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ABSTRACT 1 

 2 

Immunotherapy is revolutionizing cancer treatment, however, complete responses are 3 

achieved in only a small fraction of patients and tumor-types. Thus, there is an urgent 4 

need for predictive preclinical models to drive rational immunotherapeutic drug 5 

development, combinations and minimize failures in clinical trials. Humanized mouse 6 

models have been developed to study and modulate the interactions between 7 

immune components and tumors of human origin. In this review, we discuss recent 8 

advances in the "humanization" of mice to improve the quality of immune 9 

reconstitution, the new insights gained into the basic mechanisms and preclinical 10 

evaluation of onco-immunotherapies, and also the limitations, which constitute the 11 

drivers for the improvement of the models and the increase of their translational 12 

power. 13 
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Immunotherapy in oncology: the need for preclinical models 14 

 15 

Immunotherapies of cancer represent a significant leap forward in the successful 16 

treatment of cancer with unprecedented long-term survival rates in a growing number 17 

of indications [1]. However, many patients still do not benefit from these 18 

immunotherapies, leading to an increased focus on identifying novel immunotherapies 19 

or combinations that can prolong responses or convert non-responders. To this effect, 20 

there is an increasing demand for more predictive preclinical models to drive rational 21 

immunotherapeutic drug development, combinations, and minimize failures in clinical 22 

trials.  23 

 Rodent models have long been key tools to carry out biomedical research. 24 

Given the need of experimental models recapitulating human biology, mice represent 25 

one of the most widely used sources of animal models. The four major approaches 26 

with mouse models used to assess immunotherapies today include: syngeneic mouse 27 

tumor models with fully immune-competent hosts, genetically engineered mouse 28 

models (GEMMs), chemically induced models and “humanized” mouse models. While 29 

the first three approaches are widely used, one major drawback is that they rely on a 30 

mouse immune system, which cannot always recapitulate the human immune 31 

response. Preclinical models recapitulating a functional human immune system are 32 

therefore highly desirable. 33 

 Humanized mouse models, are composed of three elements: 1) 34 

immunodeficient host mice, 2) human immune cells, and 3) human tumor cells. This 35 

review discusses the advantages and caveats of these humanized mouse models to 36 

study cancer immunotherapy. 37 
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 38 

 39 

1. Immunodeficient host mice 40 

 Since the discovery of scid (severe combined immunodeficiency) mutated mice 41 

in the 1980s [2] and their ability to host human peripheral blood mononuclear cells 42 

(PBMC) [3], fetal hematopoietic tissues [4] or hematopoietic stem cells (HSC) [5], 43 

immunodeficient mice have steadily become more sophisticated. The study of 44 

hematopoiesis has benefited from models using immunodeficient mice, just as the 45 

evaluation of infectious diseases, auto-immunity and GvHD (Graft versus Host Disease) 46 

[6,7]. Nevertheless, for cancer immunotherapy, a complication arises, as the models 47 

must simultaneously tolerate the transplantation of human tumors and human 48 

immune cells.  49 

The first model that allowed human tumor transplantation was the nude mouse (see 50 

glossary), which lacks T cells [8]. But since then, it has become clear that the more 51 

immunodeficient the mice, the better the engraftment efficacy, especially in models 52 

lacking NK cell activity [9]. The same applies for the reconstitution of the human 53 

immune system. Xeno-reactivity towards the human graft, whether tumor or 54 

hematopoietic cells, is due to the recognition of the human cells by the mouse innate 55 

and adaptive immune systems as foreign. The first approach to avoid xeno-reactivity 56 

was the generation of mice lacking T and B lymphocytes due to mutations of immune-57 

related genes: 1) the protein kinase DNA-activated catalytic polypeptide (Prkdc) gene 58 

mutation (that underlies the scid phenotype) which affects DNA repair [2], and 2) the 59 

recombination activating genes 1 and 2 (Rag-1 or Rag-2) mutations [10]. The Rag 60 

mutations disrupt the V(D)J recombination necessary for T and B receptor generation, 61 
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leading to a block in T and B cell development and survival. The engineering of these 62 

mice defective for adaptive murine immunity, allows human hematopoietic 63 

reconstitution, although with low and variable levels of engraftment.  64 

By comparing human immune reconstitution efficiencies in different mouse 65 

backgrounds, the SCID mutation on the NOD (Non Obese Diabetic) background 66 

showed a clear advantage. The difference observed was driven by accumulated defects 67 

in NK cells, macrophage activity and in the complement system, allowing for at least a 68 

