A general framework for boosting feature subset
selection algorithms

Javier Pérez-Rodriguez?®, Aida de Haro-Garcia®, Juan A. Romero del Castillo?,
Nicolds Garcia-Pedrajas®*

@ Unaversity of Cérdoba, Campus de Rabanales, 14011 Cérdoba (Spain)

Abstract

Feature selection is one of the most important tasks in many machine learning
and data mining problems. Due to the increasing size of the problems, removing
useless, erroneous or noisy features is frequently an initial step that is performed
before other data mining algorithms are applied. The aim is to reproduce,
or even improve, the performance of the data mining algorithm when all the
features are used. Furthermore, the selection of the most relevant features may
offer the expert valuable information about the problem to be solved.

Over the past few decades, many different feature selection algorithms have
been proposed, each with its own strengths and weaknesses. However, as in
the case of classification, it is unlikely that a single feature selection algorithm
would be able to achieve good results across many different datasets and ap-
plication fields. Furthermore, when we are dealing with thousands of features,
the most powerful feature selection methods are frequently too time consuming
to be applied. In classification, one of the most successful ways of consistently
improving the performance of a single weak learner is to construct ensembles
using boosting methods. In this paper, we propose a general framework for

feature selection boosting in the same way boosting is applied to classification.

*This work was supported in part by Project TIN2015-66108-P of the Spanish Ministry of
Science and Innovation and Project P09-TIC-4623 of the Junta de Andalucia.
*Corresponding author
Email addresses: javier.perez@uco.es (Javier Pérez-Rodriguez), adeharo@uco.es
(Aida de Haro-Garcia), aromeroQuco.es (Juan A. Romero del Castillo), npedrajas@uco.es
(Nicolds Garcia-Pedrajas)

Preprint submitted to Information Fusion January 15, 2018

20

The proposed approach opens a new field of research in which to apply
the many techniques developed for boosting classifiers. Using 120 datasets,
the experiments reported show a clear improvement in several state-of-the-art
feature selection algorithms using the proposed methodology.

Keywords: Feature selection; Boosting; Classifier ensembles.

1. Introduction

Feature selection [1] is one of the most important and frequently used tech-
niques in data mining [2, 3, 4, 5, 6]. Feature selection preserves the original
semantics of the variables, hence offering the advantage of interpretability by a
domain expert [7]. The problem of feature selection for feature-based learning
can be stated as “the isolation of the smallest set of features that enable us to
predict the class of a query feature with the same (or higher) accuracy than the
original set” [8].

Feature selection has been a fertile field of research and development since
the 1970’s in statistical pattern recognition [9], [10], machine learning [2], [11],
and data mining [12], [13], and it has been widely applied to many fields, such
as text categorization [14], [15], image retrieval [16], [17] customer relationship
management [18], intrusion detection [19], and genomic analysis [20].

Feature selection can be defined as the selection of a subset of m features
from a set of M = {1, d2,...,¢r} features, m < M , such that the value of a
criterion function is optimized over all subsets of size m [21]. The objectives of

feature selection are manifold, the most important ones being [7]:

e To avoid over-fitting and improve model performance, i.e., prediction per-
formance in the case of supervised classification and better cluster detec-

tion in the case of clustering.
e To provide faster and more-cost-effective models.

e To gain deeper insight into the underlying processes that generated the

data.

25

30

35

40

45

50

Another common task in data mining is classification. A classification prob-
lem of K classes and N training observations consists of a set of features whose
class membership, or label, is known. Each label is an integer from the set
Y ={1,..., K}. A multi-class classifier is a function that maps a feature to an
element of Y. The task is to find a definition for the unknown function that cor-
rectly maps each feature to its label. In a classifier ensemble framework, we have
a set of classifiers instead of just one. One of the most successful methodologies
for constructing ensembles of classifiers is boosting [22]. In boosting, new clas-
sifiers are trained by taking into account how difficult it is to accurately classify
every pattern of the dataset.

In this paper, we propose that feature selection may be approached as a
classification problem of two classes. A feature selection algorithm can be con-
sidered a classifier that maps a feature into one of two classes: “selected” or
“unselected”. With this view of feature selection, we can apply the philosophy
of boosting and construct ensembles of feature selectors. We present the frame-
work for adapting boosting to feature selection and constructing ensembles of
feature selectors, and we show how this framework can be used with several
common boosting methods. In classifier boosting, an ensemble of classifiers is
constructed iteratively. Each new classifier focuses on the patterns that previ-
ous classifiers have found more difficult. Our approach constructs a combination
of feature selection steps in a similar way. A feature selection algorithm is re-
peatedly applied. Each round focuses on the patterns found more difficult by
the previous feature selection algorithms, thus searching for the subset of fea-
tures able to correctly classify those difficult patterns. The different steps are
combined by voting, which is common in boosting.

Informally, our approach proceeds as follows. First, a feature selection algo-
rithm is applied using all available data with a uniform distribution of patterns.
As a result of this algorithm, we obtain a subset of selected features. That is,
every feature is classified into one of two classes, selected or unselected. Using
this classification of the features, we perform an evaluation of the given selection

using a certain classifier of our choice. The accurate or wrong classification of

55

60

65

70

75

80

each pattern modifies the weight of the corresponding pattern, as is the usual
way in boosting. Then, a new sample is obtained from the training set and
the feature selection process is repeated with this new sample. After the given
number of iterations is performed, each step has classified every feature into
selected or unselected. This result of each step is considered a vote, and as in
boosting, this voting is the final result of the algorithm. Instead of a simple
majority voting approach, to select a feature, we obtain a dynamical threshold
optimizing a certain criterion using cross-validation.

This approach opens a new field of research in which all of the methods
developed for constructing ensembles of classifiers can be applied. Furthermore,
it allows for the incorporation of one of the most successful classification tech-
niques, boosting, into another relevant task, feature selection.

This paper is organized as follows: Section 2 explains the proposed method-
ology; Section 3 reviews some related work; Section 4 details the experimen-
tal setup; Section 5 presents and discusses the results, and, finally, Section 6

presents the conclusions of our work and some future lines of research.

2. Boosting feature selection approach

A classification problem of K classes and N training observations consists of

a set of features whose class membership is known. Let S = {(x1,v1), (X2,y2), ... (Xn,yn)}

be a set of N training patterns. Each label is an integer from the set ¥ =
{1,..., K}. A multi-class classifier is a function f : X — Y that maps a feature
x € X C R? to an element of Y.

The task is to find a definition for the unknown function f(x) given the set of
training features. In a classifier ensemble framework, we have a set of classifiers
F = {f1, fo,..., fr}, each classifier performing a mapping of a feature vector
x € RP to the set of labels Y = {1,..., K}.

As a general rule, boosting methods iteratively construct an ensemble of
classifiers by modifying the distribution of patterns in the dataset. A weight

vector, w, is used, where w; is a measure of how difficult accurate classification

85

90

95

100

105

110

of the pattern x; is. Initially, all patterns receive the same weight, w; = 1/N.
Along the boosting process, weights are adapted by increasing the values of
incorrectly classified patterns and decreasing the values of correctly classified
patterns. Many different boosting methods exist. These differ in, among other
aspects, the way w is updated. Once the process is finished and the T classifiers

are constructed, a final ensemble of classifiers is obtained:

T
F(x) = Z a fi(x), (1)

where a; is a weight associated with the ¢-th classifier. This weight, which may
be constant for all members of the ensemble, usually depends on the achieved
classification accuracy of f;.

Our approach to boosting feature selection is based on considering feature
selection as a two-class classification problem and constructing an ensemble
of these classifiers to perform the feature selection process. Proceeding as in
classifier boosting, weights are initialized to a uniform distribution. Then, the
feature selection algorithm is run with this uniform selection, and the set of
selected features is recorded.

After each round of boosting feature selection, a classifier of our choice is
trained using a non-uniform random distribution of the patterns, where difficult
patterns receive more attention, and the features selected in the corresponding
step. After the classifier is trained, the distribution of the patterns is updated
by considering the error of the last classifier added, or the last few in some
boosting methods, and a new round is performed. In each round, a feature
selection algorithm is applied using the non-uniform distribution of patterns
given by the boosting weights. After the selection process, the algorithm must
update the distribution of patterns. To update the distribution, the method uses
the subset of selected features obtained by the last feature selection process and
classifies all of the training patterns using this subset and the given classification
method. With the error obtained by this classification, the weights are updated,

and a new round is performed.

115

120

Table 1 shows a summary of the comparison of our proposal with standard
classifier ensemble construction using boosting. The table shows the similarities
and differences between boosting classifier ensembles and “boosting” feature
selectors. One major difference is the final model that is obtained. In classifier
ensembles, we obtain as the final result a combination of different classifiers
that have been constructed stepwise. However, in boosting feature selection, the
final result is a subset of selected features that is obtained from the (possibly

weighted) votes cast by the selection performed at each round.

Table 1: Step-by-step comparison of standard classifier boosting and feature selection boosting

for T rounds, where S is the training set. Boosting uses the reweighting scheme.

Classifier boosting

Step 1 Weights are initialized w; = 1/N

Step 2 t=1

Step 3 Train the classifier using the distribution given by w
Step 4 Add the trained classifier to the ensemble

Step 5 Update weights using the scheme proposed by the boost-

ing algorithm

Step 6 t=t+ 1, if t < T goto to Step 3; otherwise goto to Step
7
Step 7 Return ensemble of classifiers

Feature selection boosting

Step 1 Weights are initialized w; = 1/N
Step 2 S ' =8t=1
Step 3 Perform the feature selection algorithm using the set S’

to obtain my C M

Step 4 Register the selection performed by the feature selection
algorithm
Step 5 Update weights using the scheme proposed by the boos

ting algorithm and a given classifier with my, the subset

of features selected in Step 3

Step 6 Sample S’ from S with replacement using the distribution

given by w and remove repeated features

Step 7 t=1t+41, if t < T goto to Step 3; otherwise goto Step 8
Step 8 Obtain threshold of votes for keeping the features
Step 8 Perform feature selection using the obtained threshold of

votes and return the set of selected features

Once the feature selection boosting process is finished, we have an ensemble

of feature selectors similar to the ensembles of classifiers. One major difference

125

130

135

140

145

is that our ensemble ”classifies” features into two classes—selected, class 1, or
unselected, class O—instead of classifying patterns, as in the case of classifier
ensembles.

For the classification of a feature as either selected or unselected, at every
boosting step, the selection made is recorded by casting a vote for each selected
feature. These votes are weighted when the corresponding boosting algorithm
uses weighted classifiers as members of the ensemble. Once the T rounds are
finished, we have a vector of votes that records how many times every feature
has been selected, and we must obtain a final selection using that vector. In
boosting, majority voting is usually used, but in boosting feature selection, a
fixed majority threshold did not achieve good results for all problems, so we
opted for a dynamic threshold. This threshold is equivalent to the threshold
used to distinguish between the positive and negative class in an ensemble of
classifiers. The task of finding this threshold of votes is described in the next

section.

2.1. Dynamic threshold of votes

The last step of our algorithm performs the feature selection that is the
result of the process. After the T boosting steps, we have a vector of (possibly
weighted) votes that records for each feature how often it has been selected. In
ensembles of classifiers, the usual way of obtaining the class of a new feature is
majority voting. By adapting this method to our framework, we could select
features whose count of votes indicated that they had been selected more often

than not. Thus, the output of the boosted selector using voting would be:

* _

F*(¢;) = argygzgﬁ} t:ft(%;)_y Q. (2)
where ¢; is the i-th feature, y is 1 if the feature selector decided in favor of the
feature for round ¢-th, and «; is the corresponding weight of the feature selector
in the ensemble.

Because we are considering the classification of every feature into one of two

150

155

160

165

170

classes, selected (1) or unselected (0), we define for every feature two values, F}

and F{, defined as follows:

Fro)= 3 a (3)

t:fe(pi)=1

and

Fe)= Y (4)

t: fe(¢:)=0

Using the standard majority voting approach of boosting, a feature ¢; would
be selected if Fy*(¢;) > Fi(¢;). Although this method is simple and fast, it does
not achieve good results, as it is very unlikely that any static threshold would
be appropriate for all datasets. Thus, we have opted to use a dynamic threshold
where the decision of keeping a feature is given by Fy (¢;) — F§(¢i) > ©, where
O is obtained from the training set.

The procedure for obtaining the optimal value of © is as follows. Given
a final vector of votes v, which records the votes obtained for every feature
v; = Ff(¢:), a certain threshold, ©, selects the features whose records of votes
are above this threshold: v; > O, which is equivalent to Fj'(¢;) — Fi(¢;) > O.
To obtain the best threshold, we define a criterion, J(©), and evaluate all of
the possible thresholds.

