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Abstract

Piecewise Linear Approximation is one of the most commonly used strategies to

represent time series effectively and approximately. This approximation divides

the time series into non-overlapping segments and approximates each segment

with a straight line. Many suboptimal methods were proposed for this purpose.

This paper proposes a new optimal approach, called OSFS, based on feasible

space (FS) [1], that minimizes the number of segments of the approximation

and guarantees the error bound using the L∞-norm. On the other hand, a

new performance measure combined with the OSFS method has been used to

evaluate the performance of some suboptimal methods and that of the optimal

method that minimizes the holistic approximation error (L2-norm). The results

have shown that the OSFS method is optimal and demonstrates the advantages

of L∞-norm over L2-norm.

Keywords: , Data representation, Optimal Time Series Segmentation, Error

Bound Guarantee, L∞-norm

∗Corresponding author: Tel.: +34-957-21-21-89; fax: +34 958 -21-83-60;

Email address: ma1capoa@uco.es (Ángel Carmona-Poyato )
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1. Introduction

A time-series Ts is a sequence of data points ordered in time such that

Ts = (t1, t2, . . . , tm) where t1, t2, . . . , tm are individual observations and m is

the number of observations in a time series.

Time series have been applied in many areas such as medicine [2], economic5

[3], telecommunications [4] and online signature verification [5]. Due to the

large amount of data used in most application areas, many methods have been

proposed to reduce its size without losing relevant information [6].

In the context of this work, segmentation consists of dividing the time series

into relevant points, cut points (CP), to reduce its dimensionality by means of10

a new representation space [7]. The problem of representation is a core issue in

pattern recognition, and can dramatically impact the classification performance

as well as the computational resources required to solve a particular problem,

and the interpretability of the solutions found [8].

For this purpose, one of the most used techniques is called Piecewise Linear15

Approximation (PLA). PLA divides a time series into segments and uses a

linear function to approximate each segment. There are two types of linear

approximation [1]: linear interpolation that uses the straight line connecting

the two endpoints of one segment to represent the data points in the segment

and generates continuous piecewise lines; and linear regression that uses the20

regression line to approximate a segment and produces a set of disjointed lines.

Linear interpolation produces a smooth approximation and has low compu-

tational complexity because the number of straight lines is much smaller than

the number of points of the time series.

The error of the approximation can be calculated by using the L2-norm and

the L∞-norm. The first one is computed from the sum of the squared vertical

differences, between the straight line obtained in the segmentation and the real

data points, squared. This value is called the integral squared error (ISE). The

second one is computed from the maximal vertical difference between all the

straight lines obtained in the segmentation and the real data points. This value
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is called maximum error (emax). ISE and emax are calculated as:

ISE =

n�

i=1

e2i emax = max
1≤i≤n

ei

where ei is the vertical distance from the real data Pi to its corresponding25

straight line and n is the number of points of the time series.

Depending on whether the objective is to minimize the error or the amount

of information [9], the problem can be addressed by obtaining the best segmen-

tation of a time series using K segments (the holistic approximation error ISE

or emax is minimized), or by obtaining the best segmentation of time series such30

that the maximum error for any segment (emax) or the accumulated error of all

segments (ISE) is less than some prefixed threshold (the amount of information

used to represent the time series is minimized).

Many works have been proposed to obtain the best segmentation using K

segments, where L2-norm is mostly used. However, there are two main draw-35

backs when L2-norm is applied [10]: firstly, this constraint can not generate

error-guaranteed representations for streaming data since the stream is natu-

rally unbounded in size; secondly, the L2-norm is not able to control the ap-

proximation error on individual stream data items. To avoid these drawbacks,

other methods based on L∞-norm were proposed.40

Taking into account how the cut points are obtained, segmentation methods

can be categorized into three major groups of approaches [9]: Sliding Windows,

where the segment increases until a preset error is exceeded and the new seg-

ment starts from the last point that does not exceed the preset error; Top-Down,

where the time series is divided into smaller and smaller segments until a pre-45

determined error is reached; and Bottom-Up, where, starting from the largest

possible number of segments, these are merged until a predetermined error is

exceeded.

Other techniques based on metaheuristics (Genetic Algorithms and particle

swarm optimisation) were proposed [11], [12].50

Depending on whether the time series is fixed in size or grows dynamically,

the methods are classified as offline or online respectively. Offline methods
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segment the complete time series and online methods obtain segments based

on the data seen so far. Sarker [13] compared the static with the dynamic

segmentation considering if the number of segments is prefixed or not.55

All the methods mentioned are suboptimal. Due to its high computational

complexity, optimal methods can hardly be used in real-time applications. How-

ever, they can be used in order to evaluate the performance of suboptimal meth-

ods. An optimal offline method (OSTS) was proposed in [14] which is based

on the A∗ algorithm, L2-norm and linear interpolation. Its computational time60

was greatly reduced by using pruning algorithms. This method was used to

obtain the performance of some suboptimal methods based in L2-norm.

Xie et al. [10] proposed an optimal online method, based on L∞-norm and

linear regression. A linear interpolation-based method was also proposed by Xie

but is not guaranteed to be optimal.65

In this work, we propose a new optimal offline method, called OSFS, based

on feasible space (FS) [1] that uses L∞-norm and linear interpolation.

As it mentioned before, Xie [10] showed the main drawbacks of the L2-norm

versus the L∞-norm. Since our proposal is optimal taking into account the

L∞-norm, it will be compared to the optimal method (OSTS) proposed in [14],70

which is based on the L2-norm.

The present paper is arranged as follows. Section 2 describes the methods

that were compared with the proposed method and whose performances were

evaluated. Section 3 explains the new proposal. The experiments and results are

detailed in Section 4. Finally, the main conclusions are summarized in Section75

5.

2. Related work

In this section, some suboptimal time series segmentation methods will be

described and their performances will be compared using the OSFS method and

the new performance measure. The first group of methods are heuristic and the80

second one are metaheuristic.
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Figure 1: Graphical example of the FS method

2.1. Heuristic methods

Top Down method: this method [15] is an offline method and firstly every

possible partitioning of the complete times series is evaluated, and the time series

is split at the best location. Then, the approximation errors corresponding to85

the two resultant parts are calculated. If this error is greater than the user-

specified threshold in either part, the algorithm recursively continues to split

the subsequences until all the segments have approximation errors below the

threshold. In this case, the L∞-norm has been used. In order to select the best

location, the one that minimizes the sum of the approximation error of the two90

resultant parts, was selected. Keogh [9] demonstrated that its computational

complexity is O(n2), where n is the number of points of the time series.

