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 48 

Abstract 49 

 50 

Chlorophyll a+b (Ca+b), carotenoids (Cx+c) and anthocyanins (Anth) are photosynthetic 51 

pigments associated with photosynthesis, participation in light harvesting and energy 52 

transfer, quenching and photoprotection. This manuscript makes progress on developing 53 

methods for carotenoid content estimation in vineyards using high resolution hyperspectral 54 

imagery acquired from an unmanned aerial vehicle (UAV). Imagery was acquired over 55 

three years using two different UAV platforms, a 6-band multispectral camera and a 56 

micro-hyperspectral imager flown in the spectral mode of 260 bands at 1.85 nm/pixel at 57 

12-bit radiometric resolution, yielding 40 cm resolution and a FWHM of 6.4 nm with a 58 

25-micron slit in the 400-885 nm spectral region. Field data collections were conducted in 59 

August 2009, 2010 and 2011 in the western area of Ribera del Duero Appellation 60 

d’Origine, northern Spain. A total of twelve full production vineyards and two study plots 61 

per field were selected to assure appropriate variability in leaf biochemistry and vine 62 

physiological conditions. Leaves were collected for destructive sampling and biochemical 63 

determination of chlorophyll a+b and carotenoids conducted in the laboratory. In addition 64 

to leaf sampling and biochemical determination, canopy structural parameters were 65 

measured on each 10 m x 10 m plot, such as grid size, number of vines within each plot, 66 

trunk height, plant height and width, and row orientation. The R515/R570 index recently 67 

proposed for carotenoid estimation in conifer forest canopies was investigated in this study 68 

for the case of vineyards. The leaf radiative transfer model PROSPECT-5 which simulates 69 

the carotenoid and chlorophyll content effects on leaf reflectance and transmittance was 70 

linked with canopy-level radiative transfer models SAILH and FLIGHT, as well as to 71 
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simpler approximations based on infinite reflectance R formulations. The objective was to 72 

simulate the pure vine reflectance without soil and shadow effects due to the high 73 

resolution hyperspectral imagery acquired which enabled targeting pure vines. The model 74 

simulation results with synthetic spectra demonstrated the effects due to Ca+b content on the 75 

Cx+c retrieval when the R515/R570 index is used. Therefore, scaling up methods were 76 

proposed for carotenoid content estimation based on the combined R515/R570 (sensitive to 77 

Cx+c) and TCARI/OSAVI  (sensitive to Ca+b) narrow-band indices. Results demonstrated 78 

the feasibility for mapping carotenoid concentration at the pure vine level, yielding RMSE 79 

values below 1.3 g/cm2 for the two years investigated with hyperspectral imagery using 80 

SAILH and FLIGHT models. The infinite reflectance model by Yamada and Fujimura 81 

yielded the best results, obtaining RMSE values below 0.95 g/cm2 consistently for the two 82 

years investigated with the micro-hyperspectral imager. These results demonstrate that a 83 

simpler modelling approximation may be valid when high resolution imagery is used that 84 

enables targeting pure vines without shadow and background effects. 85 

 86 
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Keywords: hyperspectral, airborne, carotenoid, chlorophyll, R515/R570, TCARI/OSAVI, 88 

vineyards, UAV, scaling up 89 

 90 
 91 
 92 
 93 
 94 

 95 

 96 



 4 

 97 
 98 
1. Introduction 99 

Leaf biochemical constituents, such as chlorophyll a+b (Ca+b), water (Cw), dry matter (Cm) 100 

are physiological indicators used as a proxy of stress that may be estimated by remote 101 

sensing data in the 400-2500 nm spectral region. In particular, several studies demonstrate 102 

that estimating chlorophyll content in leaves is feasible using leaf reflectance and 103 

transmittance (Jacquemoud et al, 1996; Carter and Spiering, 2002; Sims and Gamon, 2002; 104 

Gitelson et al., 2003; le Maire et al., 2004). For this purpose, large number of narrow-band 105 

indices calculated from hyperspectral reflectance have been tested with success in different 106 

crops (Haboudane et al., 2002; 2004; Zarco-Tejada et al., 2001; a full review of indices can 107 

be found in Zarco-Tejada et al., 2005). Recently, combined indices sensitive to Ca+b content 108 

have been developed with the Transformed Chlorophyll Absorption in Reflectance Index, 109 

TCARI (Haboudane et al., 2002), and the Optimized Soil-Adjusted Vegetation Index, 110 

OSAVI (Rondeaux et al., 1996), used to minimize soil and LAI effects in closed crops 111 

(Haboudane et al., 2002), tree orchards (Zarco-Tejada et al., 2004) and vineyards (Zarco-112 

Tejada et al., 2005; Martin et al., 2007; Meggio et al., 2010). 113 

 114 

Carotenoids (Cx+c) are also important photosynthetic pigments, which include two 115 

carotenes and five xanthophylls (Demmig-Adams & Adams, 1992). Carotenoids are 116 

physiologically important because of its role associated with photosynthesis, participation 117 

in light harvesting and energy transfer (Frank & Cogdell, 1996; Ritz et al., 2000), 118 

quenching and photoprotection (Thayer & Björkman 1990, Young & Britton 1990; 119 

Demmig-Adams, 1998). Nevertheless, less efforts on carotenoid content have been 120 

conducted due to the difficulties associated with the overlapping absorption in the blue / 121 
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green region caused by photosynthetic pigments such as Ca+b, Cx+c and anthocyanins 122 

(Anth). The overlapping absorption by chlorophyll and carotenoids in the 400-700 nm 123 

region poses a problem when trying to retrieve both Ca+b and Cx+c concentration 124 

independently (Feret et al., 2011). In addition, some indices have been identified sensitive 125 

to Cx+c, but they generally work well at the leaf level with high effects caused by the 126 

canopy structure (Meggio et al., 2010; Hernández-Clemente et al., 2011). In addition, the 127 

progress made on carotenoid content estimation has became even more difficult in 128 

vineyards because they are complex heterogeneous canopies with large effects caused by 129 

shadows and soil components as a function of the sun angle and row orientation (Ref., 130 

