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ABSTRACT

Snow cover simulation is a complex task in mountain regions because of its highly irregular distribution.

GIS-based calculations of snowmelt–accumulation models must deal with nonnegligible scale effects below

cell size, whichmay result in unsatisfactory predictions depending on the study scale. Terrestrial photography,

whose scales can be adapted to the study problem, is a cost-effective technique, capable of reproducing snow

dynamics at subgrid scale. A series of high-frequency images were combined with amass and energy model to

reproduce snow evolution at cell scale (30m3 30m) by means of the assimilation of the snow cover fraction

observation dataset obtained from terrestrial photography in the Sierra Nevada, southern Spain. The en-

semble transform Kalman filter technique is employed. The results show the convenience of adopting a se-

lective depletion curve parameterization depending on the succession of accumulation–melting cycles in the

snow season in these highly variable environments. A reduction in the error for snow depth to 50% (from

463.87 to 261.21mm and from 238.22 to 128.50mm) is achieved if the appropriate curve is selected.

1. Introduction

Snow plays an important role in the hydrologic re-

gime of mountainous catchments. In Mediterranean

regions, significant variability in both meteorologi-

cal variables and topographic features can be found

(Diodato and Bellocchi 2007). This adds complexity

to the task of monitoring and modeling the evolution

of snow distribution, which determines the infiltration–

runoff regime and the availability of water during the

dry season.

Initially, a first approach to studying snowpack evo-

lution is made by using simple empirical relationships

between the snowmelt flux and selected meteorological

variables (Kustas et al. 1994). However, in these areas,

the marked annual, seasonal, and even weekly variability

of temperature, wind, and rainfall make this a difficult

approach to apply in practice, and energy and mass bal-

ance equations are usually needed to capture these highly

variable conditions (Anderson 1976). Many physically

based point models for the mass and energy balance in

the snowpack have been developed over the last few

decades (e.g., Jordan 1991; Marks and Dozier 1992;

Tarboton and Luce 1996). However, the particular fea-

tures of snow dynamics in Mediterranean regions (Sade

et al. 2014; Schulz and de Jong 2004) make it difficult

for their application in some areas. For example, some

models focus on the vertical gradients in the snow column
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and require complex information as input or calibra-

tion data (e.g., Jordan 1991), whereas in Mediterranean

regions, depths higher than 1m may be seldom found in

many sites. Other detailed approaches (e.g., Marks and

Dozier 1992) capable of reproducing highly variable

conditions require the availability of densely monitored

areas to be calibrated, which is not frequent in moun-

tainous areas, especially at high altitudes. On the other

hand, models with a smaller number of state variables

(e.g., Tarboton and Luce 1996) are very efficient to sim-

ulate runoff from snow areas with less demand of data

sources, but theymay not adequately reproduce the snow

evolution under patchy conditions or during short and

intensemelting periods because of a fixed time step in the

calculation. Herrero et al. (2009) developed a point en-

ergy balance snowmelt–accumulation model at a Medi-

terranean site following the formulation proposed by

Tarboton and Luce (1996), which adopts a variable time

step during the calculation procedure to better represent

the variability of the different snow cycles within the

season in these regions. The model also considers the

important loss of water resources from snow evaporation

under such conditions (Schulz and de Jong 2004; Sade

et al. 2014), which accounted for as much as 42% of the

total snowfall in extreme years, and the significance of

the longwave radiation flux emitted from the snowpack in

the energy balance. In addition, the use of a specific pa-

rameterization of this term in this area improved themodel

performance (Herrero and Polo 2012) and highlighted the

differences in the driving processes for snow dynamics

between Mediterranean and higher-latitude regions.

These models can be applied over whole areas, taking

into account the significant issues of scale that arise when

applying point models throughout a distributed area. The

most common problems include 1) the selection of an

optimal gridcell size according to the physics of the

studied processes and 2) the question of how to represent

the subgrid variability, also taking into account the snow

dynamics. Following Blöschl (1999), who affirms that an

optimal cell size may not exist, the model element scale

may in practice be dictated by practical considerations

such as data availability to calibration and validation

stages and the required resolution of the predictions. For

the second question, a simple parameterization bymeans

of depletion curves (DCs), which extends the point mass

and energy balance calculation by using a relationship

between one selected snow state variable and the snow

cover fraction (SCF) over a fixed area (Luce et al. 1999),

can be applied. The availability of distributed snow

measurements limits the application of both solutions,

with different needs for the associated spatial resolution.

Remote sensing is the best and sometimes only available

distributed data source for medium- to large-scale studies.

Different time and spatial scales of data can be found

between satellites, with a decreasing spatial resolution for

a given location as frequency increases, that is, NOAA

daily images with 1km 3 1km cell size, MODIS daily

images with 500m 3 500m cell size, or Landsat 16-day

images with 30m 3 30m cell size. These satellite sources

are widely used for examining the evolution of snow cover

extent on a medium to large scale (Painter et al. 2009;

Herrero et al. 2011;Wang et al. 2014; Malik et al. 2014). In

semiarid environments, the extremely variable conditions

favor the particular distributed patterns of the snow, which

usually appear as medium- to small-sized patches. Thus,

spatial resolution constitutes a limiting factor, and Landsat

has been the data source most recommended for studying

snowevolution over these areas (Marks andWinstral 2001;

Pimentel et al. 2012), sometimes being combined with

MODIS data to fill in the time lapse at a daily scale.