Bottom-Up method: it is the natural complement to the Top-Down

method. Firstly, the finest possible approximation of the time series is pro-

duced, so that n− 1 segments are used to approximate the n points of the time95
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series. In this case, all the approximation errors associated with these segments

are zero. Next, the obtained approximation error of merging each pair of adja-

cent segments is calculated, and, in the next iterations, the method begins to

merge the lowest approximation error pair until a stopping criteria is met. In

this case, the L∞-norm was used to obtain the approximation error. Keogh100

[9] demonstrated that its computational complexity is O(Ln), where n is the

number of points of the time series and L is the average length of the resulting

segments.

Adapted Sarker method: Sarker [16] proposed an improved version of the

Bottom-Up method. In this work, this method was adapted from the Bottom-105

Up method. In order to identify the optimal contiguous segments, the Bottom-

up method was adapted by using n/2, n/3, n/4, n/5 . . . segments to initially ap-

proximate the n points of the time series. The Bottom-up method was applied

for each initial number of segments and the one that generated the approxima-

tion with the fewest points was selected. Since the solution is obtained in a few110

iterations, it can be considered that its computational complexity is similar to

the complexity of the Bottom-Up method.

FSW method: Liu [1] proposed the feasible space window (FSW) online

method: the longest segment with an error bound guarantee on each data is

obtained. For this purpose is used the feasible space (FS). FS is an area in115

the data value space of a time series where any straight line in this area can

approximate each data point of the corresponding segment within a given error

bound. When new data points are read, the FS is incrementally updated and

is smaller with the new data points since it is obtained by intersecting areas.

When the FS becomes empty, the new segment is generated and the last points120

that produced a non-empty FS will be the starting point of the next segment.

Figure 1 shows an example of updating FS when a data point is read. Eb is the

given error bound, and P0, P1, P2, P3 are points of the time series.

1. When P1 is read, the FS is the area bounded by lines L1L and L1U (marked

with vertical red lines). Since FS is not empty, P1 is a cut point candidate.125
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2. When P2 is read, the area bounded by lines L2L and L2U is obtained

(marked with horizontal blue lines). The new FS is obtained by intersect-

ing this area and the current FS (marked with vertical red and horizontal

blue lines). Since FS is not empty, P2 is a cut point candidate.

3. When P3 is read, the area bounded by lines L3L and L3U (green lines) is130

obtained. In this case, the intersection of this area and the current FS is

empty; therefore, P3 is not a cut point candidate, and P2 will be the cut

point and the starting point of the next segment.

This method has been adapted as an offline method. Due to this, the al-

gorithm finishes when the last point of time series is included in the FS of a135

previous point. Its computational complexity is O(Kn), where n is the number

of points of the time series and K is the number of segments.

SFSW method: Liu [1] proposed the stepwise feasible space window (SFSW)

online method. This method is an improvement of the FSWmethod. The SFSW

method involves backward segmenting one segment to refine the previously ob-140

tained endpoint every time we obtain two forward segments using the FSW

method. When the backward segmenting point is different to the forward seg-

menting point, the optimal segmenting point is located between them. In this

case, the point between them that produces the minimum error is selected as

the real segmenting point. Once the real segmenting point is found, the stepwise145

process starts from that point. This method has been adapted in a similar way

to the FSW method. Its computational complexity is O(Kn), where n is the

number of points of the time series and K is the number of segments.

OSTS method: Carmona [14] proposed an optimal offline method (OSTS),

by using L2-norm. This method is based on an improved version of Salotti150

method [17, 18]. The optimal segmentation is obtained from the search of

the shortest path in a graph. For this purpose the A∗ algorithm is used. In

order to reduce the computational time, the results obtained by the suboptimal

Pikaz method [19] were used as pruning values. Its computational complexity

is O(Kn2), where K is the number of segments and n is the number of points155
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of the time series.

2.2. Metaheuristic methods

In this work, we also compare our method against three evolutionary al-

gorithms which show a good performance in the segmentation of time series

[11].160

Genetic algorithms (GA or GAs): They are one of the most extended

bioinspired metaheuristics. They consist of different processes that simulate the

evolution of the species.

Firstly, GA initialises a population of solutions known as chromosomes.

Then, GA simulates the evolution for some generations until a stop condition is165

full-filed: 1) a set of parents is selected to be crossed under a crossover probabil-

ity in order to generate new solutions (exploitation of the search space), 2) the

new solutions are mutated under a mutation probability by performing changes

in them (exploration), 3) a fitness function is calculated for the offspring which

is related to the problem optimisation, and 4) the competition between par-170

ents and offspring to survive for the next generation is made by a replacement

operator. Finally, the best solution (chromosome) is returned.

Coral reef optimisation algorithms (CRO or CROs): They are a novel

bioinspired strategy to search and optimisation, which simulates the processes

occurring in a real coral reef.175

Firstly, CRO initialises the coral reef using a set of corals (solutions in our

problem), but, in this case, the algorithm maintains some unfilled positions

(these positions can be filled during the evolutionary process). Then, CRO

simulates the processes of reproduction and reef formation, using different op-

erators: 1) the asexual reproduction takes a percentage of the healthiest corals180

(with best fitness function) and mutates them under a probability to promote

diversity, 2) a fraction of corals are combined between them (external) and the

rest are mutated (internal) to mimic the two processes of sexual reproduction,

3) a fitness function is calculated to the new larvae, 4) the new larvae try to

settle in the reef competing with the already settled corals, 5) depredation is185
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performed to delete those less healthy corals under a given probability. Finally,

the healthiest coral is returned.

Statistically-driven CRO algorithms (SCRO or SCROs): Statistically-

driven CRO algorithms (SCROs) are a modification of the standard CROs where

the big amount of parameters needed in them are deleted and dynamically cal-190

culated during the evolution. For that, the algorithm performs operations using

the fitness distribution of the whole coral reef.
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Figure 2: Example of the proposed method (I). (A)Obtaining possible successors to point P0

and updating the priority queue. (B) Obtaining possible successors to point P1 and updating

the priority queue.

