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Abstract

This paper focuses on the emergence of abstraction through the use of a new kind of
motion detector—WiiGraph—with 11-year-old children. In the selected episodes, the
children used this motion detector to create three simultancous graphs of position vs.
time: two graphs for the motion of each hand and a third one corresponding to their
difference. They explored relationships that can be ascribed to an equation of the type
A — B =C. We examine the notion of abstraction on its own, without assuming a dualism
abstract-concrete according to which more of one is less of the other. We propose a
distinct path for the attainment of abstraction, which involves navigating a surplus of
sensible qualities. The work described in this paper belongs to early algebra, we suggest,
because it involves the elementary symbolic treatment of unknowns and generals. More
broadly, it advances a perspective on the nature of mathematical abstraction.
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1 Introduction

Learning mathematics is often seen as a progression or movement from the concrete to the
abstract. This progression amounts to a passage across emphases, from the sensible to the
intelligible. An archetypal example is that of the straight line. Out of countless acts of drawing,
touching straight edges, tracing on the sand, or using tools, a sense grows for physical
straightness. There is still a major gap between the latter and a geometric straight line involving
a massive drawing out of sensible qualities, such as colour, length, material, and thickness, to
envision an entity that is intelligible but not sensible. Hence abstraction is depicted as a
subtractive process, along which more and more qualities are taken out until a spectral
remainder is left that is not amenable to being touched, seen, or heard and is devoid of causal
powers, whose presence is only indirectly evoked by diagrams and formulae.

Figure 1 is an attempt to illustrate this vision for the obtainment of abstraction. It is
necessarily paradoxical because in this approach, no perceivable entity can display an abstrac-
tion as such. The figure includes a rectangle at the bottom appearing to be a blackboard full of
marks chalked up on it and a closed curved line above. The rectangle at the bottom symbolizes
a plane encompassing sensorimotor qualities of objects, organisms, and symbols (e.g., colours,
textures, and sounds), and the shape above is an abstraction that lacks sensorimotor qualities,
even though its displaying a particular shape, size, and so on betrays the paradox of portraying
an abstraction as visible. The core idea of this approach to the attainment of abstraction is that
of'a process of transcending planes of sensorimotor qualities, reaching out to an external realm
unavailable to perception and causal powers.

Numerous researchers in mathematics education have questioned this traditional image for
the attainment of abstraction (Clements, 2000; Dreyfus, 2014; Hershkowitz, Schwarz, &

Fig. 1 A vision of abstraction as transcendent to a plane of sensorimotor qualities (Drawing by Giulia Ferrari,
white chalk on black cardboard)
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Dreyfus, 2001; Noss, Hoyles, & Pozzi, 2002; Roth & Hwang, 2006). Wilensky (1991) argued
that ideas are abstract or concrete depending on how thinkers relate to them. Someone
practiced with linear equations, for instance, might sense a concreteness in them that is
unavailable to someone unfamiliar with them, for whom they are abstract. From this point
of view, abstraction is a deficient mode, and the learning of mathematics is rather a progression
from the abstract to the concrete, which he called “concretion.” Clements (2000) pointed out
that the roots of the word “concrete” lie in the idea of growing together and introduce two
kinds of concrete knowledge: sensory-concrete and integrated-concrete. The first implies the
use of sensory material in the process of sense making; the second combines ideas towards a
new structure and implicates physical and abstract knowledge. Noss et al. (2002) introduced
the notion of “situated abstraction” seeking to describe how a conceptualization of mathemat-
ical knowledge can simultaneously implicate both, the specificity of a situation and the
generality of an abstraction, in a way that these two aspects are interwoven and can feed
one another. Hershkowitz et al. (2001) proposed to think of “abstraction in context” to avoid a
description of abstraction as some type of decontextualization—akin to our radical “subtrac-
tion process”—which they find in most cognitivist approaches. Abstraction in context is an
activity or process of reorganization of previous mathematical knowledge into new mathe-
matical structures that incorporate the context motivating it. Coles and Sinclair (2018) critique
the assumption that learning should begin with the concrete and familiar while abstraction
arrives later. They argue for a relational view according to which number learning is, from the
very beginning, rooted in abstractions that are already part of young children’s lives. Roth and
Hwang (2006) analysed a “think aloud” interview with an ecologist as he made sense of a
graph he had not used previously. On the basis of a microanalysis of utterances and gestures,
they conclude that “rather than being a movement from concrete to abstract or from abstract to

concrete, development occurs in a movement that appears to be simultaneously from concrete
to abstract and from abstract to concrete” (p. 318). These perspectives seem to, partially at
least, resonate with Davydov (1990) epistemological theory considering a dialectical connec-
tion between abstract and concrete. According to Davydov, there are two types of abstraction:
empirical and theoretical. An empirical abstraction involves the isolation of a certain perceiv-
able quality common to a set of instances; a theoretical abstraction is organized around
theoretical models interrelating unperceivable features participating in the genesis or formation
of members of a certain class.

Drawing on some of the work reviewed above, we move in this paper towards conceptions
of abstraction that (1) examine the notions of abstract and concrete on their own instead of
secluding them into a confining dualism, according to which more of one is less of the other,
and, (2) rather than a movement away from sensorimotor qualities, portrays the activity of
abstracting as navigating or wayfaring a plane of sensorimotor qualities: abstraction as
immanent to a plane of sensorimotor qualities. Figure 2 is an attempt to illustrate this second
point. In contrast to Fig. 1, the shape indicating an abstraction is in a plane of sensorimotor
qualities, not as an object but as a navigational path, like a trail maintained by numerous
“walks”—the added arrow intends to show this wayfaring quality.