The process is as follows. To evaluate a certain threshold ©, we first select
the subset, mg C M, of features from the training set using ©: meg = {¢; €
M :v; > ©}. Then, the criterion J(O) is evaluated using mg to learn a certain
classifier; in the reported experiments we used a decision tree and a support
vector machine to test our approach in two different scenarios. For .J, we have
chosen the most common criterion in feature selection, that is, the goodness of
a certain selection is determined by two factors: its classification performance

and its reduction ability. Our criterion is composed of these two factors:

J(O) = a - “classification performance” + (1 — «) - “reduction”. (5)

175

180

185

Classification performance is composed of two terms, accuracy and k. These
two terms are summed, so the classification performance factor has twice the
weight of the reduction factor. In the experiments, we will show the effect of
the value of o on the behavior of the method. Reduction is measured as the
percentage of removed features. In most cases, the classification performance is
more desirable than reduction; therefore, in the reported experiments, a value
of @« = 0.5 was used. The procedure used to obtain the threshold of votes is

given by Algorithm 1.
Algorithm 1: Algorithm to obtain the vote threshold ©.

Data : A training set S = {(x1,v1),---, (XN, ¥UN)}, a vector of votes, v, the set of possible
thresholds {©1,©95,...,0,} and a classifier C.
Result : The threshold © with the best evaluation.

1 Jpest =0
for 6 = ©1 to ®5, do
3 mg ={¢; € M :v; >0}

/* Classifier performance

N

*/

4 ¢ = Classifier performance of C' using mg as the subset of selected features

5 x = rmeasure of C using mg as the subset of selected features
/* Reduction performance */
- [mg|

6 r=1-— M

7 J(0) = alc+ r) + (1 — a)r

8 if J(0) > Jpee then

9 Jhest = J(6)

10 e=20

11 Return ©

The set of possible thresholds, {©1,0s,...,0,}, includes all the different
values in the vector of votes. However, to save execution time, a subset of this
set of possible values may be considered because thresholds with similar values
will obtain very similar evaluations in terms of both classification performance
and reduction. Furthermore, the number of votes is limited by the number of
boosting rounds T, so it is always a small value.

This evaluation step is similar to the wrapper philosophy of feature selection.
Thus, in addition to incorporating boosting into feature selection, we add the
advantages of wrapper algorithms for feature selection to any other method of

feature subset selection.

190

195

200

205

210

215

2.2. Boosting feature selection algorithms

In this section, we present a detailed description of the boosting methods
used in the experiments. Because we are boosting feature selection algorithms
and not classification methods, not all boosting algorithms developed for classi-

fication can be adapted. Usable boosting algorithms must fulfill two conditions:

1. The input space should not be modified. The final selection of features will
be performed in the space of the original variables; methods of constructing
ensembles that modify the input space should not be used.

2. The outputs should not be modified. The learning process is one of feature
selection and not of classification. Thus, any method modifying the target

output will make no sense.

Among the many boosting methods that can be used, we have selected
five different algorithms: AdaBoost, FloatBoost, GentleBoost, MultiBoost and
ReweightBoost.

All of the boosting algorithms must evaluate the error at every step using
the vector of weights w and the current subset of selected features my;. This
evaluation is performed using a given classifier C' trained using the selection
performed in the corresponding step ¢. In the algorithms below, such a classifier
is represented using C'(my).

We used AdaBoost version [23] shown in Algorithm 2. This is a standard
extension of the original AdaBoost algorithm to multi-class problems.

The FloatBoost [24] algorithm is shown in Algorithm 3. FloatBoost tests
each member of the ensemble after adding a new one. Members that are no
longer useful are removed. This process is continued until the ensemble is com-
pleted or after a certain performance threshold is reached. However, we did
not use a predefined threshold because it is not possible to set a predefined
performance threshold for every dataset. Instead, we set a maximum number
of attempts; if, after that number of attempts, the ensemble is not completed,

the algorithm exits with the best current ensemble.

10

Algorithm 2: AdaBoost.FS algorithm.

CUh W

[o R)

10

12
13
14
15
16
17
18
19
20
21

22
23
24

25
26

Data

Result

: A training set S = {(x1,¥y1),-..,(xXxN,¥YN)}, a set of features
feature selection algorithm FS(S, M) and a classifier C.
: The subset of selected features m C M.

S’ = 5, with all pattern weights set to w; = 1/N
v =1{0,0,...,0}
for t =1 to T do

Apply feature selection algorithm: my = FS(S/, M)

vi = v; + 1 if feature ¢; € my

/* C(my¢) is the classifier trained using only the set of features my

Store ep = ijeT:C(mt)(xj)¢yj i

if ¢, > 0.5 then

Set ay =0
Set S/ to a bootstrap sample from S and reset w such that w; =

Remove repeated patterns from S’

else if ¢; = 0 then

else

Set ay = 10
Set S’ to a bootstrap sample from S and reset w such that w; =

Remove repeated patterns from s’

1y, et
Set ap = 3 In e
foreach x; € S do
if C’(mt)(:cj) = y; then
| wy=wj 21— ep)

else

| wy = w;/2e

Normalize w, such as Y w; = 1
Obtain S’ as a sample with replacement from S using weights w

Remove repeated patterns from S’

Obtain threshold © that maximizes criterion J(©) (see Algorithm 1)
Obtain m = {¢; € M : v; > O}

M = {¢1,¢2, .-

1/N

KV

*/

11

220

225

230

FloatBoost uses a backtrack mechanism after each iteration of AdaBoost

to remove weak classifiers, which cause higher error rates. The resulting float-

boosted ensemble consists of fewer weak classifiers, yet it usually achieves lower

error rates than AdaBoost in both training and testing.

Algorithm 3: FloatBoost.FS algorithm.

N0 Uk WwN =

© w

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25

26
27

Data : A training set S = {(x1,¥1),...,(xN,yN)}, a set of features M = {¢1,¢2,...,0p1}, a
feature selection algorithm FS(S, M) and a classifier C.
Result : The subset of selected features m C M.
S/ = 8, with all feature weights wi; =1/c- N'yi’ where ¢ is the number of classes and Nj the features in
class j
Hyg =10
eMIM — f1,1,...,1}
v ={0,0,...,0}
for t =1 to T do
Apply feature selection algorithm: my = FS(s/, M)
v; = v; + 1 if feature ¢; € my

/* C(my) is the classifier trained using only the set of features my
Hy = Hy_1 + C(my)
= ;€8 H (%) Ay Vi
Update weights w; = exp(—y; H(x;)) and > w; =1
if " > ¢4 then
ezni"’ = et
/* Conditional exclusion
h' = argming, ¢ g, e(Hy — h)
if €(Hy — h') < €M™ then
H,,_1=Ht—h'
emin. = ¢(Hy — ')
t=t—1
goto 14
else

if Mazimum number of attempts then goto 26

w; = exp(—margin(x;, Hy))

Normalize w, such as 3 w; = 1

Obtain S/ as a sample with replacement from T using weights w

Remove repeated patterns from S’

Obtain threshold © that maximizes criterion J(©) (see Algorithm 1)
Obtain m = {¢; € M : v; > O}

/* margin(x, H) is the margin of feature x when classified with ensemble H

*/

*/

*/

The GentleBoost or Gentle AdaBoost algorithm [25] modifies the update of

the pattern weights of AdaBoost. Lines 19 and 21 in Algorithm 2 are substituted

by w; = wjexp(—y;C(me)(x;)).
The MultiBoost [23] method is shown in Algorithm 4. MultiBoost period-

ically reinitializes the weights of the features using a Poisson distribution. To

set the steps when the weights are reinitialized, a vector of integers, I, is con-

structed. The vector values are I; =i x M/nfori=1,2,...,n—1land I, = M

for i =n,n+1,...,00, where n = [v/M]. Thus, MultiBoost can be regarded

12

235

240

as a combination of AdaBoost and Bagging.

Algorithm 4: MultiBoost.FS algorithm.

0N OUth W

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26
27

28
29

Data : A training set S = {(x1,¥1), -, (XN, UN)} & set of features M = {¢p1, do, .-, b}, a

feature selection algorithm FS(S, M) and a classifier C.

Result : The subset of selected features m C M.

S’ = 5, with all feature weights w; = 1/N
Set k=1
for t =1 to T do

if Ij, = t then
L Reset w to random weights from a continuous Poisson distribution and normalize 3 w; = 1

Set k =k + 1

Apply feature selection algorithm: my = FS(S/, M)

vy = v; + 1 if feature ¢; € my

/* C(my¢) is the classifier trained using only the set of features my */
€t = ij €85:C(my)(x5)#y; wj

if ¢, > 0.5 then

Set ay =0

Reset w to random weights from a continuous Poisson distribution and normalize > w; =1
Set k =k + 1

else if ¢4 = 0 then

Set ay = 10

Reset w to random weights from a continuous Poisson distribution and normalize Y w; =1

else
1—ey
€t

foreach x; € S do

if C(mt)(mj) =y, then

Set ap = %ln

| wj = wj/20 - e
clse
| wy=w;/2e

if w; < 1078 then w; = 1078

Normalize w such as Y w; = 1

Obtain S/ as a sample with replacement from T using weights w

Remove repeated features from S’

Obtain threshold © that maximizes criterion J(©) (see Algorithm 1)
Obtain m = {¢; € M : v; > O}

Finally, we used the ReweightBoost method, which is shown in Algorithm 5.

The main novelty of ReweightBoost is that instead of considering only the last

added classifier as the weak learner to obtain the weights for the next step, it

considers the ensemble formed by the last r classifiers, where r must be fixed by

the user. However, this modification has the problem of making the algorithm

more time-consuming because at each step, instead of checking the last classifier,

we must consider the subensemble formed by the last r classifiers.

Similar to classifier boosting, feature selection boosting requires a feature

selection algorithm as the base method for obtaining the selected features in

each round. In the experiments reported, we will present the results for five

13

245

250

255

Algorithm 5: ReweightBoost.FS algorithm.

Data : A training set S = {(x1,%1),-.., (XN, ¥UN)}, a set of features M = {1, da,...,dpr}, a
feature selection algorithm FS(S, M) and a classifier C.
Result : The subset of selected features m C M.
1 S’/ = S, with all feature weights w; = 1/N
2 for t=1to T do
3 Apply feature selection algorithm: my = FS(S’, M)
4 v; = v; + 1 if feature ¢; € my
/* C(my) is the classifier trained using only the set of features my x/
/* 7 is a parameter that must be fixed by the user */
5 Obtain combined classifier H{ = C"t 4 c™t—1 4+ . 4 Cmax(t—r,l)
6 €t = X eT:0(my) (xj) £y, Vi
7 Set ap = & 1n 1‘;:&
8 foreach x; € T do
/* I(-) is an indicator function, I(true) = 1, I(false) = O */
9 L wj = wj exp(—ay I(Clme)(zy) # ;)
10 Normalize w, S w; = 1
11 Obtain S’ as a sample with replacement from S using weights w
12 Remove repeated features from s’

13 Obtain threshold © that maximizes criterion J(©) (see Algorithm 1)
14 Obtain m = {¢; € M : v; > O}

different feature subset selection algorithms. As a naming convention, we will
use the name of the boosting algorithm and feature selection algorithm together
to designate the use of a boosting method with a feature selection algorithm.
For instance, AdaBoost.X indicates the use of the AdaBoost algorithm to boost

the X feature selection method.

2.83. Feature selection methods

Our approach has two basic components, the boosting scheme and the base
feature selection algorithm to be used. To allow for a fair assessment of the
validity of our proposal, we must compare our approach with state-of-the-art

methods for feature selection. We have chosen the following methods:

1. FAST (fast clustering-based feature selection algorithm) [26]: The FAST
algorithm works in two steps. In the first step, features are divided into
clusters by using graph-theoretic clustering methods. In the second step,
the most representative feature that is strongly related to target classes is
selected from each cluster to form a subset of features. Features in different
clusters are relatively independent; the clustering-based strategy of FAST
has a high probability of producing a subset of useful and independent

14

260

265

270

275

280

285

features. To ensure the efficiency of FAST, the efficient minimum-spanning

tree (MST) clustering method is used.

. FCBF (Fast Correlation-Based Filter) [27]: Existing feature selection meth-

ods mainly focus on finding relevant features. The authors showed that
feature relevance alone was insufficient for efficient feature selection of
high-dimensional data and they defined feature redundancy and proposed
to perform explicit redundancy analysis in feature selection. A new frame-
work was introduced that decoupled relevance analysis and redundancy
analysis. They developed a correlation-based method for relevance and

redundancy analysis.

. LVF (Las Vegas Filter) [28]: The LVF algorithm generates subsets, S,

from N features in every round. If the number of features is less than
the current best, then the training set D with the features in .S is checked
against an inconsistency criterion. If the inconsistency criterion is below

a certain threshold, then S becomes the new current best feature subset.