Adaptation to our problem: these three algorithms presented in [11] were

developed to minimise the error of the approximation with a predefined number

of points/segments. For this reason, some modifications of the operators have195

been changed to ensure convergence of the algorithm for the problem presented.

1. Initialisation: each solution is initialised using a suboptimal algorithm
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Figure 3: Example of the proposed method (II). (C)Obtaining possible successors to point P2

and updating the priority queue. (D) Obtaining possible successors to point P3 and updating

the priority queue.

called Sliding Window [20]. This greatly reduces the possibility that initial

solutions are not feasible and that the algorithm will only evolve through

them.200

2. Crossover/External sexual reproduction: given two parents, a single point-

crossover is performed to generate two new solutions.

3. Mutation/Internal sexual reproduction: a solution can be mutated adding,

deleting, or moving points to the left or the right.

4. Fitness function: given that the work aims to reduce the number of points205
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in the time series approximation preventing the maximum error (maxE)

from exceeding a predefined threshold (t), the new fitness function is:

f =





1− K
n maxE ≤ t

�
1− K

n

�
∗ (1− α) ∗

�
1

1+maxE−t
t

�
maxE > t

(1)

where K is the number of segments of the approximation, n is the time

series length, and α is a penalty parameter which is calculated as the cur-

rent number of evaluation divided by the maximum number of evaluations210

(our stop criteria). In this way, non-feasible solutions are allowed at the

beginning to explore the search space, but the algorithm tries to exploit

the searched feasible solutions in the end. This is in accordance with the

philosophy of evolutionary algorithms.

5. Hybridisation: we do not apply any local search to the best solution ob-215

tained by the evolutionary algorithm due to the one proposed in the com-

mented work is specifically designed to optimise another fitness function.

3. Our proposal

3.1. Proposed method (OSFS method)

In this work, a new optimal offline segmentation method called Optimal220

Segmentation based on Feasible Space (OSFS) is proposed. This method mini-

mizes the number of segments with error bound guarantee. Therefore, given a

maximum error allowed, based on the L∞-norm, the number of cut points (or

segments) that approximates the time series must be minimized. Since there

can be several solutions, one will be obtained that also minimizes the value of225

ISE (L2-norm). The solution to our problem is reduced to finding the shortest

path in a directed graph and the feasible space method (FS) proposed by Liu

[1] will be used in order to obtain the possible successors of a cut point with

error bound guarantee.

Let TS be the time series and eb the error bound guarantee. Since the230

shortest path in a graph must be found, it is necessary to define what information
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is going to be stored in the nodes of the graph: Point depicts a point of the time

series; Previous depicts the predecessor node of that node in the provisional

solution and is necessary in order to obtain the optimal solution; Accumulated

depicts the number of segments that approximate the series in the provisional235

solution obtained up to that point; and ISE depicts the accumulated value of

ISE in the provisional solution obtained up to that point. To refer to each of

the items in the node, the operator dot will be used. For example, the point

corresponding to node N is referred as N.Point. The OSFS method is based

on a breadth-first search in a directed graph. Candidate nodes are stored in240

a priority queue (Qc) The priority queue is sorted according to the value of

Accumulated. In the case of equality in the value of Accumulated, the node with

lower value of ISE has priority, thus the ISE value is minimized in the final

solution. Table (Ae) will be used to know if the point belonging to a node, with

a specific previous point, was already evaluated.245

The OSFS method is described in more detail below and its pseudocode is

shown in the Algorithm 1.

1. The first node, N0, of the shortest path will be the node that contains the

first point of the time series, P0 (lines 1 and 2 of the pseudocode). In this

case, it has no predecessor and N0 is used as a predecessor, its accumulated250

value is 0 and its ISE value is 0.0. N0 = (P0, N0, 0, 0.0) Initially, that will

be the only node that is contained in Qc (line 3 of the pseudocode).

2. Select and extract the node contained in Qc, in this case the node N0

(lines 4 and 5 of pseudocode). minimumN = Qc.front() Qc.deque()

Now an iterative process is followed consisting of the following steps:255

• All the points in the time series between the one corresponding to

this node and its previous one will be marked as evaluated and

cannot be selected later (line 6 of the pseudocode). So, for each

point Pk in the time series, between minimunN.Previous.Point and

minimunN.Point, Ae(minimumN.Point, Pk) = true260

• All the possible successor points of the point corresponding to se-
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lected node are obtained by using the feasible space (FS) proposed

by Liu [1]. This selection of points works as a pruning procedure and

greatly reduces the search space (line 7 of the pseudocode)

{P1, P2, . . . Pi, . . . Pn} = FS(TS,minimumN.Point, eb)

• For each Pi ∈ FS, a new candidate node (newN) will be generated,

where:

newN.Point = Pi, newN.Previous = minimumN

newN.Accumulated = 1 + minimumN.Accumulated

newN.ISE = minimumN.ISE + ISE(minimumN.Point, newN.Point).265

The last addition represents the ISE value between the two points.

• To treat the new node, two cases arise:

No node of the graph contains Pi. In this case, this node is

inserted in the candidate queue. (line 8 of the pseudocode,

Qc.enque(newN))270

There is a node N of the graph that contains Pi. If the accu-

mulated value is less than it previously had, the node will be

updated with the new accumulated value, the new previous and

the new ISE is calculated as the ISE value between N.Point and

Pi (line 9 of the pseudocode, Qc.update(newN)) In any other275

case, it is not updated (line 10 of the pseudocode).

• Select and extract the node contained in Qc with minimum value

of Accumulated (minimumN) (lines 11 and 12 of the pseudocode).

(minimumN = Qc.front(), Qc.deque()) In the event that there are

several minimums, the one with the lowest ISE value will be selected.280

• If the selected node corresponds to the last point of the time se-

ries, the algorithm finishes and the optimal segmentation has been

obtained. This is the exit condition of the iterative process.

3. Once the last point in the time series is selected, the iterative process

ends. To obtain the cut points, all the previous points are obtained from285
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the last point until reaching the first of the time series (lines 13 and 14 of

the pseudocode).

