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Abstract 

A model based on dislocation glide controlled by the nucleation and propagation of kink 

pairs in a high Peierls stress crystal is revisited and modified to account for changes in 

dislocation densities and segment lengths with temperature and stress. It is applied to the 

critical resolved shear stress (CRSS) for basal and prism plane slip in sapphire (³-Al2O3). 

According to agreed-upon knowledge on dislocations in sapphire, basal slip and prism plane 

slip are modelled with undissociated and dissociated dislocations, respectively. In the latter 

case, partial dislocations move independently. Amongst a number of sets of fitting 

parameters, good fits between experimental and modelled CRSS9s are obtained in the long 

segment limit over the whole range of temperatures by making use of physically sound 

parameters, including a stress dependence of the dislocation density.  
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1.  INTRODUCTION 

 The plasticity of sapphire (³-Al2O3 single crystal) has been extensively studied over 

the past four decades. Basal ø ù þü 11023/10001  slip is the primary deformation system for 

temperatures above 700 ºC1-7 while û ý þü 01011021  prism plane slip is the easiest slip 

system below 700 ºC3-4. Consistent with the very long þü 0101  Burgers vector for prism 

plane slip in sapphire, dislocations are always observed under a dissociated form into three 

collinear partials with Burgers vector 1/3 þü 0101 .8 Figure 1 shows the critical resolved 

shear stress (CRSS) measured by various authors between 200 and 1800 ºC for the two slip 

systems.1-7 Castaing et al.2-6 have fitted the temperature dependence of the CRSS, Ã, on test 

temperature, T, to an empirical law lnÃ = A - BT, where A and B are constants (Fig. 1). The 

quality of the fit is, however, poor and the physical basis of the law uncertain. 

The Peierls mechanism is often invoked to explain the plastic properties of sapphire 

deformed in basal and prism plane slip as reviewed in Ref. 8. Starting from the work of Hirth 

and Lothe9 for dislocation glide by nucleation and motion of kink pairs, Mitchell et al.10-12 

have developed a model that accounts for the temperature dependence of the CRSS in 

materials with a high Peierls stress. Applied to sapphire and spinel, the model provides 

apparently good fits of experimental data. As for sapphire, however, a number of difficulties 

remain with the choice made of the equation and with parameters, some of which are hard to 

justify. Firstly, one may wonder why Mitchell et al.10, henceforth MPH, restricted their 

analysis to the length dependent short-segment limit of the kink pair model; as discussed later, 

their assumption on the values of the segment length is questionable. Secondly, dislocations 

are assumed to be dissociated into 1/3 þü 0101  partials regardless of the slip system 

activated10, 12. This is in agreement with observations for prism plane slip3, 8 not so, however, 
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for basal slip where according to transmission electron microscopy (TEM)8, 13 dislocations are 

not dissociated in the glide plane, an observation supported by stacking fault energy 

calculations8, 14 and molecular dynamic simulation.15 Finally, making use of the kink pair 

model, MPH10 have found somewhat low activation energies (1.5 and 2 eV), together with 

unrealistically low dislocation densities, well below 1 m-2.  

By making a more adequate use of the kink pair model for basal and prism plane slip in 

sapphire, including physically well-founded parameters, the present work shows that the 

experimental dependence of the CRSS on temperature is consistent with a Peierls mechanism 

controlled dislocation glide through a wide temperature range. A brief discussion of 

dislocation properties in relation with crystal periodicity is given in the appendix to justify the 

various kink heights used. 

 

2. KINK MECHANISM MODEL FOR DEFORMATION 

 We start from the model updated by Mitchell et al.11 In materials with high Peierls 

stresses, the rectangle-shaped kinks are abrupt and their motion is controlled by a secondary 

