

Abstract—Simplification is an important step in the design of
a fuzzy system since the membership functions that represent
the fuzzy sets as well as the ‘if-then’ rules that relate them
usually contain redundant information. This paper presents a
CAD tool which provides the user with a wide set of algorithms
to automate simplification process. It allows reducing the
number of membership functions and rules described initially
as well as increasing its expressiveness and linguistic
interpretability. Since the tool is included within the design
environment Xfuzzy 3, the simplified system can be also
verified, tuned and synthesized automatically. Several
examples are included to illustrate the efficiency of the
simplification facilities provided.

I. INTRODUCTION
HE original way of describing a fuzzy system is to
translate heuristic and uncertain knowledge expressed

linguistically. Another way, which was developed later, is to
extract the fuzzy system description from a set of numerical
data that specify its behavior. In both cases (and their
possible combinations) the membership functions that
represent the fuzzy sets as well as the ‘if-then’ rules that
relate them can be usually simplified to obtain a similar
system with less and simpler membership functions and
rules. The simplification process is very interesting not only
to ease the hardware or software implementation of the
fuzzy system but also to ensure and/or increase its linguistic
meaning.

Several approaches have been proposed in the literature to
address this simplification process. One of them is the use of
linguistic hedges, whose interest is pointed out by many
authors, from early works like [1] to recent ones like [2].
They allow reducing the number of membership functions
(many of them can be obtained as modifications of other
ones) as well as the rules (some of them can be combined
into a more generic one). In addition, the resulting fuzzy
system is clearly more transparent and interpretable.

Other authors focus the simplification process on the
membership functions [3]. Functions which are similar are
iteratively searched to be replaced by the same function. The
number of membership functions is reduced not only by this
merging process but also by eliminating those functions

This work was supported in part by the Spanish CICYT Projects
DPI2005-02293 and TEC2005-04359. The third author is supported by the
Spanish Minister of Education under the program F.P.U. for PhD. students.

I. Baturone and A. Gersnoviez are with the Instituto de Microelectrónica
de Sevilla (IMSE-CNM) and the Dept. de Electrónica y Electromagnetismo,
Univ. de Sevilla, Seville, SPAIN (phone: +34-955-056-666; fax: +34-955-
056-686; e-mail: {lumi, andres}@imse.cnm.es).

F. J. Moreno Velo is with the DIESIA, Esc. Politécnica Superior, Univ.
de Huelva, Huelva, SPAIN (e-mail: francisco.moreno@diesia.uhu.es).

which are too similar to the universal set. A by-product is
that the number of rules can be also reduced because several
rules may become redundant.

Another approach is to simplify the rules directly. This is
done in [4]-[5] by selecting the most significant rules of the
rule base, and in [6] by applying minimization algorithms
inspired in the Boolean design. This simplification usually
reduces in turn the number of membership functions because
some of them become unused or are merged.

Depending on the problem to be solved, one of the above
commented approaches can be more efficient than the others
when designing the fuzzy system. Even a successive
application of several approaches could provide better
results. This is why our work has been to include all of them
together with some methods developed by the authors into a
CAD tool, named xfsp, that allows automating the
simplification process. Since simplification is one of the
design steps of a fuzzy system, this CAD tool has been
integrated within the design environment Xfuzzy 3
developed at the Instituto de Microelectrónica de Sevilla,
which contains other CAD tools to cover the other design
steps (description, verification, tuning, identification, and
synthesis) [7]. To the best of our knowledge, no other fuzzy
software provides so many facilities to design a fuzzy
system and, in particular, to simplify its description.

This paper is organized as follows. Section II explains
briefly how the simplification process can be applied within
the design methodology of a fuzzy system with the aid of
Xfuzzy 3. Section III describes the simplification tool xfsp,
showing the methods it provides to simplify automatically
either membership functions or rule bases. Two examples
are included in Section IV to illustrate the efficiency of this
tool: one of them describes the simplification of a fuzzy
system obtained from a set of numerical data while the other
concerns with the simplification of a system described from
translating heuristic knowledge. Finally, conclusions are
given in Section V.