Guillén-Climent (in revision)??). 131 

 132 

The main spectral bands proposed for Cx+c estimation in the visible/NIR region are based 133 

on band ratios in the 700 nm region (678, 708 and 760 nm) and the green region (500, 550 134 

nm) (Chappelle et al., 1992; Merzlyak et al., 1999). Also, some indices have been proposed 135 

using the 800 nm band combined with 470, 680, and 635 nm bands (Peñuelas et al., 1995; 136 

Blackburn 1998). In particular, the work conducted by Chappelle et al. (1992) concluded 137 

that Cx+c showed fraction a maximum absorption peak at 500 nm, proposing ratios such as 138 

R760/R500 for Cx+c estimation. Other authors (Gamon et al., 1992; Gitelson et al., 2003, 139 

2006; Garrity et al., 2011; Hernández-Clemente et al., 2011) proposed using visible ratios, 140 

and specific leaf-level studies conducted by Gitelson et al. (2002) showed that Cx+c 141 

absorption was directly related to a spectral absorption at 520 nm. They proposed the 142 

Carotenoid Concentration Index as (1/R515)-(1/R550) and (1/R515)-(1/R700) (Gitelson et al., 143 

2002).  144 

 145 
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Nevertheless, these studies rely entirely on leaf level work and require the scaling up to the 146 

canopy level, assessing the effects caused on the proposed indices by the structure and 147 

background due to mixed pixels. In particular, the validity of leaf-level indices for pigment 148 

content estimation in vineyards from airborne imagery were studied through the linked 149 

PROSPECT (Jaquemoud and Baret, 1990) and rowMCRM models. Through this approach, 150 

the effects of vineyard structure, vine dimensions, row orientation and soil and shadow 151 

effects on the canopy reflectance could be assessed for the case of Ca+b estimation (Zarco-152 

Tejada et al., 2005). Using this methodology, relationships for Ca+b content with 153 

TCARI/OSAVI enabled mapping chlorophyll content in 24 vineyards using CASI airborne 154 

imagery, yielding r2=0.67 and RMSE=11.5 g/cm2. 155 

 156 

Nevertheless, these methods that require accounting for the row structure and orientation, 157 

soil effects and canopy LAI variation may be critical in the case of vineyards when using 158 

image resolutions in the range 1 – 2 m pixel size. The pure vine reflectance cannot be 159 

extracted without soil and shadow contributions at spatial resolutions greater than 1 m. 160 

Simpler canopy-level approximations without the need for considering the structure may 161 

work well when higher spatial resolution is used (below 50 cm pixel size in the case of 162 

vineyards) because the extraction of the pure vine reflectance removing shadow and soil 163 

background effects is then feasible. Under these assumptions of targeting pure dense vines, 164 

infinite reflectance formulations may be proposed as a simpler approximation as they 165 

model the reflectance without canopy structure or viewing geometry considerations, based 166 

solely on leaf reflectance and transmittance (see Zarco-Tejada et al., 2001). These 167 

formulations are valid for optically-thick leaf material with different assumptions for the 168 
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multiple scattering. Lillestaeter (1982), Miller et al. (1992), Yamada and Fujimura, (1991) 169 

and Hapke (1993) discussed these infinite reflectance models, applied with success to forest 170 

sites for Ca+b estimation (Zarco-Tejada et al., 2001) and for equivalent water thickness 171 

estimation (Riaño et al., 2005). 172 

 173 

Nevertheless, more complex approaches can also be used to model the pure vine reflectance 174 

in the case of high resolution which enables the removal of mixed pixels and shadow 175 

effects. Under these conditions, approximations based on turbid-medium assumptions (such 176 

as in the case of SAILH) when targeting pure canopy pixels (Zarco-Tejada et al., 2001) and 177 

more computational expensive approximations such as in the case of the Forest Light 178 

Interaction Model (FLIGHT) may be more appropriate. In particular, the 3-D model 179 

FLIGHT is based on Monte Carlo ray tracing method to simulate the radiative transfer in a 180 

canopy structure (North, 1996) and was previously used to simulate row-structured canopy 181 

reflectance in olive orchards (Suárez et al., 2008), peach and orange orchards (Guillén-182 

Climent et al., in press) and more recently simulating row-structured vineyards for fIPAR 183 

estimation (Guillén-Climent et al., submitted). 184 

 185 

Therefore, the assessment of a Cx+c sensitive index linked with different scaling up 186 

approaches is the main focus of this manuscript. Recently, the index R515/R570 was 187 

proposed by Hernandez-Clemente for forestry sites, demonstrating to be significantly 188 

related with Cx+c concentration both at leaf (r2>0.72; P<0.001) and canopy levels (r2>0.71; 189 

P<0.001). In such study, coefficients of determination between Cx+c concentration and 190 

other published narrow-band indices sensitive to Cx+c revealed that were highly related with 191 

Cx+c content at leaf level but highly affected by structural parameters at crown level. 192 
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Nevertheless, the effects of Ca+b content on this proposed R515/R570 index have not been 193 

assessed yet. This manuscript proposes the estimation of both Cx+c and Ca+b using R515/R570 194 

and TCARI/OSAVI simultaneously through a scaling up approach based on different 195 

canopy reflectance simulations. 196 

 197 
 198 
 199 
 200 
2. Materials and Methods 201 

2.1. Field experiments and airborne campaigns 202 

2.1.1. Field data collection 203 

Field data collections were conducted in August 2009, 2010 and 2011 in the western area of 204 

Ribera del Duero Appellation d’Origine (northern Spain). A total of 12 full production 205 

vineyards belonging to a plot network currently monitored by the local government were 206 

selected to assure appropriate variability in leaf biochemistry and vine physiological 207 

conditions. All vineyards consisted on cv. Tempranillo grafted on 110-Richter rootstock, 208 

with ages ranging between 7 and 16 years. The soils are calcareous, poor in organic matter, 209 

with a medium-weighed texture and an average pH of 8.7. Concentrations of active 210 

carbonate (up to 17.6%) and DPTA extractable Fe (1.2 to 7.6 mg·kg-1) are highly 211 

heterogeneous within the study areas. The field data collection was conducted on 24 212 

sub-areas of 10 m x 10 m located in each of the 12 selected vineyards. Vine density ranged 213 

between 2200 and 4000 vines per hectare, and plants were trained to a simple or double 214 