Nevertheless, Landsat spatial resolution is not always ca-

pable of capturing the variability of snow distribution

during spring or the short melting cycles in dry years, in

which small snow patches may persist during many weeks

in early summer (Rosenthal and Dozier 1996; Pimentel

et al. 2012; Sade et al. 2014).

Moreover, the selection of the most representative

DCs to expand the physical snow models’ calculations

over grid cells in distributed studies depends on the local

conditions, including topography, vegetation, and the

dominant regimes of the weather variables; that is, it

requires the availability of SCF local measurements.

Terrestrial photography (TP) is a cost-effective tech-

nique, capable of reproducing snow dynamics at the cell

scale when combined with the physical model approach

and pointmeasurements of other variables, such as snow

depth. Different examples of parameterization of DCs

have been proposed in the literature (Ferguson 1984;

Buttle and Mc Donnell 1987; Luce and Tarboton 2004),

and local SCF data from TP provide a basis for the

adoption of a given curve or local parameterizations.

Additionally, to a high and easily flexible spatial reso-

lution, TP frequency can be fixed at subdaily scales and

even change within the monitoring period to be adapted

to the process significant scales without effort.

Nevertheless, the final simulation of the spatial evo-

lution of the snowpack may not result in a satisfactory

performance because of the high degree of heteroge-

neity of the snow and the usual lack of extended in situ

time series of snow depth/cover to generate specific local

DCs, and the need for not only simulating snow cover

but also snow depth values. The complementary use of

assimilation techniques can reduce uncertainty in the

model forecast, considering that field data for additional

snow variables are available. There aremany examples of

snow simulation using different assimilation techniques,
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from simple methods such as direct insertion (DI; Liston

et al. 1999; Malik et al. 2012) to more complex methods

such as those derived from applications of Kalman filter

(Kalman 1960). In this group, a wide range of method-

ologies are found: the original Kalman filter, mainly used

as linear forecast model; the ensemble Kalman filter

(EnKF; Evensen 1994), which constitutes a stochastic

formulation of the original filter and simplifies the prob-

lem of the nonlinearity of the process; or the ensemble

square root filter (ESRF; Pham 2001; Tippett et al. 2003;

Ott et al. 2004), which does not perturb the observation

and improves the computational time.

This work presents the potential of TP for capturing

snow dynamics at the subgrid scale as an intermediate

step between point and distributed snow modeling, when

combined with physical modeling and point measure-

ments. For this purpose, three different DC parameteri-

zations proposed byLuce andTarboton (2004)were tested

at a mountainous site in southern Spain by means of the

assimilation of SCF values obtained from TP into a physi-

cal snow model previously validated at the study site

(Herrero et al. 2009). The ensemble transform Kalman

filter (ETKF) technique, belonging to theESRF group, has

been used in this study. A cell size of 30m 3 30m was

selected in order to use the results in a further validation of

the distributed model in the region through Landsat data.

The article is organized as follows. Section 2 describes

the characteristics of the study site and the available

data; section 3 introduces the different steps in the cal-

culation structure (snowmelt–accumulation model, DC,

TP analysis, and ETKF technique); sections 4 and 5

present the results and discussion, and, finally, the con-

clusions are drawn in section 6.

2. Study site and available data

This study has been carried out in the Sierra Nevada,

southern Spain. This linear mountain range, with alti-

tudes ranging from 1500 to 3500m, runs parallel to the

Mediterranean coast at a distance of 60km. It is charac-

terized by high altitudinal gradients and a modification

of the mountain climate influenced by the surrounding

Mediterranean conditions. It is usually covered with

snow, at altitudes of over 2000m, during winter and

spring, and although the snowmelt season extends from

April to June, the typically mild Mediterranean winters

produce several accumulation–melting cycles before the

final spring melting. Annual precipitation fluctuates

widely and can range from 400 to 1500mm, with a high

spatial variability throughout the area due to topographic

effects. The average temperature ranges from258 to 58C
during the snow season, although minimum values of

2208C can be found at certain times in winter.

A control area of about 900m2 was selected near the

monitoring weather station used in this study, Refugio

Poqueira (Fig. 1), at 2500mMSL. This area is composed

of fragmented phyllites and schists, and a characteristic

vegetation canopy, consisting of Genista versicolor and

Festuca clementei, two compact and densely branched

low shrubs that grow closely together, forming ex-

tremely compact, low, continuous cover, which acts as

an insulator between the soil and the snowpack and is

the main vegetation cover from 2000 to 2900m over this

area (Anderson et al. 2011).

a. Weather data

The automated weather station located at Refugio

Poqueira (Fig. 1) consists of a rain gaugewithAlter shields

to facilitate snow collection, a pyranometer, a pyrge-

ometer, a temperature and humidity probe, a wind moni-

tor, and a manometer. The 5-min datasets have been

consistently recorded since 2004 up to the present; some

statistical descriptors of the weather data at this site are

included in Table 1. Table 2 shows the model and main

characteristics of the instrumental components of the

Refugio Poqueira station.

b. Terrestrial photography

Since the summer of 2009, an automatic CC640

Campbell Scientific camera has provided five images per

day, every 2 h between 0800 and 1600 LT, of the control

FIG. 1. (top) Location of the study site in the Sierra Nevada,

southern Spain, and (bottom) DEMof the control area close to the

Refugio Poqueira weather station. The black dot indicates the lo-

cation of the weather station and the black solid line indicates the

area covered by the images obtained from TP.
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area, with a resolution of 640 3 504 pixels and a focal

length of 85mm. This camera is able to capture both the

fast snow melting cycles and the spatial heterogeneity

exhibited by the snow cover at the study site in relation

to its microtopography. Additionally, two snow mea-

suring rods were installed in the photographed area at

representative points where the snow is more persistent

during most of the accumulation–melting cycles through-

out the year. Thus, the TP images allow us to monitor

a representative snowpack depth at the study site with

high-frequency recording.

c. Digital elevation model

A 0.05m 3 0.05m digital elevation model (DEM) of

the control area was derived from the spatial inter-

polation of topographic survey data. The topographic

survey was designed from a previous analysis of the TP,

from which the most important elements of the micro-

topography that condition the snow distribution over

the control area were selected.