Peierls barrier. In the long-segment limit, the two kinks forming a pair move apart until they 

annihilate with kinks engendered by vicinal sources along the line (the so-called kink 

collision regime). In this case, Mitchell et al.11 obtain for the strain rate: 
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where ò is the mobile dislocation density, b is the Burgers vector of the perfect dislocation, b1 

the partial Burgers vector, h the kink height (i.e. the periodicity of the primary Peierls 

potential), a the periodicity of the secondary Peierls potential, õ the attempt frequency, µ the 
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shear modulus, Q´D the height of the secondary Peierls energy barrier, òðF k  the free energy of a 

single kink on a partial dislocation, k the Boltzman constant, T the absolute temperature and ñ 

a factor given by 
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which is unity at high temperatures and more than unity for high stresses and low 

temperature. ó´ is the effective stress on the portion of the leading partial bordered by the kink 

pair 
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where ó is the resolved applied stress and ÷  the stacking-fault energy (SFE).11 

In the short-segment limit, the dislocation portion on which the kink pair nucleates is 

short enough to allow kink pair expansion over the full segment length L before it annihilates 

with a colliding kink. In this case, the strain rate is given by 
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The segment length L refers to mobile dislocations, hence the choice made in MPH10 of 

L = ò -1/2, a relation commonly utilized for 3 dimensional dislocation networks within the 

well-known frame of the forest dislocation hardening. One may wonder though whether this 

expression is valid at the beginning of plastic deformation by basal slip in sapphire in which 

case, the dislocations glide on parallel planes and therefore cannot form forest-like obstacles 

and ensuing junctions. MPH10 have ascribed ò a given value regardless of experimental 
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conditions. In addition to clearly not being in agreement with observations within the 200-

1800°C temperature range1, 3, 7, 12, the assumptions made and the fitting conditions used by 

MPH10 actually led them to utilize dislocation densities several orders of magnitude too small. 

More precisely, from the data in Table 1 of MPH10, one finds dislocation densities of 0.4 m-2 

and 6 10-6 m-2 for basal and prism plane slip, respectively.  

The situation greatly improves if one considers instead stress-dependent dislocation 

densities to account for high and low temperature regimes. To refine this aspect, we have 

postulated the dislocation density to be proportional to the square of the resolved shear stress:  
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which is merely the reciprocal of the well-known relation ó = C ýb1 ò1/2, where C is a 

constant. In other words, the dislocation density is directly related to the stress whereas, at 

variance from Ref. 10, the segment length L is regarded as an independent parameter since 

there is no clear relationship between òðand L at least at the beginning of deformation; for 

simplicity, we take constant L values over the whole temperature range adjusted for each fit.   

Equations (1) and (4) correspond to the case of glide controlled by a partial dislocation 

in the long- and short-segment regimes, respectively. In the limit defined by bb ý1 , where b is 

the Burgers vector of the perfect dislocation, and óó ýò , expressions (1) and (4) correspond 

to the case of kink pair nucleation on an undissociated dislocation, given that in this case QD 

and Fk have the same meaning as DQ ò and kFò .  

Differences between equations (1) and (4) appear in both the pre-exponential and 

exponential terms.  The ratio of the pre-exponential terms of the short to the long-segment 

limit is about L/a, that may take large values between 100 and 1000. On the other hand, the 
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activation energy and the stress term are smaller in the long-segment limit than in the short-

segment limit. A possible transition between the short-segment limit (low kink density 

regime) and the long-segment limit (kink collision regime) should be reflected by changes in 

activation energy and in the stress dependence of the deformation rate. This is, however, not 

confirmed experimentally since, as shown in section 3, the plastic behavior of sapphire can be 

fitted graphically over the whole temperature and stress range (Fig. 1) with no need to switch 

from Eq. (1) to Eq. (4).  

 

3.  COMPARISON BETWEEN EXPERIMENTAL DATA AND PREDICTIONS 

FROM THE KINK PAIR MODEL 

3.1  Fitting procedure 

In order to compare the data points (Fig. 1) to the CRSS values predicted by the kink 

pair model, a numerical fit by the analytical relations );T,( póõ&  has been performed 

considering either the long segment limit (Eq. 1) or the short segment limit (Eq. 4). We define 

p = {pi} as the set of parameters that can be adjusted within a fit. In the long segment limit p 

ú {ýüðC, òüðQD+Fk} and in the short segment limit p ú {ýüðC, L, òüðQD+2Fk}. The elastic 

modulus ý, which is a physical constant, has been either ascribed its experimental value at 