Figures 2 and 3 shows an example of how the OSFS method works for a time

series of 7 points. An error bound guarantee equal to 5 will be considered(eb =

5). The double vertical arrows depict the errors of each point and cannot exceed290

the error bound guarantee. The values of each node are represented in boxes.

The four steps represented in the figure can be summarized as follows:

1. First step (A).

The first node that is initially in the priority queue (N [0]), and con-295

taining point P0, is removed from the queue.

Points P1, P2 and P3, possible successors of P0, will generate their

corresponding nodes that will be inserted in the priority queue. P4

overpasses the value of eb and is not inserted into the queue.

The priority queue would have the following nodes: Qc = {N [1], N [2], N [3]}.300

The accumulated value for these nodes is 1.

2. Second step (B).

Node N [1], which contains point P1, is removed from the queue.

Points P2, P3 and P4, possible successors of P1, will generate their

corresponding nodes (N [4], N [5], N [6]). The accumulated value for305

these nodes is 2. P5 overpasses the value of eb and is not inserted

into the queue.

N [4] and N [5] are not inserted in the queue because the accumulated

values are higher than that of points P2 and P3 from the previous

step.310

Node N [6], which contains the point P4, is inserted as a new node in

the queue. The accumulated value for this node is 2.

The priority queue would have the following nodes: Qc = {N [2], N [3], N [6]}.
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Algorithm 1 Pseudocode for the OSFS method
Input: Time series (TS). Error bound guarantee (eb).

Output: List of Cut Points of the optimal segmentation (Lcp)

Local Data Structures: Priority queue of candidate nodes (Qc). Two-dimensional array of

evaluated nodes (Ae). Current Point (P ). Initial Node (N0).

Begin-Pseudocode

1. P0 = TS.F irstPoint()

2. N0 = (P0, N0, 0, 0.0)

3. Qc.enque(N0)

4. minimumN = Qc.front()

5. Qc.deque()

repeat

for Pj = minimumN.Previous.Point, . . . ,minimumN.Point − 1 do

6. Ae(minimumN.Point, Pj) = true {minimumN.Point will no longer be selected}
end for

P = minimumN.Point

for Pi in FS(TS, P, eb) and Ae(Pi,minimumN.Point) �= true do

{For each Pi ∈ FS not previously selected, a new node Ni is created}
7.Ni = (Pi, 1 +minimumN.Accumulated,minimumN,minimumN.ISE + ISE(P, Pi))

if ∀N ∈ Qc ⇒ Pi �= N.Point {Pi is not contained in any node of Qc} then

8. Qc.enque(Ni)

else if Ni.Accumulated ≤ Ni.oldAccumulated {old value of Accumulated} then

9. Qc.update(Ni) {Ni is updated with new Accumulated and Previous}
else

10. {Ni is not updated}
end if

end for

11. minimumN ← Qc.front()()

12. Qc.deque()

until minimumN.Point = TS.LastPoint()

{Now, the cut points are inserted in Lcp}
while minimumN.Point �= P0 do

13. Lcp.insert(minimumN.Point)

14. minimumN ← minimumN.Previous

end while

End-Pseudocode
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3. Third step (C).

Node N [2], which contains point P2, is removed from the queue.315

Points P3, P4 and P5, possible successors of P2, will generate their

corresponding nodes (N [7], N [8], N [9]). The accumulated value for

these nodes is 2. P6 overpasses the value of eb and is not inserted

into the queue.

N [7], which contains the point P3, is not inserted in the queue because320

the accumulated value is higher than that of point P3 from the first

step (Node N [3).

Node N [8], which contains the point P4, has a accumulated value

equal to that of node N [6], which also contains point P4, but the

ISE value for node N [6] is lower. Therefore, node N [8] will not be325

queued.

Node N [9], which contains the point P5, is inserted as a new node in

the queue. The accumulated value for this node is 2.

The priority queue would have the following nodes: Qc = {N [3], N [6], N [9]}.

4. Fourth step (D).330

Node N [3], which contains point P3, is removed from the queue.

Points P4, P5 and P6, possible successors of P3, will generate their

corresponding nodes (N [10], N [11], N [12]). The accumulated value

for these nodes is 2. P7 overpasses the value of eb and is not inserted

into the queue.335

Node N [10], which contains the point P4, has a accumulated value

equal to that of node N [6], which also contains point P4, but the

ISE value for node N [6] is lower. Therefore, node N [10] will not be

queued.

Node N [11], which contains the point P5, has a accumulated value340

equal to that of node N [9], which also contains point P5, but the
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ISE value for node N [11] is lower. Therefore, node N [11] will replace

node N [9 in the queue.

Node N [12], which contains the point P6, is inserted as new node in

the queue. The accumulated value for this node is 2.345

The priority queue would have the following nodes: Qc = {N [6], N [11], N [12]}.

5. Finally, the next node to come out of the queue will be N [6], which con-

tains point P4. Points P5, P6 and P7, possible successors of P3 will gen-

erate their corresponding nodes. In this case, when the last point of the

time series (P7) is selected, the algorithm ends. The solution will be ob-350

tained from the previous value of the Node that contains P7 and so on.

Therefore, the optimal cut points will be P7, P4, P1 and P0.

3.2. Proposed performance measure

Any segmentation method tries to minimize the number of segments (amount

of information) and the error made in it. These objectives are opposed and355

when they try to improve one of them, the other method is worsened. To avoid

this drawback, Rosin [21] proposed a balanced measure to compare polygonal

approximations of closed contours. This measure had two main advantages: 1)

it can be used to compare polygonal approximations with different numbers of

points; 2) it allows to compare the polygonal approximation obtained by a given360

method with the optimal polygonal approximation.

This measure used two components: fidelity and efficiency. Fidelity measures

how well the polygonal approximation obtained by the method to be tested

fits the optimal polygonal segmentation in terms of the approximation error.

