
 
 

 

  

Abstract—Simplification is an important step in the design of 
a fuzzy system since the membership functions that represent 
the fuzzy sets as well as the ‘if-then’ rules that relate them 
usually contain redundant information. This paper presents a 
CAD tool which provides the user with a wide set of algorithms 
to automate simplification process. It allows reducing the 
number of membership functions and rules described initially 
as well as increasing its expressiveness and linguistic 
interpretability. Since the tool is included within the design 
environment Xfuzzy 3, the simplified system can be also 
verified, tuned and synthesized automatically. Several 
examples are included to illustrate the efficiency of the 
simplification facilities provided. 

I. INTRODUCTION 
HE original way of describing a fuzzy system is to 
translate heuristic and uncertain knowledge expressed 

linguistically. Another way, which was developed later, is to 
extract the fuzzy system description from a set of numerical 
data that specify its behavior. In both cases (and their 
possible combinations) the membership functions that 
represent the fuzzy sets as well as the ‘if-then’ rules that 
relate them can be usually simplified to obtain a similar 
system with less and simpler membership functions and 
rules. The simplification process is very interesting not only 
to ease the hardware or software implementation of the 
fuzzy system but also to ensure and/or increase its linguistic 
meaning. 

Several approaches have been proposed in the literature to 
address this simplification process. One of them is the use of 
linguistic hedges, whose interest is pointed out by many 
authors, from early works like [1] to recent ones like [2]. 
They allow reducing the number of membership functions 
(many of them can be obtained as modifications of other 
ones) as well as the rules (some of them can be combined 
into a more generic one). In addition, the resulting fuzzy 
system is clearly more transparent and interpretable. 

Other authors focus the simplification process on the 
membership functions [3]. Functions which are similar are 
iteratively searched to be replaced by the same function. The 
number of membership functions is reduced not only by this 
merging process but also by eliminating those functions 
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which are too similar to the universal set. A by-product is 
that the number of rules can be also reduced because several 
rules may become redundant. 

Another approach is to simplify the rules directly. This is 
done in [4]-[5] by selecting the most significant rules of the 
rule base, and in [6] by applying minimization algorithms 
inspired in the Boolean design. This simplification usually 
reduces in turn the number of membership functions because 
some of them become unused or are merged. 

Depending on the problem to be solved, one of the above 
commented approaches can be more efficient than the others 
when designing the fuzzy system. Even a successive 
application of several approaches could provide better 
results. This is why our work has been to include all of them 
together with some methods developed by the authors into a 
CAD tool, named xfsp, that allows automating the 
simplification process. Since simplification is one of the 
design steps of a fuzzy system, this CAD tool has been 
integrated within the design environment Xfuzzy 3 
developed at the Instituto de Microelectrónica de Sevilla, 
which contains other CAD tools to cover the other design 
steps (description, verification, tuning, identification, and 
synthesis) [7]. To the best of our knowledge, no other fuzzy 
software provides so many facilities to design a fuzzy 
system and, in particular, to simplify its description. 

This paper is organized as follows. Section II explains 
briefly how the simplification process can be applied within 
the design methodology of a fuzzy system with the aid of 
Xfuzzy 3. Section III describes the simplification tool xfsp, 
showing the methods it provides to simplify automatically 
either membership functions or rule bases. Two examples 
are included in Section IV to illustrate the efficiency of this 
tool: one of them describes the simplification of a fuzzy 
system obtained from a set of numerical data while the other 
concerns with the simplification of a system described from 
translating heuristic knowledge. Finally, conclusions are 
given in Section V. 