20°C of 156 GPa or else adjusted, but kept reasonably close to its value. For the sake of 

simplicity, fixed values of h and a are used; h = 0.275 nm (oxygen 3 oxygen distance in the 

basal plane) for basal slip, h = 0.65 nm for prism plane slip and a = 0.275 nm for both slip 

systems. These values are compatible with the structure of sapphire (see appendix). The other 

parameters b, b1 and ÷ were taken from the literature,3, 6, 8 while the parameter þ was ascribed 



 7

as a fixed value. A least squares fitting routine has been used to determine the values for p. It 

is based on a Levenberg Marquardt algorithm provided in Mathematicaô by the subroutine 

Findfit. The sum of the squares of the deviations after minimization and the plots themselves 

are used to select the best fits amongst many attempts.  

3.2  Basal plane slip 

The values adopted are õ&  = 2·10-5 s-1, þ = 1013 s-1, b = 0.475 nm (perfect dislocation) 

and h = a = 0.275 nm (see appendix). In Table I, we show the parameters of selected 

satisfactory fits of the experimental CRSS. In the long-segment limit, the commonly accepted 

value for ý = 156 GPa yields large ò values (fit I, Table I) especially at low temperatures. If 

on the other hand, one allows some flexibility on µ (fit II), then one obtains dislocation 

densities realistically closer to experimental values.16 Fit II (Table I and Fig. 2) yields an 

activation energy of QD + Fk = 3.4 eV and a value for ý not prohibitively inferior to its true 

value. The above flexibility on ý can be justified by the fact that the anisotropy and the 

temperature dependence of the elastic shear modulus are ignored. Notice that the fit of the 

experimental data based on Eq. (1) is excellent except above 1900 K (Fig. 2). 

We have checked that fitted with L = ò -1/2 , the short-segment limit implies physically 

unsound parameters since the values of both the activation energy and ý are too small while 

the dislocation density (ò û 4 to 105 m-2) is in too severe a disagreement with experiments.16 

Although they had concluded to a fair agreement, MPH10 were actually faced with a similar 

kind of discrepancy. As mentioned earlier (section II), we have assumed fixed L values within 

the short-segment limit. Two results are shown in Table I with L = 8.9 µm (fit III) and L = 1.2 

µm (fit IV), the latter corresponding to the plot in Fig. 3; the fit quality is, however, not as 
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good as for that shown in Fig. 2. Obviously, it is not sound to use a unique value for L over 

the whole range of experimental conditions (Fig. 1) but the assumption L = ò -1/2 (Ref. 10) is 

not adequate either. In all these fits, the values found for the dislocation density ò provided by 

Eq. (5) and for the activation energy are all reasonable (Table I). Hence, the fits obtained via 

the short-segment limit are nearly as good as those obtained with the long-segment limit 

(Figs. 2 and 3). 

3.3  Prism plane slip 

As mentioned earlier, prism plane slip proceeds by glide of widely dissociated 

dislocations.3, 7, 8, 12 Following MPH10, we therefore assume that deformation is controlled by 

the nucleation of a kink pair on the leading partial. The values adopted for the different 

parameters are õ& = 2·10-5 s-1, b = 0.822 nm (perfect dislocation), b1 = a = 0.275 nm (Burgers 

vector of the partial dislocation), h = 0.65 nm (see appendix) and ÷ = 0.2 J/m² (distances 

between partial dislocations about 30 nm). Similarly to what we have found for basal slip, 

reasonable fits cannot be obtained in the whole range of temperatures and stresses (Fig. 1) 

within both the long- and short-segment limits when one makes use of a constant density of 

mobile dislocations. Certain parameters associated with these fits do not have a reasonable 

physical justification; activation energies Q9D + F9k (Eq. 1) or Q9D + 2F9k (Eq. 4) are small 

(2.5 and 4.4 eV, respectively), so are the density ò of mobile dislocation values (108 and 109 

m-², respectively). The results with a constant ò correspond to those of MPH10 obtained in the 

short-segment limit. 