Cordon Royat system (as described in detail in Martín et al., 2007). The vineyards under 215 

study ranged in physiological status, canopy structure, soil background, and planting row 216 

orientation. 217 

 218 
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The leaves used for destructive sampling and biochemical determination were sampled 219 

from the top of the canopy, eliminating the small leaves indicative of low expansion. 220 

Leaves were placed in paper bags and then stored in a freezer at -8C prior to pigment 221 

determination. A 1.6 cm circle from each leaf sample was cut out for grinding with 4 ml 222 

acetone at 80%, and adding 8 ml acetone to a total of 12 ml in each tube. Tubes were stored 223 

in the dark at 4C for 48 hours prior to spectrophotometer measurements. Each sample for 224 

pigment determination was filtered, placed in a cuvette and the absorbance measured 225 

between 400 nm and 700 nm with 2 nm fixed resolution at 1 nm interval with a Jasco 226 

V-530 UV-VIS spectrophotometer (Jasco Inc., Great Dunmow, UK). Chlorophyll a (Ca), 227 

chlorophyll b (Cb), and total carotenoid (Cx+c) concentration were calculated using the 228 

extinction coefficients derived by Wellburn (1994) and the absorbance measured at 229 

470 nm, 646 nm, and 663 nm with Equations [1]-[3]. 230 

 231 

Ca  = 12.21·A663 – 2.81·A646     [1] 232 

Cb = 20.13·A646 – 5.03·A663     [2] 233 

Cx+c = (1000·A470 – 3.27·Ca – 104·Cb) / 198   [3] 234 

 235 

A subset of leaves was used to measure bands R515, R530 and R570 with a customized 236 

PlantPen instrument (Photon Systems Instruments, Brno, Czech Republic). The same 237 

leaves were used to measure leaf Ca+b and Cx+c to derive relationships between the R515/R570 238 

and the biochemical measurements. 239 

 240 
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In addition to leaf sampling and biochemical determination, canopy structural parameters 241 

were conducted on each 10 m x 10 m plot, such as grid size, number of vines within each 242 

plot, trunk height, plant height and width, and row orientation. The leaf area index (LAI) 243 

and sunlit canopy cover in each study area were estimated using allometric methods. Yield 244 

and vigor (pruning weight) of the vines were also determined at each study site. A summary 245 

of the structural data measured to characterize each study area is described in Table 1. 246 

 247 

 248 

2.1.2. Airborne campaigns 249 

Airborne campaigns were conducted in 2009 with a narrow-band multispectral camera, and 250 

in 2010 and 2011 using a micro-hyperspectral imager. Flights were conducted using two 251 

different unmanned aerial vehicles (UAVs) operated by the Laboratory for Research 252 

Methods in Quantitative Remote Sensing (QuantaLab, IAS-CSIC, Spain) (Berni et al., 253 

2009b; Zarco-Tejada et al., 2008; 2012).  254 

 255 

An unmanned aerial vehicle (UAV) platforms used for remote sensing research were 256 

developed to carry payloads with thermal, multispectral and hyperspectral imaging sensors. 257 

The two UAV platforms operated in this experiment consisted of a 2-m fixed-wing 258 

platform capable of carrying a 3.5 kg payload for 1 hour endurance at 5.8 kg take-off 259 

weight (TOW) (mX-SIGHT, UAV Services and Systems, Germany). This platform was 260 

used to fly the multispectral camera flown over the study sites in 2009, as well as to carry a 261 

thermal camera used for water stress detection part of other studies (Gonzalez-Dugo et al., 262 

2012). A second UAV platform was developed for hyperspectral imagery acquisition, 263 

consisting on a 5-m wingspan fixed-wing platform capable of carrying a 3 kg payload for 264 
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1.5 hour endurance at 13.5 kg take-off weight (TOW) (Viewer, ELIMCO, Seville, Spain). 265 

This larger platform enabled the acquisition of carrying both the micro-hyperspectral 266 

imager and the thermal camera concurrently.  267 

Both UAV platforms were controlled by an autopilot for autonomous flight (AP04, UAV 268 

Navigation, Madrid, Spain) to follow a flight plan using waypoints. The autopilot 269 

comprises a dual CPU controlling an integrated Attitude Heading Reference System 270 

(AHRS) based on a L1 GPS board, 3-axis accelerometers, gyros and a 3-axis magnetometer 271 

(Berni et al., 2009b). The ground control station and the UAV were radio linked 272 

transmitting position, attitude and status data at 20 Hz frequency; this tunneling 273 

transmission link also acted for communication purposes for the operation of remote 274 

sensing hyperspectral and multispectral cameras on board the UAVs. 275 

 276 

The multispectral sensor flown in 2009 was a 6-band multispectral camera consisting of 6 277 

independent image sensors and optics with user-configurable 10 nm full-width at half 278 

maximum (FWHM) spectral filters (Berni et al., 2009; Zarco-Tejada et al., 2009). The 279 

image resolution is 2592 x 1944 pixels with 10 bit radiometric resolution, optics focal 280 

length of 8.4 mm, and angular field of view (FOV) of 38.04º x 28.53º, yielding 15 cm 281 

spatial resolution at 150 m flight altitude. The bandsets selected for this study comprised 282 

centre wavelengths located at 515, 530, 570, 670, 700 and 800 nm. The multispectral 283 

images acquired over each vineyard field enabled the identification of the study areas used 284 

for the leaf sampling and ground structural measurements. The 2009 airborne campaign 285 

was conducted at 9.00 am GMT. 286 

 287 
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The hyperspectral imager installed on board the UAV was a micro-hyperspectral camera 288 