II. DESIGN METHODOLOGY WITH XFUZZY 3
The design methodology that can be followed with the aid

of Xfuzzy 3 is shown in Fig. 1. The aim of the first stage
(description) is to describe the whole fuzzy system. This is
done by specifying: (a) the membership functions employed
to describe the fuzzy sets, (b) the rule bases and
mathematical modules involved, (c) the fuzzy operators
(used to perform antecedent connection, implication,
defuzzification, etc.), and (d) the structure of the system (its
inputs and outputs and how the rule bases are

A CAD Approach to Simplify Fuzzy System Descriptions
Iluminada Baturone, Francisco J. Moreno-Velo, and Andrés Gersnoviez

T

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 2. Illustrating linguistic hedges on membership functions.

expert knowledge numerical data

Description

Verification

Synthesis Xfuzzy 3

Tuning / Simplification

implementation

Identification

expert knowledge numerical data

Description

Verification

Synthesis Xfuzzy 3

Tuning / Simplification

implementation

Identification

Fig. 1. Design flow aided by Xfuzzy 3.

interconnected).
The formal specification language XFL3 has been defined

for the Xfuzzy 3 environment to ease this description
process. It allows connecting several antecedents in the rules
by any kind of conjunctive and disjunctive connectives,
input variables can be related with fuzzy sets by any kind of
linguistic hedges, and linguistic hedges can be applied even
to some connected antecedents (Table I and Fig. 2). In
addition, XFL3 allows the assignment of weights to the rules
so that the confidence of the expert on some rules or the
relative importance between rules can be also expressed [8].
Rules can be described in a free form by exploiting all these
facilities provided by XFL3. An example is the following:

‘if(x1 < E & (x2 != C | x3 >= B)) -> y = D’ (1)

Other format to describe the rules is the tabular form in
which the antecedents are connected only by conjunctive
operator and no linguistic hedge is employed. For example:

‘if(x1 == A & x2 == B & x3 == C) -> y = D’ (2)

The free format is more expressive than the tabular one
and contains fewer rules because a rule of the free format
usually summarizes several rules of the tabular format. In
the above examples, if the fuzzy sets covering the variables
x1, x2 and x3 are {A, B, C, D, E}, the rule in (1) would
summarize 32 rules in the tabular form, being one of them
the rule in (2). The free format is usually employed when the
rule base is described from translating expert knowledge
expressed linguistically. In the other side, the rules extracted
from numerical data are usually expressed in the tabular
format.

The Xfuzzy identification tool extracts the rules in the
tabular format [9]. It can currently apply five algorithms
based on clustering and four algorithms based on grid
techniques. The first one organizes the data into clusters and
uses them to create the rules and membership functions
simultaneously [1], [10]. An advantage of these techniques
is that the number of rules extracted is usually low. As a
drawback, each rule has its own fuzzy sets which may be
similar and complicates their linguistic meaning. As an
example, Fig. 3 shows the membership functions obtained
by applying Fuzzy C-Means clustering when extracting 11
fuzzy rules from a set of numerical data corresponding to the
function (1+sin(2πx)cos(2πy))/2. In the other side, the
identification algorithms based on grid techniques generate a
partition or grid of the input and output spaces prior to cre-
ating the rule base [11]. They extract more rules but with the
advantage of being more interpretable.

Once the whole system has been described, its behavior
should be tested at the verification stage. Xfuzzy 3 contains

TABLE I
EXAMPLE OF FUZZY PROPOSITIONS EXPRESSED BY XFL3

Basic propositions Description

variable == fuzzy set equal to
variable >= fuzzy set equal or greater than (Fig. 2a)

variable <= fuzzy set equal or smaller than (Fig. 2b)
variable > fuzzy set greater than (Fig. 2c)
variable < fuzzy set smaller than (Fig. 2d)
variable != fuzzy set not equal to (Fig. 2e)
variable %= fuzzy set slightly equal to (Fig. 2f)
variable ~= fuzzy set more or less equal to (Fig. 2g)
variable += fuzzy set strongly equal to (Fig. 2h)

Complex propositions Description

proposition & proposition and operator
proposition | proposition or operator
!proposition not operator
% proposition slightly operator

~proposition moreorless operator

+proposition strongly operator

Fig. 4. Membership functions obtained for an output variable with
a supervised learning algorithm.