3. Methods

Two consecutive hydrologic years, 2009–11, were

simulated at the study site by using the snow pointmodel

by Herrero et al. (2009), with three different DCs. The

model was used with its original calibration, obtained

with data from 2004 to 2007. Two different perfor-

mances of the model were tested. First, the three DCs

were evaluated by comparing TP-observed values of

SCF and snow depth with their simulated results, without

any assimilation procedure (open-loop simulation).

Second, the TP-SCF dataset (observation) was assimi-

lated by means of ETKF for the same DC formulations,

and the simulated snow depth values were validated

against the TP–snow depth dataset. This section de-

scribes the different items in the calculation process: the

snow model structure, the three selected DCs, how the

snow variables were obtained, and the ETKF assimila-

tion technique.

a. Snow modeling: Point model

The snowmelt–accumulation model for Mediterra-

nean sites developed by Herrero et al. (2009) is a physi-

cal model based on a point mass and energy balance.

The model assumes a horizontally uniform snow cover

distributed in one vertical layer. This snow column per

unit area defines a control volume, with the atmosphere

and the ground as external boundaries; the lateral mass

and energy fluxes between adjacent snow columns are

null since the horizontal gradients are neglected when

compared to the vertical ones. The balance equations

can then be expressed according to

d(SWE)

dt
5P2E1W2M (1)

and

d(uSWE)

dt
5
dU

dt
5K1L1H1G1P(uP)

2E(uE)1W(uW)2M(uM) , (2)

TABLE 1. Statistics descriptors of selected meteorological variables at the Refugio Poqueira weather station during the study period

(2009–11).

Variable Unit Mean Max Min

Annual precipitation mmyr21 750 1250 467

Snowfall annual fraction (of annual precipitation) % 60 70 40

Instant temp 8C 6.4 24.6 214.4

Instant winter temp 8C 1.3 8.5 214.4

Solar radiation Jm22 day21 19.8 3 106 35.8 3 106 0.5 3 106

Wind speed m s21 3.82 13.24 0.11

TABLE 2. Specifications of the sensors at the Refugio Poqueira weather station.

Instrument Range Operating temp (8C)

Campbell Scientific CR10X datalogger From 225 to 50

Geonor T-200B rain gauge 0–600mm From 225 to 70

Vaisala HMP45C (temp) From 2408 to 608C From 240 to 60

Vaisala HMP45C (humidity) 0.8%–100% From 240 to 60

Kipp and Zonen SP-Lite pyranometer 0.4–1.1mm From 230 to 70

Druck RPT410F barometer 600–1100 hPa From 240 to 60

Young 05103-45 wind monitor 0–60m s21 From 250 to 50

Pyrgeometer 4.5–44mm From 240 to 80
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where snowwater equivalent (SWE) is the watermass in

the snow column, u is the internal energy per unit of

mass (U for total internal energy), and t represents the

time. In the mass balance, P defines the precipitation

rate, E is the flux of water mass exchange with the at-

mosphere (positive for evaporation from the snowpack

and negative for condensation from the atmosphere),W

represents flux of water mass transport due to wind, and

M is the melting water flux. In addition, for the energy

fluxes in Eq. (2),K is the net solar or shortwave radiation

flux;L is the net thermal or longwave radiation flux;H is

the flux of sensible heat exchange with the atmosphere;

G is the flux of sensible heat exchange with the ground;

and uP, uE, uW , and uM are the unitary energy values

associated with each one of the mass fluxes involved in

Eq. (1). The termsW(uW) andM(uM) are advective and

E(uE) and H are diffusive transport, whose formulation

requires some characterization of the turbulent atmo-

spheric conditions (Anderson 1976; Jordan et al. 1999).

SWE values are transformed into snow depth values by

means of a local empirical relationship for the experi-

mental measurements.

Some simplifying assumptions were proposed when

applying Eqs. (1) and (2) at the study site. The wind

transport term W was disregarded because of the quick

snow metamorphosis, which compacts the snow and

reduces its mobility. The variable G was also dis-

regarded since, besides being considered a secondary

term per se in the energy balance (Kuusisto 1986), its

value is considerably reduced at this site by the in-

sulating properties of the local vegetation canopy. The

variable P is direct input from the dataset measured by

the weather station. In addition,K,L,E(uE), andH can

be explained as

K5KY1K[5KY(12a) , (3)

L5LY1L[5LY2sSBT
4
sn , (4)