This paper expresses an effort to flesh out this vision of abstracting as navigating a plane of
sensorimotor qualities. In order to unfold grounds for this fleshing out, we have selected three
critical concepts to elaborate further in the next section: (1) sense and reference: on the
contents of a plane of sensorimotor qualities, (2) generals and unknowns: on different ways
of navigating planes of sensorimotor qualities, and (3) semiosis: on flows and temporality in a
plane of sensorimotor qualities.
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Fig. 2 A vision of abstraction as immanent to a plane of sensorimotor qualities

2 Theoretical framework
2.1 Sense and reference: on the contents of a plane of sensorimotor qualities

In 1892, Frege published one of his most influential papers whose translated title is “On Sense
and Reference” (Frege, 1980). In this paper, he illustrated the distinction with the famous
example of Venus: the planet is the evening star (i.e., Venus becomes visible first after the
sunset) and morning star (i.e., Venus stays visible last after sunrise); the idea being that the
same referent, Venus, can be referred through different senses, such as the “morning star” and
the “evening star.” Enacting different senses for the same reference is pervasive in linguistic
interactions. We easily understand, for instance, of someone called Mary, that “Mary is a
baseball player” and “Mary is a dedicated student” convey two different senses for the same
person. In general, a proposition pinpoints a referent by means of a certain sense, chosen
among multiple senses that are possible for it. This is true of algebraic propositions as well. For
example, in reference to the following quadratic equation:

y=2"+x+1 (1.1)

It can be said that “Eq. (1.1) has complex roots” and “Eq. (1.1) describes a motion with
constant acceleration.” These two different senses of the same equation can be more or less
significant depending on the situation the speaker is grappling with. To capture this active
texture of situation and utterance, it is useful to adopt Deleuze’s (1990) approach, thinking of
sense as event. We illustrate this aspect by means of an example. The sense expressed by “Eq.
(1.1) has two complex roots” might be an event that includes uttering it as part of a problem
process calling for the finding of its roots and/or the discrimination of whether they are real or
complex. A sense of Eq. (1.1) is a certain problem-solving event. There are no senses without
events. Senses emerge out of the way we deal with a situation calling for an event, such as the
determination of the roots of Eq. (1.1).

Note that this use of the word “sense” is different from the one customarily invoked in
English definitions in biological terms of a physiological capacity of organisms that provides
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data for perception (https://en.wikipedia.org/wiki/Sense), such as vision and touch. Our use is
more related to what the phrase “making sense” conveys, conjuring up ideas of meaning or
significance. This is essential to avoid flattening planes of sensorimotor qualities onto
assemblages of multifarious unarticulated sensations. Although difficult to point out, this
work of clarification is intended to be done by the word “qualities.” “Mary is a dedicated
student” illuminates a particular quality that subsumes or encompasses countless aspects of her
life and of sociocultural expectations for what a “dedicated student” is. Each distinct quality
(e.g., “Mary is a baseball player”) points at an inexhaustible horizon of life events and
sociocultural expectations.

Returning to the title of this section, which alludes to the “content of a plane of sensorimotor
qualities,” we can now assert that such content is made out of interrelated senses, events, and
qualities. It follows that navigating such a plane in the course of abstracting entails exploring senses,
participating in events, and envisioning or feeling qualities. The sense of Eq. (1.1) pointed at by the
proposition “Eq. (1.1) has two complex roots” might turn on a path leading to complex functions in
R2-R2 mappings, to make the roots of Eq. (1.1) as visible as the roots of real functions on a
Cartesian graph. Just to add a second example, a request to divide two polynomials might prompt
navigating away from many practices engaged by dividing numbers—polynomials do not seem to
be something that can be fractionally divided—towards revising sociocultural expectations ordinar-
ily elicited by the word “divide.”

2.2 Generals and unknowns: on different ways of navigating planes of sensorimotor
qualities

Concluding his commentaries about multiple mythical narratives, such as the one of Thales
measuring the height of an Egyptian pyramid by the shadow of a stick, or the use of the gnomon
in ancient Babylonia, Serres (2017) insists “Yes, its abstraction is a sum and not a subtraction” (p.
210) and introduces the image of white light “Geometry integrates all our practical or ideal habitats
the way white light sums up all the colours, in transparency or translucency” (p. 210). This remark
has inspired us to think of vast aggregates of senses, events, and qualities—as numerous as colours
are in white light—from within which abstractions emerge in the course of their navigation. This
opens up questions about kinds of navigation/abstraction that may trailblaze a plane of sensorimotor
qualities. We will distinguish two of them: navigating to grasp a general and navigating to solve
something vaguely known (i.e., an unknown). In order to clarify what these are, we will first review
the distinction, introduced by Peirce, between the general and the vague.
Let us start with the notion of a general:

A sign is objectively general, in so far as, leaving its effective interpretation indetermi-
nate, it surrenders to the interpreter the right of completing the determination for himself.
“Man is mortal.” “What man?” “Any man you like.” (CP 5.505)

A theorem proving a property of triangles, for example, deals with triangles as a general. A
general is genuinely indeterminate. Note that generals are not necessarily produced by
generalizations, since the latter involve no more than extending a finite set of empirical
observations. “Triangles,” as a general, refers to a multiplicity of items that are all actively
related to each other through a continuous and mutual communication of differences. In fact,
Peirce saw a deep connection between generals and the continuum. Peirce deemed that a
general is unlike a finite or infinite set of discrete elements. Even the set of real numbers,
customarily used to illustrate the continuity of a line, would not correspond to a continuum
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according to the late Peircean sense, because no matter how many infinite points are added to a
set, they still remain in isolation from each other. What truly establishes a continuum is a
mutual communication or connectedness that cannot arise from isolated elements, regardless
of their numerosity. In contrast to generals, Peirce characterized unknowns—particulars with
certain but unspecified traits—as “vague:”

A sign is objectively vague, in so far as, leaving its interpretation more or less
indeterminate, it reserves for some other possible sign or experience the function of
completing the determination. “This month,” says the almanac-oracle, “a great event is
to happen.” “What event?” “Oh, we shall see. The almanac doesn’t tell that.” The
general might be defined as that to which the principle of excluded middle does not
apply. A triangle in general is not isosceles nor equilateral; nor is a triangle in general
scalene. The vague might be defined as that to which the principle of contradiction does
not apply. For it is false neither that an animal (in a vague sense) is male, nor that an
animal is female. (CP 5.505)

We are uncertain whether the eye colour of a friend is green or brown, but we know that it is
not, say, red. The vagueness of her eye colour includes infinite shades of brown and green and
excludes redness. Together with such vague sense of eye colour, we may also presume that her
eyes are of a particular colour, which is the key character of an unknown: its traits are
determined but we know them only vaguely.