Fig. 3. Membership functions obtained for an input variable with
a clustering-based identification algorithm.

Fig. 5. Main window of the tool xfsp for membership function
simplification.

three tools to facilitate this verification process. One of them
allows to show two- and three-dimensional graphics with the
input/output behavior of the fuzzy system. Another tool
allows monitoring the values of the internal and global
variables of the system and the activation degrees of the
rules of the different modules. The last tool simulates the
behavior of the fuzzy system working in line with a model
of an external system (a plant in the case of a controller).
The user can employ these tools to modify the fuzzy system
description manually. An automatic way to modify the
parameters of the membership functions is to apply
supervised learning techniques with the tuning tool of
Xfuzzy 3. As happens in the identification process, it is
usual that after the tuning process several membership
functions become similar, thus complicating the linguistic
meaning of the system. As an example, Fig. 4 shows the 49
membership functions learnt for the output variable of a
fuzzy system with 49 rules when trying to approximate the
function (1+sin(2πx)cos(2πy))/2.

After verification and (if applied) tuning stages, the
simplification process usually performs a relevant action.
Concerning membership functions, it is interesting: (a) to
use a minimum number of relevant functions which could be
modified by linguistic hedges (as shown in Fig. 2), (b) to
merge similar functions resulting from identification and/or
tuning stages (as illustrated in Fig. 3 and 4), and (c) to purge
those functions which are not used (as a consequence of
previous simplifications or a non careful manual
description). Concerning rules, it is interesting: (a) to use a
compact free format instead of a expanded tabular one (as

illustrated with expressions (1) and (2)) and (b) to use a
minimum number of relevant rules by purging those which
are not significant. All these simplification processes can be
applied automatically by the simplification tool of Xfuzzy 3,
as described in the following section.

III. THE SIMPLIFICATION TOOL XFSP
The tool xfsp of Xfuzzy 3 allows applying simplification

algorithms to either the variable membership functions or
the rule bases of a fuzzy system.

A. Simplification of membership functions
If the membership functions (“types” in the nomenclature

of Xfuzzy 3) are selected in the main window of xfsp, the
variables defined for the fuzzy system under design appear
at the left part of the window. The membership functions
describing the selected variable appear at the right part
together with three buttons corresponding to the three
simplification processes which can be applied to them:
purge mechanism, clustering and similarity-based merging
method (Fig. 5).

The purge mechanism looks for those membership
functions which are not used in any rule base and eliminates
them. This may happen not only as a consequence of
previous simplification processes but also when the fuzzy
system has been defined from translating heuristic
knowledge.

The clustering method looks for a reduced number of
clusters (membership function prototypes) into which
several original functions are grouped. It follows the Hard
C-Means algorithm, that is, the clusters found are crisp
because each original membership function will be replaced
by only one of the resulting prototypes. The clusters are
made on the space formed by the parameters that define the
membership functions and weights can be applied to them.
For example, Gaussian functions are defined by their centers
and widths, but if the weight of the widths is zero, only the
centers are considered in the clustering process. The optimal
number of membership function prototypes can be found
automatically by applying validity indexes. Dunn Separation
Index, Davies-Bouldin Index, and Generalized Dunn
Indexes can be applied with the tool xfsp [12]. Considering

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Simplification results on the functions in Fig. 3: clustering with (a) the Separation Index, (b) Davies-Bouldin Index, (c) Generalized Dunn
Index, and (d) manual index; merging with a similarity factor over (e) 0.8, (f) 0.7, (g) 0.5, and (h) 0.2.

the 11 functions illustrated in Fig. 3, a clustering process
that applies the above indexes results, respectively, in the 8,
6, and 3 functions shown in Fig. 6a-c. Such direct validity
indexes are very useful for clustering problems in which
visual inspection is not possible. In this problem, however,
the tool xfsp provides the user with the graphical display of
the original and grouped functions. Hence, xfsp also offers
the option of fixing the number of clusters after the visual
inspection of the original functions. This is usually the best
option for giving more freedom to the user. For example, if
the user decides to cluster the 11 functions of Fig. 3 into 5
clusters, the result is that in Fig. 6d.