UE 5

 
KU

E

fMfV

ya

!
(esn 2 ea) , (5)

and

H5

�
KH

fMfH

ya1KH
0

�
(Ta2Tsn) , (6)

where KY and K[ are downwelling and upwelling

shortwave radiation fluxes,KY is measured directly by the

weather station;a is the snow albedo, which in this study is

considered to be constant with a value of 0.8; LY and L[
are downwelling and upwelling longwave radiation fluxes,

whereLY is alsomeasured directly by theweather station;

sSB is the Stefan–Boltzmann constant; UE 5E(uE); KUE

is the bulk latent heat transfer coefficient, which depends

on average roughness of the snow z0; KH is the bulk

sensible heat transfer coefficient with wind andKH0
is the

same without wind; ya, ea, and Ta are the wind speed, the

air vapor pressure, and the air temperature at a reference

altitude zR (typically 2m), respectively; esn is the satura-

tion vapor pressure for the snow temperatureTsn; andfM,

fV , and fH are the stability-correction factors for non-

adiabatic temperature gradients for mass, wind, and sen-

sible heat, respectively (Dingman 2002). In this work, the

conclusions from Herrero et al. (2009) for snow dynamics

at the study sitewere adopted, with values of 6Wm22K21

forKH0
and 2.5mm for z0, and the terms fM, fV , and fH

were disregarded.

b. Depletion curve

DCs are used to expand the point snow calculations

over the cell size area selected as a previous step in the

distributed modeling of the snowpack, taking into ac-

count the spatial variability at the subgrid scale. These

empirical functions relate the SCF (the fraction of cell

area covered by the snow) to other snow variables.

During an accumulation–melting cycle, the selected DC

includes the decrease in snow cover within the cell area

and therefore affects the quantification of energy fluxes

in the energy balance. These fluxes are reduced pro-

portionally to the fraction of the area covered by the

snow. Thus, it is important to select a suitable DC when

applying the model.

Different methodologies have been employed to de-

fine these curves. For example, Cline et al. (1998) used

remote sensing data to generate DCs under the as-

sumption that the SCF decrease over time was spatially

coherent—in other words, the snow did not change its

location. Luce and Tarboton (2004) employed a proba-

bility density function of SWE for the peak accumulation

date over a basin, and Kolberg and Gottschalk (2006)

applied a Bayesian approach to update these curves using

remote sensing data.However,most of theDCs proposed

relate SCF and SWE, with rare exceptions.

Following this, the DC shapes proposed by Luce and

Tarboton (2004) from different distribution functions

were tested at the study site to select the formulation

thatmost closely resembledmost of the in-seasonmelting

cycles that characterize snow dynamics inMediterranean

climates. A lognormal distribution was finally chosen.

Three parameterizations described by their coefficient

of variation (CV) were adopted for a lognormal distri-

bution between the dimensionless variables of snow wa-

ter equivalent, SWE* (SWE*5 SWE/SWEmax, where

SWEmax is the SWE maximum in each melt cycle), and

SCF in the control area (Fig. 2).
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The CV represents the main trend in the evolution of

areal accumulation–melting. Lower values were associ-

ated with a higher sensitivity of SCF to changes in SWE*

in the first stage of the accumulation and in the last stage

of melting processes, whereas high CV values corre-

spond to low sensitivity of SCF during the initial stages

of snow accumulation but with quick changes in SCF

during the initial stages of melting. At the spatial scale of

the present study (30m 3 30m), the snow properties,

together with the microtopography and ground vegetation

at a given site, among others, are the underlying factors for

a given DC shape representing local conditions.

c. Terrestrial photography analysis

To quantify the evolution of snow at the subgrid scale,

TP observations were obtained at the study site during

two consecutive hydrologic years (2009–11). Every TP

image underwent a two-step analysis: georeferencing, to

provide the image with spatial coordinates, followed by

a snow detection process using a nonsupervised clus-

tering algorithm, which provided both the SCF and snow

depth for each image. Both steps are described below.

1) GEOREFERENCE

The georeference of each image was made on the

basis of the local DEM, whose quality together with the

image quality (level of distortion induced by the lens

during the acquisition process) determined the final

accuracy of the results.

First, the images were lined up to correct possible

displacements during the acquisition process. Second,

the corrected images were georeferenced to a DEM

following standard procedures for viewing with com-

puter graphics (Fiume 1989; Foley et al. 1990), which

relate the two-dimensional pixels in the images to the

three-dimensional points in the DEM. This mapping

function translates the coordinate system of the DEM to

the camera position and applies a transformation ac-

cording to the focal length and view direction. The result

is a virtual photograph of the DEM, that is, a represen-

tation of it as it would be seen from the point of view of

the camera. The two-dimensional representation of the

DEM is then scaled according to the resolution of the

photograph (Corripio 2004; Rivera et al. 2008). In this

way, the two representations can be superimposed, es-

tablishing the necessary correspondence between a pixel

in the photograph and its projection coordinates in the

DEM. The final result is a map in which all the pixels in

the TP have been located over the terrain.

2) SNOW DETECTION

To distinguish the snow-covered and noncovered

pixels in each image, a clustering algorithm was applied.

These unsupervised methods are generally used to

group together data according to some certain notion of

similarity. In this case, all the white points in the scene

are linked to the presence of snow, so that two clusters

can be easily defined: snow-covered and noncovered

pixels. A K-means clustering (MacQueen 1967) was

selected; this algorithm classifies the data into a given

number of clusters, selecting a random center within

each cluster and minimizing the distance between the

data and these centers. This algorithm proved to be ef-

ficient enough to differentiate these two kinds of pixels,

since it was capable of detecting most of the snow area

with no previous calibration or the use of fixed thresh-

olds in the images, with a resulting low level of mis-

classifications, which were in turn related to the

presence of strong shadows in the images (Pimentel

et al. 2012). From this pixel classification, the SCF can

be easily calculated.