Efficiency measures how compact the polygonal approximation obtained by the365

method to be tested is, relative to the optimal polygonal approximation which

incurs the same error. They are defined as

Fidelity =
Eopt

Eapprox
∗ 100 Efficiency =

Nopt

Napprox
∗ 100

where Eapprox is the error that the tested method would require to produce

the same number of cut points as the optimal method, and Eopt is the error370
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incurred by the optimal method. Napprox is the number of cut points in the

segmentation produced by the method to be tested, and Nopt is the number of

cut points that the optimal method would require to produce the same error as

the tested method. From these two measures and combining the properties of

both, Rosin proposed the measure of Merit. Merit =
√
Fidelity × Efficiency375

In this work, the Rosin measure has been adapted to assess the merit of any

segmentation method. In this case, the Rosin measure has been used because it

assesses the performance of each of the two optimal methods (OSTS and OSFS)

using the recommended measure of merit for the other method. Thus, when the

performance of one method is evaluated, the measure that optimizes the other380

method is taken into account. On the other hand, it should be noted that this

measure also evaluates the performance of the suboptimal methods.

To obtain these measurements in a suboptimal method it is required to

calculate the number of cut points (Napprox) and the maximum error (Eapprox)

for that method, how many points the optimal method would require to produce385

the same maximum error as the suboptimal method Nopt, and the maximum

error (Eopt) that the optimal method would obtain if it had the same cut points

as the suboptimal method (Napprox).

In our case, the error incurred is the one corresponding to the L∞-norm.

3.3. Complexity Analysis390

Since the OSFS method is based on the FSW method, the computational

complexity of this method is analyzed. Liu [1] simplified this analysis by assum-

ing a fixed number of segments K and n points. In the worst case, to obtain the

feasible space (FS), every time the next cut point is searched, the last data point

of time series is reached, which implies that the complexity of finding one cut395

point is O(n). Since it is assumed that there are K segments, the computational

complexity of the FSW algorithm is O(Kn) in the worst case. However, in the

average case every segment contains n/K points. In order to obtain the feasi-

ble space (FS), n/K points are processed until the next cut point is obtained.

Therefore, the computational complexity of the FSW algorithm is O(n) in the400
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average case.

To analyze the computational complexity of the OSFS method, the average

case will be assumed, which is much more realistic than the worst case. Thus,

the following considerations will be taken into account:

1. The feasible space is calculated for all the points of the time series, which405

implies an order of complexity O(n2).

2. All the points that are processed to obtain the feasible spaces create nodes

that go in and out of the priority queue as the algorithm selects the cut

points of the optimal segmentation.

3. Since the algorithm performs a breadth-first search on a directed graph410

and since its nodes enter and exit in the priority queue, only nodes cor-

responding to two consecutive levels of depth can belong to the priority

queue in each step of the algorithm. Thus, for the previous level of depth,

the priority queue will contain on average n/K nodes, and for each of those

nodes it will contain n/K nodes at the next level of depth. Therefore, on415

average, the number of nodes stored in the priority queue will be (n/K)2.

4. On the other hand, and taking into account that the priority queue was

implemented as a heap, the operation to obtain the minimum is of constant

complexity and the operations to insert, delete or update are of logarithmic

complexity. Therefore, the computational complexity of these operations420

would be O(log((n/K)2) ≡ O(log(n/K))

Finally, taking into account the order of complexity of obtaining the feasible

spaces and the processing of the nodes in the priority queue, the computational

complexity of the OSFS method is O(n2log(n/K)).

4. Experiments and results425

This section shows the time series considered to evaluate the different meth-

ods, the experimental setting and the results obtained. The OSFS method has

been implemented in C++ and all the experiments were run using an Intel(R)
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Core(TM) i7-870 K CPU at 3.70GHz with 64GB of RAM. The code and the

time series used are available at https://github.com/ma1capoa/OSFS Method430

4.1. Datasets used

The performance of the OSFS method has been evaluated and compared to

other methods whose performance has been evaluated as well. For this purpose,

several synthetic and real-world time series collected from public repositories

have been used. So, its robustness in different scopes of application has been435

tested: (1) three datasets from the UCR Time Series Classification Archive

were selected [22]: Hand Outlines, with a total of 8127 points, Mallat, and

StarLightCurves, all of them with 8192 observations; (2) Donoho-Johnstone

time series [23, 24], formed by four functions to which random noise can be

added to produce an infinite number of datasets. In this work, we have con-440

sidered the function Blocks with medium noise, producing a total of 2048 ob-

servations; (3) Stock prices time series from financial applications including

five different indexes: BBVA, Deutsche Bank, Intesa San Paolo, and Société

Genéralé. These four series have a length of 4174 points, considering daily

values from 1 January 1999 to 9 February 2015; (4) Wave height time series445

(Hs) including four time series of significant wave height collected from buoys

of the National Data Buoy Center of the USA have been used [25]. Two buoys

are collecting data in the Gulf of Alaska (with registration number 46001 and

46075), and the rest are from Puerto Rico (41043 and 41044). One value every

six hours from 1st January 2008 to 31st December 2013 is considered for buoy450

46001 (8767 observations), while data from 1st January 2011 to 31st December

2015 are considered for the rest of buoys (7303 observations for each one); (5)

Arrhythmia dataset contains cardiology data which belongs to the PhysioBank

ATM of the MIT BIH Arrhythmia dataset [26]. We used the MLII signal of the

record 108 (9000 observations) to test the algorithm in this dataset.455

Some representative series are shown in Figure 4.
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Figure 4: Some representatives time series. From left to right and from top to bottom:

Arrhythmia, Mallat, Donoho-Johnstone, BBVA, HandOutlines and buoy-41043

4.2. Performance measures

In order to assess the effectiveness of the OSFS method, three measures were

used: (1) the number of cut points or segments obtained in the segmentation of

the time series; (2) the root mean square of ISE value divided by the number of460

points of the time series, called RSME, calculated as: RSME =
�

ISE
n ; and (3)

the measure of merit cited in subsection 3.2. The number of cut points is the

main measure since it has been used as an objective function to optimize the

method. On the other hand, RSME is the error considered in the L2-norm.

4.3. First experiment. Comparison of optimal methods465

In this subsection, the OSFS method is compared to the optimal method

proposed in [14]. Since the two methods are optimal, when the Rosin mea-

surement is calculated for each of them, taking into account their respective

optimization criteria, a value of 100 is obtained for both. Due to this, when

comparing these methods, the Rosin measure of merit was calculated using, for470

each of the methods, the optimization criterion of the other one. Thus, the

measures of merit for the OSTS method and for the other one were calculated
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using the RSME value (L2-norm), and the number of cut points (L∞-norm),

respectively.