5 fold better human immune reconstitution compared to the original CB-17 SCID mice 69 

[6]. The next step in significantly improving the quality and levels of human immune 70 

system reconstitution was achieved by knocking-out the common -chain of the IL-2 71 

receptor [11,12] (IL-2Rc; shared by the receptors of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-72 

21), allowing for the loss of murine NK cells. The combination of the SCID mutation or 73 

RAG KO with the IL-2Rc KO gave rise to a “new generation” of severely 74 

immunodeficient mouse models, namely NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) [6], NOG 75 

(NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) [6] and BRG (BALB/c Rag2-/- IL-2Rc
-/-) mice [13] .  76 

Interestingly the C57BL/6 mice carrying the same Rag and c KO are still capable 77 

of rejecting xeno-grafted human cells [12,14], highlighting the implication of other 78 

rejection mechanisms in that particular genetic background. Takenaka et al. [14] 79 

demonstrated that the NOD’s genetic background, but not the C57BL/6’s, codes for an 80 

allele of sirp that strongly interacts with human CD47 molecule, in contrast to other 81 

mice strains [13,14]. Indeed the sirp gene is essentially expressed on myeloid cells 82 

and codes for an inhibitory immunoglobulin superfamily transmembrane protein 83 

(CD172a) that acts as a “don’t eat me signal” when interacting with CD47, its 84 

ubiquitously expressed cognate ligand. 85 
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These findings led to the development of the “next generation“ of humanized 86 

immune system (HIS) mice in which, the transfer of the NOD.sirp allele (BALB/c Rag2-
87 

/- IL-2Rc
-/- NOD.sirp: BRGS) [13] or even a human sirp (SRG) [15] to other genetic 88 

backgrounds, increased their tolerance to human hematopoietic stem cell xeno-graft 89 

and justified the noted difference between the C57BL/6 and other mouse genetic 90 

backgrounds. These new HIS mice showed more robust reconstitution levels and 91 

reproducibility, and allowed the initial studies on immuno-oncology therapies, which 92 

nevertheless highlighted an important flaw: immune reconstitution is not optimal and 93 

the human myeloid compartment is still largely underrepresented. In the next 94 

paragraphs we will describe the main approaches used for immune cell reconstitution 95 

in HIS models, and then discuss the novel developments aiming at improving 96 

hematopoietic reconstitution in the host mice. 97 

 98 

2. Mice humanization 99 

Two major sources of human immune cells are currently used for the 100 

establishment of a functional human immune system: i) human peripheral blood 101 

mononuclear cells (PBMCs), and ii) human CD34+ HSC; which are used in three types of 102 

models with their own advantages and limitations: Hu-PBL (peripheral blood 103 

lymphocytes), Hu-CD34+ (also named Hu-SCR for “scid-repopulating cell”) and BLT 104 

mice (bone marrow-liver-thymus), described in detail below (Figure 1A, Key figure).  105 

 106 

2.1. PBMCs: Hu-PBL model 107 

The simplest and most economic version of humanization consists in engrafting 108 

human leukocytes in immunodeficient mice, known as Hu-PBL. This approach was first 109 
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described in 1988 using CB17-scid mice [3] and has been widely used for the study of 110 

human immune responses in autoimmunity and infectious diseases.  111 

Human leukocytes can be obtained from PBMCs, spleen or lymph nodes. 112 

Typically, PBMCs are obtained from healthy donors, which are not MHC (major 113 

histocompatibility complex)-matched with the tumor graft leading to variations in 114 

intrinsic allogenicity. In our hands, including in each experimental group mice 115 

reconstituted each with a different PBMC donor is an appropriate strategy to 116 

compensate for donor variability. PBMCs can be injected intravenously (i.v.) (most 117 

routinely used), intraperitoneally (i.p.), or intrasplenically into adult mice. 118 

