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Fasciola hepatica is distributed worldwide, causing substantial economic losses
in the animal husbandry industry. Human fasciolosis is an emerging zoonosis in
Andean America, Asia, and Africa. The control of the disease, both in humans and
animals, is based on using anthelmintic drugs, which has resulted in increased
resistance to the most e�ective anthelmintics, such as triclabendazole, in many
countries. This, together with the concerns about drug residues in food and the
environment, has increased the interest in preventive measures such as a vaccine
to help control the disease in endemic areas. Despite important e�orts over the
past two decades and the work carried out with numerous vaccine candidates,
none of them has demonstrated consistent and reproducible protection in target
species. This is at least in part due to the high immunomodulation capacity of
the parasite, making ine�ective the host response in susceptible species such as
ruminants. It is widely accepted that a deeper knowledge of the host-parasite
interactions is needed for a more rational design of vaccine candidates. In recent
years, the use of emerging technologies has notably increased the amount of data
about these interactions. In the present study, current knowledge of host-parasite
interactions and their implication in Fasciola hepatica vaccine development
is reviewed.
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1 Introduction

Fasciolosis is a parasitic disease with worldwide distribution, excluding Antarctica. In
livestock, it has major economic implications with estimated worldwide economic losses
amounting to USD 3,200million, including anthelmintic treatments, control of intermediate
hosts (molluscicides), research, and the implication of economic losses in dairy and meat
livestock production (1, 2).
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Human fasciolosis has persisted since prehistoric times (3),
and currently, it has a significant global health impact in specific
geographic locations. The World Health Organization (WHO) has
classified fasciolosis as a neglected tropical disease (4), and it is the
most geographically distributed parasitic zoonosis (5, 6). F. hepatica
human infections range between 2.4 and 17million people (7), with
91 to 180 million people at risk of infection annually (8, 9).

Currently, the control of fasciolosis in ruminants continues to
be based on management measures such as pasture rotation and
the use of anthelmintics (10). The continued use of anthelmintics
has resulted in an increase in parasite-resistant strains for the
most effective and widely used flukicides, such as triclabendazole
and albendazole (11, 12). Over the past three decades, there has
been a rising interest in obtaining vaccines that help prevent and
control fasciolosis in ruminants (13). However, the development
of vaccines against fasciolosis has been slow, partly due to the
great immunomodulatory capacity of the parasite. Hence, a better
understanding of the parasite-host interactions is necessary for a
more rational design of new vaccine candidates (14, 15).

2 Etiology and biological cycle of the
parasite

Fasciolosis is caused by flukes of the genus Fasciola, known
as liver flukes. The two species most implicated as the etiologic
agents of fasciolosis are F. hepatica, which is distributed mainly
in temperate climate regions, and F. gigantica, which is located
in tropical regions. Further, hybrid forms have been described in
regions where the two species coexist (16, 17). Real-time PCR
(qPCR) targeting ITS1 rDNA, ITS2 rDNA, and 28S rDNA have
been used to differentiate the two distinct genetic signatures
representing each species (18–20). The epidemiological potential
of hybridization and introgression between F. hepatica and F.

gigantica remains unknown; therefore, it is important to use
the correct terminology consistently and not use the two terms
interchangeably (21).

The life cycle of Fasciola spp. is quite complex, involving several
variations. In general, it involves one or more intermediate hosts,
which are themollusks. At least 20 species of the Lymnaeidae family
have been reported as intermediate hosts (22, 23). The asexual
larvae undergo several multiplications (24–26) before finally
infecting a definitive host in which sexual reproduction occurs.

3 Pathogenesis

The penetration, migration, and localization of the parasites
in the bile ducts exert a traumatic action that causes a series of
lesions in the liver parenchyma and in the bile ducts (27). The newly
excysted juveniles (NEJs) of Fasciola spp. penetrate the intestinal
mucosa and can be found in the abdominal cavity 72 h after
metacercaria ingestion. NEJs migrate through the peritoneum to
the liver surface and present no clinical sinology in animals (28).
The destination of the majority of NEJs is the left hepatic lobe,
probably due to its anatomical proximity to the duodenum and
the fact that they reach less of the other hepatic lobes. Sometimes,
due to massive infestations, these juveniles can have an aberrant

migration to other organs, such as the diaphragm and the lung,
causing pneumonia and fibrinous pleurisy (29).