II. DESIGN METHODOLOGY WITH XFUZZY 3 
The design methodology that can be followed with the aid 

of Xfuzzy 3 is shown in Fig. 1. The aim of the first stage 
(description) is to describe the whole fuzzy system. This is 
done by specifying: (a) the membership functions employed 
to describe the fuzzy sets, (b) the rule bases and 
mathematical modules involved, (c) the fuzzy operators 
(used to perform antecedent connection, implication, 
defuzzification, etc.), and (d) the structure of the system (its 
inputs and outputs and how the rule bases are 
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Fig. 2.  Illustrating linguistic hedges on membership functions. 
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Fig. 1.  Design flow aided by Xfuzzy 3. 

interconnected). 
The formal specification language XFL3 has been defined 

for the Xfuzzy 3 environment to ease this description 
process. It allows connecting several antecedents in the rules 
by any kind of conjunctive and disjunctive connectives, 
input variables can be related with fuzzy sets by any kind of 
linguistic hedges, and linguistic hedges can be applied even 
to some connected antecedents (Table I and Fig. 2). In 
addition, XFL3 allows the assignment of weights to the rules 
so that the confidence of the expert on some rules or the 
relative importance between rules can be also expressed [8]. 
Rules can be described in a free form by exploiting all these 
facilities provided by XFL3. An example is the following: 

 
‘if(x1 < E & (x2 != C | x3 >= B)) -> y = D’ (1) 
 

Other format to describe the rules is the tabular form in 
which the antecedents are connected only by conjunctive 
operator and no linguistic hedge is employed. For example: 

 
‘if(x1 == A & x2 == B & x3 == C) -> y = D’ (2) 
 

The free format is more expressive than the tabular one 
and contains fewer rules because a rule of the free format 
usually summarizes several rules of the tabular format. In 
the above examples, if the fuzzy sets covering the variables 
x1, x2 and x3 are {A, B, C, D, E}, the rule in (1) would 
summarize 32 rules in the tabular form, being one of them 
the rule in (2). The free format is usually employed when the 
rule base is described from translating expert knowledge 
expressed linguistically. In the other side, the rules extracted 
from numerical data are usually expressed in the tabular 
format. 

The Xfuzzy identification tool extracts the rules in the 
tabular format [9]. It can currently apply five algorithms 
based on clustering and four algorithms based on grid 
techniques. The first one organizes the data into clusters and 
uses them to create the rules and membership functions 
simultaneously [1], [10]. An advantage of these techniques 
is that the number of rules extracted is usually low. As a 
drawback, each rule has its own fuzzy sets which may be 
similar and complicates their linguistic meaning. As an 
example, Fig. 3 shows the membership functions obtained 
by applying Fuzzy C-Means clustering when extracting 11 
fuzzy rules from a set of numerical data corresponding to the 
function (1+sin(2πx)cos(2πy))/2. In the other side, the 
identification algorithms based on grid techniques generate a 
partition or grid of the input and output spaces prior to cre-
ating the rule base [11]. They extract more rules but with the 
advantage of being more interpretable. 

Once the whole system has been described, its behavior 
should be tested at the verification stage. Xfuzzy 3 contains 

 
 

TABLE I 
EXAMPLE OF FUZZY PROPOSITIONS EXPRESSED BY XFL3 

Basic propositions Description 

variable == fuzzy set equal to 
variable >= fuzzy set equal or greater than (Fig. 2a) 

variable <= fuzzy set equal or smaller than (Fig. 2b) 
variable > fuzzy set greater than (Fig. 2c) 
variable < fuzzy set smaller than (Fig. 2d) 
variable != fuzzy set not equal to (Fig. 2e) 
variable %= fuzzy set slightly equal to (Fig. 2f) 
variable ~= fuzzy set more or less equal to (Fig. 2g) 
variable += fuzzy set strongly equal to (Fig. 2h) 

Complex propositions Description 

proposition & proposition and operator 
proposition | proposition or operator 
!proposition not operator 
% proposition slightly operator 

~proposition moreorless operator 

+proposition strongly operator 



 
 

 

 

 
 
Fig. 4.  Membership functions obtained for an output variable with
a supervised learning algorithm. 

 
 
Fig. 3.  Membership functions obtained for an input variable with
a clustering-based identification algorithm. 