The other way to simplify membership functions with
xfsp is to apply a similarity-based merging process. This
process looks for the pair of most similar functions
iteratively and replaces them by a unique function if the
similarity degree is over a threshold defined by the user. The
process finishes when no more functions can be merged.
The lower the threshold the more functions is merged as
illustrated in Fig. 6 e-h. The similarity measure used by xfsp
is the one defined by Dubois and Prade as follows [13]:

[]

[]∑

∑

=
µ∨µ

=
µ∧µ

=
∪
∩

= m

1j
)jx(B)jx(A

m

1j
)jx(B)jx(A

|BA|
|BA|)B,A(S

 (3)

where A and B are two fuzzy sets described by the
membership functions µA and µB and defined on a discrete
universe of discourse formed by m xj points.

If the functions µA and µB to be merged are defined by 4
parameters (like a trapezoidal function) as follows:

⎪
⎩

⎪
⎨

⎧

∈αα
≤≤

≥≤
=µ

otherwise)1,0(,
3ax2a,1

4axo1ax,0
)4a,3a,2a,1a;x(A

 (4)

xfsp replaces them by another membership function µC(x; c1,
c2, c3, c4) where:

)4b,4amax(4c
2/)3b3a(3c
2/)2b2a(2c

)1b,1amin(1c

=
+=
+=

=

 (5)

The merging of triangular and rectangular functions is

similar. If the membership functions are Gaussians, as
follows:

⎥⎦
⎤

⎢⎣
⎡ −=µ 2a/2)x1a(exp)2a,1a;x(A (6)

xfsp replaces them by another Gaussian function µC(x; c1, c2)
where:

)2b,2amax(6/2b2a2c
2/)1b1a(1c

+−=

+= (7)

For other types of membership functions or when the

functions to merge are different xfsp does not decide by
default the resulting function but asks the user to define it
through a graphical interface.

The results of applying similarity-based simplification are
similar to those of applying clustering, as can be seen in Fig.
6d and g, and Fig. 6c and h. Advantages of using similarity-
based method are that functions of different types (a triangle

Fig. 7. Main window of the tool xfsp for rule base simplification.

(1)
MP

(2)
P

(3)
M

(1) MP

(2) P

(3) M

Z Z

PS

Z

Z Z

Z

Z

Z

x1
x2 (4)

G
(5)
MG

(4) G N N

PS

Z

P

Z Z

P

Z

P

(5) MG

NS NS

N N P

Z

(1)
MP

(2)
P

(3)
M

(1) MP

(2) P

(3) M

Z Z

PS

Z

Z Z

Z

Z

Z

x1
x2 (4)

G
(5)
MG

(4) G N N

PS

Z

P

Z Z

P

Z

P

(5) MG

NS NS

N N P

Z

Fig. 8. Rule base to illustrate tabular simplification.

with a Gaussian, for instance) can be merged (which is not
possible with clustering) and that the use of a threshold
value can be more intuitive for the user. As a drawback, its
computational cost is higher because the universe of
discourse has to be swept, although this cost is significant
only for very complex systems.

B. Simplification of rule bases
If the rules are selected in the main window of xfsp, the

rule bases defined for the fuzzy system under design appear
at the left part of the window. The set of rules describing the
selected rule base appear at the right part together with four
buttons corresponding to the four processes which can be
applied to them: pruning, compression, and expansion
methods and tabular simplification (Fig. 7).

