Unlike the selection method of initial points of the original
algorithm 7 — RDP (see Section 3.1 and Figure 1-a), the new
proposed selection method of initial points, based on the convex
hull, is likely to generate many more points than the previous
one; for instance: if the contour has rounded parts, the con-
vex hull provides too many initial points, which could lead to
generating a large amount of dominant points in the final polyg-
onal approximation. To mitigate this effect, an aditional seventh
step must be included in order to eliminate the quasi-collinear
points introduced due to this application (see Section 4.2 and
Figure 4).
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Fig. 4. Seventh step. Superflous dominant points deletion on the contour
Chicken-2: (a) polygonal approximation with superfluous dominant points
in red; (b) zoom on (a). The quasi-collinear points, marked in red, will be
deleted.

4.2. Seventh step. Superflous dominant point deletion

The seventh step deletes the superfluous or quasi-collinear
dominant points that may appear in rounded parts of the con-
tour due to the computation of the convex hull in the first step
(see Section 4.1). Many of these points are almost aligned and,
therefore, can be eliminated (Figure 4). The deletion process is
shown in Algorithm 1. The dominant point P will be deleted
if the deviation error (Emax or IS E) of the side defined by the
points P’ and P” is lower than the deviation errors of the other
two sides defined by the points P’ and P, and by P and P”. The
supression of the point P improves the polygonal adjustment
to the contour. This process is repeated until it is impossible
to eliminate any point or until the final approximation has only
three vertices (triangle). The remaining points will be the ver-
tices of the polygonal approximation. The expected time com-
plexity of this step is linear in n, because the number of domi-
nant points (d) is much smaller than the number of the contour
points (7).



Algorithm 1 Seventh step. Superflous dominant point deletion

Algorithm 2 Eighth step. Improvement

{Let L be the set of dominant points}

L« {Py,...,Pg}

{Let P be the first point of L}

PP 1

repeat
Let P’ and P” be the current contiguous dominant points
of P

{Minimization criterion for deletion of P}

if ((Emax(P’,P") < Emax(P’, P))

A (Emax(P’,P") < Emax(P, P"))

or ISE(P',P") < ISE(P', P))

AUSE(P,P")<ISE(P,P")) then

L~ L—-{P}
end if
Let P be the next current dominant point of L
until (No point is deleted or L has only three points.)

where d is the number of dominant points, Emax is the ma-
ximum deviation error and IS E 1is the integral square error,
defined as Emax(P;, P;) = max{d(Q,r) | Q € (Py, P;)}, and
ISE(P1, P2) = Yoep, P d*(Q, r), respectively, where Q is a
contour point between P; and P,, and d(Q,r) is the distance
from Q to the approximated line segment r defined by the points
P and P;.

4.3. Eighth step. Improvement

The final step of the new proposal is based on the algorithm
proposed by Masood (2008b) and improves the adjustment of
the polygonal approximation to the contour. This improvement
can be considered as a process of displacement of the dominant
points to obtain a better adjustment. In addition, this process
does not modify the number of dominant points of the polygo-
nal approximation (see Algorithm 2 and Figure 5).

The time complexity of this step is O(d - n), where d is the
number of dominant points of the polygonal approximation and
n is the number of points of the contour, respectively. Genera-
Ily, d is very small in comparison to n, and an average of n/d
points of the contour are analysed for each dominant point.

5. Experiments and results

5.1. Introduction

The quality measurements used in the experiments to com-
pare the performance of the algorithms were (see Section 2.2):
the number of dominant points (DP), compression ratio (CR)
and integral square error (/SE) and the parameterized weighted
sum of the squared error (WE,), where n € {1, 2, 3}. In addition,
for every measurement M, the average value (u(M)) and the
standard deviation (o"(M)) were also computed. Furthermore,
the index Iy, = MinIndex(u(M)) (or Iy = MaxIndex(u(M)))
was also computed to compare the value of each algorithm
with the best. For instance, if a measurement M orders the
algorithms in increasing way (the smallest is the best), then
Iy = MinIndex(u(M)) is computed dividing the value of (M)
by the smallest; otherwise, if a measurement M orders the
algorithms in decreasing way (the greatest is the best), then