Fasciolosis pathogenesis occurs in two phases—the
parenchymal and biliary phases. The parenchymal phase
begins when the NEJs cross the liver capsule (Glisson’s capsule),
continuing with the migration of the juvenile stages through the
liver parenchyma. This migration causes mechanical damage
through abrasion by the tegument that presents spines that help
maintain the parasite’s position within the liver tissues and probably
by-products secreted by migrating larvae. Several pathological
processes occur simultaneously within the liver parenchyma,
including the migration of juvenile stages that cause necrotic and
hemorrhagic lesions, which, in turn, cause inflammatory reactions
activating the immune system (30). This response can be found
throughout the tortuous migrating trajectory of the parasites,
suggesting that the excretion and secretion of these products
remain in the tissue, attracting more infiltration of inflammatory
cells of an immune nature (31). The biliary phase begins when
the parasites enter the bile ducts, where they exert a combined
mechanical and chemical action. Through the oral sucker, adult
parasites cause mechanical damage while feeding on blood and
the liver parenchyma adjacent to the duct. Macerated hepatocytes
have been observed inside the sucker and pharynx (27), leading to
erosion of the epithelium, trauma, focal rupture of the duct, and
puncture of small blood vessels. The enlargement of the bile duct
can be chemically induced (32), and it has been suggested that the
amino acid proline, which is essential for the synthesis of collagen
by fibroblasts, is also released in large quantities by the parasite
(33, 34). These two actions exerted by the adult parasite cause a
severe eosinophilic and granulomatous inflammatory response,
particularly when eggs reach hepatic parenchyma (35), and marked
hyperplasia of the bile ducts in which the parasites lodge (36).

The effect of these two phases causes a series of lesions in the
liver parenchyma, which is widely correlated with the infective
dose; a high dose causes more severe lesions that are more acute
and even fatal. However, different studies carried out in sheep
(35) and goats (37) have also shown that small repetitive doses
(trickle infections) causedmore severe hepatic damage than a single
dose using the same total number of metacercariae. These findings
suggest that the mechanical and enzymatic activities of the parasite
may be the initial cause of liver damage. Therefore, the immune
response or healing, as well as simultaneous infection at different
stages and the immune response to the first infection, play an
important role in the pathogenesis of fasciolosis (31).

4 Host immune response

4.1 Innate immune response

The initial recognition of NEJs takes place within the epithelial
mucosa of the intestinal tract with extensive activation. The
response to NEJs can occur through the recognition of glycosylated
protein and carbohydrate residues that behave as tegumental
antigens and induce T-cell proliferation through dendritic cell
activation (38, 39). Excretory secretory products containing
antigens released by F. hepatica (FhESP) can also induce a response
of bovinemacrophages, which is partially TLR4-dependent (40, 41).
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The function of mast cells is not really defined, nor is there
evidence that it is protective (42). These cells are residents
of tissues that respond to activation of both the innate and
acquired immune systems by producing and releasing different
inflammatory mediators present in their cytoplasmic granules,
prostaglandins, leukotrienes, and certain cytokines such as tumor
necrosis factor-alpha (TNF-α) or interleukin-4 (IL-4) (43). In
addition, they can release certain active substances against parasites
by binding the parasite antigen-IgE complexes with their high-
affinity IgE receptors (44, 45). It is estimated that its role is
more decisive in the initial stages (peritoneum) of the infection
(42, 46, 47). However, it has been described in cattle that after
getting infected by F. hepatica, there is little evidence of an increase
in the percentage of basophils and mast cells (48, 49) and in
peritoneal fluid in sheep (50). In contrast, F. gigantica infection
in buffaloes induces increases in the number of mast cells in
the hepatic inflammatory infiltrate (51). In numerous parasitic
processes, we can find a population of resident intraepithelial
mast cells responsible for rapid parasite rejection phenomena at
the epithelial level (52–54). However, these cells have neither
been described in the intestine after the migration of F. hepatica
(30, 36) nor in bile cells such as macrophages and neutrophils,
whose function is phagocytic and can release substances such as
reagents derived from nitric oxide or active oxygen species that act
directly against the parasite (55, 56). On the other hand, infection
by F. hepatica provokes a Th2-type immune response with IgE
production (57) and infiltration of eosinophils and mast cells in the
liver (48).

Human neutrophils from patients with acute fasciolosis showed
a greater phagocytic function compared to those in the chronic
stage of infection (58). Similarly, neutrophils from chronically
infected goats showed a poor phagocytic response compared to
those from uninfected goats. This poor phagocyte response was
correlated with fluke burdens (59). The role of neutrophils in
protective responses has not been reported yet in fluke infections.

In cattle, sheep, and goats, F. hepatica induces liver and
blood eosinophilia, and F. gigantica infection in sheep gives the
same profile (60–62). However, vaccination of calves and goats
showing protection had reduced eosinophil counts (30, 63), which
may be due to the lower fluke burdens and hepatic lesions in
partially protected animals. In acute stages of F. hepatica infection,
a dramatic increase of eosinophils has been described in the
peritoneal cavity (50, 64) as well as in hepatic lesions, both during
the migratory stage (30, 36, 65, 66) and during the chronic
stage (35). Eosinophils have been shown to mediate antibody-
dependent cell cytotoxicity (ADCC) against F. hepatica in rats (42).
In Indonesian thin-tailed (ITT) sheep which display resistance to
F. gigantica but not F. hepatica, it has been observed that ADCC by
eosinophils plays a role (ex vivo) in killing F. gigantica but not F.
hepatica newly excysted juveniles (NEJs) (56). However, peripheral
eosinophilia was not related to resistance to F. gigantica, suggesting
that this cell type is effective only within the gut or peritoneal cavity
but not the liver, at least in ITT sheep (67).