This algorithm was also used to measure the snow

depth from the rods installed in the control area. The

rods were painted in a distinct color, red, which made

them easy to differentiate from the remaining objects in

the scene. From the clustered results, a linear equation

was capable of estimating the depth of the snow from the

identified pixels with rods.

d. Ensemble transform Kalman filter

As stated before, the data assimilation method

employed in this work is the ETKF. This filter was in-

troduced by Bishop et al. (2001) as a form of square root

filter that allows a deterministic update of the ensem-

ble anomalies (Tippett et al. 2003), and it is usually

chosen for its natural characteristics and its computa-

tional efficiency (Sakov and Oke 2008). It is based on

FIG. 2. Different dimensionless DCs parameterized as lognormal

distribution for different CVs.
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the equations of the Kalman filter and the Monte Carlo

perturbation of the EnKF.

The Kalman filter analysis equations represent the

state variable update from the assimilation process, and

they can be described as

xa5 xf 1K(d2Hxf ) , (7)

where xa is the analysis and xf is the forecast; d is the

vector observation; H is the operator mapping the state

vector space to the observation space; and K is referred

to as the Kalman gain, given by

K5PfHT(HPfHT 1R)21 , (8)

with Pf and R being the forecast and observation error

covariance matrices, respectively. The superscripts f

and a denote forecast and analysis, respectively, and the

superscript T denotes a matrix transpose.

These are the basic equations also used by EnKF, but

this one employs a Monte Carlo approximation to solve

the problem of the nonlinearity of the model used. The

covariance matrix P, in this case, is stored and manipu-

lated implicitly via an ensemble variable X of the model

states,X5 [X1, . . . , Xm], withm being the ensemble size

and with the square brackets indicating a range of

values, by means of the relationship

P5
1

m2 1
�
m

i51

(Xi 2 x)(Xi2 x)T 5
1

m2 1
AAT, (9)

where x is the ensemble mean

x5
1

m
�
m

i51

Xi (10)

and A5 [A1, . . . , Am] is the ensemble of the individual

anomalies or perturbations,

Ai 5Xi 2 x . (11)

Based on these equations, Sakov et al. (2010) defined the

ETKF by rewriting the general analysis equation given

by Eq. (6) in a generic form:

xa2 xf 5AfGs , (12)

where s is the scaled innovation vector, defined as

s5R21/2(d2Hxf )/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
, (13)

and G stands for

G5ST(I1SST)21 , (14)

with S being the term that represents the scaled en-

semble observation anomalies:

S5R21/2HAf /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 1

p
. (15)

In this annotation, the anomalies of the ensemble up-

date are calculated as

Aa 2Af 5AfT , (16)

with T being the transform matrix for ETKF proposed

by Bishop et al. (2001):

T5 (I1STS)21/22 I . (17)

In this work, the platform EnKF-Matlab (version 0.28)

developed by Sakov (http://enkf.nersc.no/Code/EnKF-

Matlab/) was used to implement the aforementioned

development of ETKF.

Two aspects must be taken into account to apply the

ETKF: model error estimation and optimal ensemble

size. In that case, because of the deterministic aspect of

the filter, observation error estimation is not considered.

The determination of model errors remains a largely

subjective issue, as it is very difficult to attribute the

error to the physics of the model (Reichle 2008). One

way to quantify this model error is by including the

uncertainties in both the forcing of the data and the

model formulation (Reichle 2008). In this study, a rep-

resentative value of the variability was employed to

perturb the forcing parameters. Considering that the

time resolution of themeteorological data was 5min and

according to the time step of the modeling, 1 h, the

standard deviation of the data was calculated every

hour. The 90th percentile of the standard deviation

sample obtained was selected as the representative

value to perturb all the meteorological inputs, with the

exception of precipitation. In this case, when the mea-

sured precipitation was zero, no perturbation was per-

formed; the rest of the measured values were divided

into three intervals, whose limits depended on the

amount of precipitation, and a standard deviation was

calculated for each one. Table 3 shows the different

representative values employed for perturbing each

weather variable.

To select the optimal ensemble size, different simu-

lations with ensembles of 10, 20, 50, 100, and 200 mem-

bers were performed. The ensemble size that minimized

the root-mean-square error (RMSE) between observa-

tion and simulation was finally adopted as the optimal

one. The RMSE for a given ensemble size was calculated

as the mean of the RMSE of the simulation of three

different DCs performed.
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4. Results

a. Snow variables measured

About 2000 images from the study period, the two

hydrologic years 2009/10 and 2010/11, were georefer-

enced using the DEM obtained in the control area. The

results of this process were snow cover maps in the

photographed areas, with the same spatial resolution of

the DEM (0.05m3 0.05m) and with the same temporal

resolution of the image acquisition process (five images

per day). Figure 3 shows different examples of this

georeference process.

As can be observed, the snow was correctly detected at

different times of the year under different weather con-

ditions: on clear days at the beginning of the snowy season

(9 December 2010); on days with a total snow cover and

the appearance of shadows (6 February 2011); or on days

with amorningmist at the end of the fusion periods (2May

2011), which confirmed the usefulness of TP at the scale of

the work analyzed. Table 4 shows some statistics of the

snow state variables measured using these images.

Moreover, the high temporal resolution of TP allowed

the monitoring of some characteristic fast evolution that

usually takes place in this area, mainly during the melting

season. Figure 4a shows the average hourly rate of change

in SCF, with the highest rate from autumn initial snow and

spring melting of the second year, a maximum value of

0.065m2m22 h21 (26 November 2010); the medium range

was from some winter period and spring melting of the

first year, with a maximum rate of 0.025m2m22 h21 (24

April 2010). Both greatly contrast with periods with neg-

ligible values during some winter periods. Figure 4b in-

cludes a comparison between TP-SCF values (small black

TABLE 3. Representative values used to perturb the different

meteorological variables used in the modeling.