{Let L be the set of dominant points}
L—{Py,...,P;}
{Mark the points of L as not revised}
forallie{l...d}do
revised(P;) « false
end for
while (there are points not revised in L) do
Let P be the first not revised point in L
Let P’ and P” be the current contiguous dominant points
of P
Find the optimal point Q that minimizes the ISE error in
the contour part bounded by P’ and P”.
if (P = Q) then
revised(P) « true

else
L~ L-{P}
L~ LU{Q}

revised(Q) « true
revised(P') « false
revised(P") « false
end if
end while

(@) T — RPD
DP =24, WE, = 1.8074

(b) IT = RPD
DP =24, WE; = 1.1691

(c) Proposal: CT — RPD
DP =27, WE, = 1.7421

(d) Improved proposal: ICT — RPD
DP =27, WE, = 1.0452

Fig. 5. Comparison with the original algorithm using the contour chicken-
10_0 (N = 468 points). The dominant points moved in the improvement
step are marked with a blue triangle.

Iy = MaxIndex(u(M)) is computed dividing the greatest one
by the value of u(M). The best value for Iy = MinIndex(u(M)
and Iy = MaxIndex(u(M)) is 1.00, and the worst value is co.

As it was pointed out in section 2.2, WEj is the fairest mea-
surement to evaluate the quality of the polygonal aproxima-
tions, because WE| and WEj3 favor polygonal approximation
with many or few dominant points, respectively. Due to these
differences in the evaluation criteria, a new aggregate voting
system was considered to compute the index Iyyerqgew, 5, de-
fined as the average of Iwg,, Iwg,, and Iwg, (see Table 1).



The database of shapes “MPEG-7 Core Experiment CE-
Shape-1 Test Set (Part B)” was used in the experiments (Jean-
nin and Bober, 1999). This database is available in (MPEG-7,
1999) and contains 1,400 images, classified into 70 categories,
and each category includes 20 samples, with different rotation,
size and position, and even image resolution (Latecki et al.,
2000). This database was also used previously (Parvez, 2015;
Fernandez-Garcia et al., 2016; Madrid-Cuevas et al., 2016).

5.2. First experiment

The new proposal, ICT — RDP was compared with other
seven algorithms: CT — RDP, a version of the new proposal
that does not include the eight step of improvement (see Sec-
tion 4.3); the original algorithm 7 — RDP (Ferndndez-Garcia
et al., 2016) and a new version called /T — RDP which includes
the improvement process (see Section 4.3); the three versions
of RDP, Carmona and Masood algorithms proposed by Prasad
et al. (2012), which will be referred to as P — RDP, P — CAR
and P — MAS, respectively, for short; and the algorithm pro-
posed by Madrid-Cuevas et al. (2016), referred to as MAD. All
these algorithms were selected because they are non-optimal
and unsupervised algorithms. These algorithms were applied
to all 1,400 contours of the public MPEG-7 database of shapes
(Jeannin and Bober, 1999; MPEG-7, 1999). The polygonal a-
pproximations generated were evaluated using the indexes Iy, ,
Iwe,, Iwe, and I yerqgewrE1-3, although the Table 1 also shows
the values of DP, CR, ISE, WE,, WE,, and WE3, for com-
pleteness. The best results are highlighted in bold.

The new proposal /CT —RDP obtained the best result (1.000)
for Iwg,, the second best result (1.0951) for Iy, , but very close
to the best one (IT — RDP), and the third best result (1.4297)
for I'yg,. The combined index Iuyeragewr1-3 Showed that the new
proposal obtained the overal best result (1.1749). Among the
unimproved algorithms, the proposed CT — RDP obtained the
best result for the combined index I,eragewri-3 (1.9662).

This experiment also allowed to compare the number of the
initial points. The centroid criterion (see Section 3.1, step 1)
provided a mean value of 2.0243 initial points to the algo-
rithms 7 — RDP and IT — RDP, which subsequently generated
polygonal approximations with a mean value of 45.0693 do-
minant points; instead, the convex hull criterion criterion (see
Section 4.1) provided a mean value of 31.7792 initial points to
subsequently generate polygonal approximations with a mean
value of 53.9514 dominant points. On average, the algorithms
CT — RDP and ICT — RDP, based on the convex hull criterion,
deleted 14.6329 quasi-collinear points in the Superflous domi-
nant point deletion step (see Section 4.2 and Figure 4).