Peritoneal macrophages from ITT sheep have also been shown
to kill F. gigantica but not F. hepatica by ADCC (56, 68). This
mechanism occurs by attaching effector cells with NEJs in the
presence of serum from infected sheep. Macrophages participating
in the effective ADCC mechanism against F. gigantica showed

increased levels of superoxide radicals than those participating in
ineffective ADCC against F. hepatica, suggesting oxygen radicals
play a role in killing F. giganticaNEJs (56). It has been reported that
in calves protected by experimental vaccination, ADCC mediated
by macrophages is nitric oxide-mediated and induces a Th1
cytokine response relying on IgG2a (69). In vitro studies have
revealed that bovine macrophages were able to kill NEJs in the
presence of serum from infected animals. However, NEJs were
able to produce molecules such as a family of TGF-like molecules
(FhTLM) that significantly reduces ADCC. These macrophages
showed features of alternative activation with the expression of high
levels of IL-10 (70). In non-protected animals, it has been observed
that NEJs induce alternative (M2) activation of macrophages and
secrete the regulatory cytokines IL-10 and transforming growth
factor-beta (TGF-β) during the peritoneal migration (71–73). M2-
activated macrophages have an important role in tissue repair, but
they have a reduced capacity to kill NEJs (41, 70).

4.2 Adaptive immune response

B-cells have shown importance in Fasciola spp.-infected
animals as well as in those that have been previously vaccinated
(74), highlighting the increase in CD19+ B-cells at the level of
hepatic lymph nodes, increasing the recruitment of these cells (66).
In cattle, sheep, and goats, IgG1 is the dominant antibody, raising
at 4–5 weeks post-infection (wpi) and reaching peaks at 12–15
wpi (37, 75, 76). An increase in specific IgG2 has been shown
to correspond to vaccine-induced protection, and an increase in
IgG1 has been associated with a non-protective Th2 response (76–
78). IgA specific for fluke antigens has not been detected in serum
(75), but it has been found in the bile and liver of infected cattle
(51), where this immunoglobulin may participate in activating
eosinophils to kill NEJs by ADCC (49). Despite this interesting
suggestion, few studies have investigated the presence of IgA in bile
and liver in both experimental and natural infections.

The immune response exerted during the early stages of
fasciolosis is generally regarded as a mixed Th1/Th2 response
displaying an increase of certain cytokines such as IFN-γ, IL-4,
IL-10, and TGF-β. As the infection progresses, a Th2 response is
amplified in conjunction with suppression of Th1 inflammation,
thus allowing a prolonged infection that may be dependent on IL-
4 (79). In the early stages of sheep and cattle F. hepatica infection,
both IFN-γ and IL-10 are increased, confirming the initial mixed
immune response (75, 80, 81). When the infection progresses,
a Th2 response is amplified in conjunction with suppression of
Th1 response with reduced IFN-γ and increased IL-4 levels (79).
In the early stages of bovine F. hepatica infection, both IFN-γ
and IL-10 are increased, corroborating the idea that the initial
immune response is mixed (75). Buffaloes with both primary and
secondary infection of F. gigantica also showed a mixed Th1/Th2
response in serum with elevated IFN-γ, IL-4, IL-5, and TGF-β
during the early stages of infection. In contrast, when the infection
progressed, the Th2 response was dominant (82). The Th1/Th2
response was not the same in different compartments—in sheep
liver, IFN-γ increased during the early stages of infection (80, 81),
and it remained high during chronic states of infections (81). At the
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same time, in the hepatic lymph nodes, IFN-γ was reduced both
in infected and reinfected animals in acute and chronic stages of
infections (81). The high levels of IFN-γ reported in the liver during
acute and chronic stages of F. hepatica infections contrast with the
downregulation of this cytokine in PBMC (83) and hepatic lymph
nodes (80, 81) and could be due to a response to hepatic necrosis
caused by migrating or adult flukes and granulomata formation.