. ReliefF [29]: The relief family of algorithms constitutes general, efficient

and successful attribute estimators that do not assume the independence
of the attributes, and their quality estimates have a natural interpretation.
A key idea of the original Relief [30] algorithm is to estimate the quality of
attributes according to how well their values distinguish among patterns
that are near each other. Features whose weights exceed a user-determined
threshold are selected in designing the classifier. The ReliefF algorithm is
not limited to two class problems, it is more robust, and it can deal with

incomplete and noisy data.

. SetCover [31]: Class separability is normally used as the basic feature

selection criterion. Instead of maximizing the class separability, SetCover
adopts a criterion aiming to maintain the discriminating power of the data
describing its classes. In other words, the problem is formalized as that
of finding the smallest set of features that is “consistent” in describing
classes. The new feature selection algorithm is based on Johnson’s [32]

algorithm for set covering. Johnson’s analysis implies that this algorithm

15

290

295

300

305

310

315

runs in polynomial time, and it outputs a consistent feature set whose size

is within a log factor of the best possible.

3. Related work

We must bear in mind that we are not using boosting as a method for
feature selection but are developing a general framework for feature selection
boosting. Previous works [33, 34] have used different variants of boosting for
feature selection purposes. Yin et al. [35] also used the principles of boosting
to improve feature combination. At each round of their variant of boosting
method, some weak classifiers are built on different feature sets, one of which
is trained on one feature set. Then, these classifiers are combined by weighted
voting into a single output classifier of this round. Choi et al. [36] combined
feature selection with boosting for face recognition.

Miao et al. [37] developed a method called BoostF'S with combined AdaBoost
with decision stumps to obtain a subset of selected features. BoostF'S maintains
a distribution over training samples that is initialized from the uniform distri-
bution. In each iteration, a decision stump is trained under the sample distri-
bution, and then the sample distribution is adjusted so that it is orthogonal to
the classification results of all the generated stumps. Because a decision stump
can also be regarded as one selected feature, BoostF'S is capable of selecting a
subset of features that are irrelevant to each other, as much as possible.

In the same way, feature selection and boosting have also been combined
several times with the aim of improving the performance of the resulting clas-
sifier ensemble, as in the work of Redpath and Lebart [38], the FeatureBoost
algorithm [39] or robust twin boosting feature selection (RTBFS) [40]. Bailly
and Milgram [41] combined a fuzzy feature selection criterion with the instance
weights given by a neural network classification error to construct a feature
selection method using those two modules. The major difference with other
approaches is the evaluation of the fuzzy criterion using a non-uniform dis-

tribution of the instances in the same way as boosting. Garcia-Pedrajas and

16

320

325

330

335

340

345

Ortiz-Boyer [42] developed an ensemble method, based on the Random Sub-
space Method [43], that combined feature selection and the construction of the
ensemble by means of an evolutionary algorithm.

Liu et al [44] developed a combination of vector boosting [45] and feature
selection methods to tackle the task of adaptive compressive tracking. An-
other boosting and feature selection combination included the use of the Brown-
boost [46] loss function as a criterion for feature selection [47]. Yu et al. [48]
proposed the Progressive Subspace Ensemble Learning approach (PSEL). PSEL
adopts the random subspace technique to generate a set of subspaces. Each sub-
space is used to train a classifier in the original ensemble. Then, a progressive
selection process is adopted to select the classifiers based on two cost functions
which incorporate current and long-term information. Finally, a weighted vot-
ing scheme is used to combine the predicted results from individual classifiers of
the ensemble, and generate the final result. Yu et al. [49] designed a general hy-
brid adaptive ensemble learning framework (HAEL) for constructing ensembles
based on the use of different subspaces. HAEL adopts a hybrid adaptive ap-
proach to adjust the weights of the base classifiers and also further improves the
performance by optimizing the random subspace set. In that way, it combines
the concepts of feature selection and ensemble construction. However, there is
a fundamental difference between all these approaches and our proposal, while
these methods construct ensembles of classifiers where each classifier may use a
different subset of features, our method obtains a selection of the most relevant
features.

Other previous works have used classifier boosting concepts to improve the
performance of feature selection. Liu et al. [50] developed a filter method for
feature selection that used the weighting scheme of AdaBoost to improve the
performance. They used the information evaluation criterion at each step of
the selection algorithm, but instead of considering a uniform distribution of
instances, each instance has its weight updated after each feature is removed
from the pool of features by the selection process.

In the area of clustering there have been also some papers combining the

17

350

355

360

concepts of clustering and subspace selection. Yu et al. [51] constructed a fea-
ture selection based semi-supervised cluster ensemble framework (FS-SSCE) for
tumor clustering from bio-molecular data. The method combines clustering
performed on different subspaces which are obtained using a feature selection
algorithm. As in the previous case, the difference is that the task carried out is
one of clustering not of feature selection.

To the best of our knowledge, no previous work has developed a general
framework to apply boosting to feature selection, such as the framework pro-

posed in this paper.

4. Experimental setup

To make a fair comparison between standard feature selection algorithms
and our proposed approach, we have selected a set of 120 datasets with a wide
ranging number of patterns, features and classes. A summary of these datasets
is provided in Table 2. To estimate the storage reduction and classifier perfor-

mance, we used 10-fold cross-validation.

18

Table 2: Summary of datasets characteristics.

Dataset Cases Features Classes Dataset Cases Features Classes

1 abalone 4,177 10 29 61 led24 200 24 10

2 ads 3,279 1,558 2 62 lenses 24 6 3

3 adult 48,842 105 2 63 letter 20,000 16 26

4 all-aml 72 7,129 2 64 leukemia T2 12,582 3

5 anneal 898 59 5 65 liver 345 6 2

6 arabidopsis 33,971 4,016 2 66 Irs 531 101 10

7 arrhythmia 452 279 13 67 lung-cancer-harvard1l 203 12,600 5

8 audiology 226 93 24 68 lung-cancer-harvard2 181 12,533 2

9 autos 205 72 6 69 lung-cancer-michigan 96 7,129 2
10 balance 625 4 3 70 lung-cancer-ontario 39 2,880 2
11 barleyblumeria 4,340 64 2 71 lymphography 148 38 4
12 basehock 1,993 4,862 2 72 madelon 2,600 500 2
13 biodeg 1,055 41 2 73 magic04 19,020 10 2
14 breast-cancer 286 15 2 74 mammography 961 18 2
15 breast-cancer-ma 97 24,481 2 75 mfeat-fac 2,000 216 10
16 cancer 699 9 2 76 mfeat-fou 2,000 76 10
17 car 1,728 16 4 77 mfeat-kar 2,000 64 10
18 card 690 51 2 78 mfeat-mor 2,000 6 10
19 ccds 36,449 4,016 2 79 mfeat-pix 2,000 240 10
20 census 29,926 409 2 80 mfeat-zer 2,000 47 10
21 central-nervous-system 60 7,129 2 81 mushroom 8,124 117 2
22 chrom21 12,677 1,612 2 82 musk 6,598 166 2
23 cme 1,473 9 3 83 new-thyroid 215 5 3
24 cnae-9 1,080 856 9 84 nursery 12,960 23 5
25 colon-tumor 62 2,000 2 85 optdigits 5,620 64 10
26 cottonmeloidogyne 4,156 64 2 86 ovarian-cancer 253 15,154 2
27 cyclopentane 271 128 2 87 ozonelhr 2,536 72 2
28 dbworld 64 7,402 2 88 ozone8hr 2,534 72 2
29 dermatology 366 34 6 89 page-blocks 5,473 10 5
30 dexter 600 20,000 2 90 pcmac 1,943 3,289 2
31 dlbcl-harvard-outcome 58 7,129 2 91 pediatric-leukemia 327 12,558 7
32 dlbcl-harvard-tumor 77 7,129 2 92 pendigits 10,992 16 10
33 dlbcl-nih 240 7,399 2 93 phoneme 5,404 5 2
34 dlbcl-stanford 47 4,026 2 94 pima 768 8 2
35 dna 50,000 800 2 95 polya 9,255 169 2
36 ecoli 336 7 8 96 post-operative 90 20 3
37 eeg 59,069 72 16 97 primary-tumor 339 23 22
38 euthyroid 3,163 44 2 98 promoters 106 114 2
39 gene 3,175 120 3 99 prostate 136 12,600 2
40 german 1,000 61 2 100 revl 5,346 47,236 53
41 gina 3,468 970 2 101 reuters21578 8,293 18,933 65
42 gisette 7,000 5,000 2 102 satimage 6,435 36 6
43 glass 214 9 6 103 segment 2,310 19 7
44 glass-g2 163 9 2 104 shuttle 58,000 9 7
45 heart 270 13 2 105 sick 3,772 33 2
46 heart-c 302 22 2 106 sonar 208 60 2
47 hepatitis 155 19 2 107 soybean 683 82 19
48 hERG-121linputs 65 121 2 108 texture 5,500 40 11
49 hERG-64inputs 65 64 2 109 tic-tac-toe 958 9 2
50 hERG-9inputs 130 9 2 110 tis 13,375 927 2
51 hiva 4,229 1,617 2 111 titanic 2,201 8 2
52 horse 364 58 3 112 ustilago 6,141 4,016 2
53 hypothyroid 3,772 29 4 113 vehicle 846 18 4
54 ionosphere 351 34 2 114 vote 435 16 2
55 iris 150 4 3 115 vowel 990 10 11
56 isolet 7,797 617 26 116 waveform 5,000 40 3
57 kddcup98 9,541 23,549 2 117 wine 178 13 3
58 krkopt 28,056 6 18 118 yeast 1,484 8 10
59 krvskp 3,196 38 2 119 zip 9,298 256 10
60 labor 57 29 2 120 z00 101 16 7

19

370

375

380

385

390

Regarding the hyperparameters of our approach, each algorithm has the
same parameters as its standard version. We chose an ensemble size of M = 30,
which is a fairly common value. For ReweightBoost, we chose r = 5, following
the recommendations of the authors. For FloatBoost, we set 50 as the maximum
number of attempts. The feature selection algorithms used the hyperparameters
recommended by the authors. The value of «, see eq. 5, is set to a = 0.5 because
improving accuracy is the major aim of our method. As explained in Section 2,
the classification performance part of the threshold of vote evaluation has two
terms. Thus, a = 0.5 means more stress on classification performance than in
the reduction of the number of features selected. In the experimental results,
we will also show a study of the effect of this value on the performance of the
proposed method.

For setting the hyper-parameters of the classifiers used to evaluate the final
subset of selected features we employed 10-fold cross-validation. For each of the
classifiers, we obtained the best hyper-parameters from a set of different values.
For SVM, we utilized a linear kernel with C' € {0.1,1,10}, and a Gaussian
kernel with C' € {0.1,1,10} and v € {0.0001,0.001,0.01,0.1, 1,10}, testing all
21 possible combinations. For C4.5 we tested 1 and 10 trials and the option
of softening of thresholds trying all four possible combinations. The hyper-
parameter setting process is repeated each time that a classifier is trained for
both our approach and the standard feature selection methods. Although this
method does not assure an optimum set of hyper-parameters, it guarantees that
a good set of hyper-parameters will be obtained in a reasonable amount of time.

Because we are evaluating feature selection algorithms, we considered for
evaluation purposes testing accuracy and reduction. Section 4.2 explains the
measures used in the experiments.

The source code, written in C and licensed under the GNU General Public
License, used for all methods as well as the partitions of the datasets are freely

available upon request from the authors.

20

395

400

405

410

415

420

4.1. Statistical tests

We used the Wilcoxon test [52] as the main statistical test for comparing
pairs of algorithms. In our experiments, we will also compare groups of meth-
ods. In such cases, it is not advisable to use only pairwise statistical tests
such as the Wilcoxon test. Instead, we first apply an Iman-Davenport test to
ascertain whether there are significant differences among the methods. If the
Iman-Davenport test rejects the null hypothesis, we proceed with a post hoc
Nemenyi test [53]. The performance of two classifiers is significantly different if
the corresponding average ranks differ by at least the critical difference:

CD = g/ k(k + 1)% (6)

where critical values ¢, are based on the Studentized range statistic divided by
V2, N is the number of datasets, and k is the number of compared methods.
As a graphical representation of the Nemenyi test, we use the plots described by
Demsar [52]. When comparing all the algorithms against each other, we connect
the groups of algorithms that are not significantly different with a horizontal

line. We also show the critical difference above the graph.