 
 
Fig. 5.  Main window of the tool xfsp for membership function
simplification. 

three tools to facilitate this verification process. One of them 
allows to show two- and three-dimensional graphics with the 
input/output behavior of the fuzzy system. Another tool 
allows monitoring the values of the internal and global 
variables of the system and the activation degrees of the 
rules of the different modules. The last tool simulates the 
behavior of the fuzzy system working in line with a model 
of an external system (a plant in the case of a controller). 
The user can employ these tools to modify the fuzzy system 
description manually. An automatic way to modify the 
parameters of the membership functions is to apply 
supervised learning techniques with the tuning tool of 
Xfuzzy 3. As happens in the identification process, it is 
usual that after the tuning process several membership 
functions become similar, thus complicating the linguistic 
meaning of the system. As an example, Fig. 4 shows the 49 
membership functions learnt for the output variable of a 
fuzzy system with 49 rules when trying to approximate the 
function (1+sin(2πx)cos(2πy))/2. 

After verification and (if applied) tuning stages, the 
simplification process usually performs a relevant action. 
Concerning membership functions, it is interesting: (a) to 
use a minimum number of relevant functions which could be 
modified by linguistic hedges (as shown in Fig. 2), (b) to 
merge similar functions resulting from identification and/or 
tuning stages (as illustrated in Fig. 3 and 4), and (c) to purge 
those functions which are not used (as a consequence of 
previous simplifications or a non careful manual 
description). Concerning rules, it is interesting: (a) to use a 
compact free format instead of a expanded tabular one (as 

illustrated with expressions (1) and (2)) and (b) to use a 
minimum number of relevant rules by purging those which 
are not significant. All these simplification processes can be 
applied automatically by the simplification tool of Xfuzzy 3, 
as described in the following section. 

III. THE SIMPLIFICATION TOOL XFSP 
The tool xfsp of Xfuzzy 3 allows applying simplification 

algorithms to either the variable membership functions or 
the rule bases of a fuzzy system. 

A. Simplification of membership functions 
If the membership functions (“types” in the nomenclature 

of Xfuzzy 3) are selected in the main window of xfsp, the 
variables defined for the fuzzy system under design appear 
at the left part of the window. The membership functions 
describing the selected variable appear at the right part 
together with three buttons corresponding to the three 
simplification processes which can be applied to them: 
purge mechanism, clustering and similarity-based merging 
method (Fig. 5). 

The purge mechanism looks for those membership 
functions which are not used in any rule base and eliminates 
them. This may happen not only as a consequence of 
previous simplification processes but also when the fuzzy 
system has been defined from translating heuristic 
knowledge. 

The clustering method looks for a reduced number of 
clusters (membership function prototypes) into which 
several original functions are grouped. It follows the Hard 
C-Means algorithm, that is, the clusters found are crisp 
because each original membership function will be replaced 
by only one of the resulting prototypes. The clusters are 
made on the space formed by the parameters that define the 
membership functions and weights can be applied to them. 
For example, Gaussian functions are defined by their centers 
and widths, but if the weight of the widths is zero, only the 
centers are considered in the clustering process. The optimal 
number of membership function prototypes can be found 
automatically by applying validity indexes. Dunn Separation 
Index, Davies-Bouldin Index, and Generalized Dunn 
Indexes can be applied with the tool xfsp [12]. Considering 
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Fig. 6  Simplification results on the functions in Fig. 3: clustering with (a) the Separation Index, (b) Davies-Bouldin Index, (c) Generalized Dunn 
Index,  and (d) manual index; merging with a similarity factor over (e) 0.8, (f) 0.7, (g) 0.5, and (h) 0.2. 

the 11 functions illustrated in Fig. 3, a clustering process 
that applies the above indexes results, respectively, in the 8, 
6, and 3 functions shown in Fig. 6a-c. Such direct validity 
indexes are very useful for clustering problems in which 
visual inspection is not possible. In this problem, however, 
the tool xfsp provides the user with the graphical display of 
the original and grouped functions. Hence, xfsp also offers 
the option of fixing the number of clusters after the visual 
inspection of the original functions. This is usually the best 
option for giving more freedom to the user. For example, if 
the user decides to cluster the 11 functions of Fig. 3 into 5 
clusters, the result is that in Fig. 6d. 