5 Immunomodulation strategies

The inflammatory reaction in fasciolosis is one of the points
to be treated primarily to understand the immune response and its
evasion. Sincemetacercariae are excysted in the gut lumen, NEJs are
exposed to the host immune response to kill the parasite. However,
Fasciola spp. has developed a variety of strategies to evade the host
response in the different compartments where they stay during the
early and late stages of infection, which allows the parasite to live for
years within the host. Some of these strategies may be considered
passive, as the protection conferred by the tegument, which consists
of a syncytial layer covering the entire body of the parasite, formed
by a plasma membrane that serves as a support for the outer
glycocalyx and a basement membrane that is connected through
channels. These structures allow the passage of the components
needed for the replacement of the tegument. The rapid replacement
of the glycocalyx that covers the tegument—which takes place
every 2 to 3 h—may also be an obstacle for products released
by inflammatory cells to reach the parasite tegument (84), which
is composed of at least 369 proteins. Additionally, the presence
of abundant N-glycosylated proteins and glycolipids has made it
difficult to characterize its physiological and immune regulatory
functions (85).

The majority of strategies used by the parasite to evade the
host response may be considered active since they imply the
release of a large amount of parasite molecules into the parasite
vicinity. Thesemolecules can be released free or within extracellular
vesicles (EVs) that are covered by a membrane, and they can be
internalized by the host cells, causing their modulation (84, 85).
EVs are produced by all developmental stages of F. hepatica, and
they are considered efficient transporters of parasite molecules to
different host compartments, preventing the action of antibodies
due to themembrane surrounding the parasitemolecules contained
in EVs (86). In EVs from F. hepatica, up to 618 proteins have been
identified, which gives us an idea of how important EVs are for the
parasite to interact with the host (87).

Fasciola spp. not only use proteins to modulate the host
immune response, but EVs also contain microRNAs (miRNAs),
molecules with modulating gene expression capacity. miRNAs are
abundant in both metacercariae, juvenile and adult F. hepatica

worms and may play a main role in regulating the developmental
and metabolic processes of the parasite, as well as in host-parasite
interactions (88–90). The miRNA content in the EVs is different
when they are produced by adult or juvenile parasites, leading
to different influences in the host cells. These data support the
hypothesis that miRNAs are the mediators of the previously
demonstrated immune modulatory function of the EVs. However,
current data do not allow a fundamental understanding of their

regulatory mechanisms in different processes of host-parasite
interaction (88–91).

Another mechanism used by liver fluke to survive, migrate,
obtain nutrients, and evade the immune response of the
host, is the release of excretory secretory products (ESP) (92).
FhESP from adult F. hepatica contains up to 160 different
proteins, including proteases such as cathepsins B and L (FhCB
and FhCL), leucine aminopeptidase and carboxypeptidase, fatty
acid-binding protein (FABP), and the F. hepatica saposin-like
protein (FhSAP), all of them necessary for its metabolism (93)
(Table 1). FhESP also contains numerous antioxidant enzymes
to protect the parasite from reactive oxygen species released
by eosinophils and macrophages, such as superoxide dismutase
(SOD), glutathione-S-transferase (GST), thioredoxin peroxidase
(TPx), and peroxiredoxin (Px) (Table 1). These enzymes not only
participate in inactivating reactive oxygen species but also in several
important metabolic processes important for parasite survival, such
as the excyst of the metacercariae, tissue migration, feeding, and
immune evasion (92, 105, 106). Some strategies that Fasciola spp.

use to evade the host response are discussed below.

5.1 Parasite movement

During the hepatic migration, it has been reported that some
larvae show a heavy inflammatory infiltrate, mainly composed of
eosinophils attached to the parasite cuticula and in the vicinity of
the parasite. However, in other larvae, no inflammatory reaction
was found in their vicinity, but necrotic tract and inflammation
were observed 2–3mm behind them (30, 36). It has been suggested
that when the parasites are disturbed by the inflammatory reaction,
they move ahead, leaving the inflammatory cells behind them (66).

5.2 Apoptosis of e�ector and immune cells

There is an intimate connection between the inflammatory
response and the immune response when suffering from fasciolosis.
The innate immune response determines the cell populations
involved in the inflammatory response by attracting and activating
inflammatory cells (107). Eosinophils play a key role in the host
response to Fasciola spp infection, as suggested by the rapid increase
of this cell type in blood, peritoneum, and liver during the early
migration of juveniles in sheep (35, 60), cattle (48), and rodents
(108). In vitro studies have reported that FhESP antigens from
F. hepatica induce apoptosis of rat eosinophils and macrophages
(109, 110). In vivo studies have described apoptosis in eosinophils
in the liver inflammatory infiltrate during the acute and chronic
phases of infection in sheep (65) and the migratory stage in a
relevant percentage of peritoneal macrophages, eosinophils, and
lymphocytes (50). Increased expression of the pro-apoptotic gene
in peripheral blood mononuclear cells of infected sheep and cattle
has also been reported (111, 112). More recently, the role of a
variety of F. hepatica molecules in the induction of apoptosis has
been investigated; some of them have been identified as glutathione
S-transferase Omega type (GSTO1), which down-regulated the
ratio of Bcl-2/Bax and induced increased expression of caspase-3
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TABLE 1 F. hepaticamolecules involved in host immune modulation/evasion.