4.2. BEvaluation measures

Reduction is measured as the percentage of features removed by any algo-
rithm. Thus, if we have M features and a certain algorithm selects m features,
the reduction is 7 = 1 —m/M. We can use the standard measure of accuracy
as the percentage of features correctly classified. However, recent works have
shown that misclassification rates may be biased because they contain substan-
tial randomness [54]. Furthermore, when the number of patterns among the
classes is not evenly distributed, the accuracy may give a poor evaluation of the
performance, as the performance over classes with few patterns is almost disre-
garded if we use the accuracy over the entire test set. Thus, as a performance
measure, we used Cohen’s k measure, which is a method that compensates for
random hits. Its original purpose was to measure the degree of agreement. How-

ever, k can also be adapted to measure classification accuracy, and its use is

21

425

430

435

440

445

recommended because it takes random successes into consideration [54]. The
value of k can be computed from the confusion matrix in a classification task

as follows:

c c
o — MY i Tig — D g TiTog
o c
n? =37 T,

where x;; is the cell count on the main diagonal, n is the number of examples,

, (7)

C'is the number of classes, and x;. and x.; are the column and row total counts,
respectively. The value of x ranges from -1 (total disagreement) to 1 (perfect
agreement). For multi-class problems, k is a very useful yet simple metric
for measuring the accuracy of the classifier while compensating for random

successes.

5. Experimental results

In this section, we present the results for the set of experiments carried out.
Our first set of experiments compared the performance of the five standard
feature selection methods, which were used as base feature selectors, and the
performance of the five boosting methods. The tables show the comparison of
the boosting approach against the basic feature selection method alone for all
the selection methods in terms of k£ measure and reduction. The tables show the
average £ value, the Friedman ranks [55], the win/loss record of the boosting
method against the basic method and the p-value of the Wilcoxon test of the
boosting method against the standard method. The table also shows the p-value
of the Iman-Davenport for the comparison of the five methods.

We were interested in comparing the performance of the different boosting
methods; thus, our aim was to test whether AdaBoost.F'S, FloatBoost.FS, Mad-
aBoost.FS, MultiBoost.F'S or ReweightBoost.F'S achieved better performance
than the F'S algorithm alone, where FS represents each of the methods described
in Section 2.3. The performance is determined by two factors, classification

performance and reduction. However, because we were proposing a method for

22

450

455

460

465

470

475

boosting feature selection algorithms, our major aim was improving classifica-
tion performance. Thus, we considered our algorithm better than the standard
method when the classification performance was significantly better, even if the
reduction was the same. Furthermore, we may risk a small decrease in reduction
if the method achieved significantly better classification performance.

To perform an experimental analysis that was as comprehensive as possible,
we tested our approach with two different classification methods: a decision tree

using the C4.5 method [56] and a support vector machine [57].

5.1. Results using a decision tree

The comparison using a decision tree as a base classifier is shown in Table
3 for k and in Table 4 for reduction. For FAST, the boosting approach beat
FAST alone for four of the five methods. MultiBoost.FAST was no better than
FAST in terms of classification performance. The boosting approach achieved
a better classification performance without losing its reduction ability. In fact,
ReweightBoost.FAST improved FAST in both x and reduction.

For FCBF, the results are similar. The five boosting methods improved
the classification performance of FCBF alone. This improvement was achieved
while keeping the reduction power of the method, with the exception of Multi-
Boost.FCBF, which achieved a worse reduction than FCBF.

The behavior of LVF was different. In terms of x, the boosting performed
worse than LVF for all five methods. However, this is because LVF achieved
poor reduction. Our method, although performing slightly worse in terms of
k, was able to improve the reduction ability by more than 30% on average for
most boosting methods. These results suggested that the use of a = 0.5 was not
an appropriate value for an algorithm that has such poor reduction ability. To
check this possibility, we repeated the experiments for AdaBoost using oo = 0.75.
The results are shown in Table 5. This new experiment showed that with the
appropriate value of o, AdaBoost.LVF significantly improved both the classifi-
cation performance and the reduction results of LVF. AdaBoost.LVF improved

the accuracy by almost 3% and at the same time improved the reduction ability

23

480

485

Table 3: Comparison of the five boosting methods in terms of x using the five feature selection
algorithms against the feature selection method alone for C4.5 as a classification method. The
table shows the win/loss record of every boosting method against the feature selection method
alone and the p-value of the Wilcoxon test. Significant differences in favor of our method are

marked with a v/; significant differences against our approach are marked with a X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7055 0.7928 0.7937 0.7925 0.7648 0.7791
Rank 4.2000 2.8708 2.8417 3.3208 4.2875 3.4792
Win/draw/loss 79/33 79/32 78/33 58/59 67/36
p-value 0.0000v 0.0000v 0.0000v 0.0789 0.0000v
Iman-Davenport text p-value: 0.0000
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6966 0.7897 0.7882 0.7817 0.7465 0.7698
Rank 4.1833 2.6958 2.8667 3.6333 4.0375 3.5833
Win/draw/loss 78/33 78/36 74/39 66/51 68/41
p-value 0.0000v 0.0000v 0.0000v 0.0154v 0.0000v
Iman-Davenport text p-value: 0.0000
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8364 0.8162 0.8205 0.8023 0.8110 0.8108
Rank 2.1958 3.4958 3.3542 4.1667 3.9542 3.8333
Win/draw/loss 30/80 29/80 20/96 24/88 19/91
p-value 0.0000X 0.0000X 0.0000X 0.0000X 0.0000X
Iman-Davenport text p-value: 0.0000
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6343 0.7884 0.7909 0.8045 0.7714 0.8052
Rank 3.9167 3.2083 3.3875 3.4958 3.8125 3.1792
Win/draw/loss 66/39 61/48 68/43 65/51 64/43
p-value 0.0000v 0.0001v 0.0000v/ 0.0021v/ 0.0000v/
Iman-Davenport text p-value: 0.0060
SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7879 0.8044 0.8035 0.7854 0.7661 0.7815
Rank 3.1500 2.9125 3.0958 3.8167 4.1125 3.9125
Win/draw/loss 51/54 50/55 48/64 38/69 38/67
p-value 0.4991 0.7732 0.1535 0.0018x 0.0145x

Iman-Davenport text p-value: 0.0000

by more than 20%.

For ReliefF, the boosting feature selection achieved a remarkably good per-
formance. In terms of classification performance, boosting was able to beat the
ReliefF algorithm for all five methods. In the best case, ReweightBoost.ReliefF,
the average improvement was 17%. Furthermore, the improvement was achieved
while keeping the reduction power, as boosting was not worse than ReliefF in
this aspect for the five methods.

The results for SetCover shared some similarities with the LVF case. In
terms of performance, AdaBoost.SetCover, FloatBoost.SetCover and Gentle-
Boost.SetCover were no worse than SetCover, while MultiBoost.SetCover and

ReweightBoost.SetCover were significantly worse. However, in terms of reduc-

24

490

495

Table 4: Comparison of the five boosting methods in terms of reduction using the five feature
selection algorithms against the feature selection method alone for C4.5 as a classification
method. The table shows the win/loss record of every boosting method against the feature
selection method alone and the p-value of the Wilcoxon test. Significant differences in favor

of our method are marked with a v; significant differences against our approach are marked

with a X.
FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8404 0.8077 0.7978 0.8026 0.6939 0.8116
Rank 3.8708 2.9750 3.5125 3.2750 4.2833 3.0833
Win/Loss 70/46 69/47 70/48 48/70 78/35
p-value 0.3882 0.9093 0.8341 0.0002x 0.0354/

Iman-Davenport text p-value: 0.0000

FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8023 0.8056 0.7849 0.8055 0.7386 0.7971
Rank 3.3375 3.2792 3.4625 3.3917 4.3917 3.1375
Win/Loss 54/60 61/57 56/62 42/77 61/57
p-value 0.9509 0.6458 0.8741 0.0037X 0.7090
Iman-Davenport text p-value: 0.0000
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.4072 0.7133 0.6883 0.7319 0.6777 0.7297
Rank 5.7083 2.7958 3.3125 3.1583 3.4375 2.5875
Win/Loss 109/2 106/4 112/6 109/4 111/1
p-value 0.0000/ 0.0000/ 0.0000/ 0.0000/ 0.0000/
Iman-Davenport text p-value: 0.0000
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6830 0.6658 0.6578 0.6843 0.6198 0.6666
Rank 3.6250 3.4375 3.4833 3.2583 3.9042 3.2917
Win/Loss 61/52 67/50 62/55 52/67 63/51
p-value 0.6004 0.5761 0.7813 0.1152 0.8865

Iman-Davenport text p-value: 0.0413

SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6632 0.7656 0.7526 0.7916 0.7376 0.7723
Rank 4.2167 3.1542 3.4917 3.5458 3.9167 2.6750
Win/Loss 74/35 75/35 73/46 68/44 75/33
p-value 0.0000/ 0.0000/ 0.0000/ 0.0002/ 0.0000/

Iman-Davenport text p-value: 0.0000

tion, the five methods achieved better results than SetCover, with an average

improvement of over 10%.

A summary of these results is shown in Table 6. The table shows that, as
a general rule, our proposal was able to beat the standard methods in terms of
classification performance while keeping the reduction ability.

These results of the five methods are illustrated in Figures 1, 2, 3, 4 and 5 for
FAST, FCBF, LCF, ReliefF and SetCover, respectively. The figures show the
results for k and reduction. This graphic representation is based on the k-error
relative movement diagrams [58]. These diagrams use an arrow to represent the

results of the two methods applied to the same dataset. The arrow starts at

25

500

505

Table 5: Comparison of the AdaBoost boosting methods in terms of x and reduction using
the LVF feature selection algorithm using o = 0.75 and « = 0.5. The table shows the win/loss
record of every boosting method against the feature selection method alone and the p-value

of the Wilcoxon test. Significant differences in favor of our method are marked with a v/;

significant differences against our approach are marked with a X.

LVF AdaBoost AdaBoost
(a = 0.5) (a = 0.75)
Mean 0.8364 0.8162 0.8609
Rank 2.7042 4.4083 2.0125
Win/draw/loss 30/80 56/54
p-value 0.0000X 0.0481v/
Reduction
LVF AdaBoost AdaBoost
(o = 0.5) (ax = 0.75)
Mean 0.4072 0.7133 0.6124
Rank 6.5167 2.8917 5.4333
‘Win/Loss 109/2 93/19
p-value 0.0000v 0.0000v
AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
K Red. K Red. K Red. K Red. K Red.
FAST 4 — v — 4 — — X v 4
FCBF v 4 v v X v
LVF 4 v X v X v X v X v
ReliefF v — v — v — v — v —
SetCover v v v X v X 4

Table 6: Summary of results for all the feature selection methods and all the boosting algo-
rithms using a decision tree classifier. A v states that the boosting approach was better than
the standard method, a X that it was worse, and —that there were no significant differences
according to the Wilcoxon test.

the coordinate origin, and the coordinates of the tip of the arrow represent the
difference between the s and reduction of our boosting method and those of
the standard algorithm alone. These graphs are a convenient way of summa-
rizing the results. A positive value in either reduction or x means our method
performed better.

For the FAST algorithm, Figure 1 shows that the behavior of AdaBoost.FAST,
FloatBoost.FAST, GentleBoost.FAST and ReweightBoost.FAST was quite ho-
mogeneous. The figure shows a common behavior. For many datasets, boosting
achieved a large improvement in terms of reduction, with a small reduction in
k (top left quadrant of the plot). For these datasets, the improvement in terms

of reduction clearly outweigh the smaller k. For another large set of problems,

26

510

515

7
4

Kappa Kappa,

FloatBoost

Reduction
Reduction

x
-100 -100

100

Kappa, Kappa.

GentleBoost MultiBoost

Reduction

ReweightBoost

Figure 1: x/reduction using relative movement diagrams for our proposal against the standard
FAST method using the five different boosting methods and a decision tree as a classifier

model. Positive values on each axis indicate better performance by our method.

boosting achieved a markedly better classification performance, with the cost
of smaller reduction (bottom right quadrant of the plot). For a small subset
of problems, boosting achieved both better reduction and better x (top right
quadrant). Finally, almost no dataset showed boosting that was worse in both
aspects (bottom left quadrant). MultiBoost.FAST showed a different overall
trend. Most datasets are in the same quadrants as the other four methods, but
the decrease in terms of reduction in the bottom right quadrant and x in the

top left quadrant is greater, so the performance of MultiBoost.FAST is worse

27

than the performance of the other four boosting methods.

50 T
M
P / P
3
o
° 6&7 19
§ 5 88
] % 3 B
& & T~
50
o
-75
100 \ 6]
o 2 % 7
Kappa
FloatBoost
75
. A e
i
" R
L o
3 g # =
& & = AN
o
* ’ \\k NS
o
™ Yo TN
o .
100 \un \10
-50 25 o 25 50 75
Kappa
MultiBoost

1 112
27 &7

Reduction

50 N
\'K

166]

ReweightBoost
Figure 2: x/reduction using relative movement diagrams for our proposal against the standard
FCBF method using the five different boosting methods and a decision tree as a classifier
model. Positive values on each axis indicate better performance by our method.