The compression method simply merges all the rules
sharing the same consequent by connecting their antecedents
disjunctively. For example, given the following 5 rules:

if(x1 == A & x2 == B) -> y = D;
if(x1 == A & x2 == C) -> y = A;
if(x1 == B & x2 == A) -> y = A; (8)
if(x1 == C & x2 == B) -> y = A;
if(x1 == B & x2 == C) -> y = D;

the result of compression is the following 2 rules:

if((x1 == A & x2 == B) | (x1 == B & x2 == C)) -> y = D;
if((x1 == A & x2 == C) | (x1 == B & x2 == A)
 | (x1 == C & x2 == B)) -> y = A; (9)

In the other side, the expansion method implements the
complementary process to compression (applied to (9), it
would return (8)).

Compression (and also expansion) method may help the
user to better understand or visualize the rule base but it
does not really perform a simplification. Simplification can
be truly carried out by the pruning method and/or the tabular
simplification.

The pruning process is usually a preprocessing method
applied prior to any simplification. Given a set of input data
set representative of the application problem, this process
evaluates the activation degree of the rules and can
eliminate: (a) the n worst rules, or (b) all the rules except for

the n best rules, or (c) all the rules whose activation degree
is below a threshold, where the parameter n or the threshold
are established by the user. Pruning allows reducing the
number of rules by selecting the most significant ones to the
application problem.

Another simplification method available at xfsp is a
tabular simplification of the rules based on an extension of
the Quine-McCluskey algorithm of Boolean design. Quine-
McCluskey method performs an ordered lineal search to find
all the combinations of logically adjacent minterms of the n-
variable function to simplify. It begins with a list of the n-
variable minterms to later obtain successively lists with (n-
1)-, (n-2)-, etc., variable implicants until no more implicants
can be formed, thus obtaining the so-named prime
implicants of the function. The last step is to select the
minimum number of prime implicants which cover all the
minterms [14].

Since fuzzy systems are an extension of Boolean systems,
we have extended the Quine-McCluskey method in the
following way (let us consider the two-input rule base
shown in Fig. 8 to illustrate the procedure). Firstly, the
consequents of a fuzzy rule base are not bi-valued but can
take several values (N, NS, Z, PS, and P in our example).
Hence, tabular simplification is applied to every consequent
(although, for the case of r consequents, r-1 simplifications
could be done by using the condition else for the r-th
consequent). Secondly, the input variables are neither bi-
valued but are usually related with several fuzzy sets (MP,
P, M, G, and MG, in our example). Instead of working with
binary codes, we assign ordered natural numbers to the
fuzzy sets of each input variable (for example, 1 to MP, 2 to
P, 3 to M, 4 to G, and 5 to MG). In this way, the antecedents
related with the same consequent can be combined if their
addition differs in the unity and they share the same
membership functions for each input variable except for one
which should be consecutive. This is illustrated in Fig. 9. At
the most left column (first list), the 13 rules (in tabular form)
associated with the Z consequent are ordered into 7 groups
(those whose antecedents sum 2, 3, 4, 5, 6, 7, and 8). The
second list shows how pairs of adjacent rules of the first list
can be formed. The third one, how groups of three rules can
be formed from the groups of the second list. Finally, the
fifth list shows the biggest groups formed by 5 adjacent

Fig. 9. Minimization table illustrating tabular simplification.

rules, which are shown within ellipses in Fig. 8.
In order to find the simplest rule associated with a

consequent (the best prime implicants of the minimization
table) the following procedure is carried out: (1) Initialize to
zero the set of covered minterms and select the most right
list (the last list) of the minimization table. (2) From the
selected list, choose the implicant which covers the largest
number of non covered minterms to form the simplest rule,
remove it from the list and go to step 3. If no implicant is
found then go to step 4. (3) Elliminate those implicants
(already selected to form the simplest rule) which are now
covered by the new included implicant. Then go to step 2.
(4) Select from the minimization table the list immediately
before to the latest analyzed and go to step 2. The procedure
finishes when all the minterms associated with the
consequent are covered. In the example of Fig. 8 and 9, it
can be seen how the three prime implicants of the last list
cover all the minterms.