To test both methods under similar conditions, the following steps were475

followed:

1. By using OSTS method, and for all series, the optimal segmentation with

0.025n cut points were calculated, where n is the number of points in the

original series, just like in the OSTS method [14].

2. For each of the optimal segmentations obtained in the previous step, the480

maximum error value was calculated (L∞-norm).

3. Using the maximum error values obtained as the error bound guarantee

in each of the time series, the OSFS method was tested.

These maximum error values will be used as error bounds guarantee in the next

experiments as well.485

Tables 1 shows the computational time, merit, number of cup points and

RSME values for the two optimal methods. The best results for each time

series are highlighted in bold.

Table 1: Values of error bound guarantee (eb), time (ms), Merit, number of cut points (Ncp

and RMSE for the two optimal methods.

error bound OSFS method OSTS method

Time series eb time(ms) Merit Ncp RSME time(ms) Merit Ncp RSME

Hand Outlines 0.018 3946.4 79.1 126 0.007 12146.9 60.3 203 0.004

Mallat 0.259 3852.5 85.7 176 0.105 10489.2 81.2 204 0.072

StarLightCurves 0.038 3882.0 91.2 166 0.017 20050.4 75.5 204 0.011

Donoho-Johnstone 8.405 285.5 99.8 22 2.651 734.8 56.3 51 2.218

BBVA 1.324 1098.0 88.4 29 0.520 3672.9 38.9 104 0.236

DEUTSCHE 7.467 1087.4 90.2 40 2.581 2953.8 46.9 104 1.421

SAN PAOLO 0.527 1138.9 73.5 26 0.205 3708.7 33.6 104 0.080

SO Genéralé 8.830 1101.7 88.6 33 3.034 3870.0 41.3 104 1.598

B46001 4.914 5233.2 24.5 4 2.452 64818.1 9.3 219 0.799

B46075 3.951 3404.3 20.9 31 1.705 30415.3 32.3 182 0.822

B41043 1.752 3347.6 82.4 17 0.742 29851.7 21.6 182 0.295

B41044 1.465 3207.0 69.2 40 0.526 23399.0 36.4 182 0.292

Arrhytmia 0.115 4699.0 79.5 180 0.038 15938.7 75.6 225 0.022

Mean Values 3.005 2791.0 74.8 68.46 1.122 17080.7 46.9 159.08 0.605
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Obviously, the results show that each one of them obtains better results in

the parameter they optimize (Ncp and RSME). However, the computational time490

of the OSFS method is approximately one sixth of that of the OSTS method.

On the other hand, the average value of the measure of merit obtained in the

OSTS method is 74.8 while that of the OSTS method is 46.9. Only in the case

of the time series corresponding to buoy-B46075, the measure of merit is better

for the OSTS method; in the rest of cases, the proposed method is better.495

4.4. Second experiment. Comparison with heuristic methods and assessment of

their performance

In this subsection, the OSFS method is compared to the heuristic methods

described in section 2 and the performance of these methods is also evaluated.

In this case, the same values of error bound guarantee (eb) of the previous500

experiment were used. Table 2 shows the computational time and merit for the

heuristic methods. The best results for each time series are highlighted in bold

(the optimal method was not taken into account for the merit measure).

Table 2: Values of time (ms) and merit for the heuristic methods. L∞-norm has been used.

Error bound guarantee values are the same as in Table 1

OSFS Top Down Bottom Up Sarker FSW SFSW

Time series time(ms) Merit time(ms) Merit time(ms) Merit time(ms) Merit time(ms) Merit time(ms) Merit

Hand Outlines 3946.43 100.0 2969.9 56.1 1180.1 62.6 1223.3 62.6 1.4 94.5 5.6 95.4

Mallat 3852.45 100.0 8110.5 35.5 1230.4 72.3 1929.2 72.3 1.4 97.9 5.1 97.9

StarLightCurves 3881.97 100.0 4744.6 40.3 1024.6 71.3 1040.0 71.3 2.4 95.0 7.2 95.5

Donoho-Johnstone 285.50 100.0 108.5 36.9 39.4 22.7 121.2 22.7 0.4 95.3 1.9 95.2

BBVA 1098.04 100.0 449.8 51.6 412.6 54.7 876.2 57.1 0.8 90.9 4.0 87.6

DEUTSCHE 1087.36 100.0 531.5 45.8 370.2 43.8 736.1 59.3 0.8 91.5 6.5 94.8

SAN PAOLO 1138.87 100.0 650.3 43.8 434.4 57.6 1410.6 64.4 0.7 82.3 10.2 86.9

SO Genéralé 1101.74 100.0 421.9 49.6 336.1 27.6 927.3 54.1 0.7 87.1 6.2 87.1

B46001 5233.24 100.0 2986.0 18.5 1973.3 21.2 4828.6 27.4 1.4 71.1 18.3 93.6

B46075 3404.27 100.0 2550.3 32.8 1162.6 32.6 1280.9 32.6 1.3 83.1 25.4 61.3

B41043 3347.55 100.0 2543.8 32.7 1311.5 40.2 2206.4 41.0 1.2 90.0 26.1 74.6

B41044 3207.00 100.0 2972.4 40.3 1156.4 41.7 1144.2 41.7 1.4 91.6 15.0 79.7

Arrhytmia 4698.98 100.0 4058.1 41.3 1391.7 67.5 2699.0 73.7 1.7 93.8 8.5 96.2

Mean Values 2791.03 100.00 2545.96 40.40 924.86 47.37 1571.00 52.32 1.19 89.53 10.76 88.14

From the point of view of computational time, the FSW method is the best
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and the SFSW method is the second best. Its difference from the other methods505

is significant. As seen in section 2, the low values of computational time are due

to the fact that the computational complexity of these methods is linear. The

worst one is the OSFS method, however, its time is not much higher than some

of the proven heuristic methods (for example: it is only 10% higher than the

top down method). It cannot be forgotten that the OSFS method is optimal.510

From the point of view of the merit measure, without considering the OSFS

method that is optimal and therefore obtains a merit equal to 100, the best two

are the FSW and SFSW methods with no significant difference between them.

The worst of the methods by far is the Top Down method.

Taking into account their low computational complexity and that they obtain515

a high value of the measure of merit, the FSW or SFSW methods would be the

two recommended methods for any real-time application.