(Micro-Hyperspec VNIR model, Headwall Photonics, MA, USA) flown in the spectral 289 

mode of 260 bands at 1.85 nm/pixel at 12-bit radiometric resolution, yielding a FWHM of 290 

3.2 nm with a 12-micron slit, and 6.4 nm with a 25-micron slit in the 400-885 nm region. 291 

Data acquisition and storage on board the UAV was set to 50 fps, and integration time was 292 

18 ms. The 8-mm optics focal length yielded an IFOV of 0.93 mrad, an angular FOV of 293 

50º, obtaining a swath of 522 m at 53x42 cm resolution, resampled to 40 cm for a flight 294 

conducted at 575 m AGL altitude and 75 km/h ground speed. The airborne campaigns over 295 

the vineyard fields consisted on flightlines acquired in the solar plane at 9.00 am GMT on 296 

August 2010 and 2011, using the CropSight UAV platform on 2010, and the Viewer UAV 297 

platform on 2011. For identification purposes, each plot was marked in the field using 298 

ground control points detectable in the imagery. 299 

 300 

The multispectral and hyperspectral sensors were radiometrically calibrated using 301 

coefficients derived in the laboratory using a calibrated uniform light source (integrating 302 

sphere, CSTM-USS-2000C Uniform Source System, LabSphere, NH, USA) at four 303 

different levels of illumination and six integration times. The atmospheric correction was 304 

conducted using the total incoming irradiance at 1 nm intervals simulated with the 305 

SMARTS model developed by the National Renewable Energy Laboratory, US Department 306 

of Energy (Gueymard, 1995; 2001) using aerosol optical depth measured at 550 nm with a 307 

Micro-Tops II sunphotometer (Solar LIGHT Co., Philadelphia, PA, USA). Sunphotometer 308 

measurements were acquired at the time of the flights. The SMARTS model computation 309 

for clear sky spectral irradiance was validated to match the output from the MODTRAN 310 

complex band models within 2%, but using aerosol optical depth as input. This radiative 311 



 13 

transfer model has been previously used in other studies to perform the atmospheric 312 

correction of narrow-band multispectral imagery, such as in Berni et al. (2009b) and Suárez 313 

et al. (2010), and the atmospheric correction of the micro-hyperspectral imagery on board 314 

an UAV platform for chlorophyll fluorescence detection (Zarco-Tejada et al., 2012). 315 

Ortho-rectification of the hyperspectral imagery acquired with the UAV platforms was 316 

conducted using PARGE (ReSe Applications Schläpfer, Wil, Switzerland) from data 317 

acquired with an inertial measuring unit (IMU) installed on board and synchronized with 318 

the hyperspectral imager. The hyperspectral imagery (Figure 1a;b) acquired enabled pure 319 

vine identification for field validation purposes, successfully separating pure vine from 320 

shaded and sunlit soil reflectance in most cases (Figure 1c), obtaining pure vine reflectance, 321 

sunlit and shaded soil components separately (Figure 1d). Each single pure vine from each 322 

vineyard field was identified using automatic object-based crown-detection algorithms. 323 

This method enabled the extraction of the mean radiance and reflectance for the 260 324 

spectral bands acquired for vegetation index calculation from vines identified from each 325 

chlorotic and healthy study site (Figure 2). 326 

 327 

 328 

2.2. Modeling the retrieval of carotenoid content with the R515/R570 index 329 

The R515/R570 index proposed for carotenoid estimation in conifer forest canopies 330 

(Hernandez-Clemente et al., submitted) was investigated in this study for the case of 331 

vineyard row-structured canopies. The leaf radiative transfer model PROSPECT-5 332 

(Jacquemoud & Baret, 1990; Féret et al., 2008) which simulates the carotenoid and 333 

chlorophyll content effects on leaf reflectance and transmittance was linked with canopy-334 

level radiative transfer models as well as to simpler approximations based on infinite 335 
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reflectance (R∞) formulations. The very high resolution imagery used in this study between 336 

years 2009 and 2011 (15 cm resolution in the case of the multispectral imagery, 40 cm in 337 

the case of the hyperspectral imagery) and the pure-vine identification methods conducted 338 

from the imagery which avoided shadows and soil pixels allowed the assessment of 339 

different canopy-level approximations. The retrieval capability of the carotenoid content on 340 

pure vines through the R515/R570 index was then assessed. 341 

 342 

The PROSPECT-5 model was used to simulate leaf reflectance and transmittance for 343 

varying chlorophyll Ca+b (30-80 g/cm2) and carotenoid content Cx+c (4-14 g/cm2). The 344 

simulated leaf reflectance and transmittance spectra were used to calculate the R515/R570 345 

index, observing the effects caused by Ca+b and Cx+c. Figure 3 shows the effects of Ca+b and 346 

Cx+c on the leaf reflectance for the 400-600 nm spectral region where the R515/R570 index is 347 

calculated. 348 

 349 

Different approaches were used to simulate the pure vine reflectance from leaf-level 350 

reflectance and transmittance spectra: i) using simpler formulations based on infinite 351 

reflectance R∞ simulations; and ii) using canopy reflectance radiative transfer models. The 352 

different levels of complexity used for simulating the pure vine reflectance was justified 353 

due to the retrieval methodology conducted for extracting the pure vegetation pixels from 354 

the imagery, which removed or at least diminished the structure due to the very high spatial 355 

resolution used. 356 

 357 
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The infinite reflectance R formulations simulate the reflectance without canopy structure 358 

or viewing geometry considerations, based solely on leaf reflectance and transmittance. 359 

These R formulations simulate optically-thick leaf material, assuming different multiple 360 

scattering approaches between leaf layers. This leaf-stack concept may have applicability to 361 

simulate a dense vine planted in wall-structured architectures, with little effect caused by 362 

the soil background and shadows. Nevertheless, it cannot take into consideration the 363 

viewing angle effects or the row orientation for each vineyard field under study. 364 