The behavior of the FCBF method (see Figure 2) was very similar to that

s20 of the FAST method for all five boosting algorithms.

Figure 3 shows the same plots for the LVF method. The results for LVF
were homogeneous for the five boosting methods, as is clearly shown in the plots.
The vast majority of points are in the top left quadrant of the plot, showing
that for most datasets, boosting achieved a large improvement in the reduction

s»s power of the algorithm but at the cost of a lower k. For AdaBoost.LVF and

28

530

Reduction
Reduction

20 10 [10 20 30

Reduction
Reduction

2
I \ ™
“
50 5#‘
5 A o
§ E P 7t
i i o
60° “°
0
- —— .
% N
o
0 25 50
Kappa
ReweightBoost AdaBoost (a = 0.75)

Figure 3: x/reduction using relative movement diagrams for our proposal against the standard
LVF method using the five different boosting methods and a decision tree as a classifier model.
Positive values on each axis indicate better performance by our method.

a = 0.75, the figure shows a large improvement in reduction coupled with at
least a no worse performance in classification accuracy.

The results for ReliefF (see Figure 4) show a similar behavior among the five
boosting methods, with small differences for the case of MultiBoost.ReliefF. The
datasets are divided into two groups almost in halves. On the one hand, top left
quadrant, we have datasets for which boosting achieved a significantly reduction
gain with a small loss of k. On the other hand, right bottom quadrant, we have

datasets for which we have a large increment in the k, with a decrement in the

29

535

540

§ A iand g
R S) 1 EE
& 7 &
w \ %ﬁ -
56 \
25 75
\‘ \,*‘
-100 D] 100
o 2 £} 7 100
Kappa
AdaBoost FloatBoost
7
. A
e N
" \ o
s < 57 - 105
B g o
] & “ % 2 T of
25 —
7 7T
® NN\ NN
75 +
N Ve a2
73 37
-100

GentleBoost MultiBoost

Reduction

ReweightBoost
Figure 4: x/reduction using relative movement diagrams for our proposal against the standard
ReliefF method using the five different boosting methods and a decision tree as a classifier

model. Positive values on each axis indicate better performance by our method.

reduction power of the method.

The results for SetCover are plotted in Figure 5. We have again two dif-
ferent behaviors. For a set of problems, top left quadrant, boosting achieved
an important reduction increment, with a somewhat smaller decrease in k. For
another set of problems, right bottom quadrant, boosting significantly improved
the k while keeping the reduction ability of the method almost untouched.

As an additional test, we compared all the methods using a Nemenyi test.

Plots of this comparison are shown for all the feature selection methods in Figure

30

545

Reduction
Reduction

Wao 57

S
o s
25 0 25 50 25 o 25 50
Kappa Kappa
AdaBoost FloatBoost
ks 75)
75 a5 L\ 148 n
:}\\;YK © Do Al
50 Ss‘lﬁ?\n ‘&‘ 2 G
0 1 0
5 R\ 5 o —— —
R w H i “
& 5 0 g s .
20 wEU 87
0 42 50
;
w T
@ 75
-25
100 -100 “fof
25 o 25 -50 -25 o 25 50 75
Kappa Kappa
GentleBoost MultiBoost
8¢ 16,
“
50 o
2 AN
olne = £ o -
5 -)
g
B 2
&
-50
75
-100 i6g)
-25 0 25 50 75
Kappa
ReweightBoost

Figure 5: x/reduction using relative movement diagrams for our proposal against the standard
SetCover method using the five different boosting methods and a decision tree as a classifier

model. Positive values on each axis indicate better performance by our method.

6 for x and reduction. The aim of using the Nemenyi test is to confirm the
improvement of our approach, as many paired comparisons using the Wilcoxon
test might accumulate a certain test error.

For the FAST method, the Nemenyi test found significant differences for
all the boosting algorithms with the exception of MultiBoost.FAST. Regarding
k, we observe that FCBF was beat by AdaBoost.FCBF, FloatBoost.FCBF and
ReweightBoost. FCBF. Although MultiBoost. FCBF and GentleBoost. FCBF achieved
a better average rank than FCBF, the Nemenyi test did not find these differences

31

ReliefF LVF FCBF FAST

SetCover

CD - 06883
—

5 4

2 1

MultiBoost (4.2875)

FloatBoost (2.8417)

3 2 1

MuliBoost (4.2833)

— AdaBoost (2.9750)

FAST (4.2000)

AdaBoost (2.6708) FAST (3.8708) (3.0833)
(3.4792) GentleBoost (3.3208) FloatBoost (3.5125) GentleBoost (3.2750)
CD = 06883

[

5 4 3 2 1 5

FCBF (4.1833)

MuliBoost (4.0375)

AdaBoost (2.6958)

MuliBoost (4.3917)

(3.1375)

FloatBoost (2.8667)

FloatBoost (3.4625)

AdaBoost (3.2792)

GentleBoost (3.6333)

(3.5833)

GentleBoost (3.3917)

FCBF (3.3375)

D= 08222
—

cD-08222
—

7

LVF (65167)

AdaBoost (a=0.75) (5.4333)

(4.7208) FloatBoost (4.1958 MultiBoost (3.6500) GentleBoost (3.2917)
AdaBoost (4.4083 FloatBoost (35042
CD- 06883
4 3 1 4 2 1
[I
RoliefF (39167) K i (.1792) MultBoost (3.9042) GentleBoost (3.2583)
MultiBoost (3.8125) ‘ ‘ AdaBoost (3.2083) ReliefF (3.6250) 32917)
GentleBoost (34958) FloatBoost (3.3875) FloatBoost (34833) AdaBoost (3.4375)
CD- 06883 CD = 06883
— —
5 4 3 2 1 5 3 2 1
MultBoost (4.1125) AdaBoost (2.9125) SetCover (4:2167) RoweightBoost (2.6750)
(@9125) FloatBoost (3.0956) MuttiBoost (3.9167) AdaBoost (3.1542)
GentleBoost (3.8167) SetCover (3.1500) GentleBoost (3.5458) FloatBoost (3.4917)

Figure 6: Nemenyi test for C4.5 as classification method for x and reduction.

32

550

555

significant.

As shown in the previous results, LVF obtained better results than the boost-
ing method, although its reduction ratio was inferior by approximately 30% as a
general rule. For ReliefF, ReweightBoost.ReliefF and AdaBoost.ReliefF showed
significantly better performance than ReliefF. SetCover showed a similar behav-
ior, although FloatBoost.SetCover and AdaBoost.SetCover were no worse than
SetCover alone.

In terms of reduction power, the Nemenyi test corroborates the results of the
Wilcoxon test. The significant differences found with this test are also found

with the Nemenyi test for almost all cases.

33

560

565

5.2. Results using a SVM

The comparison using an SVM as a base classifier is shown in Table 7 for &
and in Table 8 for reduction. For FAST, the boosting approach beat FAST alone
for four of the five methods. MultiBoost.FAST was better than FAST in terms
of performance, but the differences were not significant. Again, the boosting
approach achieved a better performance without losing its reduction ability. In

terms of reduction, only MultiBost.FAST performed worse than FAST.

Table 7: Comparison of the five boosting methods in terms of x using the five feature selection
algorithms against the feature selection method alone for an SVM as a classification method.
The table shows the win/loss record of every boosting method against the feature selection
method alone and the p-value of the Wilcoxon test. Significant differences in favor of our

method are marked with a v; significant differences against our approach are marked with a

X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6396 0.7307 0.7074 0.7265 0.6897 0.7263
Ranks 4.0792 3.0667 3.2125 3.3542 3.9792 3.3083
Win/loss 67/28/25 68/24/28 64/25/31 50/21/49 57/29/34
p-value 0.0000v 0.0000v 0.0000v 0.3864 0.0001v
Iman-Davenport text p-value: 0.0000
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6297 0.7106 0.7161 0.7182 0.6805 0.7080
Ranks 4.1417 3.1833 3.0958 3.4167 3.7583 3.4042
Win/loss 67/21/32 70/19/31 66/20/34 60/13/47 67/21/32
p-value 0.0000v 0.0000v 0.0000v 0.0726 0.0000v
Iman-Davenport text p-value: 0.0001
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7551 0.7518 0.6992 0.7356 0.7364 0.7468
Ranks 2.5167 3.0208 4.2042 3.8208 3.9000 3.5375
Win/loss 28/32/60 22/18/80 20/27/73 24/29/67 21/28/71
p-value 0.0063X 0.0000X 0.0000X 0.0000X 0.0000X
Iman-Davenport text p-value: 0.0000
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.5930 0.7232 0.7193 0.7239 0.7006 0.7204
Ranks 3.6375 3.4292 3.6042 3.1458 3.6083 3.5750
Win/loss 53/18/49 54/15/51 57/18/45 57/16/47 53/18/49
p-value 0.0099v 0.0181v 0.0021v/ 0.0214v 0.0181v/
Iman-Davenport text p-value: 0.0298
SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6065 0.7318 0.7403 0.7432 0.7009 0.7178
Ranks 3.6083 3.0750 2.9042 3.2667 4.1708 3.9750
Win/loss 63/9/48 64/8/48 59/7/54 52/7/61 57/5/58
p-value 0.0007v 0.0001v 0.0026v 0.2040 0.0606

Iman-Davenport text p-value: 0.0000

For FCBF, the boosting approach beat FCBF alone for four of the five
methods. MultiBoost.FCBF was better than FCBF in terms of performance,

34

570

575

but the differences were significant only at a 90% level of confidence. Again, the
boosting approach achieved a better classification performance without losing
its reduction ability. In terms of reduction, only MultiBoost. FCBF performed
worse than FCBF.

Table 8: Comparison of the five boosting methods in terms of reduction using the five feature
selection algorithms against the feature selection method alone for an SVM as a classification
method. The table shows the win/loss record of every boosting method against the feature
selection method alone and the p-value of the Wilcoxon test. Significant differences in favor

of our method are marked with a v/; significant differences against our approach are marked

with a X.
FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8404 0.8059 0.7940 0.7859 0.5860 0.7975
Ranks 3.5042 2.9583 3.5000 3.3917 4.4292 3.2167
Win/draw /loss 61/9/50 63/3/54 61/3/56 33/3/84 71/5/44
p-value 0.9041 0.2955 0.1119 0.0000X 0.2771

Iman-Davenport text p-value: 0.0000

FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8023 0.8024 0.7873 0.7710 0.6574 0.7884
Ranks 3.3000 3.0000 3.2000 3.7750 4.4875 3.2375
Win/draw /loss 58/4/58 63/2/55 49/3/68 38/0/82 62/3/55
p-value 0.5531 0.9969 0.0561 0.0000X 0.6877

Iman-Davenport text p-value: 0.0000

LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.4072 0.6552 0.6379 0.6677 0.6470 0.6810
Ranks 5.2208 3.1167 3.3083 3.1583 3.4417 2.7542
Win/draw/loss 96/11/13 93/9/18 100/7/13 94/10/16 102/6/12
p-value 0.0000v 0.0000v 0.0000v 0.0000v 0.0000v
Iman-Davenport text p-value: 0.0000
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6830 0.7489 0.7397 0.6994 0.6741 0.7403
Ranks 3.4750 3.0292 3.3375 3.6625 4.1375 3.3583
Win/draw/loss 63/4/53 60/1/59 58/3/59 48/2/70 60/6/54
p-value 0.0504 0.1252 0.7119 0.2818 0.1025

Iman-Davenport text p-value: 0.0002

SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost

Mean 0.6632 0.7107 0.6830 0.6937 0.6639 0.7287
Ranks 3.4917 3.2375 3.8667 3.9125 3.9375 2.5542
Win/draw/loss 58/8/54 55/8/57 52/7/61 47/7/66 70/4/46
p-value 0.0134v 0.1418 0.2623 0.9384 0.0002/

Iman-Davenport text p-value: 0.0000

The case for the LVF method was similar to the results for decision trees.
LVF performed poorly in terms of classification performance. Thus, its boosting
counterpart achieved a markedly better performance in terms of reduction, but
at the cost of a significantly poorer performance in terms of k. As with the

previous case, this result suggested that our selection of the value of @ was not

35

580

585

590

595

appropriate. We repeated the experiments for AdaBoost.LVF using o = 0.75.
The comparison is shown in Table 9. The results show that with this « value,
AdaBoost.LVF improved both the x and the reduction of LVF.