Similarly to what we have found for basal slip, the fits with a stress-dependent ò of the 

type given by Eq. (5) are satisfactory (fits I and II, Table II). The values for ò  (Table II) seem 
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excellent; it should be kept in mind though that there is no systematic experimental 

measurements of dislocation densities for prism slip to compare with. The fits yield 

reasonable values for the activation energies (Table II). So far, fit I and fit II (Table II), shown 

in Figs. 2 and 3 respectively, are the most satisfactory beside a significant discrepancy around 

800-1000K between the experimental points and the predictions of Eq. (4) (fit II, Fig. 3). 

Therefore, as for basal slip, the long segment limit provides the best description of the 

temperature dependence of the CRSS in prism plane slip (Fig. 2), except at the extremes of 

the temperature range (below 500 K and above 1900 K).  

 

4.  DISCUSSION 

As indicated by the above plots and tables, dislocation glide controlled by the 

nucleation and motion of kink pairs in a Peierls potential reasonably accounts for the plastic 

yielding of sapphire deformed either on basal or prism planes, over a large temperature range 

(200°C to 1800°C). Before discussing the fitting to the CRSS data of sapphire to the kink pair 

model, it is important to remember that the model is based on elasticity9 applied to 

dislocations in the form of long as well as of very short (kinks) segments. This assumption, 

which is valid as long as the distances between interacting dislocation segments are larger 

than a few Burgers vector, may actually fail for exceedingly small critical separations 

between kinks, that is, at high stresses and low temperatures (the critical kink pair separation 

is the distance between the kinks above which the driving force encourages further kink 

separation9). On the other hand, whereas on account of the Peierls potential the kinks are 

supposed to assume a rectangular shape, thermal activation helps round the kink shape thus 
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introducing a restriction in applying the kink pair model at high temperature. It is noticed that 

fit quality does not seem to suffer from these limitations except above 1600ºC (Fig. 2). 

At variance with the work of MPH10, the present analysis has been conducted under 

both the kink-collision long-segment limit and the length-dependent short-segment limit, with 

the further assumption that the segment length L is either fixed or else defined by L = ò -1/2, 

itself related to the applied stress ó via Eq. (5). The use of Eq. (5) may look natural since this 

is the relationship commonly observed between ò and the flow stress, for instance in the 

work-hardening stage of sapphire deformed by basal slip;16 the values for C (Eq. 5), given in 

Tables I and II, are close to those deduced from dislocation counting in transmission electron 

microscopy (0.2 3 0.5).16 However, it is not clear whether or not Eq. (5) can be applied at the 

lower yield stress after the yield peak as is done in the present work. The model which 

Alexander and Haasen had designed to explain the yield peak behaviour in  silicon, has been 

recently reformulated and checked by mesoscale simulation.17 In brief, the Alexander-Haasen 

model takes into account the mobile dislocations with long range elastic interactions, at the 

origin of an internal stress proportional to ò1/2. Contrary to what is done in the Alexander-

Haasen model, it is, however, not necessary to make use of an empirical equation in order to 

account for dislocation multiplication rate (see appendix in Ref. 17). A reasonably simple 

calculation shows that the stress at the lower yield point is indeed proportional to ò1/2 and 

independent of the initial dislocation density. This has also been checked by mesoscale 

modeling and is in agreement with the experimental results in silicon.17 Making use of Eq. (5) 

for sapphire is therefore a reasonable way to reflect the expected variations of dislocation 

densities for deformations under shear stresses between 2500 MPa at 200°C and 7 MPa at 

1600°C.3-5  
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As mentioned earlier, validating the kink-pair model relies in addition on how 

meaningful the fitting parameters may be in terms of certain physical characteristics that have 

been either observed or guessed. As regards þ, h and a, one is left with reasonable guesses. 

The frequency factor þ is the attempt frequency for the diffusion of a kink along the 

dislocation line; it is assumed to be of the order of the Debye frequency.9 The Debye 

temperature of sapphire is about 1000 K giving a Debye frequency of  2·1013 s-1 consistent 

with our choice for þð= 1013 s-1. As for the lattice periodicity h for dislocation glide, it can be 

as large as the unit vectors in the slip planes, i.e. as much as 1.3 nm. In the appendix, smaller 

values are suggested that depend on the dislocation under consideration; they are close to h = 

0.275 nm, the oxygen-oxygen distance in the basal plane. The fits for prism plane slip are 

made with h = 0.65 nm (Table II). The choice of h is indeed crucial for it enters the argument 

of the exponential (Eqs. (1) and (4)). On the other hand, for the crystal potential oscillations 

that govern kink motion, it is difficult to suggest a values based on a simple examination of 

the structure (see appendix), but this is not crucial because a appears only in the pre-

exponential term of  Eq. (1). Worthy of mention is also the fact that while it is safe to follow 

MPH10 in considering dissociated dislocations for prism plane slip (Table II), one should 

rather make use of perfect dislocations to account for basal slip (Table I). 