Among the PBMC inoculum, besides mature human leukocytes, there are a few 119 

HSCs, which are unable to colonize the murine host due to the lack of a proper 120 

microenvironment. Very low levels of human B cells and myeloid cells are observed, 121 

probably due to the lack of the human cytokines required for their survival [16–18]. 122 

Interestingly, low levels of human IL-1β, GM-CSF, IFN-, IL-10, IL-2 and IL-5 have been 123 

detected in this model, which may contribute to the survival of the human cells [19]. 124 

Thus, T cells are the main immune subpopulation that is present and remains 125 

functional in the murine host. In our experience, an injection of 20 x 106 PBMCs 126 

typically results in ~50% of human CD45+ cells in the murine peripheral blood after 4 127 

weeks of engraftment. Around 90% of the human CD45+ cells are CD3+ T cells with an 128 

activated/memory phenotype and a roughly 1:1 CD4:CD8 ratio, which is maintained 4-129 

6 weeks after PBMC injection (Figure 2A). The main caveat of this model is that it 130 

invariably leads to lethal xeno-GvHD [3,11,18], which can be evaluated by body weight 131 

loss [20] (Figure 2B). The onset of GvHD is directly correlated with the degree of 132 

human T cell engraftment, and previous sub-lethal irradiation accelerates its onset 133 
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[18]. Thus, the therapeutic observational window is restricted to a few weeks (usually 134 

4-6 weeks after PBMCs injection) before evident signs of GvHD [11,18]. Interestingly, 135 

CD4+ T cells seem to play a major role in the induction of GvHD in Hu-PBL mice, as 136 

depletion of CD4+ cells from PBMCs before inoculation alleviates clinical symptoms 137 

and extend mice survival [21]. 138 

 139 

 2.2. CD34+ stem cells: Hu-CD34+ and BLT models 140 

Another approach to humanization is by the injection of human CD34+ HSCs 141 

into newborn or adult immunodeficient recipients: Hu-CD34+ model [9], (Figure 1A). 142 

The success of engraftment is highly variable, depending on i) HSC source: human 143 

umbilical cord blood [11,12], adult bone marrow [22], granulocyte colony-stimulating 144 

factor-(G-CSF) mobilized PBMCs [23] or fetal liver [22]; ii) route of injection i.v. or 145 

intrafemoral in adult mice; and i.v., intracardiac or intrahepatic in newborn mice; and 146 

iii) age, strain and sex of recipient: newborn or young mice (up to 4 weeks of age) 147 

allows an accelerated T-cell development in comparison to adult mice [24]. This 148 

approach requires sub-lethal -irradiation of the host mice to deplete mouse HSCs and 149 

facilitate human HSC engraftment. Alternatives to irradiation have been reported, 150 

including busulfan [25] and antibody-mediated deletion of mouse progenitor cells [26].  151 

Fetal liver has also been used extensively for making the “BLT model” (for 152 

“bone marrow/liver/thymus”) (Figure 1A). This model is generated by the 153 

transplantation of human fetal liver and thymus tissue into the sub-renal capsule, 154 

simultaneously with the i.v. injection of autologous CD34+ cells from the same fetal 155 

liver into  adult immunodeficient mice [27]. 156 
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In the Hu-CD34+ model, all human hematopoietic lineages are represented, but 157 

not all are functionally fully developed [11]. The majority of the human B cells are 158 

immature CD5+ B cells, CD4+ T cells show a memory phenotype, and both T and NK cells 159 

display some functional impairment [28,29]. The differentiation of the myelo-160 

monocytic lineage is also impaired and monocytes are phenotypically immature [30] 161 

(Figure 2C). Although the mouse thymus supports human T cell development, the 162 

question of MHC restriction is still unclear. Halkias et al have shown that the human 163 

thymocytes have similar behavior in mouse and human thymic environments and that 164 

they serially interact with human hematopoietic cells as well as with mouse tissue in 165 

HIS mice thymus [31]. Furthermore, Watanabe et al. [29] have shown that the mouse 166 

thymic environment is essential for human T cell development but that the mouse I-A 167 