The other way to simplify membership functions with 
xfsp is to apply a similarity-based merging process. This 
process looks for the pair of most similar functions 
iteratively and replaces them by a unique function if the 
similarity degree is over a threshold defined by the user. The 
process finishes when no more functions can be merged. 
The lower the threshold the more functions is merged as 
illustrated in Fig. 6 e-h. The similarity measure used by xfsp 
is the one defined by Dubois and Prade as follows [13]: 
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where A and B are two fuzzy sets described by the 
membership functions µA and µB and defined on a discrete 
universe of discourse formed by m xj points. 

If the functions µA and µB to be merged are defined by 4 
parameters (like a trapezoidal function) as follows: 
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xfsp replaces them by another membership function µC(x; c1, 
c2, c3, c4) where: 
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The merging of triangular and rectangular functions is 

similar. If the membership functions are Gaussians, as 
follows: 
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xfsp replaces them by another Gaussian function µC(x; c1, c2) 
where: 
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For other types of membership functions or when the 

functions to merge are different xfsp does not decide by 
default the resulting function but asks the user to define it 
through a graphical interface. 

The results of applying similarity-based simplification are 
similar to those of applying clustering, as can be seen in Fig. 
6d and g, and Fig. 6c and h. Advantages of using similarity-
based method are that functions of different types (a triangle 



 
 

 

 
Fig. 7.  Main window of the tool xfsp for rule base simplification. 
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Fig. 8.  Rule base to illustrate tabular simplification. 

with a Gaussian, for instance) can be merged (which is not 
possible with clustering) and that the use of a threshold 
value can be more intuitive for the user. As a drawback, its 
computational cost is higher because the universe of 
discourse has to be swept, although this cost is significant 
only for very complex systems. 

B. Simplification of rule bases 
If the rules are selected in the main window of xfsp, the 

rule bases defined for the fuzzy system under design appear 
at the left part of the window. The set of rules describing the 
selected rule base appear at the right part together with four 
buttons corresponding to the four processes which can be 
applied to them: pruning, compression, and expansion 
methods and tabular simplification (Fig. 7). 

The compression method simply merges all the rules 
sharing the same consequent by connecting their antecedents 
disjunctively. For example, given the following 5 rules: 

 
if(x1 == A & x2 == B) -> y = D; 
if(x1 == A & x2 == C) -> y = A; 
if(x1 == B & x2 == A) -> y = A; (8) 
if(x1 == C & x2 == B) -> y = A; 
if(x1 == B & x2 == C) -> y = D; 

 
the result of compression is the following 2 rules: 
 
if((x1 == A & x2 == B) | (x1 == B & x2 == C))  -> y = D; 
if((x1 == A & x2 == C) | (x1 == B & x2 == A) 
   | (x1 == C & x2 == B))  -> y = A; (9) 
 

In the other side, the expansion method implements the 
complementary process to compression (applied to (9), it 
would return (8)). 

Compression (and also expansion) method may help the 
user to better understand or visualize the rule base but it 
does not really perform a simplification. Simplification can 
be truly carried out by the pruning method and/or the tabular 
simplification. 

The pruning process is usually a preprocessing method 
applied prior to any simplification. Given a set of input data 
set representative of the application problem, this process 
evaluates the activation degree of the rules and can 
eliminate: (a) the n worst rules, or (b) all the rules except for 

the n best rules, or (c) all the rules whose activation degree 
is below a threshold, where the parameter n or the threshold 
are established by the user. Pruning allows reducing the 
number of rules by selecting the most significant ones to the 
application problem. 