Comparison of the performance of these R formulations against canopy reflectance models 365 

was conducted in Zarco-Tejada et al. (2001). Different R formulations have been derived 366 

based on assumptions related to the scattering between layered leaves, expressing the 367 

optically thick medium in terms of the single leaf reflectance and transmittance. Lillestaeter 368 

(1982) (R1) [Equation 4a], Yamada and Fujimura (1991) (R2) [Equation 4b] and Hapke 369 

(1993) (R3) [Equation 4c] formulations were calculated from simulated leaf reflectance 370 

and transmittance using PROSPECT-5. The spectra was then used to calculate the 371 

canopy-level R515/R570 index as a function of the varying leaf inputs indicated above. 372 
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Regarding the canopy models used, a simpler radiative transfer approach was conducted 377 

with the Scattering by Arbitrary Inclined Leaves (SAIL) (Verhoef, 1984) adapted to take 378 

into account the hotspot effect or the multiple scattering in the canopy (SAILH) (Kuusk, 379 

1985). The SAILH model approximates the canopy as a horizontally uniform parallel-plane 380 

infinitely-extended medium, with diffusely reflecting and transmitting elements. Although 381 

the vine canopy reflectance cannot be considered as a plane-parallel canopy, the use of 382 

SAILH was justified in this study for two reasons: i) ease of operation and calculations 383 

when linked to PROSPECT-5, which enabled the generation of synthetic spectra with low 384 

computational effort. These databases are generated in this study to assess the retrieval 385 

performance of R515/R570 for carotenoid determination under different assumptions, 386 

including LAI variation; ii) the methodology conducted aimed at estimating carotenoid 387 

content from pure vine reflectance extracted after removing any shadow and soil pixel 388 

effects. Therefore the use of SAILH model may be valid for these high-resolution pure-vine 389 

retrieval conditions. SAILH inputs are: canopy architecture defined by the leaf area index 390 

(LAI) and the leaf angle distribution function (LADF), leaf reflectance and transmittance, 391 

underlying soil reflectance, and the illumination and viewing geometry (solar zenith and 392 

sensor viewing angles). 393 

 394 

A more complex and computationally expensive approach used in this study consisted on 395 

simulating the vineyard scenes using the Monte-Carlo ray tracing 3-D Forest Light 396 

Interaction Model (FLIGHT) (North, 1996). The FLIGHT model has been previously used 397 

to simulate row-structured canopy reflectance in olive orchards for modelling the PRI index 398 

for stress detection (Suárez et al., 2008), and peach, orange and vineyard canopies for 399 

mapping and modelling the radiation interception (Guillén-Climent et al., submitted). In 400 
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this work, the FLIGHT model was used to simulate the pure vine reflectance, extracting 401 

from the vineyard canopy simulation the reflectance from the centre of each vine row. The 402 

3D vineyard scene was conducted using structural inputs within the range of variation of 403 

the field data measured for each field. Input parameters defining geometrical and optical 404 

properties for the different models can be found in Table 2, showing the multispectral 405 

imagery acquired for two orientations (Figures 4a and 4b), the FLIGHT scene generation 406 

obtained for each vineyard field (Figures 4c and 4d), showing the aggregated and pure vine 407 

reflectance extracted from the centre of the row (Figures 4e and 4f). 408 

 409 

The effects of the leaf inputs Ca+b, Cx+c, and N, and the canopy parameters vine LAI, and 410 

soil reflectance were assessed within the range of variation for vineyard canopies (see 411 

Zarco-Tejada et al., 2005). Leaf inputs Ca+b (30-80 g/cm2), Cx+c (4-14 g/cm2), N (1.6-1.8) 412 

and canopy inputs LAI (1-3) and soil reflectance were ranged to calculate the index 413 

R515/R570 proposed. 414 

 415 

Scaling up relationships linking PROSPECT-5 and the different approximations proposed 416 

for simulating the vine reflectance were conducted: i) the three infinite reflectance R 417 

formulations (R1, R2, R3); ii) SAILH; and iii) FLIGHT. A synthetic spectra database was 418 

generated using 1000 random inputs for Ca+b and Cx+c for the ranges indicated, Cm (0-0.03), 419 

N (1.6-1.8), LAI (1-3), and soil reflectance variation. The database was used to develop 420 

each relationship (500 samples), using the remaining 500 samples to calculate the 421 

coefficient of determination and the RMSE for each scaling-up approach developed using 422 

R, SAILH and FLIGHT canopy reflectance simulation approaches. 423 
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 424 

 425 

 426 

 427 

 428 

3. Results 429 

3.1. Modeling results 430 

Modelling results conducted with PROSPECT-5 linked to SAILH demonstrated a 431 

relationships between R515/R570 and Cx+c as a function of Ca+b (Figure 5a), with little effects 432 

caused by the leaf N parameter (Figure 5b), LAI (Figure 5c) and insensitive to soil 433 

reflectance variation (Figure 5d). The simulations demonstrated that a family of 434 

relationships exists as a function of chlorophyll concentration, therefore being important to 435 

account for Ca+b when estimating Cx+c. Simulation results suggested that a same R515/R570 436 

index value (R515/R570=0.7) could be related to Cx+c ranging between 6 and 15 g/cm2 when 437 

Ca+b is set to 30 g/cm2 or 60 g/cm2 (Figure 5a). 438 

 439 

The simulation study conducted with PROSPECT-5 and the different canopy 440 

approximations through infinite reflectance R formulations and SAILH is summarized in 441 

Table 3. The synthetic spectra database generated using 1000 random inputs for Ca+b, Cx+c, 442 

N, LAI, soil reflectance and Cm yielded different coefficients of determination and RMSE 443 

values as a function of different cases studied and simulation model used. Cases 1 to 4 444 

tested (see Table 3 for the inputs fixed and varied in the modelling study) consisted on 445 

estimating Cx+c using models based on R515/R570 only, while Case 5 included both R515/R570 446 
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(sensitive to Cx+c) and TCARI/OSAVI (sensitive to Ca+b). Cases 1 and 2 were built with 447 

known Ca+b, while Cases 3 and 4 allowed Ca+b to vary randomly. Cases 4 and 5 allowed the 448 

variation of all inputs; the only difference between Case 4 and Case 5 is that the latter used 449 

both R515/R570 and TCARI/OSAVI to estimate Cx+c while Case 4 used only R515/R570. 450 