MHC molecule is not, suggesting that human CD4+ TcR repertoire is possibly restricted 168 

by HLA class II molecules as well as by murine MHC.  169 

In the BLT model, the transplanted human fetal liver and thymus provide a 170 

human thymic microenviroment that supports the development of human T cells and 171 

their selection on human MHC molecules. However, a positive selection in the thymus 172 

occurs exclusively on human cells, and T cells with affinity for mouse MHC are not 173 

eliminated, with the consequence of higher incidence of GvHD than seen in other 174 

CD34+ HSC engrafted models.  175 

 Overall, although these models constitute a great advancement, some aspects 176 

need to be improved, like the incomplete engraftment of immune cells, the xeno-177 

GvHD and the lack of human cytokines and growth factors. The table below (Table 1) 178 

compares the different features of Hu-PBMC and Hu-CD34+ models. 179 

 180 
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3. Tumors of human origin: tumor cell lines and PDXs  181 

Both human cell lines and patient-derived-xeno-grafts (PDX) represent relevant 182 

preclinical tools for immunotherapy assessment. Importantly, various criteria related 183 

to the tumor molecular features and to the experimental design should be taken into 184 

account when choosing cell lines or PDXs (reviewed in Table 2). 185 

PDXs have been associated with a high predictive value for therapeutic 186 

responses to oncology treatments in cancer patients, including chemotherapy and 187 

targeted therapy [32]. Moreover, PDXs have been used for in vivo therapeutic 188 

screening of targeted therapies using a single-mouse schedule [33]. Such an approach, 189 

which decreases the number of mice, and costs, is able to (i) identify the best 190 

treatment or combination of treatments among all tested in a panel of PDXs, and (ii) 191 

validate the efficacy of tested therapies in selected target-specific tumors. 192 

Nevertheless, such pre-clinical studies have not yet been developed for immune 193 

therapies. Moreover, evaluation of radio, chemo and targeted therapies in HIS mice, in 194 

the context of a functional immune system, could be of high interest.  195 

One advantage of PDXs is that they can allow a personalized therapeutic 196 

management of cancer patients in the so-called “AVATAR” approach, where a patient’s 197 

tumor is grafted into immunodeficient mice and, after in vivo growth and molecular 198 

characterization of the tumor, a pharmacological experiment is performed to assess 199 

the efficacy of treatments that could be, in a second time, administered to the PDX-200 

originating patient (Figure 1B) [34]. Theoretically, HIS mice could also be used as 201 

avatars for the evaluation of immunotherapies. Along this line, Jespersen et al have 202 

recently shown that adoptively transferred TILs were able to kill autologous PDXs 203 

(provided human IL-2 was continuously supplied), and that for the few patients tested, 204 
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eradication of the tumor was correlated with the objective response to adoptive T cell 205 

therapy in the clinic [35] 206 

 207 

4. New developments in HIS mouse models  208 

The previously described models are limited in their ability to sustain functional 209 

myeloid, NK and B cell populations, which are required for the evaluation of cancer 210 

immunotherapies. Thus, we will describe here the different approaches that have been 211 

developed to tackle this issue, and are summarized in Table 3. 212 

 213 

 4.1- Niche preparation for HSC engraftment  214 

HIS models require myeloablative conditioning of the host mice before 215 

transplanting human HSCs [23] to create the required space in the host’s bone marrow 216 

niche for human HSC engraftment. Of note, susceptibility to irradiation is strain 217 

dependent: the scid mutation leads to increased sensitivity to radiation-induced DNA 218 

damage, than the Rag1null or Rag2null mice [36]. Recently, the c-kit (CD117) mutant 219 

mouse has been identified as a suitable host for human HSC engraftment without the 220 

need for prior irradiation. As c-kit is involved in HSC maintenance and differentiation, 221 

mice harboring the w41 mutation in c-kit (NSGW41 mice) have reduced HSC numbers, 222 

which translates into lower competition and better engraftment of human HSCs 223 

[37,38]. The NSGW41 mice also sustain more efficient human platelet and erythroid 224 

development [37], relevant for the evaluation of platelet activity in the tumor setting. 225 

Dendritic cells (DCs) also show impaired reconstitution in HIS mice. Knocking-out 226 