Molecule Actions References

Antioxidants:

Peroxiredoxins
Antagonizes actions of ROS and induces M2 activation of macrophages

(71)

Thioredoxins (72)

Glutathione-S- transferase

Superoxide dismutase

Glutathione-S-transferase Induces IL-1β, IL-6, and TNF-α production (94)

Omega type (GSOT1)
Reduces IL-10 production

Induces of macrophage

Cysteine proteases

Cathepsins L, B Reduced eosinophils attachment (95)

Leucine aminopeptidase
Suppression of Th1, Th17 (96)

Responses, anticoagulants

Protease inhibitors:

Kunitz type molecule Suppression of Th1, Th17 responses (97)

Other molecules:

Fatty binding proteins
Reduction of pro-inflammatory cytokines (93, 98)

Induces apoptosis of dendritic cells (99)

Helminth defense molecule-1
Inhibits APC antigen presentation (100)

Inhibits release of IL-1β

Mucin-like peptides Increases Th1-type response (101, 102)

TGF-like molecule Induces M2-activated macrophages (70)

Serpin Prevents the activation of the Lectin complement pathway (103)

Cystatin
Inhibits NO, IL-6, TNF-α, and promotes the expression of TNF-β and IL-10 (104)

Induces apoptosis of murine macrophages (104)

and apoptosis of macrophages in vitro (94). Recombinant cystatin
from F. hepatica (rFhCystatin) has been shown to induce apoptosis
ofmurinemacrophages (104), and fatty acid binding protein (Fh12)
induced apoptosis of murine dendritic cells in in vitro studies (99).

5.3 Modulation of Th1/Th2 and Th17
responses

The immune response mounted during the early stages of
fasciolosis is generally a mixed Th1/Th2 response with elevated
levels of cytokines such as IFN-γ, IL-4, IL-10, and TGF-β.
As the infection progresses, a Th2 response is amplified in
conjunction with the suppression of Th1 cytokine production,
particularly IFN-γ, which facilitates parasite survival in mice,
cattle, and sheep infected with F. hepatica (41, 79–81, 113).
A similar Th1/Th2 dynamic has been reported in buffaloes
infected with F. gigantica (82). It has been reported that a
variety of parasitic molecules are able to produce modulation of
the Th1/Th2 host response; thus, rFhCystatin induced reduced
production of IL-6 and TNF-α and increased production of

IL-10 and TGF-β in murine macrophages (104). F. hepatica

Kunitz-type molecule induced suppression of the Th1 and Th17
responses in murine and human dendritic cells (DC) in in vitro

studies (97).

5.4 Modulation of macrophage and
antigen-presenting cell functions

In the early stages of F. hepatica infection, the recruitment
of macrophages and alternative (M2) activation in the peritoneal
cavity has been reported in rats at 24 h post-infection (hpi) (71)
and at 48 hpi in mice (114). Moreover, FhESP induced M2
activation of peritoneal macrophages in mice (114). In sheep,
marked M2 activation has been described by gene expression
in PBMC at 7 dpi (83), although peritoneal sheep macrophages
showed M2 activation at 24 hpi (73). In cattle, F. hepatica also
induced M2-activation of macrophages (115, 116). M2-activated
macrophages participate in tissue repair, but they show limited
ability to control helminth infections (117). F. hepatica possesses
FhTLM, which is highly expressed in NEJs and unembryonated
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FIGURE 1

Scheme of immune responses exerted at early and late stages of F. hepatica infections, immune responses induced by protective and unproductive
vaccines against F. hepatica, and strategies to develop e�ective vaccines. Created with BioRender.com.

eggs. It has been reported that FhTLM induces the differentiation
of the monocyte-derived macrophages to M2 activation with
increased production of IL-10, arginase-1, mannose receptor, and
PD-L1 (70).

It has been reported that different antigenic preparations of
this parasite, such as total extract, F. hepatica tegumental antigen
(FhTeg), and Fasciola hepatica ESP, decrease the activation state
of dendritic cells (DCs) in mice (118–121), and F. gigantica ESP
induces the modulation of buffalo DCs (122). More specifically, it
has been reported that FhTeg induces DC modulation, provoking
the absence of T-cell Th1 cytokine response and proliferative
activity (38). Glycan products produced by F. hepatica have also
been reported to induce modulation of DC maturation, resulting
in increased production of IL-10 and IL-4 during infection,
inducing a Th2/regulatory-polarized immune response (40, 79,
113, 123, 124). In addition, F. hepatica cathepsin L1 (FhCL1),
glutathione S-transferase (FhGST), and Kunitz-type molecule
participate in the modulation of DCs, leading to the suppression
of the adaptive immune responses, Th1, and/or Th17 (40, 97).
F. hepatica-infected sheep showed increased numbers of DCs in
the hepatic lymph nodes but reduced expression of MHC class
II and CD83, suggesting suppression of the antigen-presentation
process in lymphocytes both in the early and late stages of
infection (125).