Table 3 shows the number of cut points (Ncp) and RSME values for the

heuristic methods (for example: it is only 10% higher than the top down

method). The best results for each time series are highlighted in bold (the520

OSFS method has not been taken into account for the Ncp values).

Table 3: Values of number of cut points(Ncp) and RSME for the heuristic methods.L∞-norm

was used. Error bound guarantee values are the same as in Table 1

OSFS Top Down Bottom Up Sarker FSW SFSW

Time series Ncp RSME Ncp RSME Ncp RSME Ncp RSME Ncp RSME Ncp RSME

Hand Outlines 126 0.007 224 0.006 198 0.004 198 0.004 133 0.009 132 0.007

Mallat 176 0.105 440 0.084 233 0.076 233 0.076 181 0.145 181 0.110

StarLightCurves 166 0.017 332 0.014 237 0.010 237 0.010 172 0.023 171 0.018

Donoho-Johnstone 22 2.651 107 2.524 118 3.293 118 3.293 26 2.753 26 2.589

BBVA 29 0.520 79 0.434 79 0.319 69 0.348 40 0.579 42 0.483

DEUTSCHE 40 2.581 110 2.532 132 1.510 79 1.786 48 3.291 45 2.647

SAN PAOLO 26 0.205 78 0.169 57 0.135 54 0.131 37 0.237 34 0.201

SO Genéralé 33 3.034 85 2.882 233 1.273 78 1.953 41 3.730 41 3.119

B46001 4 2.452 121 1.136 99 1.123 64 1.252 13 2.613 8 2.441

B46075 31 1.705 192 1.069 198 0.889 198 0.889 47 2.046 75 1.694

B41043 17 0.742 126 0.459 92 0.440 89 0.428 27 0.736 35 0.618

B41044 40 0.526 186 0.415 176 0.349 176 0.349 56 0.647 69 0.536

Arrhytmia 180 0.038 433 0.034 254 0.024 233 0.024 190 0.053 187 0.040

Mean Values 68.462 1.122 193.308 0.904 162.000 0.727 140.462 0.811 77.769 1.297 80.462 1.116
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Considering the number of cut points, the FSW method is the best and

the SFSW method is the second best. Its difference from the other methods is

significant. On average, its values are 13% and 17% higher than the optimal

method, respectively. The worst one is the Top Down method.

Taking into account the RSME values, the the Bottom Up method is the525

best and the second best is the adapted Sarker method, the OSFS method is in

an intermediate position despite having the least number of cut points and the

worst of the methods by far is the FSW method.

4.5. Third experiment. Comparison with metaheuristic methods and assessment

of their performance530

In this subsection, the OSFS method is compared to the metaheuristic meth-

ods described in section 2 and the performance of these methods is also eval-

uated. In this case, the same values of error bound guarantee of the previous

experiments were used. These algorithms were run 30 times with different ran-

dom seeds, and Tables show the obtained mean values.535

Table 4 shows the computational time (ms), the number of cut points (Ncp)

and Merit values for the metaheuristic methods. The best results for each time

series are highlighted in bold (the OSFS method was not taken into account for

the Ncp and Merit values)

Note that the OSFS method is optimal and therefore obtains a value of540

100 in the measure of merit. Considering the computational time, Ncp, and

Merit values, the best results are obtained by the OSFS method, the second

best results are obtained by the GA method, and the results obtained by CRO

and SCRO methods are similar. Moreover, the computational time of the

metaheuristic methods is very high.545

However, if the metaheuristic methods are compared to heuristic methods,

taking into account the Ncp and Merit values, they are only overcome by FSW

and SFSW methods.
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Table 4: Values of time (ms), number of cut points (Ncp) and Merit for the metaheuristic

methods.L∞-norm has been used. Error bound guarantee values are the same as in Table 1

OSTS GA CRO SCRO

Time series time(ms) Ncp Merit time(ms) Ncp Merit time(ms) Ncp Merit time(ms) Ncp Merit

Hand Outlines 3946.4 126.0 100.0 95725.9 167.0 76.8 99404.9 165.6 78.0 97310.5 167.5 77.3

Mallat 3852.5 176.0 100.0 121383.2 212.9 80.4 125034.6 212.8 80.4 123601.1 214.0 79.8

StarLightCurves 3882.0 166.0 100.0 108864.1 185.2 84.6 108856.0 185.3 84.2 108151.9 185.9 83.7

Donoho-Johnstone 285.5 22.0 100.0 10261.1 72.2 48.3 12610.7 80.7 45.1 12313.6 78.9 45.2

BBVA 1098.0 29.0 100.0 20587.6 59.9 64.2 18900.3 62.5 61.2 21016.9 63.2 61.6

DEUTSCHE 1087.4 40.0 100.0 23623.4 67.0 69.1 23000.6 70.5 67.3 23263.9 71.7 66.0

SAN PAOLO 1138.9 26.0 100.0 14114.0 42.6 70.3 15804.3 45.2 68.6 17795.7 45.5 68.4

SO Genéralé 1101.7 33.0 100.0 19185.0 53.4 70.4 18027.3 56.1 67.6 18629.0 56.8 66.3

B46001 5233.2 4.0 100.0 29780.8 13.2 55.0 26550.6 15.7 50.4 49449.3 18.0 47.1

B46075 3404.3 31.0 100.0 58655.0 95.2 52.1 63983.1 117.1 46.2 65204.6 114.2 46.7

B41043 3347.6 17.0 100.0 35169.6 45.5 57.1 38512.2 62.0 48.2 45505.3 57.2 49.8

B41044 3207.0 40.0 100.0 58525.1 100.8 57.4 63008.2 115.5 51.9 65543.3 116.7 51.3

Arrhytmia 4699.0 180.0 100.0 136224.9 213.2 80.5 135013.9 212.1 29.1 137201.2 212.2 80.7

Mean values 2791.03 68.46 100.0 56315.37 102.16 66.6 57592.81 107.77 59.9 60383.56 107.82 63.4

As Table 4 shows, one of the main disadvantages of the evolutionary algo-

rithms is the computational time when they are compared against one-solution550

based algorithms. As we commented previously, an evolutionary algorithm is

applied to a population of solutions and over some generations. It causes that

the evaluation of the solution, which is the slowest part in the algorithm, is re-

peat a lot of times causing the increase of this computational time. Also, given

that this problem has an enormous search space with non-feasible solutions, the555

initialisation is made by repeating another algorithm for each of the solutions

of the initial population resulting in a set of feasible solutions.