The density ò of mobile dislocation is found between 1.9·1011 m-2 (Table II) and 

3.8·1016 m-2 (Table I); these values correspond respectively to high temperature (ó = 10 3 70 

MPa) and low temperature (ó = 700 3 800 MPa) limits of the investigated range. Not 

surprisingly they are at the border of what is acceptable according to the commonly accepted 

situation for plastic deformation, especially for basal slip at low temperature (Table I). It 

should be noted in Eqs. (1) and (4) that ò is related to the values of þ, h and a that are 
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<reasonably guessed=; accordingly, the uncertainty on ò  values should be at most a factor of 

10. The comparison with experimental data is made difficult by their scarcity and by the 

difficulty of counting dislocations due to their heterogeneous distribution, their annihilation 

after the deformation test has stopped, etc. In the conditions of the experiments (Fig. 1), the 

values for ò are reasonable except, possibly, at low temperature for basal slip. 

As regards the two contributions to the activation energies, QD and Fk, MPH10 could not 

reach reasonably large values for QD in both basal and prism plane slip. It is therefore 

interesting to examine the outputs of our fits in this respect. In the long-segment limit, the 

fitted activation energy (QD + Fk) for slip in the basal plane (3.5 eV; Table I) is similar to that 

in the prism plane (Table II). The values for the activation energy (QD + 2Fk) are larger within 

the short-segment approximation (Tables I and II). The values of 2Fk may be estimated 

directly from dislocation theory9; it is of the order of (µ b² h / 4ð). Taking µ b1² = 11 nJ/m for 

a partial dislocation in the prism plane and µ b² = 34 nJ/m for a perfect dislocation in the basal 

plane8 (consistent with the molecular dynamic simulation of 48 nJ/m of the dislocation line 

energy15), one finds that for kinks of length h = 0.65 nm, 2Fk is 3.5 eV (prism plane) and for h 

= 0.275 nm, 2Fk is 4.6 eV (basal plane). Using the activation energy values from the fits in the 

long-segment limit (Tables I and II) yields QD = 1.7 eV (prism plane) and 1.2 eV (basal plane) 

that seem reasonable. The activation energies for basal and prism plane slip are therefore 

consistent with the model in the kink-collision long-segment limit. For basal slip in the 

length-dependent short-segment limit, the value of QD would be close to zero which is not 

acceptable. Unfortunately, experimental activation energies are essentially nonexistent in 

sapphire24 which makes it useless to further discuss this parameter.25  
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In the length dependent short-segment limit, the quality of the fits depends weakly on 

the value of L and we arrive at L û 1 µm for basal and prism plane slips (Tables I and II). This 

value agrees with the typical lengths of dislocations observed in TEM after basal deformation 

at 1000°C (Ref. 18) and 800°C (Ref. 3) and after prism deformation at 400°C (Ref. 19). Small 

L values are expected at high temperature because of an increased probability of cross-slip 

and climb events. Cadoz et al.20 have reported that dislocations with lengths larger than 5 to 

10 µm are currently observed in prism plane after deformation at 1400-1450°C, similarly to 

observations made in the basal plane.1 Since the samples were not quenched, this 

inconsistency might, however, stem from high temperature recovery after the tests. There is 

nevertheless a certain lack of evidence in support of the length dependent short-segment limit 

to describe the temperature dependence of the CRSS in sapphire. 