Another simplification method available at xfsp is a 
tabular simplification of the rules based on an extension of 
the Quine-McCluskey algorithm of Boolean design. Quine-
McCluskey method performs an ordered lineal search to find 
all the combinations of logically adjacent minterms of the n-
variable function to simplify. It begins with a list of the n-
variable minterms to later obtain successively lists with (n-
1)-, (n-2)-, etc., variable implicants until no more implicants 
can be formed, thus obtaining the so-named prime 
implicants of the function. The last step is to select the 
minimum number of prime implicants which cover all the 
minterms [14]. 

Since fuzzy systems are an extension of Boolean systems, 
we have extended the Quine-McCluskey method in the 
following way (let us consider the two-input rule base 
shown in Fig. 8 to illustrate the procedure). Firstly, the 
consequents of a fuzzy rule base are not bi-valued but can 
take several values (N, NS, Z, PS, and P in our example). 
Hence, tabular simplification is applied to every consequent 
(although, for the case of r consequents, r-1 simplifications 
could be done by using the condition else for the r-th 
consequent). Secondly, the input variables are neither bi-
valued but are usually related with several fuzzy sets (MP, 
P, M, G, and MG, in our example). Instead of working with 
binary codes, we assign ordered natural numbers to the 
fuzzy sets of each input variable (for example, 1 to MP, 2 to 
P, 3 to M, 4 to G, and 5 to MG). In this way, the antecedents 
related with the same consequent can be combined if their 
addition differs in the unity and they share the same 
membership functions for each input variable except for one 
which should be consecutive. This is illustrated in Fig. 9. At 
the most left column (first list), the 13 rules (in tabular form) 
associated with the Z consequent are ordered into 7 groups 
(those whose antecedents sum 2, 3, 4, 5, 6, 7, and 8). The 
second list shows how pairs of adjacent rules of the first list 
can be formed. The third one, how groups of three rules can 
be formed from the groups of the second list. Finally, the 
fifth list shows the biggest groups formed by 5 adjacent 



 
 

 

 
 
Fig. 9.  Minimization table illustrating tabular simplification. 

rules, which are shown within ellipses in Fig. 8. 
In order to find the simplest rule associated with a 

consequent (the best prime implicants of the minimization 
table) the following procedure is carried out: (1) Initialize to 
zero the set of covered minterms and select the most right 
list (the last list) of the minimization table. (2) From the 
selected list, choose the implicant which covers the largest 
number of non covered minterms to form the simplest rule, 
remove it from the list and go to step 3. If no implicant is 
found then go to step 4. (3) Elliminate those implicants 
(already selected to form the simplest rule) which are now 
covered by the new included implicant. Then go to step 2. 
(4) Select from the minimization table the list immediately 
before to the latest analyzed and go to step 2. The procedure 
finishes when all the minterms associated with the 
consequent are covered. In the example of Fig. 8 and 9, it 
can be seen how the three prime implicants of the last list 
cover all the minterms. 

The last action performed by the tabular simplification is 
to use the linguistic hedges available at XFL3 to express the 
resulting rule in a simple and expressive way. In particular, 
the linguistic hedges >= and <= are used. For example, for 
the implicant x1(1), x2(1, 2, 3, 4, 5), the antecedent part is 
expressed as follows: 

 
if (x1==MP & (x2 >=MP | x2 <=MG)) (10) 

 
which is simpler than: 

 
if(x1==MP & (x2==MP | x2==P | x2==M | x2==G | 
  x2 ==MG)) (11) 

 
In addition, the following items are considered to simplify 

further the rule expressions: 
(a) If all the membership functions of a variable are 

covered by the prime implicant which appear in the rule, that 
variable is eliminated of the antecedent part because its 
value does not matter. For example, expression in (10) is 
further simplified to ‘if(x1==MP)’ because x2 can take any 
value. 

(b) If all the membership functions of a variable are 
covered by the prime implicant except for one, the ‘!=’ 
operator is used with that membership function. For 
example, for the implicant x1(1), x2(1, 2, 4, 5), the 
antecedent part is expressed as ‘if (x1==MP & x2 !=M)’. 
 (c) If the lowest (highest) limit of a grouping is the first 
(last) membership function, such condition is eliminated 
from the antecedent part. For example, for the implicant 
x1(4, 5), x2 (1, 2), the associated antecedent part is 
expressed as ‘if(x1>=G & x2<=P)’. 