Meteorological input Unit Representative value

Temp 8C 0.663

Emissivity % 10.00

Wind speed m s21 1.363

Air pressure kPa 0.049

Air relative humidity % 6.65

Radiation Jm22 s21 110.5

Precipitation

P 5 0 mm No perturbation

0 , P , 2 mm 0.496

2 # P , 5 mm 0.810

P $ 5 mm 2.568

FIG. 3. Example of the TP georeference process on the study site for selected days during the snow season: (a) original image,

(b) georeferenced image, and (c) snow mask obtained from the georeferenced image by using the simpleK-means algorithm described in

section 3b(2).
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dots) and SCF values obtained from different remote

sensing sources in the study area at the adequate scale and

given dates: 1) Landsat, providing covered and non-

covered pixel classification from normalized difference

snow index (NDSI) values (gray dots), and 2) MODIS,

providing SCF from the MOD10A1 product (black

crosses). In general, none of them is able to reproduce the

global variability exhibited by snow during given periods,

which can be observed from TP. MODIS-SCF values,

which covered a greater extension than the cell size, match

TP observations during covered periods but not during the

melting season (e.g., spring melting cycle of 2010, which is

prolonged byMODIS for approximately 1 month); on the

contrary, Landsat classification reproduced this period

best, but its temporal resolution clearly limited the moni-

toring of quick changes (e.g., the absence of data during

the springmelting of the second year). The potential of TP

observations as a complementary data source to these re-

mote sensing sources can be clearly observed.

b. Open-loop simulation

Figures 5 and 6 show the evolution of SCF and snow

depth, respectively, simulated by the snow model for the

three DCs used and their comparison with the TP mea-

surements; dispersion graphs are also included in the

figures.

The SCF open-loop simulation (Fig. 5) produced

similar trends for every DC. As a general trend, the DCs

with CV 5 0.4 and 0.8 reproduced, with a high approx-

imation, the behavior of the snow during the whole pe-

riod with RMSE5 0.151 and 0.145m2m22, respectively.

They were even capable of capturing small fusion–

accumulation cycles at the beginning and end of the

season. The DC with CV 5 1.2 also reproduced long

periods with persistent snow adequately, however, could

not approximate those short, intense cycles at the be-

ginning and end of the annual snow period. A larger

error (RMSE 5 0.190m2m22) than previous DCs for

the study period was found.

A similar behavior can be observed for the simulated

snow depth evolution (Fig. 6). As a general trend, the

DCs with CV 5 0.4 and 0.8 underestimate the depth of

the snow. During the two years selected, both reproduce

with a reasonable approximation the snow depth during

the snow season up to the beginning of the spring ac-

cumulation period. From then on, both curves give rise

to greater fusion fluxes than those observed, mis-

matching the measured and simulated snow depth re-

sults. Conversely, the curvewith CV5 1.2 overestimates

the depth in a generalized manner during the study pe-

riod, and even generates the presence of snow during the

summer season, when no snow is observed.

c. TP-SCF assimilation simulation

TP-SCF values were used as the observation dataset in

the assimilation process. First, the ETKF was calibrated

TABLE 4. Statistics descriptors of the snow state variables measured using TP.

Snow depth (mm) SCF

Min 0 Days completely covered by snow 162

Max 1400 Days completely free of snow 73

Mean in days with snow 612.9 Days partially covered by snow 401

Std dev in days with snow 125.2 Days without information 94

FIG. 4. (a) Average hourly rate of change in SCF throughout the study period. (b) Comparison between SCF obtained from TP (black

dots) and SCF obtained from Landsat (gray dots) and MODIS (black crosses).
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by minimizing the mean RMSE values associated with

each DC for a different number of ensemble members

(Table 5). It can be seen how the greater the size, the

smaller the error, with very significant improvements in

the simulation at the beginning of the interval of sizes

evaluated (e.g., the error produced was reduced to al-

most one-third depending on whether a filter of 10 or 20

members was selected), and a certain stabilization of its

FIG. 5. (left) Measured (black dots) and simulated open-loop (gray line) SCF evolution for each DC used by the snow model without

assimilation. (right) Dispersion graphs between measured and simulated SCF.

FIG. 6. (left) Measured (black dots) and simulated open-loop (gray line) snow depth evolution for each DC used by the snow model

without assimilation. (right) Dispersion graphs between measured and simulated snow depth.
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value as from a certain size threshold was noted. In view

of these results, a size of 20 members was chosen as

being optimal for the goodness of the simulation and the

associated computational cost, since, starting from this

value, the diminution of the associated error was hardly

noticeable [O(;0.01) m2m22 for the SCF].

The simulated snow depth values were tested against

the independent snow depth observations (Fig. 7), with

a decrease in the RMSE values in all the cases when

compared to the open-loop simulations (Table 6 and

Figs. 6, 7), especially for CV 5 0.4 and 0.8 curves.

However, it should be pointed out that, in spite of this

global improvement, the assimilation was not able to

reproduce the snow depth (Fig. 7) with the same degree

of approximation for all the accumulation–melting cy-

cles during the study period. This is clear in the case of

the DC with CV 5 1.2, in which snow presence during

the summer season continues to be simulated without

actually being observed, resulting in high global RMSE

values. Also, CV 5 0.4 and 0.8 curves reproduced the

initial and final stages of every annual snow season

better, but failed to simulate some intermediate periods,

with significant differences between both curves de-

pending on the season and cycles being analyzed. On the

whole, despite the major improvement experienced in

the three DCs analyzed, the DC with intermediate CV

(CV 5 0.8) was the one that best represented the ob-

servations, with an RMSE value of 191.18mm over the

whole study period (equivalent to 30% of the mean

snow depth), against the 279.23 and 523.14mm values

obtained for CV 5 0.4 and 1.2, respectively (equivalent

to 45% and 85% of the mean snow depth, respectively).