Grappling with an unknown entails relating to an entity that lacks, perhaps only momen-
tarily, certain sensible qualities both in itself (e.g., her eye colour) or in its signs (e.g., a textual
description of her eye colour). On the other hand, we navigate a general, such as mortals or
triangles, by immersing ourselves in a vast and familiar terrain of sensible variations and
differences, such as mortals of different age, sex, species, bodies, and behaviours or triangles
differing in shape, size, angles, perimeters, and colours. The high school problem of deter-
mining the length of a side of a triangle, given the length of its other two sides and the angle in
between them, is likely to confront us with an unknown, that is, a quality that is only vaguely
known (e.g., if two sides are a few centimetres long, the length of the third one is vaguely
known to be shorter than a metre). On the other hand, working to demonstrate that, for any
triangle, the sum of the lengths of two sides is longer than the length of the third side, whatever
one is chosen as the latter, calls us to deal with a general encompassing an infinite number of
triangles, not even countable, displaying distributions of infinite possible qualities; unless we
prove it by blindly following a scripted sequence of steps, we are likely to be dazzled by the
all-embracing universe of entities we are dealing with. Working with generals comprehends all
the nuances that pertain to an inexhaustible field we are navigating, while solving an unknown
prompts a navigation to a particular destination, from which the unknown may be revealed.
Our case study focuses on the former type, that is, on navigating/abstracting to grasp a general.
Overall, the question we strive to address in this study is precisely: What kind of navigation
towards grasping a general across a surplus of sensorimotor qualities constitutes an
abstraction?

We selected episodes in which children explore the kinaesthetic production of graphical
expressions, for a general that can be named by the equation: A — B = C. We situate our study
within the growing field of early algebra (Kieran, Pang, Schifter, & Fong Ng, 2016). The
emphasis of the early algebra work tends to be on the logic of unknowns and on generalizing
processes with respect to patterns, variables, structures, and relational thinking (Blanton et al.,
2018; Bodanskii, 1969/1991; Carraher, Schliemann, Brizuela, & Earnest, 2016; Kaput, 2008;
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Kaput, Blanton, & Moreno, 2008; Ng & Lee, 2009; Radford, 2014). While marginal, generals
are also part of the early algebra literature; Davydov (1990), for instance, proposes ideas that
seem to engage children with generals: “In many students even by the end of grade 1 and the
beginning of grade 2 (8 years) we detected systematic reasoning about rather complex
mathematical relations, about their connection, and all of this was done without objects, on
a purely verbal level or by relying on letter formulas.” (1990, p. 170. Emphasis added). The
work described in this paper belongs to early algebra, we suggest, because it involves, directly
or indirectly, the elementary symbolic treatment of unknowns and generals.

2.3 Semiosis: on flows and temporality in a plane of sensorimotor qualities

Navigating or wayfaring is a dynamic process infused with temporality. We use the concept of
semiosis to elucidate this temporal dimension inherent in wayfaring a plane of sensible
qualities. Peirce has proposed “semiosis” to mean “an action, or influence, which is, or
involves, a cooperation of three subjects, such as a sign, its object, and its interpretant” (CP
5.484). We conjecture that the crucial event (i.e., “action, or influence”) of semiosis is a
process by means of which a certain quality belonging to a signifier (i.e., sign) expands and
begins to incorporate a signified (i.e., referred object) that had previously been unqualified in
that way. Semiosis can also proceed in the reverse direction, namely, qualities belonging to a
signified begin to newly qualify signifiers. For instance, for an English speaker, the word
“smooth” sounds smooth, as if the sound had borrowed such quality from the smooth entities it
qualifies, the same for the word “sharp.” In these latter examples, semiosis is the historic-
cultural process through which sounds begin to adopt qualities, such that they come to sound
as what they refer to. To a large extent, to become speaker of a certain language involves a
complex extension of qualities over thousands of sound patterns or words. Such expansion/
contraction of qualities occurs in a plane of sensible qualities through massive repetition and
practice that leaves, over time, a recurrent trace of mutual qualifications for signs/signifiers;
these recurrent traces are part of the interpretant of a culture, language, community, or
biological species. The interpretant, then, is a continuum sustaining the expansion, contraction,
and reproduction of qualities across signifieds and signifiers. Semiosis is never complete; it is
always open to uncertain futures. For instance, as one develops a friendship with someone
called Manuel, the sound pattern “Manuel” gradually incorporates certain qualities and
eschews others expressing expansions and contractions of the qualities one experiences with
the friend. This never-ending dynamics shift/expansion/contraction amounts to a form of
navigation across a continuum (i.e., the interpretant). In our case study, we will analyse
instances in which qualities of a signifier lend attributes to a signified and vice versa, in other
words, to the local transformation of an interpretant in response to particular experiences in
early algebra.

3 Methodology

3.1 Sensors, kinaesthesia, and mathematical instruments

In this paper, we attend to the kinaesthetic production of graphical expressions by means of a
mathematical instrument. By “mathematical instrument” we refer to a material implement used

interactively by means of individual or collective continuous body movements, to obtain and
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transform mathematical expressions, this is related but different from the idea of instrument as
discussed in the instrumental approach initially introduced by Verillon and Rabardel (1995),
because we want to weaken reference to a psychological characterization of instruments
through schemes of usage by the subjects, as we think that it tends to strengthen the dualism
separating mental processes from bodily/material actions (Nemirovsky, Kelton, &
Rhodehamel, 2013). We stress continuous body motion: a body does not jump from one
spatial configuration to another without traversing interconnected trajectories over time. It is
the case that some tools driven by body motion produce discrete sequences, such as texts typed
on a computer keyboard, so that the intermediate trajectories between key presses are literally
ignored. This is not inherent to keyboards: the performance of any experienced piano player
shows that body motion in between key presses fully participates in the musical expression.

Classic examples of mathematical instruments are ruler and compass; other examples are
instruments to draw curves, such as ellipses or cycloids. A computer mouse is also an
instrument, which in the context of certain software environments may count as mathematical
as well, as is the case of dynamic geometry in which dragging becomes a key movement for
the tracing of geometric properties (e.g., Baccaglini-Frank & Mariotti, 2010; Sinclair & Yurita,
2008; Straesser, 2002). It has been studied in the literature how the fluent use of a mathemat-
ical instrument involves the adoption of a “tool perspective” by the users (Nemirovsky,
Tierney, & Wright, 1998). The idea of tool perspective encompasses the emulation of tool’s
sensitivity to some aspects of an activity rather than others, as well as the recognition of
conditions and patterns under which a certain tool-use is significant. We will describe
instances of a type of learning situation in which children encounter and productively deal
with some algebraic generals through the use of a mathematical instrument we have named
“WiiGraph,” which was designed by a team led by Ricardo Nemirovsky.