The kink-pair Peierls model has been invoked for dislocation glide in silicon with which 

sapphire exhibits strong similarities at low temperature4, 5, 21. Silicon being the model covalent 

crystal, dislocations have been the focus of many experimental and theoretical studies in this 

crystal, as reviewed by Kubin and Devincre22. A major property is that whereas dislocation 

velocity depends on segment lengths (Eq. 4), the transition to a length-independent regime is 

not associated with a change in the activation energy, thus ruling out the existence of a long-

segment limit in terms of Eq. (1). Moreover, dislocation velocity in silicon can only be 

quantitatively accounted for by the length-dependent short-segment regime.22 This suggests in 

turn an extrinsic transition to a length-independent regime corresponding to kink motion itself 

governed by the presence of defects on the dislocation lines.22 Such a situation can be a priori 

envisaged for sapphire. However, not only does the long-segment limit fits best the CRSS 

values of sapphire doped with various Cr concentrations (rubies) but also this is achieved with 
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fitting parameters that are essentially independent of the amount of Cr.18 This latter property 

rules out a direct analogy with the case of silicon thus providing an additional argument in 

favor of the kink-collision long-segment limit to account for the deformation of sapphire. 

5.   CONCLUSIONS 

Several sets of parameters can provide equally good fits between experimental data and 

predictions from a model. However, a necessary condition to end with an acceptable fit is to 

make sure that the various parameters entered in the fit are physically sound. We have shown 

that over the wide range of stresses considered (from less than 10 to more than 2000 MPa), 

this implies in practice that the dependence of ò on stress be accounted for. The present work 

supports the long-segment limit for basal and prism plane slip. The parameters included in the 

analysis of MPH10, restricted to the short-segment limit, cannot be justified on physical 

grounds. In this respect and to some extent with regards to the influence of dopant18, the 

plastic behaviour of sapphire in constant strain rate in basal and prism plane slip differs 

consistently from the case of silicon22.  
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APPENDIX 

 THE STRUCTURE OF DISLOCATIONS AND THE PEIERLS RELIEF IN THE 

SAPPHIRE LATTICE 
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The parameters of the kink pair model ought to be consistent with properties of 

dislocations in sapphire as inferred from crystallographic considerations. The ³-Al2O3 

structure is often regarded as a hexagonal close-packed oxygen sub-lattice (&ABABA... 

stacking, with an average interanionic distance of 0.275 nm) whose octahedral sites are 

occupied, under the ratio 2/3, by Al ions under a &ñò÷ñò÷& stacking (Figs. A1 and A2). In 

the real structure, each Al layer (ñ, ò or ÷) is actually comprised of two planes separated by 

0.052 nm (Ref. 8), that correspond to the displacement of Al ions toward a vacant octahedral 

site, which in turn introduces a distortion in the oxygen sub-lattice. Considering the real 

structure is instrumental in discussing basal slip and twinning in ³-Al2O3 (Ref. 8). We recall 

that the lattice parameters are 0.475 nm along the 1/3< 1102 > direction and 1.3 nm along the 

[0001] direction. 

In analyzing dislocation properties in post-mortem deformation microstructures by 

TEM, one currently assumes that the dislocations remaining in the foils at the end of the test 

are those which exhibited the lowest velocity (or no velocity at all), that is, the rate-

controlling dislocations. In sapphire deformed under basal slip at 800°C, dislocations lie 

primarily along < 0101 > directions (Burgers vector at either 30° or 90° from the line).3 On 

the other hand in ruby deformed at 1000°C again under basal slip, dislocations are further 

aligned with < 1102 > (Burgers vector at 60° from the line).18 Mostly screw and edge 

dislocations have been observed in sapphire deformed under prism slip at 400°C, (Ref. 19) as 

well as in polycrystals deformed at 630°C (Ref. 23). The following discussion is focused on 

these dislocation characters. 

The strength and directionality of chemical bonds is reflected in the primary and 

secondary Peierls potentials which, in sapphire, are responsible for the very high stresses that 
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oppose dislocation glide.3-6 We recall that h and a refer to lattice periodicities experienced by 

a rectilinear dislocation globally moving in its slip plane in a direction perpendicular to its 

line, and by a kink moving along a crystallographic direction in the secondary potential. 