5.5 Expansion of T regulatory cells

F. hepatica-infected sheep and goats showed expansion of T
regulatory cells (Treg) Foxp3+ during early and late stages of
infection in the liver and hepatic lymph nodes (50, 81, 126).
Moreover, the increase of Foxp3+ cells was more severe in the
vicinity of hyperplastic bile ducts during chronic states of infections
(50). This expansion of Foxp3+ Treg has been related to IL-10 and
parasite survival (127, 128).

6 Vaccine development

Over the past two decades, there have been considerable
advances in identifying potential vaccine molecules for the control
of fasciolosis in livestock. However, despite some promising results
with some vaccine candidates in ruminants, a consistent efficacy
required for commercialization has not yet been reached (13). A
major obstacle to developing vaccines for fasciolosis is the immune
suppression/modulation induced by Fasciola spp. that prevents the
induction of a protective immune response (Figure 1), evidenced
by the lack of immunity observed in naturally and experimentally
infected sheep (31, 70, 129). In cattle, natural or experimental
infections have been shown to induce certain protection against
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TABLE 2 Summary of fasciolosis single vaccines in livestock.

Antigen (µg
per dose)

Species
(sex_age)/No.
per group

Admin. Route
(no. doses)/time

Adjuvant E�cacy† References

Cathepsin L

rFhCL1 (200) Cattle (m_3-8mo.)/13 s.c.(2)/3w MontanideTM ISA 70VG or
206VG

48% (69)

rFhCL1 (100) Goat (m_4mo.)/10 s.c.(2)/4w QuilA ns (30)

rFhpCL1 (100) Sheep (f_4-6mo.)/5 s.c.(2)/4w QuilA ns (138)

CL1 mimitopes (§) Sheep (nd_9mo.)/5 s.c.(2)/2w None 51% (139)

CL1 mimitopes (§) Sheep (m_9mo.)/5 s.c.(2)/4w QuilA 57.5% (140)

CL2 mimitopes (§) Sheep (m_9mo.)/5 s.c.(2)/4w QuilA ns (140)

CL1 mimitopes (§) Goat (m_9mo.)/5 s.c.(2)/4w QuilA 55.4% (141)

CL1 mimitopes (§) Goat (m_9mo.)/5 s.c.(2)/4w QuilA 70.4% (141)

CL2 mimitopes (§) Goat (m_9mo.)/5 s.c.(2)/4w QuilA ns (141)

CL1 mimitopes (§) Goat (nd_6mo.)/6 s.c.(2)/4w QuilA 46.9-79.5% (134)

Cathepsin

rCPFhW (300) Sheep (m&f_5mo.)/6 oral(2)/4w None 35.5% (142)

rCPFhW (500) Cattle (m&f_5-7mo.)/6 oral(2)/4w None 56.2% (142)

Leucine Amino-Peptidase (LAP)

rFhLAP (100) Sheep (m_12mo.)/10 s.c.(2)/4w FCA/FIA, Adyuvac 50,
Alum, DEAE-D, or Ribi

49–89% (143)

rFgLAP (150&300) Buffalo (nd_8-10mo.)/7 i.m.(3)/3w MontanideTM M-70 VG ns (144)

Fatty acid binding protein (FABP)

rFh15 (150) Sheep (nd_nd)/6 s.c.(2)/5d ADAD (Qs, PAL,
MontanideTM ISA763A)

43% (145)

rFgFABP (400) Buffalo (nd_8-10 mo.)/5 s.c.(3)/3w FCA/FIA 35% (146)

rFgFABP (400) Buffalo (nd_8-10 mo.)/7 i.m.(3)/3w MontanideTM M-70 VG ns (147)

rSm14 (100) Goat (m_6mo.)/7 s.c.(2)/4w QuilA ns (148)

Glutathione S transferase

rFgGST (400) Buffalo (nd_8-10 mo.)/7 i.m.(3)/3w MontanideTM M-70 VG ns (147)

rFhGST (100) Goat (m_4mo.)/10 s.c.(2)/4w QuilA ns (36)

Helminth defense molecule

sMF6p/FhHDM1 (100) Sheep (f_4-6mo.)/5 s.c.(2)/4w QuilA 6% (138)

nMF6p/FhHDM1
(100)

Sheep (f_4-6mo.)/5 s.c.(2)/4w QuilA 15% (138)

Thioredoxin

rFhTGR (300) Cattle (nd_nd)/8 s.c.(3)/4w FIA 8.2% (149)

rFhTGR (400) Cattle (nd_nd)/6 s.c.(2)/4w Adyuvac50 3.8% (149)

rFhTGR (400) Cattle (nd_nd)/6 s.c.(2)/4w Alum 23% (149)