WiiGraph is a graphing motion technology that leverages two hand-held remotes (or
Wiimotes) and a LED bar to produce graphical representations. The LED bar has two infrared
lights, one on each end. When a Wiimote is pointed at the LED bar, an infrared camera in it
“sees” the two infrared lights from the LED bar and, by triangulation, calculates the distance
between the Wiimote and the LED bar. In order to make sure that the Wiimotes are pointed to
the LED bar—otherwise the infrared lights from the LED bar do not fall within the field of
view of the infrared camera in the Wiimote—a large dot is displayed on the computer screen:
as long as this large dot is visible on the screen, it indicates that the camera “sees” the infrared
lights. We have used a pink and a light blue remote. The pink remote generates a large pink dot
and the light blue one a large light blue dot. Under these conditions, when the remotes are
moved in front of the LED bar, WiiGraph displays for each of them the position (the distance
from the bar) over time, providing two space-time graphs. If a remote is not detected (and the
related dot is not visible) for a certain time interval, the corresponding graph is interrupted
temporarily and reappears as soon as the infrared lights on the LED bar are seen again from the
remote camera. Figure 3 shows the top view and the side view of the interaction space in
which a user holds the two remotes and the LED bar is positioned just in front of a large
screen. Each line segment in the views marks the distance of a remote from the bar. Note that
the remotes do not have to be held at the same height or side position as the LED bar, because
as long as the large dots are visible on the screen, the distances are calculated and displayed.

In this paper, we are interested in a specific setting of WiiGraph, which generates in real
time an additional third line simultaneously with the two space-time graphs said above. We
call it the difference mode, or mode A — B in the following. This third graph corresponds to the
difference between the two remotes’ distances from the LED bar over time; therefore, it is still
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SIDE VIEW TOP VIEW

L light blue remote’s distance( . I
pink remote'; c;ist;n;; !

Fig. 3 Top and side view of the interaction space

a distance-time graph displaying the distance between the two remotes in real time. Figure 4
depicts two moments from an experiment using the difference mode, in which a child, Mario,
moves the Wiimotes in the interaction space (top) and produces a pink line, a light blue line,
and the corresponding difference graph, in dark blue, which is given by pink minus light blue
(bottom). The LED bar is located on the edge of the table right in front of the large screen
where the graphs are displayed. On the left side, Mario keeps the light blue remote closer to the
LED bar than the pink remote; therefore, the pink line is above the light blue line and the
difference graph is positive. The right side instead depicts a moment in which the position of
the two Wiimotes is exchanged and the pink remote is the closest to the bar, which also means
that the difference graph is negative.

WiiGraph works at body scale, that is, involving wider body movements than, for example, those
required in moving a mouse, like walking in space or overarm gestures. It displays two movements
occurring simultaneously, whether performed by one or two people moving at a time, or two hands,
providing continuous feedback to the users. The relationality of the two movements can be
expressed in different ways, such as through their difference or ratio. Questions steering investiga-
tions with WiiGraph may concemn the sustaining of a certain value for these relative ratios or
differences over time, as the user interacts by means of body movements. Solutions to these
questions end up taking the form of kinaesthetic patterns such as walking with a Wiimote in each

8
Time (seconds)

“Time (seconds) "

] L]
Mario holds the pink remote farther from the LED bar: at that time —where

]
Mario holds the pink remote closer to the LED bar: at that time time —where
marked- the pink graph is above the light blue one, and the difference graph is marked- the pink graph is above the light blue one, and the difference graph is
negative. positive.

Fig. 4 WiiGraph in mode A — B
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hand with a fixed distance between the two Wiimotes. By investigating the use of WiiGraph, we
position ourselves in a line of research that values the role of the body and embodiment in
mathematical doing, pointing specific attention to the relevance of perceptuo-motor and kinaesthetic
activities for approaching and understanding mathematics. It is through these activities that we study
the way that abstractions might emerge while navigating sensible qualities involved in WiiGraphing
events.

Abrahamson and Sanchez-Garcia (2016) studied the use of an instrument that is
similar to the WiiGraph with regard to the users’ kinaesthetic engagement. The main
thesis of their study is that learning involves “moving in new ways.” This can be equally
valid for the learning of sports, musical instruments, or mathematics. Given that ways of
moving that are formative, say, for playing basketball are not necessarily relevant for
playing piano or ping-pong, the question arises: What “new ways of moving” would
count as formative to algebra learning? In particular, how do these ways of moving come
to mind the gap, often pointed out in the literature, between bodily action and symbolic
mathematical activity? Kinaesthetic exploration of generals, such as the one correspond-
ing to the equation A — B=C, is our mathematical key to discuss the ways in which
minding the gap may occur through the synergy between mathematical instrument and
body motion. The roles of motion detectors in mathematics teaching and learning are
discussed in a body of literature (e.g., for an overview, see Duijzer, Van den Heuvel-
Panhuizen, Veldhuis, Doorman, & Leseman, 2019). However, almost all this literature
focuses on the sensing of one moving point. This paper expands the nascent literature on
the sensing of two or more moving points, which allow for the exploration of
relationalities between them (Abrahamson & Sanchez-Garcia, 2016; de Freitas, Ferrara,
& Ferrari, 2019).