Flt3 (Fms-like tyrosine kinase 3), which essential for DC development, leads to 227 

improved human DC development at the expense of the murine counterpart [39]. The 228 
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resulting humanized BRGF (BALB/c Rag2-/- IL-2Rc
-/- Flt3-/-) mouse shows better human 229 

monocyte and DC development compared to its parental BRG strain, and improved DC 230 

homeostasis results in increased numbers of human NK and T cells [39]. Transferring 231 

the Flt3 KO on the BRGS strain further increases NK cell levels and can even allow 232 

limited study of human ILC (Innate lymphoid cell) development [40].  233 

 234 

4.2- Improvement of myeloid and Natural Killer cell reconstitution 235 

As mentioned previously, human myeloid cells are underrepresented or have 236 

maturation and functional defects in the current generation of HIS models [30]. One 237 

strategy to increase the number and maturation of myeloid cells is the hydrodynamic 238 

injection of plasmids coding for human IL-4, GM-CSF or Flt-3 ligand, or M-CSF [41]. HIS 239 

mice of different genetic backgrounds have been knocked-in with human SCF, GM-CSF, 240 

IL-3, TPO or SIRPα. In the NOD background, NSG mice have been knocked-in with 241 

human SCF (c-kit ligand), GM-CSF and IL-3 (NSG SGM3) [42] and NOG mice with human 242 

GM-CSF and IL-3 (NOG-EXL) [43]. Also, human IL-3 and GM-CSF have been introduced 243 

in the BRG background [44]. All these strategies show significant increases in the 244 

numbers of myeloid cells and in the function of macrophages [43,44] compared to 245 

parental strains.  246 

In parallel, the BRG mouse has been knocked-in with the human 247 

thrombopoietin gene (TPO), which resulted in higher human HSC engraftment and 248 

better myeloid development. Subsequently, the BRG-human TPO mice was knocked-in 249 

with the NOD.sirp, hIL-3 and human M-CSF genes, giving rise to the MISTRG mice (M-250 

CSF, IL-3, Sirp, TPO, Rag2-/- IL-2Rc
-/) [45]. MISTRG mice support superior levels of 251 

myeloid development, increased differentiation of monocytes, dendritic cells and 252 
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macrophages, and higher NK development. However these mice: i) develop anemia 253 

[45], ii) have shorter lifespans, and iii) exhaust the human graft 3-4 months after 254 

transplantation.  255 

Supplementation with human IL-2 and/or IL-15 has been attempted to increase 256 

NK cell reconstitution. Injection of a DNA vector coding for IL-15 [41] or administration 257 

of IL-15/IL-15Rα [46] increased human NK cell numbers in immunodeficient mice. 258 

Interestingly, Katano and colleagues developed two mice with favored NK cell 259 

differentiation: the NOG-IL2 Tg, expressing human IL-2 [47] and the IL-15-NOG Tg , 260 

expressing human IL-15 [48]. Also, Flavell’s team generated the BALB/c Rag2-/- IL-2rc -261 

/- knock-in for human SIRPα and IL-15 (SRG-15) [49], which showed enhanced 262 

development and function of NK cells, CD8+ T cells and tissue-resident ILCs.  263 

 264 

4.3- MHC manipulation 265 

To avoid xeno-GvHD, which can be acute in Hu-PBL mice, or chronic in Hu-SRC 266 

mice, different strategies have been developed based on the genetic manipulation of 267 

the MHC molecules. Administration of PBMCs into NSG mice lacking mouse class I 268 

and/or class II MHC molecules, such as NSG knocked-out for mouse beta-2 269 

microglobulin (β2m), a structural component of the MHC class I molecule [18], or NOG 270 

knocked-out for mouse MHC class I and class II molecules [50], led to the engraftment 271 

of the human immune cells (albeit at poorer rates) and showed limited xeno-GvHD. In 272 

the case of Hu-CD34+ mice, the mismatch between human and mouse MHCs, besides 273 

inducing GvHD, likely underlies defective T cell function. HSC infusion into NSG mice 274 

with homozygous expression of HLA class I heavy and light chains (NSG-HLA-A2/HHD) 275 

allowed the generation of functional HLA-restricted T cells [51]. Moreover, 276 
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transplantation of HLA-DR-matched HSC into NOD.Rag1KO.IL-2RcKO mice transgenic 277 

for the HLA class II molecule HLA-DR4 (DRAG), highly reconstituted T and B 278 

lymphocytes. Furthermore, these mice produced all subclasses of immunoglobulins 279 

and of antigen-specific IgGs upon vaccination, demonstrating the critical role of HLA 280 

class II molecules in the development of functional T cells capable of ensuring 281 

immunoglobulin class switching [52]. A similar observation was found in NOG mice 282 

expressing the HLA-DR4 molecules in MHC II-positive cells [53]. More recently, Lone 283 