5.3. Second experiment

The second experiment was developed to analyse the compu-
ting time of the eight non-optimal and unsupervised algorithms:
(1) each algorithm was run 10 times with each of the 1,400 con-
tours of the public MPEG-7 database (Jeannin and Bober, 1999;
MPEG-7, 1999); (2) the mean value of the run time of every al-
gorithm for contours with the same number of points was com-
puted; the 1,400 contours from MPEG-7 database were grouped
into 979 subsets, so that each subset was composed of contours
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with the same number of points (see Figure 6); and, finally, (3)
the average of the mean values obtained in the step 2 was com-
puted (see Table 2). The experiment was run on a compatible
computer with an Intel(R) Core(TM) i5 661 @ 3.33GHz x 4
and 3,7 GB of memory. The operating system Ubuntu 16.04.6
LTS xenial 64 bits was used. The times were measured in micro
seconds (us).

In order to analyse the performance of the algorithms, the in-
dexes I7ime, and Irj,,, of the Table 2 were used. These indexes
compared the value of each algorithm with the best one. The
best value for these indexes is 1.0000. I7;,,, was computed u-
sing the average of the mean values of the computing time of
the algorithms, whereas Ir;y., considered the addition of the
average and standard deviation. The new proposal CT — RDP,
without the improvement step (see Section 4.3), obtained an in-
dex Iripe, of 1.2648, ranked in fourth place after P—-CAR, MAD
and T — RDP. The value of CT — RDP for the index I7iy., was
1.1630, ranked in third place after T — RDP and MAD. On the
other hand, the new proposal ICT —RDP, with the improvement
step, required more computing time than CT — RDP, but the
analysis of the indexes showed that ICT — RDP obtained better
results (Irjme, = 11.4879, Iime, = 12.7916) than the improved
version IT — RDP of the original algorithm (I7;,, = 12.0290,
Irime, = 13.5994). Therefore, if the improvement step is ap-
plied then the convex hull criterion must be used to select the
initial points, because the computing time of the /ICT — RPD
is better than the computing time of /T — RDP, and, above all,
generates better polygonal approximations (see Tables 1 and 2).

Finally, an additional regression model was developed to
analyse the complexity of the computing time of the algorithms.
The regression model nlog(n) can be accepted for the original
algorithm 7 — RDP and the new proposal CT —RDP, both with-
out the improvement step, as show their coefficients of deter-
mination R? = 0.9472 and R? = 0.9498, respectively, which
are greater than 0.9 (see Figure 6 (e) and (f)). In the case
of the algorithms with the improvement step, /T — RDP and
ICT — RDP, their coefficients of determination R*? = 0.6107
and RZ = 0.6865, respectively, do not allow to confirm the
regression model nlog(n), because are less than 0.9 (see Figu-
res 6 (g) and (h)). As a consequence of these results, the time
complexity of IT — RDP and ICT — RDP is O(nlog(n)) in the
best case and O(n?) in the worst case, where 7 is the number of
contour points.

6. Conclussions and future work

The present paper proposes a new algorithm, called ICT —
RDP, for generation of polygonal approximations which im-
proves the previous algorithm 7" — RDP (Fernandez-Garcia
et al., 2016). The main contributions of the new approach are:
(1) the convex hull of 2D closed digital planar curves can be
considered to select the initial points of the polygonal aproxi-
mation; (2) the superfluous or guasi-collinear dominant points,
that may appear in rounded parts of the contour due to the a-
pplication of the convex hull, are eliminated; and (3) a final
improvement step is used to increase the quality of the poly-
gonal approximation without changing its number of dominant
points.



Table 1. First experiment: comparative results of the polygonal approximations algorithms using the quality measurements.