Table 9: Comparison of the AdaBoost boosting methods in terms of x and reduction using
the LVF feature selection algorithm using a = 0.75 and o = 0.5. The table shows the win/loss
record of every boosting method against the feature selection method alone and the p-value
of the Wilcoxon test. Significant differences in favor of our method are marked with a v;

significant differences against our approach are marked with a X

LVF AdaBoost AdaBoost

(a = 0.5) (o = 0.75)
Mean 0.7551 0.7518 0.8063
Rank 3.0667 3.8417 2.2750
Win/draw/loss 28/60 50/38
p-value 0.0000X 0.0063v

Iman-Davenport text p-value: 0.0000
Reduction

LVF AdaBoost AdaBoost

(a = 0.75) (a = 0.75)
Mean 0.4072 0.6552 0.5349
Rank 5.8958 3.3250 5.1833
Win/Loss 96/13 76/34
p-value 0.0000v 0.0000v

Iman-Davenport text p-value: 0.0000

For ReliefF, the boosting approach achieved a better x than ReliefF alone
for all five boosting methods. Furthermore, this improvement was achieved
while matching the reduction ability of ReliefF. AdaBoost.ReliefF beat ReliefF
in terms of k and was also better in terms of reduction at a confidence level of
90% (p-value = 0.0504).

Finally, for SetCover, AdaBoost.SetCover, FloatBoost.SerCover and Gentle-
Boost.SetCover improved the k of SetCover, without losing its reduction power.
In fact, AdaBoost.SetCover was better than SetCover in x and reduction.

A summary of the results is shown in Table 10. As was the case for a decision
tree, our proposal beat the feature selection method in terms of performance
while keeping the reduction ability of the original methods.

Relative movement diagrams for k and reduction are shown in Figures 7, 8, 9,
10 and 11 for FAST, FCBF, LVF, ReliefF and SetCover, respectively. The same
behavior of decision trees is observed in these diagrams. For the five feature

selection methods, the behavior of our approach was similar using decision trees

36

AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost

K Red. K Red. K Red. K Red. K Red.
FAST v — v — v — — X v —
FCBF v — v — v — — X v —
LVF v v X v X v X v X v
ReliefF v — v — v — v — v —
SetCover v v v v v v

Table 10: Summary of results for all the feature selection methods and all the boosting
algorithms using an SVM. A v indicates that the boosting approach was better than the
standard method, a X that it was worse, and —that there were no significant differences
according to the Wilcoxon test.

and SVMs, showing the consistency of the proposed approach.

3‘\ szl

107 57

Reduction
8
Reduction

75 X E Xy
B0 g \ A

100

Kappa Kappa
AdaBoost FloatBoost
25 T
N i RS T
w
5
0 18| — 19 o = =" —_—
\\i y p
B

Reduction
Reduction

)
5| %8 e 25
R \ 7y ~
e) E
3
7 N
- v
®

Q E5 ’\53} “"N’; <
5

100 f 100 i
-26 o 25 50 75 100 -50 -25 o 25 50 75 100
Kappa. Kappa.
GentleBoost MultiBoost
25 73
“
£Rra
s
0 —
- —, ®

Reduction

100

100]
0 25 50 75 100

ReweightBoost
Figure 7: k/reduction using relative movement diagrams for our proposal against the standard
FAST method using the five different boosting methods and an SVM as a classifier model.

Positive values on each axis indicate better performance by our method.

37

% - ©
"/ ® f
50 “ SK /
u ﬁ/ p
25
25 [S~ “°
e
5
e 0 o ° 3 m—gTl)
H 57 R = H s N —3
3 3 | 25
k3 25 2 2
& & 7N
3
\\ - “
50 1o 109
75 75
\97 \9
-100 Tod -100)
25 o 2) 7 00 25 o 2 5 7 o0
Kappa Kappa
AdaBoost FloatBoost
75 a\ = 5&\3*
u
50 fopy / %0 \\
P
1 11
25 A 25 ‘\ W 50°
% W N
7 3 " 105
g 0 g ° =
H E \i H T
H 3 — . ° H] 110 sdf L
& = P2 N g >
PR \ % s 8! NN
50 S 50 2 109
:
75 75 5
~{ i Ve Ve \%
o
-100 i -100 L o 60
-25 0 25 50 75 100 -50 -25 0 25 50 75 100
Kappa Kappa
GentleBoost MultiBoost
55\ 50
50 f
W
A"
% <~ 84
0
5 - .
H w ©
8 =
4 77 D
-50 \w
75
® X
@
100 i
25 o 25 50 75 100
Kappa
ReweightBoost

Figure 8: x/reduction using relative movement diagrams for our proposal against the standard
FCBF method using the five different boosting methods and an SVM as a classifier model.

Positive values on each axis indicate better performance by our method.

These observed differences are corroborated by the Nemenyi test shown in
Figure 12 for x and reduction.

The most remarkable result is that the experiments support the validity of
the proposed approach. In 19 out of 25 cases, boosting was able to significantly
improve the testing x of the method alone. Furthermore, in none of these
19 cases did the improvement have the negative side effect of decreasing the

reduction ability of the method.

38

605

610

7

Reduction

AdaBoost FloatBoost
100 w2
4 AN
’5 W\ 4
s
.
50 ' = =
P EN |
£ o ®
T el SN . =
1 e o5
49 y
o T 05 o
B
) —~— ! e
25 "-: 25 vt o
N
o E =
-50 25 0 25 50 75 100 25 0 25 50 75
Kappa Kappa
GentleBoost MultiBoost
100 75 T
"
.
,5 50
> 19
50 25 ! A -
H 3 ’
g e 0 » \“m
1
0 25 K‘\
B\ T
25 50 VN % *
s 1o
25 o 25 50 75 100 0 25 50 75 100
Kappa Kappa
ReweightBoost Ada (a =0.75)

Figure 9: x/reduction using relative movement diagrams for our proposal against the standard
LVF method using the five different boosting methods and an SVM as a classifier model.

Positive values on each axis indicate better performance by our method.
5.8. Comparison for datasets with more than 1000 features

In addition of the previous comparison, it is interesting to know the behavior
of the different methods when the dataset has many features. In many current
data mining tasks is very common to have thousands of features, so the ability
of any method to deal with a large number of inputs is a relevant issue. In this
section we show the comparison when the datasets have at least 1,000 features.
Thus, we restrict the study to the 30 datasets with more than 1,000 features
(see Table 2).

39

615

Reduction
Reduction

= T s——» !
56

B
a

0 2 50 7 100
Kappa

AdaBoost

Reduction
Reduction

Kappa
MultiBoost
™
75 7*‘
W
0
50 347
;
]
5 i
g 25 %5 ”
& &,
0 59 4 = Sr—— 1%
s T
2
SN R
@ o

25 o 2 50 75 100
Kappa

ReweightBoost
Figure 10: x/reduction using relative movement diagrams for our proposal against the stan-
dard ReliefF method using the five different boosting methods and an SVM as a classifier

model. Positive values on each axis indicate better performance by our method.

Tables 11 and 12 show the comparison for the five feature selection algo-
rithms and the five boosting methods for £ and reduction respectively using a
C4.5 decision tree as classifier. In terms of classification performance the be-
havior of our proposal was similar to the previous results using all the datasets.
For FAST and FCBF methods boosting improved the method alone with the
exception of MultiBoost. For LVF the performance was better than using all the
datasets, as boosting was no worse than LVF for the five boosting methods. For

ReliefF the behavior was also similar again with the exception of MultiBoost.

40

620

625

7 I 5, ‘
e R
50
46 55 2 144
17
£ v w %
05
5 0 = = s ° - = B4
;
3 T, i &
& 25 & \\‘
\ 1
2 5 u
-50 3 3 2
75 -75
-100 o0, 85 100 oo} 872
o 2 0 75 100 2 o 2 0 75 100
Kappa Kappa
AdaBoost FloatBoost
= 7
I N
N1 i £
]
0l ©
25 1 25 |40y
) s 3
s o c e 105
£ W s 5 2 g ° 0 & 5
3 L 3 P 7 @ 8
& 2 7 R & sl
\
50 2 2 z
75 \ 75 W 2,
R NN
100 100] 692 100 90 100}
2 o 2 50 7 100 2 o 2 0 75 100
Kappa Kappa
GentleBoost MultiBoost
7% D) I
NN
.
50
% 55
2 1
:
N e
5 —
£ = =
H o
& e
s
-50
5
&
100 LU Ty
0 25 50 75 100
Kappa
ReweightBoost

Figure 11: x/reduction using relative movement diagrams for our proposal against the stan-
dard SetCover method using the five different boosting methods and an SVM as a classifier

model. Positive values on each axis indicate better performance by our method.

Finally, for SetCover the results improved with respect to using all datasets, as
{AdaBoost, FloatBoost, GentleBoost }.SetCover were better than SetCover and
the other two were no worse than SetCover. As a summary, boosting performed
better with many inputs for LVF and SetCover and similarly for FAST, FCBF
and ReliefF.

Regarding reduction, see Table 12, the performance of boosting feature selec-
tion was also coherent with the results using all the datasets. For FAST, FCBF

and ReliefF the comparison between the base method and the five boosting al-

41

FCBF FAST

LVF

ReliefF

CD - 06883
—

FAST (4.0792)

AdaBoost (3.0667)

3 2 1

MultiBoost (4.4292)

AdaBoost (2.9583)

MuliBoost (3.9792)

FloatBoost (3.2125)

FAST (3.5042)

(32167)

GentleBoost (3.3542)

(3.3083)

FloatBoost (3.5000)

GentleBoost (3.3917)

CD = 06883
[

FCBF (41417)

FioatBoost (3.0958)

MuliBoost (4.4875)

MutiBoost (3.7583)

AdaBoost (3.1833)

GentleBoost (3.7750)

AdaBoost (3.0000)

FloatBoost (3.2000)

GentleBoost (3.4167)

(3.4042)

FCBF (3.3000)

(3.2375)

D= 08222
—

GentleBoost (4.6750)

AdaBoost (3.8417)

(4.3792)

AdaBoost (a=0.75) (5.18§3)

AdaBoost (3.3250)

MultiBoost (3.7083)

GentleBoost (3.3833)

FioatBoost (3.5417)

SetCover

CD- 06883
4 1 5 3 2 1
rotor s f nton 31459 s (41575 o
MultiBoost (3.6083) AdaBoost (3.4292) GentieBoost (3.6625) FloatBoost (3.3375)
FloatBoost (3.6042) 5750 RelefF (3.4750) (3.3583)
CD- 06883 CD - 06883
—
5 1 4 2 1
|
MultiBoost (4.1708) FloatBoost (2.9042) MultiBoost (3.9375) _ yF—— (25542
39750) AdaBoost (3.0750) GentleBoost (39125) ‘ AdaBoost (3.2375)
SetCover (3.6083) GentleBoost (3.2667) FloatBoost (3.8667) SetCover (34917)

Figure 12: Nemenyi test for a SVM as classification method for x and reduction.

42

630

635

Table 11: Comparison for datasets with more than 1000 features of the five boosting methods
in terms of x using the five feature selection algorithms against the feature selection method
alone for a C4.5 tree as classification method. The table shows the win/loss record of every
boosting method against the feature selection method alone and the p-value of the Wilcoxon
test. Significant differences in favor of our method are marked with a v/; significant differences

against our approach are marked with a X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7441 0.8344 0.8348 0.8391 0.7961 0.8305
Ranks 4.9333 2.2333 2.6333 2.8500 5.0333 3.3167
Win/draw/loss 25/3/2 24/4/2 23/4/3 14/2/14 22/7/1
p-value 0.0000v 0.0000v 0.0000v 0.3547 0.0000v
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7083 0.8170 0.8175 0.8176 0.7726 0.8070
Ranks 5.1000 2.1000 2.4833 3.2500 4.3333 3.7333
Win/draw/loss 26/3/1 25/4/1 24/4/2 18/2/10 21/5/4
p-value 0.0000v 0.0000v 0.0000v 0.1332 0.0001v/
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8079 0.8038 0.8099 0.8112 0.8132 0.8113
Ranks 3.1500 3.3333 3.7333 3.7333 3.6833 3.3667
Win/draw/loss 14/1/15 13/1/16 11/1/18 12/1/17 12/1/17
p-value 0.4466 0.2667 0.2579 0.3877 0.3991
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6888 0.8462 0.8326 0.8481 0.8075 0.8370
Ranks 4.4500 2.8833 3.1500 3.0333 4.1167 3.3667
Win/draw/loss 20/4/6 18/5/7 20/4/6 17/1/12 19/5/6
p-value 0.0008v/ 0.0051v 0.0018v/ 0.0804 0.0009v
SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.6595 0.7373 0.7237 0.7334 0.7096 0.6764
Ranks 4.4167 2.3000 3.3833 2.9167 3.3833 4.6000
Win/draw/loss 20/6/4 18/5/7 20/6/4 16/5/9 15/5/10
p-value 0.0002v/ 0.0152v 0.0012/ 0.1330 0.3035

gorithms obtained the same results. For LVF the reduction ability of boosting
with respect to the base method was even improved with a average different
above the 40%. For SetCover the behavior of boosting was slightly worse than
the case for all datasets, but still the reduction was not worse than the use of
SetCover alone excepting GentleBoost.SetCover.