The last action performed by the tabular simplification is
to use the linguistic hedges available at XFL3 to express the
resulting rule in a simple and expressive way. In particular,
the linguistic hedges >= and <= are used. For example, for
the implicant x1(1), x2(1, 2, 3, 4, 5), the antecedent part is
expressed as follows:

if (x1==MP & (x2 >=MP | x2 <=MG)) (10)

which is simpler than:

if(x1==MP & (x2==MP | x2==P | x2==M | x2==G |
 x2 ==MG)) (11)

In addition, the following items are considered to simplify

further the rule expressions:
(a) If all the membership functions of a variable are

covered by the prime implicant which appear in the rule, that
variable is eliminated of the antecedent part because its
value does not matter. For example, expression in (10) is
further simplified to ‘if(x1==MP)’ because x2 can take any
value.

(b) If all the membership functions of a variable are
covered by the prime implicant except for one, the ‘!=’
operator is used with that membership function. For
example, for the implicant x1(1), x2(1, 2, 4, 5), the
antecedent part is expressed as ‘if (x1==MP & x2 !=M)’.
 (c) If the lowest (highest) limit of a grouping is the first
(last) membership function, such condition is eliminated
from the antecedent part. For example, for the implicant
x1(4, 5), x2 (1, 2), the associated antecedent part is
expressed as ‘if(x1>=G & x2<=P)’.

Hence, the 25 rules (in tabular form) shown in Fig. 8 are
simplified into the following 5 rules (in free form):

if(x1==MP | x1==M | x2==M) -> y = Z;
if(x1==P & x2<=P) -> y = PS;
if(x1==P & x2>=G) -> y = NS;
if(x1>=G & x2<=P) -> y = N;
if(x1>=G & x2>=G) -> y = P; (12)

This example also illustrates how the rule base
simplifications usually result in membership functions
simplifications. In this case, the membership functions used
for the variable x1 are 4 (MP, P, M, G) instead of 5 and
those for x2 are 3 (P, M, G) instead of 5

IV. APPLICATION EXAMPLES
Two examples have been selected to illustrate the

advantages of using the simplification tool xfsp when
designing a fuzzy system. The first one deals with a rule
base obtained from a set of numerical data while the second
one considers a rule base obtained from translating heuristic
knowledge.

A. Rule base obtained from numerical data
Let us consider the approximation of the function

(1+sin(2πx)cos(2πy))/2 with a fuzzy system. Given a set of
numerical data corresponding to that function, a grid-based
algorithm (Wang-Mendel’s) of the identification tool of
Xfuzzy 3 has been employed to generate a fuzzy system
with 7 Gaussian functions for each input (Fig. 10a) and 9
singletons to represent the output variable. This means 49

(a)

(b)

Fig. 10. Membership functions of the input variables: (a) in the
initial system, and (b) in the learnt system.

φ

y

x

φ

y

x

Fig. 12. Diagonal parking problem.

(1) (2) (3)

(1)

(2)

(3)

c c c c

x1
x2 (4) (5)

(4) c

c

c c

(5)

c

(6) (7)

(6)

(7)

cc

c c c cc cc

c cc

d a bbe ed

d a bbe ed

b e dda ab

b e dda ab

(1) (2) (3)

(1)

(2)

(3)

c c c c

x1
x2 (4) (5)

(4) c

c

c c

(5)

c

(6) (7)

(6)

(7)

cc

c c c cc cc

c cc

d a bbe ed

d a bbe ed

b e dda ab

b e dda ab

Fig. 11. Rules identified and tuned for the approximation problem.

rules in tabular form (49 t-norms and 38 s-norms). The
approximation error obtained with this system, measured in
terms of root-mean-square-error (RMSE) is 9.2%. Applying
supervised learning (Marquardt-Levenberg’s algorithm)
with the tuning tool of Xfuzzy 3, the RMSE is reduced to
0.8%, and the membership functions of the two inputs are
changed as illustrated in Fig. 10b.

The system has been then simplified in several ways.
Firstly, clustering has been applied to the consequents and
their number has been reduced from 9 to 5. The rule base is
shown in Fig. 11. Tabular simplification has been then
applied to obtain 5 expressive rules. They are transformed
into 17 rules with no disjunctive operator in their antecedent
parts by applying the expand method. The resulting rule
base contains now 14 t-norms and 16 s-norms, which means
a complexity reduction of more than 65%. In addition, the
groups found by tabular simplification allows merging two
pairs of membership functions of one of the input variables,
thus reducing their number from 7 to 5.