 451 

As a results of the different modelling cases considered, the simulations conducted 452 

demonstrated that lower coefficients of determination and higher RMSE values were 453 

obtained when Ca+b was randomly varied and only R515/R570 was used to estimate Cx+c 454 

(r2=0.51; RMSE=1.99 g/cm2 for PROSPECT+SAILH). Nevertheless, when all parameters 455 

were allowed to vary randomly but Cx+c was estimated using both R515/R570 and 456 

TCARI/OSAVI, the coefficients of determination and RMSE decreased largely (r2=0.93; 457 

RMSE=0.73 for PROSPECT+SAILH). These simulation results using synthetic spectra 458 

confirm that estimating Cx+c with both R515/R570 and TCARI/OSAVI yielded the best 459 

results due to the combined contribution of R515/R570 (sensitive to Cx+c) and TCARI/OSAVI 460 

(sensitive to Ca+b). 461 

 462 

Among the different canopy simulations proposed, the results obtained with the synthetic 463 

spectra database showed superior results for R1 and R3 among the infinite reflectance 464 

formulations. Results obtained with infinite reflectance models in the modelling study were 465 

similar to the SAILH model. These results obtained with infinite reflectance models, which 466 

are simpler approximations with no canopy structure consideration, suggest their validity 467 

when targeting pure pixels if structural effects are not critical. This may be the case when 468 

targeting pure vines if high resolution is used, as in this study. Next section shows the 469 
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results obtained for Cx+c estimation when this methodology based on R515/R570 and 470 

TCARI/OSAVI are applied to imagery acquired on 2009, 2010 and 2011 years using 471 

infinite reflectance formulations, SAILH, and the 3D monte-carlo FLIGHT model. 472 

 473 

 474 

3.2. Experimental results 475 

The leaf level measurements conducted with the PlantPen instrument (Photon Systems 476 

Instruments, Brno, Czech Republic) customized for carotene estimation with bands R515 477 

and R570 bands showed a good relationship (r2=0.84) between the R515/R570 index and leaf 478 

Cx+c measured by destructive sampling (Figure 6). This result obtained at the leaf level 479 

confirms the previous modelling conclusions which demonstrated the sensitivity of the 480 

R515/R570 index to Cx+c content. 481 

 482 

The relationship between the R515/R570 and Cx+c calculated from the airborne imagery for 483 

the three years under study (Figure 7) demonstrated consistent results, yielding r2 values in 484 

the range 0.43 – 0.48, being statistically significant (p<0.01 for the three years). 485 

TCARI/OSAVI was also related to Ca+b with similar results (r2=0.45; p<0.01; year 2010) 486 

(Figure 8) obtaining consistent results with previous studies published which assessed the 487 

sensitivity of TCARI/OSAVI to Ca+b in vineyards (Zarco-Tejada et al., 2005). The 488 

relationship between TCARI/OSAVI and Ca+b was significant for 2009 (r2=0.66; p<0.001) 489 

and 2010 (r2=0.45; p<0.01), although no significant results were found for the year 2011 490 

(r2=0.1). 491 

 492 
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The methodology described earlier to estimate Cx+c was applied in the form Cx+c = 493 

f(R515/R570; TCARI/OSAVI) through scaling up simulations conducted PROSPECT-5 494 

linked with the three infinite reflectance formulations (R1; R2; R3), SAIL and FLIGHT 495 

(Table 4). The best results among the three years were found for R2 (r2=0.41-0.64), 496 

SAILH (r2=0.2-0.56) and FLIGHT (r2=0.26-0.58). The lowest RMSE errors were obtained 497 

for R2 model (RMSE=0.8-1.6 g/cm2), while FLIGHT performed better (RMSE=1.25-498 

2.91 g/cm2) than SAILH (RMSE=1.08-4.6 g/cm2). Most of the errors were obtained in 499 

the imagery acquired in 2009 (multispectral imagery), while the 2010 and 2011 500 

hyperspectral imagery yielded lower RMSE values (RMSE<1 g/cm2 for R2; RMSE<1.3 501 

g/cm2 for SAILH and FLIGHT models). 502 

 503 

The results obtained for estimating Cx+c from the hyperspectral imagery showed larger 504 

errors when using the R1 formulation (RMSE=3.23 g/cm2) as compared to R2 505 

(RMSE=0.87 g/cm2) (Figure 9a). The comparison for SAILH and FLIGHT (Figure 9b) 506 

showed similar results among the two models used (RMSE<1.3 g/cm2 for both models). 507 

This methodology was applied at the vine level to two sample vineyard fields, estimating 508 

Cx+c using both R515/R570 and TCARI/OSAVI indices acquired from the hyperspectral 509 

imager on board the unmanned aerial vehicle (Figure 10). The hyperspectral imagery 510 

acquired (Figure 10a; c) enabled the estimation of Cx+c (Figure 10b; d) assessing the within 511 

field spatial variability of carotenoid content at the vineyard level. 512 

 513 

 514 

4. Conclusions 515 
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Modelling and experimental results obtained in this study demonstrated that estimating 516 

carotenoid content in vineyards using hyperspectral imagery was feasible yielding errors 517 

below 1 g/cm2 when using hyperspectral imagery. Modelling simulations conducted with 518 

infinite reflectance models based on Hapke, Lillistaeter and Yamada and Fujimura, and 519 

canopy reflectance models SAILH and FLIGHT were linked to PROSPECT-5 to simulate 520 

the effects of varying chlorophyll content, leaf structure, canopy LAI and soil reflectance 521 

on the retrieval of carotenoid content at the vine-level using the R515/R570 index. Simulation 522 

results demonstrated that higher accuracy for Cx+c estimation is obtained when the retrieval 523 

is conducted simultaneously with an index sensitive to Ca+b content, such as 524 

TCARI/OSAVI. Modelling results suggested that Cx+c can be retrieved with r2=0.93 and 525 