I [ Unimproved algorithms I Improved algorithms I
[[ Measurement [ MAD | P—CAR ]| P—MAS | P-RDP [ T-RPD [ CT-RDP [[ IT-RD [ ICT —RDP ||
Tpp = MinIndex(u(DP)) 2.8590 1.5021 2.9322 2.4433 1.0000 1971 1.0000 11971
u(DP) 128.8529 67.6979 1321507 | 110.1186 45.0693 53.9514 45.0693 53.9514
o(DP) 166.0244 80.2357 169.9686 | 1163092 227598 25.0818 227598 25.0818
Tcr = MaxIndex(u(CR)) 2.1919 12128 1.0000 22232 1.2760 1.4954 1.2760 1.4954
u(CR) 18.0295 32.5860 39.5194 | 17.7757 30.9705 26.4266 30.9705 26.4266
o(CR) 19.3437 29.7438 767221 | 20.7151 25.2543 234654 252543 23.4654
Tpp = MinIndex(u(ISE)) 1.0000 13.4855 5683419 13643 12.5930 8.6871 6.2084 5.0507
u(ISE) 160.7779 | 2,168.1645 | 913767954 | 219.3423 | 2,024.6730 | 1,396.6875 998.1759 812.0354
o (ISE) 126.1560 | 158427718 | 646,465.0711 | 168.2474 | 5023.2454 | 3,686.2365 || 2,124.5349 | 2,104.4019
Twr, = MinIndex(u(WE,)) 1.0000 3.8007 17.1285 1.1995 33110 24417 17024 14297
u(WE;) 16.3020 61.9593 279.2299 | 19.5540 53.9760 39.8051 27.7525 23.3071
o (WE)) 22,6226 139.7476 1.466.7902 | 233915 100.5091 73.9782 448601 42.0023
Ik, = MinIndex (u(WE)) 3.0345 3.6343 3.9639 2.6027 2.0110 1.6762 1.0770 1.0000
H(WEy) 26419 3.1640 3.4509 2.2659 1.7508 1.4593 0.9376 0.8706
o (WEy) 6.3755 45131 5.9653 41113 2.5403 1.9799 1.2015 1.1219
Ik, = Minlndex(u(WE3)) 15.3190 6.2744 13.1176 8.1420 1.7907 1.7806 1.0000 1.0951
H(WE3) 0.5897 0.2415 0.5049 0.3134 0.0689 0.0685 0.0385 0.0422
o(WE3) 2.0075 0.5429 1.3942 0.7565 0.0853 0.0756 0.0445 0.0446
[ faveragewy_ = VEVEIVE T 6451 4.5698 114033 | 39814 2.3709 19662 | 12598 11749 |

Notes: number of contours = 1,400; average number of contour points = 1,271.0379 points.

Table 2. Second experiment: comparative of the mean values of the computing time of the algorithms measured in micro seconds (us).

Unimproved algorithms Improved algorithms
Time (us) MAD P - CAR P - MAS P - RDP T -RPD | CT -RDP IT —RD ICT — RDP
Irime, = MinIndex(u(Time)) 1.1326 1.0000 105.9447 1.4496 1.0872 1.2648 12.0290 11.4879
u(Time) 4,626.4434 4,084.7578 432,758.2626 5,921.1067 | 4,440.9898 | 5,166.5681 49,135.7432 | 46,925.4858
o (Time) 3,818.4409 7,929.5973 672,547.1353 | 13,109.0317 | 3,314.4382 | 3,853.2963 56,333.4583 | 52,278.9179
Iime, = Minlndex(u(Time)+o(Time) ) 1.0889 1.5492 142.5202 2.4538 1.0000 1.1630 13.5994 12.7916
w(Time)+o(Time) 8,444.8843 12,014.3550 | 1,105,305.3979 | 19,030.1383 | 7,755.4280 | 9,019.8644 105,469.2015 | 99,204.4037

Note: the 1,400 contours from MPEG-7 database were grouped into 979 subsets, so that each subset was composed of contours with the same number of points.

The proposed algorithm ICT — RDP obtained the best results
in the experiments and it was faster than the improved version
IT — RDP of the previous algorithm 7' — RDP. ICT — RPD
is an unsupervised or automatic algorithm (no parameters have
to be set or tuned), and non-optimal, but it can generate reason-
able polygonal approximations. Its expected time complexity is
O(nlog(n)) in the best case and O(n?) in the worst case, where
n is the number of contour points. Among the unimproved al-
gorithms, the proposed CT — RDP obtained the best results and
its expected time complexity is O(n log(n)).

Finally, future work should be aimed at designing a new
quality measurement for polygonal approximations, due to the
drawbacks explained in section 2.2. In relation to the new pro-
posal ICT — RDP, the Superflous dominant point deletion step
(see Section 4.2) and the Improvement step (see Section 4.3)
could be applied taking into account the dominant point with
lowest or greatest error (Emax or ISE) in every iteration, in-
stead of being applied using the current greedy way.
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