An important consideration is that applying supervised
learning algorithm to the simplified system, the RMSE is

0.4%. Hence, the simplified system is also better in terms of
approximation error.

B. Rule base obtained from heuristic knowledge
Let us consider the diagonal parking problem (Fig. 12),

which in several works reported in the literature has been
addressed with fuzzy controllers that translate the heuristic
knowledge of a driver. In our case, we have considered the
realistic situation that our car can drive forward or backward
to finish correctly at the parking place. Hence, one of the
rule bases of the fuzzy controller is in charge of deciding the
driving direction. The first description of this rule base,
obtained from our heuristic knowledge, contained 17 rules,
such as the following:

“If the y coordinate is near the cars of the parking place
and the x coordinate is not approximately zero and the car
orientation φ is greater than approximately –90º and smaller
than approximately 90º, the driving direction should be
forward to avoid collision with the parked cars”.

Table II shows the above rule and other five ones related
to the situation ‘y near’ expressed with the XFL3 language.
The universes of discourse of the input variables x, φ, y, and
oldv (the current driving direction of the car) are covered
initially by 3, 7, 5, and 5 membership functions,
respectively. In the other side, the output variable can take
three singleton or constant values: stop (0 m/s), forward (1
m/s) or backward (-1 m/s).

Some of the initial and heuristic rules may not be
adequate for the control objective. For instance, simulation
results obtained within Xfuzzy 3 revealed that when the car
was driving forward, it stopped too far before changing the

TABLE II
HEURISTIC RULES EXPRESSED WITH XFL3

1) if(y == near & x != CE & phi >= LE & phi <= RI)
-> pv = forward;

2) if(y == near & x != CE & (phi < LE | phi > RI))
-> pv = backward;

3) if(y == near & x == CE & (phi < LE | phi > RI))
-> pv = backward;

4) if(y == near & x == CE & (phi == LE | phi == RI))
-> pv = forward;

5) if(y == near & x == CE & oldv < stop & phi >= LS & phi <= RS)
-> pv = backward;

6) if(y == near & x == CE & oldv >= stop & phi >= LS & phi <= RS)
-> pv = forward;

driving direction to backward. The monitoring tool of
Xfuzzy 3 showed that the rule 5 and, mainly, rule 6 in Table
II were responsible of that behavior. Hence, rule 6 was
eliminated as well as the antecedent ‘oldv<stop’ in rule 5.
The resulting five rules cover all the possible situations in x
and φ as shown in Fig. 13 (y==near). If the tabular
simplification method of the tool xfsp is now applied, the
groupings depicted with gray lines in Fig. 13 are formed,
thus resulting the two rules shown in Table III. If this
simplification process is applied to the whole rule base the
initial 17 rules obtained from our heuristic knowledge are
reduced to 14 by using the verification tools of Xfuzzy, and
then, these 14 rules are reduced to 8 by using the tool xfsp.
In addition, the number of membership functions for the y
variable are reduced from 5 to 4 (one of the zones
considered in the y direction was redundant) and the
membership functions relevant for the x direction is 1
instead of 3.

ACKNOWLEDGMENT
Authors are acknowledged to Jorge Agudo Praena who

programmed the first version of the tool xfsp.

V. CONCLUSION
The CAD tool presented in this paper allows automating

the simplification of fuzzy system descriptions to obtain
simpler and more linguistically interpretable systems. This is
possible thanks to including purging, clustering and
similarity-based algorithms reported in the literature that
eliminate and/or merge similar membership functions that
appear often after applying tuning and identification steps.
The tool also includes a pruning algorithm to reduce the
number of rules depending on their activation degree and a
tabular simplification algorithm developed by the authors
which is inspired by the Quine-McCluskey method. The
latter algorithm translates typical rule bases described in
tabular form, which usually contain many rules, into simple
rule bases whose rules exploit the use of linguistic hedges
and, hence, are more expressive. To the best of our
knowledge no other fuzzy software offers so many facilities.