TP-SCF assimilation has allowed both the analysis of

the DC that best reproduced the snow dynamics at the

subgrid scale and the improvement in the physical

model performance. The incorporation of these obser-

vations in the modeling by ETKF led, in all cases, to

a reduced error in the modeling, situating it within ac-

ceptable ranges. To evaluate the degree of improvement

of the assimilation in the modeling, a dimensionless

performance index, INDPerf, was defined as

INDperf 5
RMSEwithout assimilation2RMSEwith assimilation

RMSEwithout assimilation

,

(18)

TABLE 5. RMSE values for SCF estimations with different en-

semble sizes. For a given size, the RMSE is calculated as the av-

eraged RMSE values associated with each DC.

Ensemble size RMSESCF (m2m22)

10 0.351

20 0.257

50 0.248

100 0.251

200 0.253

FIG. 7. (left) Measured (black dots), simulated (gray line), and ETKF-assimilated (black line) snow depth evolution for each DC used by

the snow model. (right) Dispersion graphs between measured and assimilated snow depth.
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where RMSEwithout assimilation and RMSEwith assimilation

are the errors between observed and simulated values of

snow depth with and without assimilation, respectively;

this index typically ranges between 0 and 1, with in-

creasing values for the higher degrees of improvement.

For the three DCs studied, the assimilation improved

the simulated values of the snow depth over 25%, with

INDPerf values of 0.13, 0.39, and 0.05 for the curves with

CV5 0.4, 0.8, and 1.2, respectively. Obviously, a greater

improvement was observed for the simulated SCF

values, since this variable was directly assimilated, with

INDPerf values of 0.60, 0.66, and 0.50, respectively, for

each curve, these results being an indirect indicator of

the correct implementation of the methodology.

5. Discussion

The results shown in the previous section demonstrate

the importance of selecting one of the DCs in order to

model the snow state variables correctly. The shape of

these curves is closely related to the physics of the pro-

cess. Hence, the curve of the highest CV (CV 5 1.2)

represents a very fast initial melting process, which slows

down in its final stage, leaving important amounts of

snow concentrated in small areas of land. This could

explain the overestimation of the depth produced during

the summer season, which, in turn, conditions the results

of the second year, so that the use of this DC to pa-

rameterize subgrid variability was disregarded. In con-

trast, the other curves with lower CV values (CV 5 0.4

and 0.8) enable the snow to stay longer, cover a larger

area, and produce fast melting after crossing a certain

threshold, which seems to be more adequate for the

conditions at the study site. According to the RMSE

values shown in Table 6, the DC with CV 5 0.8 repre-

sents the best global performance of the snow model.

Nevertheless, in Fig. 7, different trends can be observed

between both simulations depending on the type of

accumulation–melting cycle throughout the year. To ad-

dress this, two different situations were identified during

the study period, and the RMSE values associated with

each of them were calculated: 1) short accumulation–

melting cycles that are associated with sporadic snowfall

occurrence at the beginning and end of the hydrologic

year, usually over nonhighly covered conditions, and

2) large accumulation–melting cycles during the central

part of the snow season. Table 7 shows the RMSE

values calculated for both DCs during each cycle pe-

riod. Hence, in spite of the similarity between both

DCs, small aspects can be differentiated. The DC with

CV 5 0.4 produces faster decreasing rates than the

DC with CV 5 0.8 and is capable of reproducing short

accumulation–melting cycles, but it cannot maintain

the snow presence until the end of the melting period.

The RMSE for snow depth is reduced by up to ap-

proximately 50% for both types of conditions when the

appropriate curve is selected (Table 7). Moreover,

these trends are closely related to the conditions of the

state of the snow that can be found during each kind of

cycle. The snow is usually slightly compacted during short

cycles and much more metamorphosed and compacted

during longer cycles, especially at the end stages. These

results point to the convenience of adopting a selective

DC parameterization depending on the succession of

accumulation–melting cycles in the snow season in these

highly variable environments.

Following this, an optimal performance of the assim-

ilation modeling process could be obtained by selecting

the CV5 0.4 curve fromNovember 2009 to earlyMarch

2010, and shifting to the CV 5 0.8 until the end of this

hydrologic year, to recover the CV 5 0.4 curve for the

initial sporadic snowfall events and then the CV 5 0.8

curve from the end of December 2010 onward. The as-

similation process made it possible to overpass the initial

overestimation of the simulated snow depth values

during the short cycles in 2009 and the initial stage of the

long cycle in the winter of 2010 (Fig. 5), with any DC,

resulting in a really high approximation when the CV5
0.4 curve was adopted and TP-SCF values were assimi-

lated (Fig. 7). Similarly, the initial underestimation of

the simulated snow depth values during the long, per-

sistent cycle in winter and spring of 2011 (Fig. 6) was

TABLE 6. RMSE associated with the comparison between model-assimilated and TP-measured values of snow depth for each DC in the

open-loop and TP-SCF assimilation simulations.

CV 5 0.4 CV 5 0.8 CV 5 1.2

RMSEsnow depth, open-loop simulation (mm) 321.26 285.37 555.96

RMSEsnow depth TP-SCF assimilation simulation (mm) 279.23 191.18 523.14

TABLE 7. RMSE associated with the comparison between

model-assimilated and TP-measured values of snow depth and SCF

for each DC and for different snowmelt–accumulation periods.