3.2 The participants

We worked with a group of four children aged 11 years, who did not previously know each
other, over three sessions. The children had been recruited as volunteers through a network of
families practicing home schooling education. Since they do not attend regular lessons at
school, we cannot infer their mathematical background. The participants were filmed with two
fixed cameras during each session and two of them wore a head-based Go-Pro camera. In
addition, we recorded the computer screen with a computer-generated video that later we
synchronized with the video from the cameras. The sessions took place at a classroom of a
university in England. The conversations with the children were conducted in English. Several
of the parents were present in the classroom. During the first two sessions, they explored
position vs. time graphs generated by two children, each moving a Wiimote. In addition to free
explorations, they engaged in diverse activities anticipating and matching body motions and
graphical shapes of position vs. time. In the third session, three children worked by holding
both the remotes individually, one remote in each hand. As opposed to a pair of children each
handling one Wiimote, the one-in-each-hand arrangement differs markedly, among other
reasons because of the centrality it confers to relative arm motion (Nemirovsky, Kelton, &
Rhodehamel, 2012). The instructor chose to turn on the difference graph, as a significant way
of exploring relationships between graphs and body motion, beginning the episode we
examine in the next section. We have selected this episode because it spans the students’
production and exploration of the difference graph. The first and the last author were both
present in the classroom. Dan, Mario, and Zev are the names we use for the children.
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The analysis of each transcribed segment is synthesized in its ensuing commentary. We
focused our analyses on talk, body motion, gesture, and tool-use. The included commen-
taries elaborate on those aspects that, we felt, led us to insightful remarks. However, for
the sake of completeness and to allow for the belike possibility that readers would develop
interpretations that did not occur to us, the annotated transcript describes, as far as
possible, all the events that took place, including those that did not elicit an explicit
commentary from us.

4 Selected episode: exploring the difference graph

This section is an annotated and commented transcription of the episode in which the students
experiment with the difference graph. It is divided in two parts. In part one, the students strive
to keep the difference graph on the x-axis; during the second part, they try to keep the
difference graph either above or below the x-axis.

4.1 Introducing the difference graph and trying to keep it on zero

1. Ricardo: The computer also generates another line [turns on the difference graph]
that is, em, dark blue [points at the dark blue graph; Fig. 5a] (...) so we’ll
investigate what this third line is doing there, what it’s showing. So, the first thing
we’ll try...

2. Mario: It’s called, it’s called minus because that, that purple [dark blue] line, line

is, is, is pink minus blue.

Ricardo: OK, how do you know that?

4. Mario: It’s real, it’s quite obvious, where it says pink minus blue [points to the
screen, note the area pointed at with a black arrow in Fig. Sa] at the top of the
screen.

5. Ricardo: Aha (...) [gives the two remotes to Mario] so you move, you do whatever
you want, [moves alternately right and left hands] but try to keep the dark blue on
zero [points to the dark blue line], on this line [left hand runs along the x-axis]

had

Mario begins his first difference graph: he starts with the pink remote in his left hand
and the blue one in his right hand. At the beginning of the experiment, the pink
remote is kept slightly ahead of the blue one, and then the two are slowly switched in
their positions. Holding the two remotes separated, he then walks forward (see the
graphs in Fig. 5b).
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Fig. 5 a Graphical display in which the dark blue difference graph (the darkest in the image) is displayed for the
first time. b Mario’s first attempt to create a difference graph
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Fig. 6 a Mario’s second attempt to create a difference graph. b Mario’s new session

During the last seconds of the graph production, he separates the remotes even more and
says:

6.  Mario: I'm trying as hard as possible not to make the things go opposite.
7. Ricardo: So here you, this piece [pointing to the dark blue graph around second 7]
you had it on the line... so try to do more of that, see if you can.

While Ricardo is speaking, Mario moves both remotes back and forth, swinging the arms
rhythmically. Then, he starts a new session, moving the remotes slowly in opposite directions,
and produces the graphs in Fig. 6a.

During the last seconds, he says:

8. Mario: They’re both neutralising each other.
Ricardo: Uhum.

10. Mario: That’s because, because most of the time I'm, I'm, pink’s going in a
straight line and blue’s going in a stripe, straight line [inaudible] [stops talking,
while a new triplet of graphs starts to be created superimposed to the previous one;
moves the remotes again back and forth].

Mario presses a button in the Wiimote, and a new session starts: he alternates fluid back and
forth movement of the two remotes, which becomes faster and faster (Fig. 6b).

11. Ricardo: So here they were these lines [points to the initial part of the dark blue
line in Fig. 6b] ... they, oh, look! [points to the intersection of the dark blue line
with the time axis, as the lines unfold] [after second 8, Mario starts to rhythmically
bounce on his knees while accelerating the fluid back and forth arm movement
creating the second half of the graphs in Fig. 6b]

Commentary The appearance of a third graph prompted Mario to examine the screen seeking
for additional signs that could account for it. There was none with a dark blue colour.
However, the sign at the top of the screen “pink minus blue,” which had been displayed from
the beginning of this session but had remained unused, offered him a compelling interpretation
(“it is obvious™): the dark blue line “is called minus.” The inscription above the graph included
the pink and blue Wiimotes, freeing the minus to be clasped by the third graph. The dark blue
graph seemed to announce its name. In Paragraph [2], Mario expressed an initial sense for the
dark blue graph focused on its name.
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Mario started the graph shown in Fig. 5b with the pink Wiimote in front of the blue one,
slowly moving them towards their centre. Once they were next to each other, he continued
slowly moving them along the same directions. Right before 8 s, the pink graph disappeared,
possibly because the orientation of the pink Wiimote made it fall outside the field of reception.
This interruption is likely to have prompted Mario to move the pink Wiimote to make its graph
reappear. When it did, the dark blue graph was above the x-axis. Then his arms tensed as if
trying to push the dark blue graph towards the x-axis. Mario reflected on this sense of effort
(“trying as hard as possible”) as striving “not to make the things go opposite” (Paragraph [6]).
This “going opposite” (an event, in Deleuzean sense) might have been the dark blue graph
moving in a direction opposite to the desired one, such as towards the zero line. Another
possibility, evoked by Mario’s use of the plural “things,” is that he saw the pink and light blue
lines moving in opposite directions, instead of, perhaps, staying together. His reaction was to
try to “lower” the pink and blue graphs by walking towards the monitor. However, the dark
blue graph continued to inch upwards.

In all his graphical productions (Figs. 5b, 6a and b), Mario tended to move the
Wiimotes in alternate directions. This is likely to have followed from tacitly adopting
Ricardo’s demonstration (see Paragraph [5]). Ricardo gestured an alternate movement
of the Wiimotes while saying “you do whatever you want” (Paragraph [5]). While
words may leave to the interpretant a more open range of possibilities, gestures are
inclined to convey unintended specificities. This tacit assumption of a wavy
kinaesthetic pattern was in tension with the task of maintaining the dark blue graph
on the x-axis. The graph “called minus” was not just a visual display out there but
also a curve that resisted physical efforts seeming to possess a will of its own which
at times led Mario to tense his movements.