YC’s group has generated a mouse combining both murine MHC deficiency and HLA 284 

transgene expression named “HUMAMICE" (HLA-A2+/+/DR1+/+/H-2-2m-/-/IAβ-/-285 

/Rag2-/-/IL2Rc-/-/perf-/-) [54]. This mouse has no T and B cells due to the Rag 286 

mutation, no NK cells due to IL2Rc mutation and no residual cytolytic activity due to 287 

perforin knockout.  288 

 289 

4.4 Humanization of immune checkpoints in immunocompetent mice 290 

An alternative approach to the use of HIS mice for the study of anti-immune 291 

checkpoint antibody-based immunotherapies has been the development of humanized 292 

target knock-in mice in immunocompetent C57BL/6 or BALB/c mice. The major 293 

advantage of these mice is that a clinical candidate can be evaluated in this model, 294 

albeit with a fully murine immune system, but there is no need to generate murine 295 

surrogates. A growing number of immunocompetent mice genetically modified to 296 

express one or more fully human genes or “humanized” knock-ins coding for positive 297 

and negative immunomodulatory receptors and ligands such as PD-L1, CD47, BTLA, 298 

CD137, TIM3, LAG-3, ICOS, GITR, OX40, OX40L, among others have been generated 299 

and are commercially available by different companies. These mice are particularly 300 
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attractive for the evaluation of IO checkpoint combinations. Mice expressing 301 

“humanized” CTLA-4 or PD-1 molecules [55,56] have been useful to dissociate efficacy 302 

and autoimmunity induced by anti-CTLA-4 antibodies [55], and to characterize a 303 

clinical candidate anti-PD-1 antibody [56]. 304 

 305 

5. Pre-clinical evaluation of cancer immunotherapy in humanized models   306 

HIS mice represent one of the most attractive pre-clinical models for screening 307 

of immunotherapeutic approaches including cellular and antibody-based 308 

immunotherapy, immune checkpoint inhibitors, or even gene therapy. A summary of 309 

pre-clinical evaluation of immune-based therapies performed in HIS mice is presented 310 

in Table 4.   311 

 312 

5.1. Cell-based immunotherapy   313 

The recent progress in the use of humanized mice has provided new 314 

developments to assess the efficacy of CAR-T cells. Of note, after several preclinical 315 

studies, the Food and Drug Administration (FDA) approved the first CAR-T treatment 316 

for B-cell acute lymphobastic leukemia in 2017. One of the first studies in this area 317 

showed that CAR-T cells designed to recognize mesothelin, an antigen highly expressed 318 

on mesothelioma cells, exerted potent antitumor effects on malignant mesothelioma 319 

of Hu-PBL-mice [57]. The efficacy of other CAR-T cells evaluated in HIS mice is 320 

summarized in Table 4 [57–65]. However, CART-T therapy has shown serious adverse 321 

events such as off-tumor toxicity, cytokine release syndrome or neurotoxicity, which 322 

are not reproduced in HIS mice. This is partially due to the lack of the human target 323 

expression in normal tissues. The development of more sophisticated HIS models 324 
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should help to provide safer and more effective CAR-T therapy. For example, 325 

transgenic expression of the CAR-T cell targeted human tumor-associated-antigen 326 

under the mouse endogenous promoter could help identify off-target effects, as 327 

already shown for immunocompetent mice [66]. However, a good understanding of 328 

the human target expression is required and validation that the murine equivalent has 329 

a similar expression pattern.  330 

Adoptive natural killer (NK) cell therapy is also a promising cellular 331 

immunotherapy for cancer. Recent progress has been obtained in stimulating NK and 332 