Possible values of h and a are shown in Table AI for various types of dislocations. Unit 

translations in sapphire (Figs. A1 and A2) are unlikely to account for the Peierls potential 

periodicity since they may amount to as much as three oxygen-oxygen distances in the basal 

plane (3 x 0.275 ð 0.822 nm) or the unrealistic six layers of oxygen (1.3 nm) along the [0001] 

direction. The period h can be alternatively thought of as corresponding with the various 

positions of a straight dislocation segment in the potential of atoms (Figs. A1 and A2). In the 

basal plane, the atomic environment around an edge dislocation (line a in Fig. A1), is not only 

unchanged after a translation over b (position a2) but also after a translation over b/2 (line a1), 

hence h can be reduced to b/2 (Table AI). A translation over b brings a 60° dislocation (line b 

in Fig. A1) to b1 at 0.41 nm from the initial position. The two positions located at 1/3 and 2/3 

along this path are not substantially different from b and b1 (Fig. A1), suggesting that the 

potential felt by the line might exhibit a period of h = 0.41/3 = 0.14 nm (Table AI). For the 

30° dislocation in the basal plane (lines c and c1 in Fig. A1), the only reasonable h 

corresponds with the lattice translation (Table AI).  

In the prism plane, an edge dislocation (line e in Fig. A2) can be translated by b/2 with 

no change in its atomic environment. This holds true after a b/3 translation, which 

corresponds to the dissociated dislocation case,8 and possibly after the b/6 translation as 

reported in Table AI. A similar situation prevails for a screw dislocation (line d in Fig. A2) 

gliding along the [0001] direction with h probably not larger than 0.65 nm and possibly as 

small as 1.3 / 6 = 0.217 nm (Table AI). 
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In the absence of a numerical knowledge of the relevant Peierls potential profiles, it is 

impossible to decide which estimate of h is the most likely while the ratio between the 

minimum and the maximum h is up to 6 in some cases (Table AI). 

Evidently, the above discussion on h holds for a, the period of the secondary Peierls 

potential, because the directions selected above for infinitely straight dislocations should be 

equally favourable for kinks. A difference may arise though from the fact that kinks have a 

restricted length, h, which as seen above is itself not well-known, not to mention a possible 

rounding at corners. The situation is thus even more uncertain for a than for h, but this does 

not necessarily constitute a serious limitation in the frame of the kink pair model in that the 

strain rate õ& is far more dependent on h than on a (Eqs. (1) and (4)). Based on the crystal 

structure, minimum and maximum values for a are suggested in Table AI. Atomistic 

simulations are expected to shed light on this question but so far, molecular dynamic (MD) 

simulations have indicated that the equilibrium configuration of a basal edge dislocation 

exhibits a heavily distorted core15 with Al ions tending to move toward the centre of the 

octahedral sites and the anions substantially displaced from their normal positions. The 

reasonable agreement between the MD simulation estimate of the dislocation line energy of 

48 nJ/m (Ref.15) and that based on elasticity8 should be mentioned.  

In conclusion, the scarcity of useful configurations on the core configuration of gliding 

dislocations in sapphire and of energy profiles makes it problematic to ascribe accurate 

estimates to h and a. We have set h = a = 0.275 nm for basal slip, with h = 0.65 nm for prism 

plane slip, in the numerical fits of the kink pair model with the CRSS data. These parameters 

are, however, rather flexible, thus allowing a fair degree of freedom to refine the fits.  
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Figure captions 

Figure 1. Plot of CRSS (logarithmic scale) versus temperature for basal and prism plane slips. 

The origins of the different experimental data points are indicated. Note that straight lines are 

drawn through the experimental points. 

 

Figure 2. Graph of CRSS versus temperature for basal slip and for prism plane slip showing 

both experimental data and the curves from the fits using the long-segment limit (Eq. (1)).  

 

Figure 3. Graph of CRSS versus temperature for basal slip and for prism plane slip showing 

both experimental data and the curves from the fits using the short-segment limit (Eq. (4)).  

 

Figure A1. Basal plane for sapphire looking along [ 1000 ]. The large circles are for oxygen 

stacked as & ABABAB &; the anions are shown for A (dark) and B (clear) layers. The 

cations have three different sizes according to the ñ, ò or ÷ layer where they are located. The 

lines a, b and c correspond to dislocations in the basal plane. 