Glutathione reductase phospho-glicerate kinase

cFhPGK/pCMV (100) Sheep (m_5mo.)/8 i.m. (3)/4w MontanideTM ISA 206 ns (150)

cFhPGK/pCMV (100) Sheep (m_5mo.)/6 i.m. (3)/4w CTLA-4 ns (150)

14-3-3z

r14-3-3z (100) Sheep (f_6mo.)/8 s.c.(2)/4w MontanideTM ISA 71 VG ns (151)

Tetraspanin

rFhTSP2 (200) Cattle (f_6mo.)/6 s.c.(2)/4w FCA/FIA ns (152)

†percentage expressing only significant efficacy; §1 × 1013 phage particles; ADAD, Adaptation adjuvant (ADAD) system; c, cDNA; d, days; DEAE-D, Diethylaminoethyl-dextran; f, female;

FCA/FIA, Freund’s complete adjuvant and Freund’s incomplete adjuvant; Fh, Fasciola hepatica; Fg, Fasciola gigantica; i.m., intramuscular; m, male; mo., months; n, native; nd, not defined; ns,

non-significant; PAL, the hydroalcoholic extract of P. leucotomos; Qs, saponin from Q. saponaria; r, recombinant; Ribi, MPL + TDM + CWS Adjuvant System (Sigma–Aldrich); s, synthetic;

s.c., subcutaneous; w, weeks apart between doses.
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TABLE 3 Summary of fasciolosis combined vaccines in livestock.

Antigens (µg
each per
dose)

Species
(sex_age)/No.
per group

Admin. Route
(no. doses)/time

Adjuvant E�cacy† References

CL1+ CL2
mimitopes (§)

Sheep (m_9mo.)/5 s.c.(2)/4w QuilA ns (140)

CL1+ CL2
mimitopes (§)

Goat (m_9mo.)/5 s.c.(2)/4w QuilA 32.4% (141)

rmFhCL1+
rmFhCL3 (200)

Cattle (m_6-8mo.)/5 s.c.(2)/3w ZA1 37.6% (153)

rmFhCL1+
rmFhCL3 (200)

Cattle (m_5-11mo.)/5 s.c.(2)/2w ZA1 ns (153)

rCatL5+ rCatB2
(150)

Sheep (m_5mo.)/8 i.m.(3)/4w QuilA 20.9% (154)

rCatL5+ rCatB2
(75)

Sheep (m_5mo.)/8 i.n.(3)/4w CpG-ODN+

ISC-adjuvant
40.5% (154)

rFhLAP+

chCL1(100)
Sheep (m_8mo.)/5 s.c.(2)/2w QuilA 25.5% (155)

rFhLAP+

chCL1(200)
Sheep (m_8mo.)/5 s.c.(2)/2w QuilA 30.7% (155)

rFhLAP+

chCL1(400)
Sheep (m_8mo.)/5 s.c.(2)/2w QuilA 40.6% (155)

rFhTeg1+ rFhTeg5
(200)

Cattle (f_6mo.)/7 nd(2)/4w FCA/FIA ns (156)

rFhCL1+ rFhHDM
+ rFhLAP+

rFhPrx (100)

Sheep (m_8mo.)/10 s.c.(2)/4w MontanideTM ISA 61 37.2% (157)

rFhCL1+ rFhHDM
+ rFhLAP+

rFhPrx (100)

Sheep (m_8mo.)/10 s.c.(2)/4w Alum ns (157)

rFhStf1+ rFhStf2
+ rFhStf3+
rFhKT1 (100)

Sheep (f&m_8mo.)/14 s.c.(3)/3w MontanideTM ISA 61 17.4% (15)

rFhStf1+ rFhStf2
+ rFhStf3+
rFhKT1 (100)

Sheep (m_8mo.)/13 s.c.(3)/3w MontanideTM ISA
61+CpG

0% (15)

rLTB-rFhTSP2
(451)

Cattle (f_6mo.)/6 i.n.(2)/4w None ns (152)

†percentage expressing only significant efficacy; §1 × 1013 phage particles; CatL5, Cathepsin L5; CatB2, Cathepsin B2; CL1, Cathepsin L1; CL2, Cathepsin L2; CpG-ODN, CpG-

oligodeoxynucleotide; ch, chimeric; d, days; f, female; FCA/FIA, Freund’s complete adjuvant and Freund’s incomplete adjuvant; Fh, Fasciola hepatica; HDM, helminth defense molecule; i.m.,

intramuscular; i.n., intranasal; ISC-adjuvant by Zoetis; KT1, K unit 1; LAP, Leucin aminopeptidase; LTB, Heat labile enterotoxin B subunit; m, male; mo., months; nd, not defined; ns, non-

significant; Prx, Peroxiredoxin; r, recombinant; rm, recombinant mutant; s, synthetic; s.c., subcutaneous; Stf, Stefin; Teg1, Tegumental glycoprotein 1; Teg5, Tegumental glycoprotein 5; TSP2,