Hence, the 25 rules (in tabular form) shown in Fig. 8 are 
simplified into the following 5 rules (in free form): 

 
if(x1==MP | x1==M | x2==M) -> y = Z; 
if(x1==P & x2<=P) -> y = PS; 
if(x1==P & x2>=G) -> y = NS; 
if(x1>=G & x2<=P) -> y = N; 
if(x1>=G & x2>=G) -> y = P; (12) 
 

This example also illustrates how the rule base 
simplifications usually result in membership functions 
simplifications. In this case, the membership functions used 
for the variable x1 are 4 (MP, P, M, G) instead of 5 and 
those for x2 are 3 (P, M, G) instead of 5 

IV. APPLICATION EXAMPLES 
Two examples have been selected to illustrate the 

advantages of using the simplification tool xfsp when 
designing a fuzzy system. The first one deals with a rule 
base obtained from a set of numerical data while the second 
one considers a rule base obtained from translating heuristic 
knowledge. 

A. Rule base obtained from numerical data 
Let us consider the approximation of the function 

(1+sin(2πx)cos(2πy))/2 with a fuzzy system. Given a set of 
numerical data corresponding to that function, a grid-based 
algorithm (Wang-Mendel’s) of the identification tool of 
Xfuzzy 3 has been employed to generate a fuzzy system 
with 7 Gaussian functions for each input (Fig. 10a) and 9 
singletons to represent the output variable. This means 49 
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Fig. 10.  Membership functions of the input variables: (a) in the 
initial system, and (b) in the learnt system. 
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Fig. 12.  Diagonal parking problem. 
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Fig. 11.  Rules identified and tuned for the approximation problem. 

rules in tabular form (49 t-norms and 38 s-norms). The 
approximation error obtained with this system, measured in 
terms of root-mean-square-error (RMSE) is 9.2%. Applying 
supervised learning (Marquardt-Levenberg’s algorithm) 
with the tuning tool of Xfuzzy 3, the RMSE is reduced to 
0.8%, and the membership functions of the two inputs are 
changed as illustrated in Fig. 10b. 

The system has been then simplified in several ways. 
Firstly, clustering has been applied to the consequents and 
their number has been reduced from 9 to 5. The rule base is 
shown in Fig. 11. Tabular simplification has been then 
applied to obtain 5 expressive rules. They are transformed 
into 17 rules with no disjunctive operator in their antecedent 
parts by applying the expand method. The resulting rule 
base contains now 14 t-norms and 16 s-norms, which means 
a complexity reduction of more than 65%. In addition, the 
groups found by tabular simplification allows merging two 
pairs of membership functions of one of the input variables, 
thus reducing their number from 7 to 5. 

An important consideration is that applying supervised 
learning algorithm to the simplified system, the RMSE is 

0.4%. Hence, the simplified system is also better in terms of 
approximation error. 

B. Rule base obtained from heuristic knowledge 
Let us consider the diagonal parking problem (Fig. 12), 

which in several works reported in the literature has been 
addressed with fuzzy controllers that translate the heuristic 
knowledge of a driver. In our case, we have considered the 
realistic situation that our car can drive forward or backward 
to finish correctly at the parking place. Hence, one of the 
rule bases of the fuzzy controller is in charge of deciding the 
driving direction. The first description of this rule base, 
obtained from our heuristic knowledge, contained 17 rules, 
such as the following: 

“If the y coordinate is near the cars of the parking place 
and the x coordinate is not approximately zero and the car 
orientation φ is greater than approximately –90º and smaller 
than approximately 90º, the driving direction should be 
forward to avoid collision with the parked cars”. 