Another drawback is that evolutionary algorithms can reach high quality

areas, but they are not good at optimising the solutions of that area. To solve

this problem, authors in [11] proposed an interesting hybridisation using a local560

search, but it cannot be applied given that the fitness function and the problem

here is different.

For future improvements of the evolutionary algorithms, it would be inter-

esting to focus on reducing the computational time and the number of points

by finding a good local search to be applied as a hybridisation of the algorithm.565

Table 5 shows the values of RSME for the metaheuristic methods. The best
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results for each time series are highlighted in bold.

Table 5: Values of RSME for the metaheuristic methods.L∞-norm has been used. Error

bound guarantee values are the same as in Table 1

Time series Proposed GA CRO SCRO

Hand Outlines 0.007 0.009 0.009 0.009

Mallat 0.105 0.145 0.144 0.145

StarLightCurves 0.017 0.023 0.023 0.023

Donoho-Johnstone 2.651 2.844 2.853 2.878

BBVA 0.520 0.576 0.590 0.591

DEUTSCHE 2.581 3.113 3.130 3.146

SAN PAOLO 0.205 0.232 0.236 0.235

SO Genéralé 3.034 3.845 3.971 3.981

B46001 2.452 2.429 2.395 2.466

B46075 1.705 1.813 1.872 1.869

B41043 0.742 0.730 0.780 0.767

B41044 0.526 0.649 0.669 0.671

Arrhytmia 0.038 0.054 0.053 0.053

Mean values 1.122 1.266 1.286 1.29

Considering the RSME measure, the best results are obtained by the OSFS

method, and the results obtained by the metaheuristic methods are similar.

In general, the results of the metaheuristic methods are worse than those of570

the heuristic methods, taking into account the RSME measure.

4.6. Fourth experiment. How noise affects the OSFS method

For this purpose, the original time series are considered as noise free signals

and white noise has been added to achieve versions with SNR rates with values

of 20, 30, 35, 40, 45 and 50 decibels. The method was then run taking into575

account the same error bound guarantee values as in the previous experiments.

Table 6 shows the values of Ncp for the different noise values.

Except for the HandOutlines and StarLightCurves series, the noise levels of

50, 45 and 40 decibels hardly affect the solution. For 35 decibels or less, the

solutions of the MALLAT, BBVA, DEUTSCHE, SAN PAOLO and SO Generale580

time series are also affected. From 20 decibels all solutions are affected.
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Table 6: Values of Ncp for different values of noise. L∞-norm was used. Error bound

guarantee values are the same as in Table 1

Time series original 50db 45db 40db 35db 30db 20db

HandOutlines 126 145 186 927 3425 5276 8150

MALLAT 176 176 177 179 182 192 335

StarLightCurves 166 172 185 217 510 2813 6231

Donoho-Johnstone 22 22 22 23 22 22 28

BBVA 29 29 29 30 44 55 1318

DEUTSCHE 40 41 41 43 48 58 1222

SAN PAOLO 26 25 26 27 32 38 723

SO Genéralé 33 31 32 33 38 52 1022

B46001 4 4 4 4 4 4 6

B46075 31 31 31 31 33 33 40

B41043 17 18 18 19 19 20 26

B41044 40 40 39 39 39 41 48

Arrhythmia 180 180 181 191 182 185 207

5. Conclusions and future improvements

The conclusions of this work can be summarized as follows. The present work

proposes an optimal time-series segmentation with error bound guarantee (L∞-

norm). Taking into account that several optimal solutions are possible, the one585

that minimizes the RSME value (L2-norm) is obtained. In order to reduce the

computational time by pruning suboptimal solutions, the feasible space method

(FS) proposed by Liu [1] is used to obtain the possible successors of a cut point

with error bound guarantee. On the other hand, a new performance measure has

also been proposed. Thus the OSFS method could be used in any application590

scenario and its main utility would be the evaluation of the performance of

any suboptimal method. Moreover, the experiments carried out have made it

possible to compare the norm of L∞-norm and L2-norm, by using the OSFS

method and the one proposed in [14]. Finally, the OSFS method can be used as

a benchmark of the performance of some heuristic and metaheuristic methods.595

The results show that the computational time of the proposed method is

approximately 16 percent of that of the OSTS method and its measure of merit

is almost 50% higher than that of the OSTS method. These results demonstrate

that the L∞-norm produces better results than the L2-norm. In some cases,
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the computational time of the OSFS method is not much higher than that600

of some heuristic and suboptimal methods. Considering computational time,

number of cut points, and measure of merit, the FSW and SFSW methods are

the best performing heuristic methods. Taking into account the error measure

RSME, the Bottom Up and Adaptive Sarker methods are the best performing

heuristic methods. The computational time of the metaheuristic methods is very605

high. The results obtained by the metaheuristic methods are similar. When the

metaheuristic methods are compared to heuristic methods, taking into account

the number of cut points obtained, they are only overcome by FSW and SFSW

methods. Overall, the results of metaheuristic methods are worse than heuristic

methods, taking into account the error measure RSME. Tests performed to see610

how noise affects the method show that the smoother the curve, the more it will

be affected by noise.

The main drawback of the OSFS method is its computational time. Al-

though the time is close to the time of some heuristic methods, it would not be

possible to use it in real-time applications.615

The main advantages of the present work can be summarized as follows.

The OSFS method provides the optimal solution in a reasonable time that will

allow objective evaluation of the performance of suboptimal methods. The

new measure of merit can be used to compare the performance of suboptimal

methods, even if their solutions have different numbers of segments; it can be620

used to evaluate the goodness of the different segmentations that a method can

generate; and, finally, it can also be used to fine-tune the free parameters of

suboptimal methods.

Regarding future improvements, the following could be considered. Look for

new pruning methods to try to reduce the computational time of the method.625

Propose the online version for OSFS method and OSTS method. Adapt the

OSFS method to obtain optimal polygonal approximations of object contours,

taking into account the L∞-norm.
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