RMSE=0.73 g/cm2 when both R515/R570 and TCARI/OSAVI are used in the scaling up 526 

relationships developed through infinite reflectance and canopy simulation models. 527 

 528 

Experimental results conducted at the leaf and canopy level through three years of 529 

multispectral and hyperspectral airborne flights using an unmanned aerial vehicle 530 

confirmed the modelling results obtained with synthetic spectra simulations under different 531 

scenarios. Results demonstrated the sensitivity of the R515/R570 index to Cx+c content at the 532 

leaf level (r2=0.84) and at the airborne level, yielding errors below 1.3 g/cm2 for the two 533 

years investigated with hyperspectral imagery. Scaling up methods which used simpler 534 

approaches, such as the infinite reflectance formulation by Yamada and Fujimura yielded 535 

better results than more complex canopy models such as SAILH and FLIGHT. Simpler 536 

approaches (R2 yielded RMSE<0.95 g/cm2 in the modelling conducted) were comparable 537 

to more complex canopy reflectance approximations. Therefore, dark dense approximations 538 
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performed comparable to the canopy simulations because very high spatial resolution was 539 

used to extract pure vine reflectance from the hyperspectral imagery, removing mixed 540 

pixels and soil effects. Under such conditions, Cx+c estimates using R515/R570 (sensitive to 541 

Cx+c) and TCARI/OSAVI (sensitive to Ca+b) yielded RMSE values for R2 below 0.95 542 

g/cm2, while FLIGHT and SAILH obtained errors of 1.3 g/cm2 for the two years 543 

investigated with the hyperspectral imagery. Results obtained for the 2010 and 2011 years 544 

with hyperspectral imagery yielded lower RMSE values than with estimates conducted with 545 

the multispectral imagery (year 2009). 546 

 547 

These results conducted for three years demonstrate that maps of the spatial variability of 548 

carotenoid content in vineyards can be obtained with errors below 1 g/cm2 using a 549 

micro-hyperspectral imager on board an unmanned aerial vehicle. The very high spatial 550 

resolution obtained (40 cm pixel size) along with rich spectral information of 6.4 nm 551 

FWHM at 1.85 nm/pixel sampling enabled the generation of Cx+c maps using R515/R570 and 552 

TCARI/OSAVI indices for their application in precision agriculture. 553 

 554 

 555 

 556 
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Table 1. Measured parameters for the vine study sites used in this study, showing the 778 
variability in row orientation, width, height and LAI. 779 
 780 

Plot 
Row 

orientation (º) 
Planting grid 

(m) 
Width (m) Height (m) LAI 

1 96.05 3 x 1.5 0.6 1.3 1.1 
2 93.06 3 x 1.5 0.55 1.4 0.8 
3 20.07 3 x 1.5 0.2 0.8 0.3 
4 20.07 3 x 1.5 0.4 0.8 0.5 
5 103.1 3 x 1.5 0.5 1.15 0.96 
6 103.1 3 x 1.5 0.6 1.05 1.15 
7 93.06 3 x 1.5 0.7 1.32 1.26 
8 75.2 3 x 1.5 0.9 1.5 1.4 
9 1.02 3 x 1.5 0.8 1.4 1.4 

10 1.02 3 x 1.5 0.6 1.2 0.8 
11 93.06 3 x 1.5 0.41 0.7 0.4 
12 93.06 3 x 1.5 0.7 1.5 1.2 
13 47.5 3 x 1.5 0.6 1.2 0.75 
14 47.5 3 x 1.5 0.55 0.9 0.6 
15 47.5 3 x 1.5 0.8 1.1 0.8 
16 28.5 3 x 1.5 0.9 1.3 1.48 
17 28.5 3 x 1.5 1.1 1.7 1.3 
18 49.5 3 x 1.5 0.8 1.45 1.07 
19 49.5 3 x 1.5 0.6 1.45 1.25 
20 61.42 3 x 1.5 0.75 1.4 1.56 
21 61.42 3 x 1.5 0.85 1.35 1.37 
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Table 2. Nominal values and range of parameters used for leaf and canopy simulation with 802 
PROSPECT-5, SAILH and FLIGHT for pure vine reflectance simulation. 803 
 804 

 805 
 806 
 807 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 

 
PROSPECT 
 

 
Nominal values and range 

Chlorophyll a+b Ca+b (g cm-2) 30-80 

Carotenoid content Cx+c (g cm-2) 4-14 

Leaf water content, Cw (cm) 0.025 
Leaf dry matter content, Cm (g cm-2) 0.03 
Leaf internal structure parameter, N 1.6-1.8 
  
 
SAILH 
 

 

Leaf reflectance and transmittance PROSPECT-5 simulations 
Soil reflectance Random (0-1) 
Leaf area index  1-3 
Lead angle distribution function  = 0.95; n = 45º (plagiophile) 
Viewing geometry (s v ) Calculated for each image & site 
Hotspot parameter 0.083 
  
 
FLIGHT 
 

 

Hemispherical reflectance and transmittance of green leaves PROSPECT-5 simulations 
Hemispherical reflectance and transmittance of senescent leaves Not used 
Leaf equivalent radius 0.083 m 
Leaf area index (LAI) 1-3 
Fractional cover Estimated from Table 1 
Leaf Angle Distribution Function (LADF) Plagiophile 
Fraction of green leaves 1 
Fraction of senescent leaves 0 
Fraction of bark 0 
Number of stands and position coordinates Not used 
Crown shape Elliptical 
Crown height and radius From Table 1 (m) 
Trunk height and radius Field measured 
Viewing geometry angles Calculated for each image & site 
Soil reflectance From image 
Soil roughness 0 
Aerosol Optical Depth (AOD) Measured at the time of flights 
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Table 3. Simulation study conducted with PROSPECT-5 and different canopy 832 
approximations through infinite reflectance R formulations and SAILH. 833 
 834 
  