Table II shows the above rule and other five ones related 
to the situation ‘y near’ expressed with the XFL3 language. 
The universes of discourse of the input variables x, φ, y, and 
oldv (the current driving direction of the car) are covered 
initially by 3, 7, 5, and 5 membership functions, 
respectively. In the other side, the output variable can take 
three singleton or constant values: stop (0 m/s), forward (1 
m/s) or backward (-1 m/s). 

Some of the initial and heuristic rules may not be 
adequate for the control objective. For instance, simulation 
results obtained within Xfuzzy 3 revealed that when the car 
was driving forward, it stopped too far before changing the 
 

TABLE II 
HEURISTIC RULES EXPRESSED WITH XFL3 

1) if(y == near & x != CE & phi >= LE & phi <= RI) 
-> pv = forward; 

2) if(y == near & x != CE & (phi < LE | phi > RI)) 
-> pv = backward; 

3) if(y == near & x == CE & (phi < LE | phi > RI)) 
-> pv = backward; 

4) if(y == near & x == CE & (phi == LE | phi == RI)) 
-> pv = forward; 

5) if(y == near & x == CE & oldv < stop & phi >= LS & phi <= RS) 
-> pv = backward; 

6) if(y == near & x == CE & oldv >= stop & phi >= LS & phi <= RS)   
-> pv = forward; 



 
 

 

driving direction to backward. The monitoring tool of 
Xfuzzy 3 showed that the rule 5 and, mainly, rule 6 in Table 
II were responsible of that behavior. Hence, rule 6 was 
eliminated as well as the antecedent ‘oldv<stop’ in rule 5. 
The resulting five rules cover all the possible situations in x 
and φ as shown in Fig. 13 (y==near). If the tabular 
simplification method of the tool xfsp is now applied, the 
groupings depicted with gray lines in Fig. 13 are formed, 
thus resulting the two rules shown in Table III. If this 
simplification process is applied to the whole rule base the 
initial 17 rules obtained from our heuristic knowledge are 
reduced to 14 by using the verification tools of Xfuzzy, and 
then, these 14 rules are reduced to 8 by using the tool xfsp. 
In addition, the number of membership functions for the y 
variable are reduced from 5 to 4 (one of the zones 
considered in the y direction was redundant) and the 
membership functions relevant for the x direction is 1 
instead of 3. 
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V. CONCLUSION 
The CAD tool presented in this paper allows automating 

the simplification of fuzzy system descriptions to obtain 
simpler and more linguistically interpretable systems. This is 
possible thanks to including purging, clustering and 
similarity-based algorithms reported in the literature that 
eliminate and/or merge similar membership functions that 
appear often after applying tuning and identification steps. 
The tool also includes a pruning algorithm to reduce the 
number of rules depending on their activation degree and a 
tabular simplification algorithm developed by the authors 
which is inspired by the Quine-McCluskey method. The 
latter algorithm translates typical rule bases described in 
tabular form, which usually contain many rules, into simple 
rule bases whose rules exploit the use of linguistic hedges 
and, hence, are more expressive. To the best of our 
knowledge no other fuzzy software offers so many facilities. 

Since the developed CAD tool is integrated within the 
design environment Xfuzzy 3 developed at the Instituto de 
Microelectrónica de Sevilla, the system to simplify can be 
described from heuristic knowledge or identified from 
numerical data by using the expressive language XFL3;  and 

can be verified, tuned and synthesized with the other CAD 
tools of Xfuzzy. 
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x \ φ LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

x \ φ LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

x \ φ LB      LE      LS      CE      RS     RI        RB

CE      bw fw bw bw bw fw bw

RI       bw fw fw fw fw fw bw

LE      bw fw fw fw fw fw bw

 
 

Fig. 13.  Rules derived from those in Table I. 

 
TABLE III 

RESULT AFTER SIMPLIFYING THE RULES IN TABLE II 

1) if(y==near & ((x==CE & phi>= LS & phi <= RS) | phi<LE | phi>RI)) 
-> pv=backward; 

2) if(y==near & (x!=CE & (phi>=LE & phi<=RI) | phi==LE | phi==RI)  
-> pv= forward; 

 