In Paragraph [8], Mario expressed a sense for a general relationship between the pink and
blue graphs: “They’re both neutralising each other.” While his ensuing account of this
relationship in Paragraph [10] is inaudible, we hear the sense of Paragraph [8] as indicating
the emergence of a general. Recall that dynamic relationships between components affecting
each other constitute generals: “neutralizing” suggests a present continuous activity
interrelating two graphs or Wiimotes.

Around second 8 of the graphs shown by Fig. 6b, Mario seemed to free himself from trying
to keep the dark blue graph close to the horizontal axis, engaging in a new rhythmic
kinaesthetic pattern swinging his arms back and forth and bouncing his knees. This bodily
movement expressed itself visually by a wavy synchronized variation of the three graphs at
once. Relieved from trying to push the dark blue line horizontally, Mario seemed to enjoy a
relaxed and smooth swinging—a sense for the graphical weaving emerging on the computer
screen as expressed by his wavy body motion.
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Fig. 7 a Dan generates a graph staying still with the Wiimotes next to each other. b Dan keeps the difference
graph on zero while walking
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Mario gives the Wiimotes to Dan, who starts a new graph. He stands still in the same
position for all the session, keeping steadily the remotes at the same distance from the LED bar
(Fig. 7a).

12.  Ricardo: So that, that’s a perfect zero! [around the 8th second, laughs] [ending his
graph, Dan relaxes his position, shrugs his shoulder and smiles]
13.  Ricardo: And, can you do it while you walk?

Dan starts moving very slowly towards the LED bar with both the remotes kept steady and
then backwards; he generates the graph shown in Fig. 7b:

14. Dan: You just have to keep the remotes in (...) one position.
15. Ricardo: Like, keeping [them] together?

16. Dan: Keeping them at the same level.

17. Ricardo: The same level, ok.

Dan creates then new graphs, walking again towards the LED bar, then backwards, keeping
the remotes steady, next to each other.

Commentary Dan came to create a horizontal difference graph with a clear plan—stay still
with the two remotes next to each other—that he had developed while observing Mario’s
experimentation. He had a well-defined sense that a dark blue graph on the horizontal axis
“converted” into the two Wiimotes being next to each other. Moreover, Dan easily showed
in Fig. 7b that that condition was indifferent to his walking distance from the LED bar:
“You just have to keep the remotes in one position” (Paragraph [14]). Dan articulated his
sense for the relationship between the dark blue graph being on the x-axis and the range of
kinaesthetic activities consistent with it in two ways: “keep the remotes in (...) one
position” (Paragraph [14]) and “Keeping them at the same level” (Paragraph [16]). While
the word “position” alludes to a location in space, the word “level” is customarily a term for
height. So far, the children’s experimentation with the Wiimotes had not included varying
the kinaesthetic quality of the Wiimotes/hands’ height, to ascertain graphical responsive-
ness. On the other hand, differences in height between the light blue and pink graphs had
been of major significance. We surmise that Dan’s relevance of the Wiimotes being at equal
levels had drifted from noticeable graphical levels to the taken-by-default levels of the
Wiimotes. This “out reaching” of qualities from one signifier (e.g., graphs’ levels) to
another (e.g., Wiimotes’ levels), which end up encompassing both, is an instance of what
we have interpreted in Sect. 2.3 as “semiosis.”

Position (foet)
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Fig. 8 Zev keeps the difference graph on zero while walking
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Fig. 9 Zev creates a new difference graph while speaking

We propose that semiosis is a key process in the formation of a general, which reflects the
inherent presence of a continuum across which elements of a general communicate with each
other. The graphs on the computer screen intermingle with the hand-held Wiimotes, such that
“same level” and “same position” can refer to all of them and distribute qualities that remain
distinct and, yet, overlapping.

Dan and Zev exchange the remotes. As soon as Zev grabs the remotes, he starts a new
session and creates the graphs in Fig. 8:

18.
19.

20.

21.
22.

Ricardo: So what do you think, how do you explain?

Zev: Well, every walk I’ve done checks, em. .. they have got a descending number and
that’s the distance of each control on the sensor [the LED bar] and then minuses the red
one from the blue one [points towards the two remotes depicted on the top of the
screen]. So if they are both the same [keeps the remotes next to each other], one minus
one is zero, and the same with two minus two, so when we move them back and
forwards the same [moves both remotes next to each other and starts a new session,
beginning Fig. 9] it stays at zero, but when we move one [moves one remote backwards
while he keeps the other one still, see the region around the arrows in Fig. 9].
Ricardo: So here, this minus this distance is zero [points to two overlapped points
of the blue and pink lines, then to their difference graph on the x-axis] ... But here,
what did it happen? [points to the two points of the pink and dark blue graphs
marked by the arrows in Fig. 9].

Zev: Well, it’s, it’s different.

Ricardo: It’s different... Alright, very good.

Commentary Zev begins Paragraph 19 by articulating three propositions: (1) “they’ve got a
descending number,” (2) “that’s the distance of each control on the sensor,” and (3) “then
minuses the red one from the blue one.” We will comment on the sense of each one and how
they concatenate:

* They have got a descending number.
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“They” are, for the most part, the blue and pink graphs. Furthermore, since Zev had kept the two
graphs going together, his saying “a descending number” (singular) might suggest that both
graphs descended by the same numbers. However, semiosis allows “they” to also relate to the
hand-held Wiimotes, their icons on the computer screen, or the numbers implicit in the shape of
the graphs. In the event, the numbers are descending if the remotes get closer to the LED bar.
While such getting closer is an action undertaken by Zev, this proposition is articulated from the
point of “them,” so that they “got” a descending number. In other words, the descent is an effect
passively undergone by the graph/number. The subsequent “and” signals the beginning of
another proposition in the form of a juxtaposition, that is, the upcoming proposition is to be held
in parallel with the previous one.

* That is the distance of each control [Wiimote] on the sensor [LED bar].

“That” brings up from the prior proposition a descending number to predicate of it that it is a
specific distance between Wiimote and LED bar. This specification is inscribed in the general
whose sense Zev is articulating: a general in which descending numbers, walking towards the
LED bar, lowering graphs, and distances between Wiimotes and LED bar, are all mutually
conditioned. The subsequent “and then” betokens an upcoming proposition that is not so much
to be juxtaposed as coming after the prior ones.