Since the developed CAD tool is integrated within the
design environment Xfuzzy 3 developed at the Instituto de
Microelectrónica de Sevilla, the system to simplify can be
described from heuristic knowledge or identified from
numerical data by using the expressive language XFL3; and

can be verified, tuned and synthesized with the other CAD
tools of Xfuzzy.

REFERENCES
[1] M. Sugeno, T. Yasukawa, “A fuzzy-logic-based approach to

qualitative modeling”, IEEE Trans. on Fuzzy Systems, vol. 1, no. 1,
pp. 7-31, 1993.

[2] P. Carmona, J. L. Castro, J. M. Zurita, “FRIwE: fuzzy rule
identification with exceptions”, IEEE Trans. on Fuzzy Systems, vol.
12, no. 1, pp. 140-151, Feb. 2004.

[3] M. Setnes, R. Babuska, U. Kaymak, H. R. van Nauta Lemke,
“Similarity measures in fuzzy rule base simplification”, IEEE Trans.
on Systems, Man and Cybernetics, part B, vol. 28, no. 3, pp. 376-386,
June 1998.

[4] D. Nauck, “Data Analysis with Neuro-Fuzzy Methods”, PhD.
Dissertation, Univ. of Magdeburg, Faculty of Computer Science,
Germany, 2000.

[5] R. Senhadji, S. Sánchez-Solano, A. Barriga, I. Baturone, F. J. Moreno-
Velo, “NORFREA: An Algorithm for non-redundant fuzzy rule
extraction”, Proc. IEEE SMC’2002, vol. 1, pp. 604-608, Tunisia, Oct.
2002.

[6] R. Rovatti, R. Guerrieri, G. Baccarani, “An enhanced two-level
Boolean synthesis methodology for fuzzy rules minimization”, IEEE
Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 288-299, Aug. 1995.

[7] F. J. Moreno-Velo, I. Baturone, F. J. Barrio, S. Sánchez Solano, A.
Barriga, “A Design Methodology for Complex Fuzzy Systems”, Proc.
3rd European Symp. on Intelligent Technologies, Hybrid Systems and
their implementation on Smart Adaptive Systems, EUNITE’2003,
Oulu, July 2003.

[8] F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga, I. Baturone, D. R.
López, “XFL3: A New Fuzzy System Specification Language”,
 Mathware & Soft Computing, pp. 239-: 253 , December 2001.

[9] I. Baturone, F. J. Moreno-Velo, A. Gersnoviez, “Identifying fuzzy
systems from numerical data with Xfuzzy”, Proc. 4th Conference of
the European Society for Fuzzy Logic and Technology, EUS-
FLAT’2005, pp. 1257-1262, Barcelona , Sept. 2005

[10] F. Klawonn, R. Kruse, “Constructing a Fuzzy Controller from Data”,
Fuzzy Sets and Systems, 85, pp. 177-193, 1997.

[11] L. Wang, J.M. Mendel, “Generation Rules by Learning from
Examples”. Proc. Int. Symp. on Intelligent Control, pp. 263-268,
1991.

[12] E. H. Ruspini, P. P. Bonissone, W. Pedrycz, Eds., Handbook of Fuzzy
Computation, Institute of Physics Pub., 1998

[13] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, New York Academic, 1980.

[14] E. J. McCluskey Jr., Introduction to the Theory of Switching Circuits,
McGraw-Hill Book Co., New York, 1965.

x \ φ LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

x \ φ LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

x \ φ LB LE LS CE RS RI RB

CE bw fw bw bw bw fw bw

RI bw fw fw fw fw fw bw

LE bw fw fw fw fw fw bw

Fig. 13. Rules derived from those in Table I.

TABLE III

RESULT AFTER SIMPLIFYING THE RULES IN TABLE II

1) if(y==near & ((x==CE & phi>= LS & phi <= RS) | phi<LE | phi>RI))
-> pv=backward;

2) if(y==near & (x!=CE & (phi>=LE & phi<=RI) | phi==LE | phi==RI)
-> pv= forward;