PROSPECT-5 + 
R1 

 
PROSPECT-5 + 

R2 

 
PROSPECT-5 + 

R3 

 
PROSPECT-5 + 

SAILH 
 

 
 

R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 

CASE 1 
Cx+c*, Ca+b, N, LAI, ρsoil 

 

0.99 0.08 0.99 0.06 0.99 0.07 0.99 0.08 
 

CASE 2 
Cx+c*, Ca+b, N*, LAI*, ρsoil* 

 

0.99 0.15 0.98 0.33 0.99 0.07 0.98 0.29 
 

CASE 3 
Cx+c*, Ca+b*, N, LAI, ρsoil 

 

0.51 1.97 0.74 1.46 0.61 1.78 0.5 1.99 
 

CASE 4 
Cx+c*, Ca+b*, N*, LAI*, ρsoil* 

 

0.54 1.97 0.72 1.56 0.62 1.83 0.51 1.99 
 

CASE 5 
Cx+c*, Ca+b*, N*, LAI*, ρsoil* 

 

0.96 0.58 0.73 1.49 0.97 0.46 0.93 0.73 

Cases 1 to 4 are models Cx+c=f(R515/R570); 835 
Case 5 is a model considering chlorophyll content through TCARI/OSAVI: Cx+c=f(R515/R570; TCARI/OSAVI). 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
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 850 
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Table 4. Coefficients of determination and RMSE obtained for three years of airborne imagery for Cx+c 
estimation (Cx+c = f(R515/R570; TCARI/OSAVI)) through scaling up. Models used were PROSPECT-5 linked with 
three infinite reflectance formulations (R1;  R2;  R3), SAIL and FLIGHT. 
 

PROSPECT-5 
+ 

R1 

 
PROSPECT-5 

+ 
R2 

 
PROSPECT-5 

+ 
R3 

 
PROSPECT-5 

+ 
SAILH 

 
PROSPECT-5 

+ 
FLIGHT 

 
  

R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

 
R2 

 

RMSE 
(g/cm2) 

Cx+c=f(R515/R570;TCARI/OSAVI) 

2009 0.28 2.4 0.41 1.6 0.19 4.4 0.2 4.6 0.26 2.91 
2010 0.59 3.4 0.64 0.94 0.56 1.08 0.56 1.28 0.58 1.32 
2011 0.44 3.2 0.44 0.8 0.28 0.93 0.44 1.08 0.55 1.25 



Figure 1. Hyperspectral scene (a) obtained with the micro-hyperspectral imager on board the UAV 
platform at 40 cm resolution, enabling pure vine identification (b). The imagery enabled the 
separation of pure vine from shaded and sunlit soil reflectance (c), observing the scene components 
and the pure vine reflectance later used for index calculation (d). 
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Figure 2. Mean reflectance extracted from the imagery acquired with the micro-
hyperspectral imager on board the UAV platform flown over the vineyard sites. 
Reflectance shown consisted on 260 spectral bands at 6.4 nm FWHM and 40 cm resolution. 
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Figure 3. Simulations conducted with PROSPECT-5 in the 400-600 nm region for varying 
Cx+c (4-14 g/cm2) (a;b) and chlorophyll Ca+b (30-80 g/cm2) (c;d) for fixed N=1.6, 
Cw=0.025 cm, and Cm=0.03 g/cm2. Cx+c and Ca+b units are in g/cm2. 
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Figure 4. Images acquired by the hyperspectral imager on board the UAV platform over 
two vineyards with opposite row orientation (a;b), showing the corresponding simulated 
scene generation with FLIGHT (c;d). The simulated canopy reflectance extracted from the 
center of the row and aggregated scenes are shown (e;f) 
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Figure 5. Modelling results conducted with PROSPECT-5 + SAILH for R515/R570 and Cx+c 
as a function of Ca+b content (a), N parameter (b), LAI (c) and soil reflectance variation (d). 
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Figure 6. Relationship obtained at the leaf level between the index R515/R570 measured with 
the customized PlantPen instrument and Cx+c measured by destructive sampling. 
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Figure 7. Relationships obtained between the R515/R570 index obtained for each vineyard 
site from the airborne hyperspectral imagery and Cx+c measured in the field for the three 
years under study. 
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Figure 8. Relationship obtained between the TCARI/OSAVI index obtained for each 
vineyard site from the airborne hyperspectral imagery and Ca+b measured in the field for the 
year 2010. 
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Figure 9. Validation results obtained for the estimation of Cx+c from the airborne 
hyperspectral imagery for the years 2010 and 2011 using R515/R570 and TCARI/OSAVI 
using infinite reflectance formulations (a), SAILH and FLIGHT (b). 
 
 

R∞1

y = 0.729x + 5.714
R2 = 0.48*** (p<0.001)

RMSE=3.23 g/cm2

R∞2

y = 0.4438x + 5.5469
R2 = 0.42*** (p<0.001)

RMSE=0.87 g/cm2

3

5

7

9

11

13

15

17

6 7 8 9 10 11 12

Measured Cx+c (g/cm2)

E
st

im
at

ed
 C

x
+

c (
g

/c
m

2
)

 
(a) 

FLIGHT
y = 0.7077x + 3.7644
R2 = 0.46*** (p<0.001)

RMSE=1.28 g/cm2

SAILH
y = 0.9211x + 1.1824
R2 = 0.4*** (p<0.001)
RMSE=1.18 g/cm2

3

5

7

9

11

13

15

17

6 7 8 9 10 11 12

Measured Cx+c (g/cm2)

E
st

im
at

e
d 

C x
+

c (
g

/c
m

2
)

 
(b) 



 42 

Figure 10. Mapping results obtained on two sample vineyard fields (a;c) acquired with the 
hyperspectral imager on board the unmanned aerial vehicle. Cx+c content was estimated 
from indices R515/R570 and TCARI/OSAVI using FLIGHT. 
 
 

   
a)  b) 

  
c)  d) 

 
 