Tables 13 and 14 show the comparison for the five feature selection algo-
rithms and the five boosting methods for £ and reduction respectively using a
SVM as classifier. In terms of x there were no large differences with when all
the datasets were used for the comparison. For FAST, FCBF and ReliefF the
comparison between boosting and the method alone is the same as the previous

case. For LVF there was a slight improvement over using all the datasets and

43

640

645

Table 12: Comparison for datasets with more than 1000 features of the five boosting methods
in terms of reduction using the five feature selection algorithms against the feature selection
method alone for C4.5 tree as classification method. The table shows the win/loss record
of every boosting method against the feature selection method alone and the p-value of the
Wilcoxon test. Significant differences in favor of our method are marked with a v/; significant

differences against our approach are marked with a X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9530 0.9045 0.9197 0.9315 0.7951 0.9117
Ranks 4.4000 2.8500 3.0167 2.9500 4.5667 3.2167
Win/draw/loss 21/0/9 22/0/8 22/0/8 13/0/17 24/0/6
p-value 0.2369 0.1359 0.0519 0.0368Xx 0.1470
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9783 0.9184 0.9189 0.9173 0.8578 0.9222
Ranks 3.0333 3.3333 3.1167 3.7000 4.7167 3.1000
Win/draw/loss 12/0/18 15/0/15 13/0/17 7/0/23 14/0/16
p-value 0.2712 0.3820 0.2989 0.0148x 0.5440
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.5057 0.9173 0.9104 0.9091 0.9066 0.9135
Ranks 5.9667 2.8167 3.2500 3.1500 2.9000 2.9167
Win/draw /loss 30/0/0 29/0/1 30/0/0 30/0/0 30/0/0
p-value 0.0000v 0.0000v 0.0000v 0.0000v 0.0000v
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8907 0.8931 0.9082 0.9246 0.8716 0.9188
Ranks 3.5000 3.6333 3.6333 2.8000 4.4333 3.0000
Win/draw/loss 15/0/15 17/0/13 17/0/13 11/0/19 15/0/15
p-value 0.9099 0.4284 0.2452 0.2536 0.5304

SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost

Mean 0.9947 0.9694 0.9959 0.9835 0.9636 0.9632

Ranks 2.7500 3.5000 3.4000 4.7667 3.5333 3.0500
Win/draw /loss 10/2/18 10/1/19 8/0/22 11/1/18 11/1/18

p-value 0.3337 0.6509 0.0300X 0.5786 0.6509

for SetCover there was a slight decrement of the performance.

In terms of reduction, for FAST, FCBF and LVF the behavior did not change,
while for ReliefF' and SetCover boosting was worse in terms of reduction ability
than when using all the datasets. As a summary, we can state that the proposed
boosting approach was also efficient when the datasets have a large number of

features.

5.4. Alpha effect

One of the key parameters of our approach is the value of « (see eq. 5). In
this section, we study the behavior of our method when this parameter is given
different values. Because we are proposing a method of boosting feature selection

algorithms, we are more interested in classification performance than reduction.

44

650

655

660

Table 13: Comparison for datasets with more than 1000 features of the five boosting methods
in terms of x using the five feature selection algorithms against the feature selection method
alone for an SVM as a classification method. The table shows the win/loss record of every
boosting method against the feature selection method alone and the p-value of the Wilcoxon
test. Significant differences in favor of our method are marked with a v/; significant differences

against our approach are marked with a X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8374 0.9786 0.9317 0.9891 0.9751 0.9713
Ranks 4.1333 3.3167 3.4500 3.0667 3.5000 3.5333
Win/draw/loss 10/18/2 9/18/3 10/20/0 10/18/2 8/20/2
p-value 0.0226v 0.0912 0.0065v 0.0266v 0.0715
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8131 0.9429 0.9543 0.9670 0.9374 0.9293
Ranks 4.4500 3.3667 3.1167 2.7333 3.5667 3.7667
Win/draw/loss 14/13/3 15/13/2 15/13/2 15/9/6 14/13/3
p-value 0.0074v 0.0021v 0.0012v/ 0.0303v 0.0106v
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9858 0.9531 0.8554 0.9523 0.9874 0.9878
Ranks 2.8167 3.3500 4.7000 3.5833 3.3000 3.2500
Win/draw/loss 2/19/9 2/10/18 2/17/11 4/18/8 3/19/8
p-value 0.0634 0.0002x 0.0273X 0.2542 0.1779
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.7250 0.9883 0.9839 0.9760 0.9868 0.9853
Ranks 4.3000 3.3333 3.3667 3.2500 3.2500 3.5000
Win/draw/loss 14/12/4 14/11/5 13/14/3 14/12/4 14/11/5
p-value 0.0057v/ 0.0074v 0.0077/ 0.0050v 0.0089v
SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.5180 0.9303 0.9139 0.9659 0.9083 0.8812
Ranks 5.7667 2.5167 2.9000 2.1500 3.4833 4.1833
Win/draw/loss 30/0/0 29/0/1 30/0/0 28/0/2 26/0/4
p-value 0.0000v 0.0000v 0.0000v 0.0000v 0.0000v

However, it is interesting to know the behavior of our approach depending on
the value assigned to a. We repeated the experiments for AdaBoost and FCBF
as representatives of boosting and feature selection methods, respectively. We
used five different values of a: o = {0.1,0.25,0.5,0.75,0.9}.

The behavior for decision trees is shown in Figure 13, and relative movement
diagrams are shown in Figure 14. The figures show that the value used for «
strikes a good compromise between classification performance and reduction.
Although larger increments of x could be achieved with a greater value of «, the
cost is a barrier to the reduction ability of the feature selection algorithm. These
results also show the flexibility of our approach, as we can control the balance

between classification performance and reduction depending on the problem we

45

665

670

Table 14: Comparison for datasets with more than 1000 features of the five boosting methods
in terms of reduction using the five feature selection algorithms against the feature selection
method alone for an SVM as a classification method. The table shows the win/loss record
of every boosting method against the feature selection method alone and the p-value of the
Wilcoxon test. Significant differences in favor of our method are marked with a v/; significant

differences against our approach are marked with a X.

FAST AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9530 0.9260 0.8989 0.9016 0.4912 0.9064
Ranks 3.9000 2.5333 3.0500 2.9333 5.5667 3.0167
Win/draw/loss 21/0/9 23/0/7 21/0/9 0/0/30 22/0/8
p-value 0.0978 0.0300v 0.2210 0.0000X 0.2536
FCBF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9783 0.9208 0.9433 0.9097 0.6518 0.9216
Ranks 2.9333 2.9667 2.4167 3.9833 5.4000 3.3000
Win/draw/loss 12/0/18 15/0/15 14/0/16 2/0/28 15/0/15
p-value 0.2210 0.4528 0.1470 0.0000x 0.1779
LVF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.5057 0.9201 0.9242 0.9191 0.9098 0.9081
Ranks 5.9667 3.0667 2.0667 3.0667 3.4833 3.3500
Win/draw /loss 30/0/0 29/0/1 30/0/0 30/0/0 30/0/0
p-value 0.0000v 0.0000v 0.0000v 0.0000v 0.0000v
ReliefF AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.8907 0.9065 0.9106 0.9036 0.8683 0.9148
Ranks 3.5833 3.5667 3.5167 3.1833 3.8667 3.2833
Win/draw/loss 17/0/13 15/0/15 16/1/13 13/0/17 16/0/14
p-value 0.4405 0.5577 0.3991 0.5170 0.4528
SetCover AdaBoost FloatBoost GentleBoost MultiBoost ReweightBoost
Mean 0.9947 0.8391 0.8630 0.8191 0.8030 0.7951
Ranks 1.2667 3.7000 3.8167 4.9667 3.7167 3.5333
Win/draw/loss 1/0/29 1/0/29 1/0/29 1/0/29 4/0/26
p-value 0.0000X 0.0000X 0.0000X 0.0000X 0.0010X

are addressing.
The results for SVM are shown in Figures 15 and 16. Similar behavior
is observed for this classifier. Again, & = 0.5 is a good compromise between

classification performance and reduction.

5.5. Noise effect

One of the known weaknesses of boosting is its sensitivity to noise. Because
we are proposing a way of boosting feature selection, it is useful to know whether
this proposal is also more sensitive to noise than standard feature selection. In
this section, we show the results of the experiments we carried out to check the
sensitivity to noise of our proposal compared with standard feature selection.

Again, we selected as representatives the AdaBoost and FCBF feature selection

46

675

680

685

690

0.9

‘ Kappa ——
Reduction _--+---

e
4 09

/ T 1 o8
0.7

c
© K]
o k5
i

4 0.7

T
0.6 7/
4 0.6
Sy
0.5 0.5
0 0.2 0.4 0.6 0.8 1

Alpha

Figure 13: Behavior of x and reduction for different values of o for AdaBoost for C4.5.

algorithms.

To add noise to the class labels, we followed the method of Dietterich [59].
To add classification noise at a rate p, we chose a fraction p of the patterns and
changed their class labels to be incorrect, choosing uniformly from the set of
incorrect labels. We chose all the datasets and three rates of noise: 5%, 10%,
and 20%. With these three levels of noise, we performed the experiments using
FCBF and AdaBoost and the two classification methods.

The behavior for decision trees is shown in Figure 17, and relative move-
ment diagrams are shown in Figure 18. In terms of classification performance,
the figure shows that boosting was more robust than FCBF. In fact, the im-
provement of AdaBoost.FCBF over FOBF increased with the level of noise. In
terms of reduction, AdaBoost. FCBF was most conservative, as more noise was
added. For a noise level of 20%, the FCBF reduction was higher than its boosted
counterpart.

This behavior is clearly illustrated in Figure 18. We see that as the noise
level is increased, more arrows are pointing to the bottom right part of the
figure.

The results for an SVM are illustrated in Figures 19 and 16. The behavior of

SVM is the same observed for decision trees in both classification performance

47

695

Reduction
Reduction

Reduction
Reduction

;/;
/

a 106]

Kappa
a=0.5 a=0.75
50 &
)
"
sl7 / Ao
o
o i}
5 ~—
3 25
H e
-50 \
101 “
75 * \ -
3
"\ \\E o > \\\‘_
100 w 5 T
o 25 50 75
Kappa
a=09

Figure 14: x/reduction using relative movement diagrams for our proposal against the stan-
dard FCBF method using the AdaBoost methods and different values of « for C4.5. Positive
values on each axis indicate better performance by our method.

and reduction.

6. Conclusions and future work

In this paper, we have presented a general framework of boosting for feature
selection algorithms. Considering feature selection as a two-class classification
process, we successfully boosted feature selection algorithms. A comprehensive
set of experiments was performed using different boosting algorithms, feature

selection methods and two classifiers. The boosting methods tested showed

48

700

705

710

0.9

‘Kappa —
Reduction ---+---

/

08 e
e / 1 08
07 / 0.7

Kappa
Reduction

‘ 1 08
0.6
{os
v
05 04
0 02 04 0.6 08 1

Alpha

Figure 15: Behavior of x and reduction for different values of a for AdaBoost for svm.

consistently better performance than the standard feature selection algorithms
alone. Boosting improved the classifier performance of the methods in the ma-
jority of cases. These results were corroborated for the case of datasets with a
large number of features.

The proposed methodology opens many possibilities for future research. An
obvious first line of research is related to diversity. As is well-known, diversity is
one of the most important features for boosting success. Thus, using the many
known diversity enforcing techniques might be one way to improve the results
presented in this paper.

Another way of improving the proposed method is by addressing the scal-
ability of the approach. Stratified sampling is a common approach for dealing
with scalability problems. The adaptation of our approach to this framework
would be a very promising line of future research. Furthermore, other methods
commonly used for improving the scalability of feature selections algorithms,

such as democratization [60], could benefit from the approach presented in this

paper.