 

Figure A2. Prism plane of sapphire viewed along [ 1102 ]. The &ABAB& stacking for 

oxygen and &ñò÷ñò÷& stacking for Al are shown. The lines d and e correspond to 

dislocation segments for slip in the prism plane. 
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Figure 1. Plot of CRSS (logarithmic scale) versus temperature for basal and prism plane slips. 

The origins of the different experimental data points are indicated. Note that straight lines are 

drawn through the experimental points. 
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Figure 2. Graph of CRSS versus temperature for basal slip and for prism plane slip showing 

both experimental data and the curves from the fits using the long-segment limit (Eq. (1)).  
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Figure 3. Graph of CRSS versus temperature for basal slip and for prism plane slip showing 

both experimental data and the curves from the fits using the short-segment limit (Eq. (4)).  
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Figure A1. Basal plane for sapphire looking along [ 1000 ]. The large circles are for oxygen 

stacked as & ABABAB &; the anions are shown for A (dark) and B (clear) layers. The 

cations have three different sizes according to the ñ, ò or ÷ layer where they are located. The 

lines a, b and c correspond to dislocations in the basal plane. 
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Figure A2. Prism plane of sapphire viewed along [ 1102 ]. The &ABAB& stacking for 

oxygen and &ñò÷ñò÷& stacking for Al are shown. The lines d and e correspond to 

dislocation segments for slip in the prism plane. 
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Table I. Values obtained for the various parameters of the kink model for 

different fits of CRSS data of basal slip in sapphire. The symbol * 

indicates that the quantity was ascribed a fixed value to perform the fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 
  Long-segment limit Short-segment limit 

I II III IV 

ý (GPa) 156* 115 156* 115* 

L (ým) ---- ---- 8.9 1.2 

C 0.054 0.108 0.108* 0.121* 

 

ò (m-2) 

T = 1873 K 

ó = 7.4 MPa 
3.4·1012 8.6·1011 8.6·1011 6.8·1011 

T = 973 K 

ó = 783 MPa 
3.8·1016 9.6·1015 9.6·1015 7.6·1015 

QD + FK (eV) 3.6 3.4 ---- ---- 

QD + 2 FK (eV) ---- ---- 5.0 4.6 
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Table II. Parameters resulting from different fits for prism plane 

slip in sapphire.  

 

Parameters 
Long-segment 

 Limit (I) 

Short-segment 

 Limit (II) 

ý (GPa) 194 177 

L (ým) ---- 1.8 

C 2.8 3.04 

 

ò (m-2) 

T = 1873 K 

ó = 65.5 MPa 
1.9·1011 2·1011 

T = 973 K  

ó = 635.0 MPa 
1.8·1013 1.9·1013 

QD + FK (eV) 3.5 ---- 

QD +2 FK (eV) ---- 5.4 
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Table AI. Estimates of the periods h and a of the primary and secondary Peierls potentials 

involved in the kink pair motion in the basal and prism planes. For each type of 

dislocation, the values of the repeat distances in the lattice and the shortest values deduced 

from examination of the sapphire lattice are given. 

 

Dislocation h  (nm) Comment a  (nm) Comment 

Edge; ññ 0101  line 

b // ññ 1102  

0.475 

0.237 

Lattice translation  ( b ) 

b / 2 

0.822 

0.137 

Lattice translation 

0.822 / 6   

60°; ññ 1021  line 

b // ññ 1102  

0.41 

0.14 

Lattice translation 

0.41 / 3 

0.475 

0.158 

Lattice translation 

0.475 / 3 

30°; ññ 1001  line 

b // ññ 1102  

0.237 

 

Lattice translation 

 

0.822 

0.137 

Lattice translation 

0.822 / 6   

Edge; û ý0001  line 

b // ññ 0101  

 

0.822 

0.411 

0.137 

Lattice translation  ( b ) 

b / 2 

b / 6 

    1.3 

 

0.217 

Lattice translation 

 

1.3 / 6 

Screw ; line and  

b // ññ 0101  

 

1.3 

0.65 

0.217 

Lattice translation 

1.3 / 2 

Oxygen  plane distance 

0.822 

 

0.137 

Lattice translation 

 

0.822 / 6 

 

 

 

 

 

 