¢ Then minuses the red one from the blue one.

After the numbers are gotten, they are “minused.” Zev states that the red one is minused from
the blue one. This can be understood in opposition to the equation depicted above the graphical
space that appears as if blue is to be “minused” from red. However, the object of Zev’s
explanation is the case of red and blue numbers being equal, so that the result, zero, is
indifferent with respect to which is minused from which.

In “one minus one is zero, and the same with two minus two,” Zev uses particular
examples to illustrate a general relationship. This is an instance of what Mason and
Pimm (1984) have called “seeing the general in the particular.” Zev is articulating a
general that we could symbolize by: A — A =0; however, his understanding is far from
being reducible to any formal definition: it encompasses countless qualities, such as the
kinaesthesia of walking with two hands next to each other, the light blue and pink graphs
going at the same height, the dark blue graph staying over the horizontal axes, the vast
number of numbers that can be subtracted from themselves, the nothingness that remains
after taking away—minusing—what had been given, or walking ahead as a kind of
“descending.” Navigating such boundless expansion of interrelated qualities is what we
characterize as wayfaring a surplus of sensorimotor qualities towards grasping a general.
Zev says that this general encompasses “when we move them back and forwards the
same;” then he begins to point out, in words and gestures, that it excludes the case “when
we move one...” and not the other one. This inclusion/exclusion criterion for a general
that can be symbolized as A — B=0 is reaffirmed by Zev (“it’s different,” Paragraph
[21]), as he qualified the two cases pointed out by Ricardo in Paragraph [20].
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4.2 Keeping the difference graph above or below the x-axis

23. Ricardo: So now we’ll try to do something similar but keep the dark blue line
always above. You can walk and move your hands, but keep the black, the dark
blue line above the zero.

Mario comes to the front and holds the remotes. He starts a new session (Fig. 10a):
24. Ricardo: So now it’s above [points to the dark blue graphs, around 10 s].
Mario creates a new graph (Fig. 10b):

25. Ricardo: So what do you think? In order to get the dark blue line above the zero,
what do you have to do?

26. Mario: Well, you, you make pi, pink bigger than blue so that...

27. Ricardo: ... the pink...

28. Mario: ... so you keep it above but if you wanted it below you have to have blue
bigger than pink.

29. Ricardo: OK, so let us have it, let us have it below now.

30. Mario: What?

31. Ricardo: Let us have it, the dark line, below.

Mario starts a new session, but very soon, he presses a button that generates again
superimposed graphs. Refreshing the screen, Mario creates new graphs with a new session,
starting with the pink remote in front, while the light blue one is kept farther from the LED bar
(Fig. 11):

32. Ricardo: ... [while Mario is moving the light blue remote closer to the pink one]
and then slowly you get it to zero. So what did you do to, to have it under the zero
line?

33. Mario: I had to make the blue bigger than pink.

34. Ricardo: Ah!

35. Ricardo: So let us, eh, hand it to Dan, and so you create a pattern, you can do as
many variations as you want, like walking and moving, but always keeping the
blue line above the zero to start with...

o 2 Y . . 10 12 " ° 2 4 e s
Time (seconds) i . Time (seconds)

I3

Fig. 10 a Mario creates a new difference graph. b He creates a difference graph above the x-axis
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Fig. 11 Mario creates a new difference graph under the x-axis

Dan starts a new difference graph (Fig. 12a):

36. Ricardo: So what did you do, to keep it above?

37. Dan: Em, pink back and blue forward.

38. Ricardo: The pink back, further from this [pointing to the LED bar]. Em, and now
keep it under this [the x-axis].

39. Dan: Oh! [restarts the session several times while Ricardo makes a few comments]

Dan creates the difference of Fig. 12b.

40. Ricardo: So what, what does it happen here, to get it below [the x-axis]?

41. Dan: You’ve to do the opposite... you put pink forward and the blue back.

42. Ricardo: Pink below, right? Ok. Great!

43. Ricardo: So now, Zev, do, do something like this: above, below. So first of all, but
try to find out the variation, so what is it possible?

Zev is given the remotes and creates the graphs of Fig. 13a:

44. Ricardo: So, how did you change [the dark blue line] from below to above?

45. Zev: Em, by changing which controller was in front.

46. Ricardo: So which one was in front here? [points to the dark blue graph around the
4th second, where it is below the x-axis]

47. Zev: Em, [light] blue.
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Fig. 12 a Dan creates a new difference graph above the x-axis. b Dan creates a new difference graph under the x-
axis
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Fig. 13 a Zev generates a graph in which the difference graphs goes above and below zero. b Possible
representation of the equation Zev discusses in Paragraph [49]

48. Ricardo: (...) And do you have a sense for why for the blue, for the dark blue line,
to be below [the x-axis] then the pink has to be below [the light blue graph]?

49. Zev: Em, yep. Em, it’s something to do with like maths and, like, because on there,
it says the [seeming to point at image of the two Wiimotes on the screen] has been
taken away and then it’s hard to tell because it’s not actual numbers, but, if you
have more on one side, that will be a negative number... then, then, if you have
them on the other side, it’ll be a positive number, which is that [moves the dots on
the screen along the dark blue line by controlling the remote].

Commentary In Sect. 4.2, Mario, Dan, and Zev characterized two complementary regions,
one for the dark blue graph being above the x-axis and another for it being below. Mario
separated these regions by contrasting “pink bigger than blue” and “blue bigger than pink”
(Paragraphs [26] and [28]), Dan by “pink back and blue forward” or “pink forward and the
blue back” (Paragraphs [37] and [41]), and Zev “by changing which controller was in front”
(Paragraph [45]). In Sect. 2.3, we elaborated on a notion of semiosis as a drift of qualities
across signifieds and signifiers. We also suggested the image of the interpretant as a continuum
sustaining the “expansion, contraction and reproduction [of qualities] across signifieds and
signifiers.” The events transcribed in Sect. 4.2 inspire us to visualize compositional elements
for the interpretant; namely, that instead of a single all-encompassing continuum, the
interpretant would be akin to a Riemann surface with various sheets (see http://mathworld.
wolfram.com/RiemannSurface.html). Mario, Dan, and Zev suggested several sheets: (1) a
sheet hosting the dark blue graph with a region above the x-axis, distinct from a region below
the x-axis; (2) a sheet hosting the pink and light blue graphs with regions separating which one
is “bigger;” (3) a sheet containing the Wiimotes distributed along regions demarcating which
one is closest or farthest from the LED bar; and (4) a sheet containing the Wiimotes distributed
along regions that distinguish which one is in front of which one. The regions of each sheet
map out with regions on the other sheets, such that, for example, “pink bigger than blue” in
one sheet maps out with the “dark blue graph above x-axis” in another sheet. Figure 14 shows
an attempt to illustrate such mapping across multiple sheets: a light trace goes across several
pages of a book, allowing for certain regions on different sheets-pages to mutually exchange
qualities. The children collectively unfolded semiosis as hosted by an expanding interpretant
with multiple sheets, allowing for the mutual and multi-layered discrimination of diverse
qualities, such as above/below, bigger/smaller, back/forward, and front/behind.