NKT cell anti-tumor activity using HIS models in glioblastoma, ovarian, colorectal and 333 

pancreatic cancer [67–71]. 334 

 335 

5.2. Immune checkpoint Inhibitors 336 

Different human-specific monoclonal antibodies have been evaluated in HIS 337 

models, either as mono or combinatory therapies for different tumor-types, including 338 

antibodies directed against CD137, PD1 and/or CTLA-4 [21,72–74] (Table 4). Recently, 339 

combination of PD-1 checkpoint blockade with CAR T cell infusion was evaluated in an 340 

orthotopic mouse model of pleural mesothelioma [75]. However, despite these 341 

sporadic successful results for individual models, a wide variety of response is seen in 342 

HIS mice treated with immune checkpoint Abs, likely attributed to donor-to-donor 343 

variability of immune cells used for these reconstituted HIS models. 344 

 345 

5.3. ADCC evaluation, bi-specific antibodies and DARPins 346 

HIS models, in which human immune cells mediate the antitumor action of the 347 

therapeutic antibodies, allow for the study of human antibody-dependent cellular 348 
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cytotoxity (ADCC) (Table 4). Thus, HIS mice have been used to evaluate anti-CCR4 and 349 

anti-CD52 antibodies that acts by NK cell-mediated ADCC in leukemia and lymphoma 350 

models [17,47,76,77], as well as antibodies against a surface-expressed protein 351 

overexpressed on renal cell carcinoma [78]. Recently, Wege et al., evaluated the 352 

potential reinforcing effect of trastuzumab in combination with IL-15 in humanized 353 

models of breast cancer [79]. Also, Mahne et collaborators observed in a Hu-CD34+ 354 

model treated with an anti-GITR mAb a reduced frequency of Tregs and an increase of 355 

CD8+ T cell that correlated with the inhibition of tumor growth [80].  356 

Bi-specific antibodies targeting T cells to a tumor antigen have been evaluated 357 

in humanized preclinical models of colon carcinoma (bi-specific EpCAM/CD3 antibody) 358 

[81], lymphoma (bi-specific CD20/CD3 antibody) [82], and ovarian carcinoma (anti-359 

CD3/CLDN6 and anti-CD3/EpCAM) [83,84]. Also, a carcinoembryonic antigen T-cell bi-360 

specific antibody (CEA TCB) has been tested in humanized mice, showing potent 361 

antitumor activity in poorly infiltrated solid tumors [85] (Table 4).  362 

Interestingly, administration of a recombinant adeno-associated virus (AAV) 363 

vector displaying designed ankyrin repeat proteins (DARPins) specific for Her2/neu, 364 

reduced breast tumor mass and extended survival longer than the antibody Herceptin 365 

[86]. 366 

 367 

5.4. Cytokine-based therapy  368 

Administration of pro-inflammatory cytokines is a commonly used strategy 369 

aimed at boosting the anti-tumor function of effector immune cells. Using HIS mice, IL-370 

15-based immunotherapies stimulated the survival and function of NK cells, leading to 371 

significant control of tumor growth, including breast cancer and leukemia [87,88,79]. 372 
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Of note, Wege et al, showed that co-administration of trastuzumab and IL-15 induced 373 

breast tumor eradication, but also induced fatal side effects associated to an hyper-374 

activation of the T cells [79].  375 

 376 

6. Concluding remarks and future perspectives 377 

In this new exciting era of cancer immunotherapy, the development of HIS 378 

models is a promising tool to evaluate novel therapies, to help in the selection/ranking 379 

of human-specific immunomodulatory agents, to study combinatory treatments and to 380 

guide the design of personalized immunotherapies, 'see Outstanding Questions'. 381 

However, although HIS mice recapitulate many aspects of the crosstalk between 382 

human cells of the innate and adaptive immune system and tumor, these models still 383 

lack some key elements of a complete human immune system. Some major hurdles 384 

include MHC incompatibility and lack of species-specific growth factors, cytokines and 385 

chemokines to allow the maturation of certain immune subpopulations. Nevertheless 386 

the use of HIS models has already yielded considerable data, contributing not only with 387 

new insights into basic mechanisms of immunotherapeutics but also allow pre-clinical 388 

evaluation of onco-immunotherapies. Understanding the caveats of HIS mice and the 389 

increasing genetic optimizations are effectively and actively contributing to the 390 

development of improved models with heightened translational power. 391 
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