49

715

720

75 75 ©
©
W
o N\ \
@
50 \ 50 | 75
\ 109
§ § 48)
3 | 11% 55
g 3 2 L
& 25 & 51
0
, . 5
o 101
@ i — .
3 E =
13 ©
-75 25 o 25 50
Kappa
a=0.1 a=0.25
aa\ - wl®
50 / 50
1 J PR
2 “°
5 e 7 7
o
o =
5 < —
H 57 M, H 29 P 6
2 ia L S a2
H 2 H
& = N \ 2
S
50 o 50 109
75 ~ s W
7 R N N
° 2NN D
>
-100 6] -100 il FAC RN T A RN)
2 o 2 50 7 100 o 2 50 7 100
Kappa Kappa
a=0.5 a=0.75
R
17, 18
0
3 5 ©
g .
7 \ L]
E -25 p
g
-4 iy
<0 \ X o3
X\q\m
75
\ALRNR TN
15\ \e
.) ‘8‘5\;
100 T >
1107 Kl 119 82 90| 360
o 25 50 75 100
Kappa
a=09

Figure 16: x/reduction using relative movement diagrams for our proposal against the stan-
dard FCBF method using the AdaBoost methods and different values of a for SVM. Positive

values on each axis indicate better performance by our method.

Bibliography

[1] V. Kumar, S. Minz, Feature selection: A literature review, Smart Comput-

ing Review 4 (2014) 211-228.

[2] A. Blum, P. Langley, Selection of relevant features and examples in machine

learning, Artificial Intelligence 97 (1997) 245-271.

[3] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Evolving a cooperative population

of neural networks by minimizing mutual information, in: Proc. of the

50

0.8 ‘ o
FCBF (Kappa) ——
AdaBoost (Kappa) ---+---
FCBF (Reduction) -+
AdaBoost (Reduction) ——+—
c
g e 5
S 06 e 0.85 §
X i o 2
o
0.5 - ol
0.4 o
’ ° 10 15 20

Noise level

Figure 17: Behavior of x and reduction for different levels of noise for standard FCBF and

AdaBoost for C4.5.

Reduction
Reduction

Reduction
Reduction

10% 20%
Figure 18: x/reduction using relative movement diagrams for our proposal against the stan-
dard FCBF method using the AdaBoost methods and three different levels of noise for C4.5.
Positive values on each axis indicate better performance by our method.

2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, 2001, p.
384-389.

o1

0.8 ‘ o
FCBF (Kappa) —+—
AdaBoost (Kappa) ---+---
FCBF (Reduction) -+
AdaBoost (Reduction) ——-
0.7 =
0.6
i=4
g [E
g - e 108 3
X U :
e 2
0.5 -
0.4 » -
0.3 0.8
’ ° 10 15 20

Noise level

Figure 19: Behavior of x and reduction for different levels of noise for standard FCBF and

AdaBoost for SVM.

= = -
T N
114 J 50
25
.
14y % 25
£
3 o 3
H = e — 5,
3 s o o 3
g = S \ g
25
50 N
-50
75 g
o
-75
-100 o
-25 0 25 50 75 100 -25
Kappa
No noise 5%
7% 10

i H
0 o B °
s0s
25 o N

o7
25 25 o 2 50 75

Kappa Kappa

10% 20%

Figure 20: x/reduction using relative movement diagrams for our proposal against the stan-
dard FCBF method using the AdaBoost methods and three different levels of noise for SVM.
Positive values on each axis indicate better performance by our method.

[4] J. Lee, D.-W. Kim, Mutual information-based multi-label feature selection

using interaction information, Expert Systems with Applications 42 (4)

92

725

730

735

740

745

750

[5]

[10]

[13]

(2015) 2013-2025.

P. Moradi, M. Gholampour, A hybrid particle swarm optimization for fea-
ture subset selection by integrating a novel local search strategy, Applied

Soft Computing Journal 43 (2016) 117-130.

S. Li, S. Oh, Improving feature selection performance using pairwise pre-

evaluation, BMC Bioinformatics 17 (1).

Y. Saeys, T. Abeel, S. Degroeve, Y. V. de Peer, Translation initiation
site prediction on a genomic scale: beauty in simplicity, Bioinformatics 23

(2007) 418-423.

H. Brighton, C. Mellish, Advances in instance selection for instance-
based learning algorithms, Data Mining and Knowledge Discovery 6 (2002)
153-172.

A. Jain, D. Zongker, Feature selection: Evaluation, application, and small
sample performance, IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (1997) 153-158.

P. Mitra, C.-A. Murthy, S.-K. Pal, Unsupervised feature selection using
feature similarity, IEEE Transactions on Pattern Analysis and Machine

Intelligence 24 (2002) 301-312.

R. Kohavi, G.-H. John, Wrappers for feature subset selection, Artificial
Intelligence 97 (1-2) (1997) 273-324.

M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering
- a filter solution, in: Proceedings of the Second International Conference

on Data Mining, 2002, p. 115-122.

Y. Kim, W.-N. Street, F. Menczer, Feature selection in unsupervised learn-
ing via evolutionary search, in: The 6th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ACM Press, 2000, p.
365-369.

93

755

760

765

770

775

[14]

[16]

[17]

[19]

[20]

[23]

E. Leopold, J. Kindermann, Text categorization with support vector ma-
chines. how to represent texts in input space?, Machine Learning 46 (1-3)

(2002) 423-444.

K. Nigam, A.-K. Mccallum, S. Thrun, T. Mitchell, Text classification from
labeled and unlabeled documents using em, in: Machine Learning, 1999, p.

103-134.

Y. Rui, T.-S. Huang, Image retrieval: Current techniques, promising di-
rections and open numbers, Journal of Visual Communication and Image

Representation 10 (1999) 39-62.

D.-L. Swets, J.-J. Weng, Efficient content-based image retrieval using auto-
matic feature selection, in: In IEEE International Symposium on Computer

Vision, 1995, p. 85-90.

K. Ng, H. Liu, Customer retention via data mining, AT Review 14 (1999)
590.

W. Lee, S.-J. Stolfo, K.-W. Mok, Adaptive intrusion detection: a data
mining approach, Artificial Intelligence Review 14 (2000) 533-567.

E.-P. Xing, M.I. Jordan, R.-M. Karp, Feature selection for high-
dimensional genomic microarray data, in: The 18th International Con-

ference on Machine Learning, Morgan Kaufmann, 2001, p. 601-608.

P. Narendra, K. Fukunaga, Branch, and bound algorithm for feature subset

selection, IEEE Transactions Computer C-26 (9) (1977) 917-922.

E. Bauer, R. Kohavi, An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants, Machine Learning 36 (1/2) (1999)
105-142.

G. I. Webb, Multiboosting: A technique for combining boosting and wag-
ging, Machine Learning 40 (2) (2000) 159-196.

o4

780

785

790

795

800

[24]

[29]

[30]

S. Z. Li, Z. Zhang, Floatboost learning and statistical face recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (9)
(2004) 1-12.

J. H. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: A
statistical view of boosting, Annals of Statistics 28 (2) (2000) 337-407.

Q. Song, J. Ni, G. Wang, A fast clustering-based feature subset selection
algorithm for high-dimensional data, IEEE Transactions on Knowledge and

Data Engineering 25 (2013) 1-14.

L. Yu, H. Liu, Efficient feature selection via analysis of relevance and re-

dundancy, Journal of Machine Learning Research 5 (2004) 1205-1224.

H. Liu, R. Setiono, Scalable feature selection for large sized databases, in:
In Proceedings of the Fourth World Congress on Expert Systems, Morgan
Kaufmann, 1998, p. 521—528.

I. Kononenko, Estimating attributes: Analysis and extensions of relief, in:

FEuropean Conference on Machine Learning, 1994, p. 171-182.

K. Kira, L. A. Rendell, A practical approach to feature selection, in: Proc.
9th international workshop on Machine learning, Morgan Kaufmann, 1992,

p. 249-256.

M. Dash, H. Liu, Feature selection for classification, Intelligent Data Anal-

ysis 1 (1997) 131-156.

D. Johnson, Approximation algorithms for combinatorial problems, Journal

of Computer and Systems Sciences 9 (1974) 256-278.

K. Tieu, P. Viola, Boosting image retrieval, International Journal of Com-

puter Vision 56 (2004) 17-36.

E. Tuv, A. Borisov, G. Runger, K. Torkkola, Feature selection with ensem-
bles, artificial variables, and redundancy elimination, Journal of Machine

Learning Research (2009) 1341-1366.

99

805

810

815

820

825

830

[35]

[36]

[37]

X.-C. Yin, C.-P. Liu, Z. Han, Feature combination using boosting, Pattern
Recognition Letters 26 (2005) 2195-2205.

J. Y. Choi, Y. M. Ro, K. N. Plataniotis, Boosting color feature selection
for color face recognition, IEEE Transactions on Image Processing 20 (5)

(2011) 1425-1434.

Q.-G. Miao, Y. Cao, J.-F. Song, J. Liu, Y. Quan, Boostfs: A boosting-
based irrelevant feature selection algorithm, International Journal of Pat-

tern Recognition and Artificial Intelligence 29 (2015) 1-18.

D. B. Redpath, K. Lebart, Boosting feature selection, in: Procceding of the
International Conference on Pattern Recognition and Image Analysis, Vol.

3686 of Lecture Notes in Computer Science, Springer, 2005, p. 305-314.

J. O’Sullivan, J. Langford, R. Caruna, A. Blum, Featureboost: A met-
alearning algorithm that improves model robustness, in: Proceedings of

the Seventeenth International Conference on Machine Learnin, 2000, p.

703-710.

S. He, H. Chen, Z. Zhu, D. G. Ward, H. J. Cooper, M. R. Viant, J. K. Heath,
X. Yao, Robust twin boosting for feature selection from high-dimensional

omics data with label noise, Information Sciences 291 (2015) 1-18.

K. Bailly, M. Milgram, Boosting feature selection for neural network based

regression, Neural Networks 22 (2009) 748-756.

N. Garcia-Pedrajas, D. Ortiz-Boyer, Boosting random subspace method,

Neural Network 21 (2008) 1344-1362.

T. K. Ho, The random subspace method for constructing decision forests,
IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (8)
(1998) 832-844.

Q. Liu, J. Yamg, K. Zhang, Y. Wu, Adaptive compressive tracking via on-
line vector boosting feature selection, IEEE Transactions on CyberneticsIn

press.

96

835

840

845

850

855

[45]

[46]

[47]

[48]

[49]

C. Huang, H. Ai, Y. Li, , S. Lao, Vector boosting for rotation invariant
multi-view face detection, in: Proceedings of the IEEE International Con-

ference on Computer Vision, Vol. 1, Beijing, China, 2005, p. 446-453.

Y. Freund, An adaptive version of the boost by majority algorithm, Ma-
chine Learning 43 (3) (2001) 293-318.

P. Wei, Q. Hu, P. Ma, X. Su, Robust feature selection based on regularized
brownboost loss, Knowledge-Based Systems 54 (2013) 180-198.

Z. Yu, D. Wang, J. You, H.-S. Wong, S. Wu, J. Zhang, G. Han, Progressive
subspace ensemble learning, Pattern Recognition 60 (2016) 692-705.

Z. Yu, L. Li, J. Liu, G. Han, Hybrid adaptive classifier ensemble, IEEE
Transactions on Cybernetics 42 177-190.

H. Liu, L. Liu, H. Zhang, Boosting feature selection using information

metric for classification, Neurocomputing 73 (2009) 295-303.

Z. Yu, H. Chen, J. You, H.-S. Wong, J. Liu, L. Li, G. Han, Double selection
based semi-supervised clustering ensemble for tumor clustering from gene
expression profiles, IEEE/ACM Transactions on Computational Biology
and Bioinformatics 11 727-740.

J. Demsar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine Learning Research 7 (2006) 1-30.
P. B. Nemenyi, Distribution-free multiple comparisons, Ph.D. thesis (1963).

A. Ben-David, A lot of randomness is hiding accuracy, Engineering Appli-

cations of Artificial Intelligence 20 (7) (2007) 875-885.

M. Friedman, A comparison of alternative tests of significance for the prob-

lem of m rankings, Annals of Mathematicals Statistics 11 (1940) 86-92.

J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,

San Mateo, 1993.

o7

860

870

[57]

[58]

[60]

V. Vapnik, The nature of Statistical Learning Theory, Springer Verlag, New
York, 1999.

J. Maudes-Raedo, J. J. Rodriguez-Diez, C. Garcia-Osorio, Disturbing
neighbors diversity for decision forest, in: G. Valentini, O. Okun (Eds.),
Workshop on Supervised and Unsupervised Ensemble Methods and Their
Applications (SUEMA 2008), Patras, Grecia, 2008, p. 67-71.

T. G. Dietterich, An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomiza-

tion, Machine Learning 40 (2000) 139-157.

C. Garcia-Osorio, A. de Haro-Garcia, N. Garcia-Pedrajas, Democratic in-
stance selection: a linear complexity instance selection algorithm based on

classifier ensemble concepts, Artificial Intelligence 174 (2010) 410-441.

98