In Paragraph [49], Zev explained how the distinction between regions in some of these
sheets relates to numbers. First, he points the remotes drawn on the computer screen above the
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Fig. 14 A light trace goes across
several pages of a book, allowing
for certain regions on each sheet-
page to exchange qualities with
others

graphical region indicating that it “has been taken away,” alluding to the subtraction displayed
with the Wiimotes above the graphical space. Zev thinks that “it is hard to tell” what happens
because the actual numbers are not shown. This latest remark makes a fleeting allusion to an
unknown: beyond estimating possible values, the position numbers per se are not given.
However, Zev quickly leaves behind these unknowns to distinguish two regions by their
corresponding “sides:” more on one side of the minus will obtain a negative number, more on
the other side a positive number. Zev described here a fifth sheet, which included the two
Wiimotes depicted on the computer screen separated by a minus, with left and right sides or
regions, such that having “more” on each side maps out numbers for the dark blue graph being
positive or negative.

5 Discussion

During the selected episode, Mario, Dan, and Zev experimented with WiiGraph to make sense
of a new graph—coloured dark blue—appearing on the computer screen. Through these
experimentations, the children strived to attend and interpret a vast scope of sensible qualities,
as we can infer from their words and actions, including not only all that was “there,” such as
shapes of three graphs mutually distinguished by colour, degrees of closeness to the monitor,
moving dots that had to be kept inside the screen, signs of subtraction, unknown numbers,
relative heights of graphical lines, a horizontal line sometimes called “zero,” pink and blue
Wiimotes with buttons on them, video cameras, synchronic movements of graphical lines from
left to right, and more, but also all the kinaesthetic and proprioceptive qualities realized in the
course of their movements and actions. The latter included the tonicity of muscular activity,
moving hands while standing still, walking while keeping hands still, walking and moving
hands cyclically, keeping hands next to each other, keeping one hand closer to the LED bar
than the other one, bodily kinaesthetic responsiveness to events on the computer screen,
changes on the computer screen responsive to their movements, going fast and slow, moving
smoothly and abruptly, and more. Such abundance is what we refer to as a “surplus of sensible
qualities.” Over time, some of these qualities became more peripheral or more central than
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others. It was by virtue of kinaesthetic engagement that the graphs developed a temporality
marked by complex and all-encompassing events, such as the graphs “going opposite”
(Paragraph [6]), creating a “perfect zero” (Paragraph [12]), or getting “a descending number”
(Paragraph [19]). Through kinaesthesia, signifiers and signifieds such as “level” and “position”
(Paragraphs [14]-[17]), “forward/back” (Paragraph [41]), and “above/below” (Paragraph
[45]), exchanged qualities by participating in the ongoing semiosis.

We think that navigating a surplus of sensible qualities is a critical aspect of an encounter and
familiarization with a general, which in the present case study is one that can be symbolized by
A — B =C. What kind of navigation towards grasping a general across a surplus of sensorimotor
qualities constitutes an abstraction? is the main question that we tried to address in this paper.
Through the analysis of talk, gesture, and tool-use, we came to two intertwined processes appearing
to characterize such navigation: semiosis and inhabiting an evocative and reckoning interpretant.
The most central aspect of semiosis, we propose, is the exchange of qualities among signifiers and
signifieds (e.g., descending number “moving closer” to the LED bar, Paragraph [19]). In semiosis,
qualities move across a continuum (i.e., the interpretant) hosting signifieds and signifiers. We
characterized this continuum as a Riemann surface with multiple sheets, each of which harbours
regions (e.g., blue graph above or below the zero line) in mutual correspondence with others (e.g.,
pink Wiimote ahead or behind blue Wiimote). We summarize then, by saying that abstracting a
general entails familiarity with a layered continuous interpretant enabling the active exchange of
sensible qualities while keeping them distinct and communicating. It is through this dynamic
exchange, which involves proprioceptive and kinaesthetic activity with the instrument, that the
encounter with A — B = C occurs and that activity becomes relevant in approaching early algebra, as
a way of mobilizing variables and equations through the body while opening up a range of
possibilities for semiosis.

Beyond early algebra, we end this discussion by elaborating on the broader theme of this
paper, which is the nature of mathematical abstraction, especially as it pertains the grasping of
generals. Noble, Nemirovsky, Wright, and Tierney (2001) describe a useful example regarding
the concept of one half.

[How does] one understands the familiar idea of one half? Try out these two tasks
yourself. First, find one half of the quantity 3275 and write your answer. Next, walk
across a room once, and then walk across the room again but try to walk half as fast as
you did the first time. (...) Dividing 3275 in half most likely drew on your computa-
tional ability and your number sense, causing you to think about one half as a relation
between two numbers. Walking across the room half as fast as before probably caused
you to think about how to qualitatively compare one or more of the quantities speed,
distance, and time when comparing your two motions across the room. You may also
have tried to feel the quantities of speed or time in your body as you made the motion
itself. (...). Although one may be tempted to look for the essential element of “halfness”
in each of these experiences and to try to find ways to give students access to this
element, one’s own sense of halfness comes from these experiences and many others
like them. (pp. 105-106)

What is abstract about a general, be it /2 or A — B = C, is not something extracted and isolated
from perception, materiality, and motor activity (e.g., an idea encapsulated by a formal
definition) but, on the contrary, a type of navigation that is immanent to an infinite realm of
sensorimotor qualities that living beings follow up on, with the fallible but indispensable
orientation of instruments, diagrams, and skilful engagements with them.
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