CV 5 0.4 CV 5 0.8

RMSEsnow depth large periods (mm) 463.87 261.21

RMSEsnow depth short periods (mm) 128.50 234.22
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greatly improved by the CV 5 0.8 curve and the as-

similated TP-SCF values. Analyzing the terrestrial im-

ages and the weather data during both periods (Fig. 8), it

can be observed that for the first periods (an example is

shown in Fig. 8a) the wind recorded during the night of

19 February and themorning of 20 February 2010 (mean

velocity of 15ms21) redistributes the snow in the area,

with a decrease of 500mm. For the second period se-

lected (Fig. 8b), the precipitation in the form of snow

taking place (35mm) is not sufficient to justify the in-

crease in depth observed in the measurements on 31

December 2010 (300mm), nor is the temperature high

enough to cause the subsequent decrease observed on 1

January 2011 (100mm). However, the intensity of the

wind recorded on those days (8m s21) reached fresh and

not yet consolidated snow, causing its important re-

distribution. The snow model used does not incorporate

the redistribution action caused by the wind (see section

3a) and therefore does not reproduce those variations in

snow depth that are fundamentally due to this agent.

The assimilation of TP-SCF data is able to partially

correct this absence of wind transport in the physical

model, as shown by the ETKF-simulated snow depth

values for those conditions (Fig. 7).

However, despite these considerations, some signifi-

cant mismatches in the simulation of snow depth still

persisted during the spring of 2010 and, to a lesser ex-

tent, in the winter of the 2010/11 hydrologic year in the

ETKF simulations (Fig. 7). An additional explanation

for this could lie in the performance of the snowfall

occurrence simulation made by the model, as the de-

tailed joint analysis of the weather dataset and the TP

observations seem to indicate, but no further conclu-

sions can be derived from the present results. All in all,

the usefulness of TP data for analyzing the variability of

snow at the subgrid scale and improving the physical

model performance has been highlighted, in terms not

only of SCF assimilation values and DC selection, but

also of gaining insight into the significant processes at

high-resolution time scales in these variable semiarid

environments.

6. Conclusions

The use of TP to study the evolution of snow cover has

permitted the continuous monitoring of that layer,

adapted to the spatial and temporal scale of the physical

processes, and has proved to be a simple and economical

way to obtain detailedmeasurements both of SCF and of

snow depth. This study shows that disposing of this type

of information is especially relevant in highly variable

environments like theMediterranean, in which the great

heterogeneity presented by the snow layer requires

detailed analysis at a local scale, during given periods

whose conditions cannot be captured by conventional

remote sensors alone. Specifically, the TP observations

allowed the assessment of DC parameterizations over

the study site.

The incorporation of this detailed information into

the snow modeling process by means of the data as-

similation technique selected, ETKF, significantly im-

proved the simulations of snow dynamics at the subgrid

scale made with the physical accumulation–melting

snow model previously calibrated at the study site. This

prevented some of the mismatches that occur at certain

moments during the snow season under either highly

variable conditions or processes not explicitly included

in the physical modeling, which are then extended over

the rest of the season, thus affecting the overall goodness

of the simulation. The TP-SCF assimilation has per-

mitted us to choose the DC that best reproduces the

fusion processes taking place in this type of environment

from those proposed in the literature. In this pilot area

selected in the Sierra Nevada (Spain) in particular, two

optimal curves have been identified to better reproduce

the change rate of snow variables depending on the kind

of cycle taking place and the presumably associated

characteristics of the snow, consolidated or not-so-

consolidated, with the CV 5 0.8 and 0.4 DCs proposed

by Luce and Tarboton (2004) associated with each snow

state, respectively. Both curves allowed the total cover

of the area to be maintained during the first melting

process stages, increasing the speed of the melting pro-

cess in its intermediate stage, and keeping a small frac-

tion covered in its final stage. Nevertheless, over the

whole study period, the CV 5 0.8 curve performed

better in the simulations both with and without TP-SCF

values assimilation. However, the results point to the

adoption of a selective curve procedure depending on

the occurring snow cycle as the optimal simulation

process.

This type of dynamics is associated, on the one hand,

with the type of local microrelief, and, on the other, with

the order of magnitude of the maximum depth of snow

accumulated during the annual period. Despite the im-

provement produced when significant snow transport

events occur because of the action of the wind, the

TP-SCF values assimilation is not always capable of

sufficiently mitigating the mismatch of the modeling for

given periods. Further analyses should be made to

identify the reasons behind this fact. This demonstrates

the importance of this atmospheric conditioning for

modeling the snow layer in these highly variable situa-

tions. It also indicates the usefulness of having DCs

derived directly from local observations under these

conditions available, as well as of implementing
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FIG. 8. Representation of TP images, weather data (5-min precipitation, temperature, and wind velocity), and

measured snow depth during two periods where the assimilation results overpass the initial overestimation of the

simulated snow depth: (a) from 18 to 21 Feb 2010 and (b) from 30 Dec 2010 to 2 Jan 2011.
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assimilation techniques of snow maps for the simulation

of their distribution at higher spatial scales than that of

this work. On both these work lines, TP constitutes an

economical and efficient complementary source of data

to be combined with remote sensing sources for dis-

tributed snow modeling and provides the required res-

olution to provide information on the significant

processes at the subgrid scale. The cost efficiency of TP

makes this technique a feasible and convenient one to be

included in conventional weather monitoring stations in

mountainous areas in semiarid environments.
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