Tretaspanin 2; w, weeks apart between doses.

reinfection, which is maintained long-term (up to 26 weeks post-
infection). It has been attributed to the severe fibrosis induced by
the primary infection that makes the hepatic migration difficult
during the secondary infection (130) or by an increase of intestinal
eosinophil and mucosal mast cells (47). Some studies have also
reported evidence that protection against F. hepatica is inducible
in rats, sheep, or cattle by passive transfer of immune sera and
cells (131). However, other studies have reported no resistance
to reinfection measured by fluke burdens (75). Moreover, no
differences in fluke burdens, fecal egg counts, humoral response
(specific IgG1 and IgG2), and cell-mediated immune response
(IFN-γ production) were reported in calves challenged with F.

hepatica after single or trickle infection (48, 57, 75) suggesting
that reinfections do not induce protection. Experimental studies

reported no protection against reinfection in sheep (35, 81, 132)
and goats (37), although the host response was different; thus,
primo-infected sheep showed a mixed Th1/Th2/Th17 response
while reinfected ones presented amore Th2 polarized response (81)
and a lower humoral response (132).

It has been reported that in protective vaccines in sheep (133)
and goats (134), a mixed Th1/Th2 response was found with higher
levels of IFN-γ and lower levels of IL-4 in vaccinated groups than
in the infected control group (133). In sheep immunized with
a non-protective vaccine, the host immune response showed a
predominantly Th2 profile during chronic stages of the infection,
similar to that found in non-vaccinated and infected animals (80).
The challenge is to identify the specific antigens that are the
targets of this protective immunity and incorporate these in vaccine
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formulations that induce a mixed Th1/Th2 response to enhance
vaccine efficacy (135). It has been estimated that a vaccine with an
efficacy of 50–60% in fluke reduction would likely be beneficial in
numerous countries to significantly reduce economic losses, and it
also would have a positive impact on epidemiology by reducing eggs
in pasture (13).

Several strategies have been used to design vaccine candidates
for fasciolosis in livestock. The first vaccine trials used native
proteins isolated using conventional biochemical methods from
the excreted/secreted (ES) proteins of adult parasites (136, 137).
Despite good protection being found in sheep and cattle in these
trials using native FhCL1 and FhGST, the use of native proteins
in a commercial vaccine for fasciolosis in livestock is not feasible,
which is why the majority of subsequent vaccine trials have been
carried out using recombinant proteins of different stages of the
parasite (13). Some vaccine trials using recombinant proteins
reported high protection of up to 89% in fluke reduction (Tables 2,
3); however, this high protection has not been reproducible in
different labs and conditions. A combination of recombinant
vaccines (cocktail vaccines) has also been used recently with
variable efficacy (Table 3). The majority of vaccine trials have used
the subcutaneous or intramuscular administration route. However,
a few trials have used mucosal vaccine delivery with promising
results. For instance, Norbury et al. (154) administered a cocktail
vaccine containing FhCL5 and FhCB2 by an intranasal method in
sheep, obtaining a 40.5% fluke reduction and a 92% egg viability
reduction, while the same vaccine administered intramuscularly
did not induce protection. The oral route has also been used to
administer freeze-dried transgenic lettuce expressing the cysteine
proteinase of F. hepatica (CPFhW) in sheep and cattle, inducing
significant protection in cattle (56.2%) and 35.5% fluke reduction
(not significant) in sheep (142).

Most vaccine trials in ruminants have used proteases,
antioxidant enzymes, or fatty acid-binding proteins as antigens
(Tables 2, 3). However, these proteins are quite abundant in Fasciola
spp, and blocking one or several of them by a vaccine probably
does not cause serious problems to the worm since it has other
proteins with similar functions. This might be a reason for the
limited efficacy obtained in the numerous vaccine trials conducted
with these antigens in ruminants.

7 Conclusion and remarks

The slow progress to date in developing a protective vaccine to
be used in the control of fasciolosis in livestock suggests that new
approaches should be investigated, such as the use of new antigens,
evaluation of immunity induced by recombinant proteins, use of
different adjuvants, formulations, and delivery systems. Despite
important advances in the knowledge of host-parasite interactions

in fasciolosis, a more rational vaccine candidate design requires a
deeper knowledge of the mechanisms and molecules involved in
host-parasite cross-talk in relevant target host species (sheep, cattle,
goats, buffalo). The progress of the -omics technologies and the
immunoinformatic/immunoproteomic approaches should provide
useful data in the next few years. An example is the new proteomic
technologies applied to NEJs after crossing the gut (158) or during
the early stages of hepatic migration, which may be useful to select
new vaccine candidates directed against NEJs, a stage of the parasite
that it is more exposed to the host immune system than adult ones
located within the bile ducts.
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